2020 IEEE 36th International Conference on Data Engineering (ICDE)

Being Happy with the Least: Achieving
a-happiness with Minimum Number of Tuples

Min Xie!2, Raymond Chi-Wing Wong!, Peng Peng?, Vassilis J. Tsotras*

'The Hong Kong University
of Science and Technology
{mxieaa, raywong} @cse.ust.hk

Abstract—When faced with a database containing millions of
products, a user may be only interested in a (typically much)
smaller representative subset. Various approaches were proposed
to create a good representative subset that fits the user’s needs
which are expressed in the form of a utility function (e.g., the
top-k and diversification query). Recently, a regret minimization
query was proposed: it does not require users to provide their
utility functions and returns a small set of tuples such that any
user’s favorite tuple in this subset is guaranteed to be not much
worse than his/her favorite tuple in the whole database. In a sense,
this query finds a small set of tuples that makes the user happy
(i.e., not regretful) even if s/he gets the best tuple in the selected
set but not the best tuple among all tuples in the database.

In this paper, we study the min-size version of the regret
minimization query; that is, we want to determine the least tuples
needed to keep users happy at a given level. We term this problem
as the a-happiness query where we quantify the user’s happiness
level by a criterion, called the happiness ratio, and guarantee
that each user is at least o happy with the set returned (i.e., the
happiness ratio is at least o) where « is a real number from 0
to 1. As this is an NP-hard problem, we derive an approximate
solution with theoretical guarantee by considering the problem
from a geometric perspective. Since in practical scenarios, users
are interested in achieving higher happiness levels (i.e., « is closer
to 1), we performed extensive experiments for these scenarios,
using both real and synthetic datasets. Our evaluations show that
our algorithm outperforms the best-known previous approaches
in two ways: (i) it answers the a-happiness query by returning
fewer tuples to users and, (ii) it answers much faster (up to two
orders of magnitude times improvement for large «).

I. INTRODUCTION

A database system usually contains millions of tuples and
an end user may be interested in only some of them. In
order to assist a user’s decision making, we need queries
that obtain a small representative subset of tuples from a
large database instead of asking the user to scan the whole
database. Such queries can be considered as multi-criteria
decision making problems [7], [20], [21]. An example is the
traditional top-k£ query [20], [21], where a user provides her
preference function, called the utility function, and an integer
k (i.e., the output size). Based on the user’s utility function,
the utility of each tuple for this user can be computed. A
high utility indicates that the corresponding tuple is preferred
by the user. The output of a top-k query is the k tuples
with the highest utilities. If the user’s utility function is not
known, the skyline query can be applied [7]; instead of asking
for a utility function, it uses the “dominance” concept. A
tuple p is said to dominate another tuple ¢ if p is not worse

2375-026X/20/$31.00 ©2020 IEEE
DOI 10.1109/ICDE48307.2020.00092

2Shenzhen Institute of Computing
Sciences, Shenzhen University

1009

Sinspirai 4UC Riverside

pp@inspirai.com tsotras@cs.ucr.edu

than ¢ on each attribute and p is better than ¢ on at least
one attribute. Intuitively, p will have a higher utility than ¢
w.r.t. all monotonic utility functions. Tuples which are not
dominated by any other tuples are returned in the skyline
query. Unfortunately, the output size of a skyline query can be
large (at worst the whole database). Motivated by this, a novel
query called the regret minimization query [15] was proposed
recently to overcome the deficiencies of both the top-k query
(which requires the users to specify their utility functions) and
the skyline query (which might have a large output size).
Informally, a regret minimization query computes a small
set of tuples that makes the users happy (some papers use the
term not regretful) without asking the users for their utility
functions. The happiness level of each user is quantified as
the happiness ratio of the user. Specifically, given a set of
tuples, a user is % happy with the set if the highest utility
of tuples in the set is at least 2% of the highest utility of all
tuples in the whole database. In this case, the happiness ratio
of the user is x%. Clearly, the happiness ratio is a value from
0 to 1. The larger the happiness ratio, the happier the user.
Two versions of regret minimization queries were studied in
the literature: (1) the min-error version (also known as the
k-regret query) [15]: it maximizes the happiness level (i.e.,
minimizes the regret level) of each user while guaranteeing
the output size is at most k; (2) the min-size version [3], [13]:
it minimizes the output size while guaranteeing the happiness
ratio of each user is at least . Depending on the search needs
of users, different versions of regret minimization queries can
be applied. In this paper, we focus on the min-size version of
regret minimization, which we term as the a-happiness query.
Consider the following car database application. Assume
that Alice attempts to buy a car from a car database where
each car is represented by two attributes, namely horse power
(HP) and miles per gallon (MPG). To assist Alice for making
the decision, she should be provided with cars that she is
potentially interested in (e.g., cars with high utilities if we
know Alice’s utility function). However, in practice, it is
difficult for Alice to provide her utility function explicitly
(hence, we cannot use a top-k query). Alternatively, we can
approach this problem as an a-happiness query: Alice specifies
an « value (which is easier for her to do), which represents
the least happiness level she expects. In practice, Alice can
set « to be at least 0.9 [13], which means that she wants a set
of tuples whose highest utility is at least 90% of the highest

IEEE
(@ computer
soclety

utility of all tuples in the database. Then, an a-happiness query
returns a set of tuples from the database, with size as small as
possible, so that Alice will be satisfied with the returned set
(since the happiness ratio is at least a as specified by Alice).

In practical scenarios, users are interested in achieving high
happiness in a-happiness queries. For example, when buying a
car/house, which is one of the big purchases in our life, a user
may want to find a car/house which is as close to his/her ideal
one as possible by only examining a few options. Otherwise,
the user might feel regretful (i.e., not happy) for not buying
a better one for a long time. The best-known method for the
a-happiness query is CORESETHS [13]. Unfortunately, when
we experimentally evaluated CORESETHS for large « (e.g.,
« approaches 1), it experienced a long query time. This is
because the core of CORESETHS relies on sampling a large
number of utility functions to guarantee high happiness: the
larger the happiness level a user requires, the more utility
functions have to be sampled and the more time is needed to
construct the solution. In particular, its running time is propor-
tional to m, which becomes prohibitive when « is close
1 (even for a small number of attributes d). Different from
CORESETHS, we propose a novel method, CONE-GREEDY,
which removes the dependence on m In particular,
our experimental evaluation showcased that when users require
high happiness, our method’s running time decreases.

Note that a common characteristic of all approaches solving
the a-happiness query is that the output size increases when
a becomes larger. The output size represents the effort that a
user needs to spend to make a decision (since a user has to
examine the output to find the products s/he is interested in). A
further advantage of our method is that it consistently returned
solutions of smaller sizes empirically among all competitor
algorithms, which effectively makes the user’s decision easier.
Our major contributions are summarized as follows:

e We provide a novel geometric interpretation of the a-

happiness query, which has not been considered before.

« We propose a novel algorithm to answer the a-happiness

query. Our algorithm enjoys a bounded output size and is
not sensitive to large « in the way previous studies have.

o We present extensive experiments on both synthetic and

real datasets, demonstrating our superiority. Under some

practical settings, our method returns 30~80% fewer

tuples than existing ones (e.g., existing ones can output

more than 500 tuples, which is too large) while achieving

up to two orders of improvement in running time (e.g.,

they might take half an hour while we finish in seconds).
Organization. The a-happiness query is formally defined in
Section II. In Section III, we interpret the problem in a geomet-
ric way and provide an overview of our solution. The algorithm
is described in Section IV and related works are discussed in
Section V. Finally, the experimental evaluation is presented in
Section VI while conclusions appear in Section VII.

II. PROBLEM DEFINITION

We are given a set D of n tuples (i.e., |D| = n) in a d-
dimensional space (i.e., each tuple in D is described by d

TABLE 1
CAR DATABASE AND UTILITIES

[Car [HP [MPG | fo.4,0.6(p) | fo.2,08(p) | fo.7,03(p) |

p1 0.2 1 0.68 0.84 0.44
D2 0.6 0.9 0.78 0.84 0.69
D3 0.9 0.6 0.72 0.66 0.81
D4 1 0.2 0.52 0.36 0.76
ps | 0.35 0.2 0.26 0.23 0.305
D6 0.3 0.6 0.48 0.54 0.39

attributes). We assume that d is a fixed constant in this paper.
The i-th dimensional value of a tuple p is denoted by p[i]
where i € [1,d]. The norm of p (the L2-norm) is denoted by
|Ip||- In the rest paper, we also call each tuple as a point in a d-
dimensional space. Without loss of generality, we assume that
each dimension is normalized to (0, 1], such that there exists
a point p in D and p[i] = 1 for each i € [1,d] and we assume
that a larger value on each dimension is more preferable to all
users. Recall that in the car database, each car is associated
with 2 attributes, namely HP and MPG; in the example
shown in Table I, the car database D = {p1, p2, P3, P4, D5, P6 }
consists of 6 car tuples with normalized attribute values.

Assume that user’s happiness is measured by an unknown
utility function, which is a mapping f : R‘i — R,.. Denote the
utility of a point p w.r.t. f by f(p). A user wants a point which
maximizes the utility w.r.t. his/her utility function. Given a
utility function f and S C D, we define the maximum utility
of S wrt. f, denoted by Upyas(S, f), to be max,ecs f(p).
Clearly, for each S C D, Upaz(S, f) < Upaz (D, f).

We define two important terms, namely the function-wise
ratio (happiness ratio) and the minimum happiness ratio.

Definition 1 (Function-wise Ratio): Given a set S C D
and a utility function f, the function-wise ratio of S w.r.t. f,
denoted by fRatio(S, f), is defined to be %

The value of a function-wise ratio ranges from 0 to 1.
Intuitively, when the maximum utility of S is closer to the
maximum utility of D, the function-wise ratio of .S w.r.t. the
user’s utility function becomes larger, which indicates that the
user feels more satisfied with S. Thus, the function-wise ratio
is also called the happiness ratio. Unfortunately, in reality, it
is difficult to obtain the user’s exact utility function. Thus, in
this paper, we assume that all users’ utility functions belong
to a function class, denoted by FC. A function class is defined
to be a set of functions which share some common character-
istics. An example is the class of linear utility functions [15]
(to be defined shortly). The minimum happiness ratio of a set
S is defined over a function class FC, which can be regarded
as the worst-case function-wise ratio w.r.t. a function in FC.

Definition 2 (Minimum Happiness Ratio): Given a set S C
D and a function class FC, the minimum happiness ratio of
S over FC is defined to be inf sc z¢ fRatio(S, f).

Example 1: Assume that FC consists of 3 utility functions,
namely fo.4,0.6 fo20s8 and fo703 where fo3(p) = a X
p[l] + b x p[2]. Consider py in Table I. Its utility w.rt.
f0.4,0.6 is f0.4,0.6(p1) = 04 x02+06 x1 = 0.68
The utilities of other points in D are computed similarly
in Table 1. Given S = {pi1,ps}, the maximum utility of S

1010

W.LL f0.4,0.6 is Umax(svf0.4,0.6) = maXpGSfOA,O.G(p) =

f0.4,0.6(p1) = 0.68. Similarly, Umax(D7f0.4,0.6) s 078
: Umax (S, f0.4,0.6 .
Then, fRE]tIO(S7 f0.470.6) = 7U1(1ax((D7§(:).4100.(;)) = % = (.872.

Similarly, fRatio(S, fo.2.08) = 1 and fRatio(S, fo703) =
0.938. The minimum happiness ratio of S over FC is
inf e 7¢ fRatio(S, f) = min{0.872,1,0.938} = 0.872. 0

In general, the utility functions in FC could have an
arbitrary distribution. For the ease of presentation, we first
assume that each utility function in FC is equally probable to
be used by a user. However, we will later relax this assumption
in Section IV-C2 and show that our techniques can be easily
applied when arbitrary types of distributions are considered.

As in [3], [13]-[15], here, we assume that FC is the class of
linear utility functions due to its popularity in modeling user
preferences. Other classes of utility functions are considered in
[11], [19] and are not the focus of this paper. Specifically, each
linear utility function f in FC is associated with a utility vector
u which is a d-dimensional non-negative real vector where
u[é] denotes the importance of the i-th dimension in user’s
preference and it can be expressed as: f(p) = Z?Zl uli]pli] =
u-p. Without loss of generality, we assume that ||u|| = 1. Thus,
we have 7C = {f| f(p) = u-p where u € R? and |ju| = 1}.
In the rest paper, we also refer each function f in FC by its
utility vector u. Denote the minimum happiness ratio of S
over the class of linear utility functions FC by minHap(S).

Since FC contains an infinitfe number of linear utility
functions, it is not easy to compute minHap(S) for a given S
directly according to Definition 2. Instead, [16] showed that
the minimum happiness ratio minHap(.S) can be computed in
a tractable way using the “point-wise ratio”, pRatio, defined
below. In Section III-A, we will use pRatio to interpret the
a-happiness query from a novel geometric perspective.

For each point p € D, we define the orthotope set of p,
denoted by Orth(p), to be a set of 2¢ d-dimensional points
constructed by {0, p[1]} x {0, p[2]} x ... x{0, p[d]}. That is, for
each ¢ € [1,d], the i-dimensional value of a point in Orth(p)
is equal to either O or p[i]. Given a set S C D, we define the
orthotope set of S, denoted by Orth(S), to be |J,¢ 5 Orth(p).
Given a set S C D, let Conv(S) be the convex hull (the
smallest convex set) of the orthotope set of .S [16]. Moreover,
a point p € Conv(S) is said to be a vertex of Conv(S) if p is
not in the convex hull of the other points in Orth(.5).

Example 2: Consider the example in Table I where D =
{p1,p2,p3, P4, D5, P6 }- For the ease of presentation, we visu-
alize D in Figure 1 where the X1 and X5 coordinate represent
HP and MPG, respectively. The points in Orth(p2)(= {pa,
ph, Dy, O}) are shown in Figure 1 where p = (0,p2[2]),
Py = (p2[1],0) and O is the origin. Similarly, Orth(ps) is
shown in the same figure. Given S = {pa,ps}, we define
Orth(S) to be Orth(pz) U Orth(ps). Then, the convex hull
Conv(S) is shown in Figure 2. Note that there are 5 vertices
in Conv(S), namely O, ph, p2, ps and p¥, each of which is not
in the convex hull of the other points in Orth(95). 0

Definition 3 (Point-wise Ratio): Given a set S of points in D
and a point p € D, the point-wise ratio of p w.r.t. S, denoted

TABLE II
FREQUENTLY USED NOTATIONS
[Notation [Meaning
D The set of d-dimensional points with [D] = n
D’ The a-shrunk set of D
Umax (S, f) The maximum utility of S w.r.t. f
fRatio(.S, f) The function-wise ratio of S w.r.t. f
pRatio(S, p) The point-wise ratio of p w.r.t. S
FC The class of linear utility functions
minHap(S) The minimum happiness ratio of .S over #C
Conv(S) The convex hull of the orthotope set of S
Cone(V, 0) The conical hull of o w.r.t. V, i.e., Cone(V,0) =
’ {peRY p=0+3,cy wv where w > 0}
F A set of utility functions whose utility
P score is maximized by p over points in D’
V Vp, = {p” — p] for each vertex p’ of Conv(D")}
Ext(p) The set of extreme vectors of p
S The surface of a unit sphere in R?
c A partial spherical surface of S, Cone(Ext(p),O) NS
P (also called the conical hull of p if S is clear)
Vol(p)(Vol(p)) The (estimated) volume of the conical hull C)
0p(S)(0p(5)) The (estimated) marginal volume of p
St The set of points selected after the ¢-th round
Dt The point selected in the ¢-th round
: T : T
Or (02) pegl\lgt71 op(St—1) (pegl\‘éltﬂ §p(5t71))
N The sampling size
hp The hyperplane of p defined based on Ext(p)

by pRatio(S, p), is defined to be min{%, 1}, where p/ is the
intersection between the ray Op, which starts from the origin
O and passes p, and the surface of Conv(.5).

Lemma 1 (Computing Minimum Happiness [16]): Given a
set S C D, we have minHap(S) = min,e p pRatio(S, p).

Example 3: Given py and S = {pa,p3} in Figure 3,
the intersection between Opy and the surface of C9nv(S) is
denoted by p'. pRatio(S,p1) is computed to be Hgi” = 0.9.
Similarly, we can compute pRatio(S,py) to be 0.9 and the
point-wise ratios of the remaining points in D are 1. According

to Lemma I, minHap(S) = minyep pRatio(S,p) =0.9.

After knowing how to compute the minimum happiness
ratio minHap(-), we formally define the a-happiness query.

Problem 1 (The a-Happiness Query): Given a real number
a € [0,1], the a-happiness query returns a set S C D with
minHap(.S) > « such that the size of S, i.e., |\S], is minimized.

If there are multiple sets with the minimum size, an «-
happiness query returns one of them. Note that a user does
not need to specify his/her utility function in the c-happiness
query. Since minHap(S) is defined to be the worst-case happi-
ness ratio w.r.t. any utility function in FC, if minHap(S) > «
for a given set S, for each user, s/he will be at least «
happy with S no matter which function s/he uses from FC.
Unfortunately, according to the existing results in [3], [8], [9],
it is NP-hard to solve an a-happiness query optimally. Table II
summarizes the frequently used notations in this paper.

III. GEOMETRIC PROPERTIES

We introduce a few important geometric properties used
in our solution. In Section III-A, we introduce the spatial a-
coverage problem, which is geometrically equivalent to the

1011

Conv(S)

X2 A .pl », X2 4 .pl ° Xz 4 p,
P,)25
2 D Ps Ps

ps Dy D,

O pIpix, O

Fig. 1. Orthotope set

piX, O

Fig. 2. Convex hull

a-happiness query. Then, we present our solution overview
for solving the spatial a-coverage problem in Section III-B.

A. Equivalence to Spatial Coverage

Given a real number « € [0, 1], we define the a-shrunk set
of D, denoted by D/, , to be {p/,|p, = ap,Vp € D} where p/,
is the a-shrunk point of p. When « is clear in the context, we
denote D/, by D’ and denote a point in D’ by p’. Intuitively, D’
is a proportionally shrunk set of D. For example, let « = 0.9
and D is shown in Table I. The a-shrunk set D’ (shown in
cross points) of D (shown in dot points) is drawn in Figure 4
where each point in D’ is a proportionally scaled point in
D. Similarly, Conv(D’) can be regarded as a proportionally
shrunk convex hull of Conv(D) as shown in Figure 4.

We formally define the spatial a-coverage problem, which
provides us a novel interpretation of the a-happiness query.

Problem 2 (The Spatial a-Coverage Problem): Given o €
[0,1], the spatial a-coverage problem finds a minimum size
subset of D, denoted by .S, such that for each point p’ € D’,
p’ is inside Conv(S) where D’ is the a-shrunk set of D.

We say that Conv(S) covers Conv(D’) if the above condi-
tion is satisfied since Conv(D’) is “contained” inside Conv(S5).
For example, in Figure 5 where S = {p2, p3}, Conv(S) covers
Conv(D’), i.e., for each p’ in D', p’ is inside Conv(S).

We show our first interesting result that the a-happiness
query and the spatial a-coverage problem are equivalent in
Theorem 1. For lack of space, the proofs of Theorems/Lemmas
in this paper can be found in our technical report [27].

Theorem 1: Given S C D and « € [0,1], S is a feasible
solution of the spatial a-coverage problem on D if and only
if S is a feasible solution of the a-happiness query on D.

Example 4: Given o = 0.9 and S = {p2,p3}, S is a
feasible solution of the spatial a-coverage problem on D since
Conv(S) covers Conv(D') as shown in Figure 5. According
to Theorem 1, S is also a feasible solution of the a-happiness
query on D, which conforms with our previous computation
in Example 3 where minHap(S) = 0.9 > «. 0

Theorem 1 provides a straightforward way for us to interpret
the a-happiness query. The geometric explanation of the a-
happiness query is obviously more intuitive than its original
algebraic explanation. Since the a-happiness query is an NP-
hard problem, it is also computationally expensive to find an
optimal solution for the spatial a-coverage problem. In the
following subsection, we show a different view of the spatial
a-coverage problem, which helps us to determine a solution
efficiently. Based on this result, we will develop our algorithm
in Section IV for answering the a-happiness query.

1
Fig. 3. pRatio(S, p)

Conv(D) X, 1
Ps
P
X, X, o X,
Fig. 4. a-shrunk set Fig. 5. Conv(S) covers Conv(D’)
X, * Vl? X, t
o1 P ’
s ¥
pl h -~ v2 v
2\\, @, 1
X 3
)
X 4

O X 0

Fig. 6. Extreme vector ! Fig. 7. Function set !

B. Interesting Properties

Before we go through the details, we first introduce an
overview of our solution to the spatial a-coverage problem.

Consider a point p in D. Let J,, be a set of utility functions
such that for each f € F,, f(p) > max,cp/ f(p’) where D’
is the a-shrunk set of D. Intuitively, F,, is a set of utility
functions whose utilities are maximized by p over the points
in D’ (or simply, the utilities are maximized by p and p has the
maximum utility if D’ is clear in the context). Before showing
the formal procedure for obtaining such F,,, we first show how
we use J, to solve a spatial c-coverage problem effectively
(proven in our technical report [27] due to the lack of space).

Lemma 2: Given « € [0,1], the function set F, for each
point p € D and a set S C D, if Upes Fp = FC, Conv(S)
covers Conv(D’) where D’ is the a-shrunk set of D.

According to Theorem 1 and Lemma 2, a set S is a valid
solution for the a-happiness query if UpE s Fp=FC.

Intuitively, given a point p in D, the (uncountable) number
of utility functions in J, can be regarded as the importance
of p. A point with a higher importance indicates that this point
has the maximum utility w.r.t. more utility functions. Based on
this observation, our algorithm has two major steps. Firstly, we
compute the function set F,, for each p in D and quantify its
importance. Secondly, we leverage a greedy algorithm to select
points to S according to the importance obtained in the first
step until Ude g Fp = FC. In the following, we first present
the formal definition of /), and then provide the procedure for
computing the desired J,,. The quantification of its importance
and the greedy strategy will be presented later in Section IV.

1) Preliminary Concepts: Let D be the given dataset and
D’ be its corresponding a-shrunk set. We first introduce a few
useful notations and geometric concepts for defining F,.

Given a point p in D, let V,, = {p’ — p| for each vertex p’
of Conv(D')}. For example, given a point py in Figure 6, the
vector set V,,,, which is constructed by creating a vector for
each vertex of Conv(D’), is shown in solid vectors.

1012

Given a vector set V' and a point o, we define the conical
hull of o wrt. V, denoted by Cone(V,0), be the set of
all vectors which are centered at o and are the conical
combination [12] of vectors in V, i.e., Cone(V,0) = {p €
R p =0+, wo where w > 0}. Intuitively, Cone(V, 0)
can be regarded as a convex cone with apex o. The boundaries
of Cone(V,0) are some unbounded facets, each of which is
enclosed by some vectors in V' and is a flat surface that forms
a part of the boundary of Cone(V,o0). Given the previously
defined vector set V), we can define a special conical hull
Cone(V},, p) for each p in D. A concrete example is as follows.

Example 5: Consider py and the corresponding V,, in
Figure 6. We draw Cone(V,,,p2) in the shaded region in
the figure, which is the set of all vectors with the form
P2 Jrzwevpz wv where w > 0. In this 2-dimensional example,
the boundaries of Cone(V,,,p2) are two unbounded facets,
ie., the rays shooting from py to py and from py to ps. [

Intuitively, Cone(V},,p) can be regarded as a conical hull
that constrains the maximum visible range from p to Conv(D’).
For example, in Figure 6, Cone(V,,,p2) constrains the maxi-
mum visible range from ps to Conv(D’) since along any other
direction (ray), po cannot “see”(reach) any point in Conv(D’)
(also see the example in Figure 7 where Conv(D’) is shown
and we draw the boundary of the maximum visible range from
p2 to Conv(D’) in two dashed lines passing through ps).

Consider a boundary facet F' of conical hull Cone(V,,p)
defined above. Facet F' is said to be contained by a hyperplane
if (1) for each point g on F', ¢q is also on this hyperplane and
(2) for each ¢ in Cone(V,,p) but not on F, ¢ is below the
hyperplane. In geometry, each boundary facet of a conical hull
is contained by a unique hyperplane. Then, for each boundary
facet F' of Cone(V,,p), we define an extreme vector of p to
be the unit vector perpendicular to the hyperplane containing
F. Denote the set of all extreme vectors of p by Ext(p).

Example 6: Consider conical hull Cone(V,,,,p2) in Exam-
ple 5. The ray shooting from py to p} is a boundary facet of
Cone(V},,, p2), which is contained by the hyperplane (i.e., a
line in this 2-dimensional example) passing through p| and
po. Since vy is a vector perpendicular to this hyperplane, vy
is an extreme vector of ps. Another extreme vector, namely vo,
is obtained similarly. Thus, we have Ext(ps) = {v1,v2}. [

2) Function Set: Based on the concepts introduced above,
we are ready to formally define the function set F,, which is
a set of utility functions whose utilities are maximized by p.

Definition 4 (Function Set): Given p in D and its extreme
vectors Ext(p), we define the function set of p, denoted by
Fp. tobe {f € FC| f(p) = u-p and u € Cone(Ext(p),0)}.

Lemma 3: If f € F,, f(p) > f(p') for each p’ € D".

Example 7: In Example 6, Ext(p2) is computed to be
{v1,v2}. The conical hull Cone(Ext(ps),O) is shown in the
shaded region in Figure 7, which is the set of all vectors with
the form wivi + wavy where wi,wy > 0. By Definition 4,
we define Fp, to be the functions whose utility vectors are
in Cone(Ext(p2), O). Then, according to Lemma 3, if f is a
function in Fp,, we have f(p2) > f(p') for each p’ € D'.

Fig. 8. Conical hull

Fig. 9. Union of hulls

Figure 8 shows another example of Cone(Ext(p), O) where
Ext(p) = {v1,v2,v3} for some p in a 3-dimensional space.

Note that for a given p in D, its function set F, is uniquely
determined by the extreme vectors in Ext(p). Thus, we com-
pute F, by computing the corresponding Ext(p). Formally, the
procedure for computing 7, is described as follows:

1) We compute the set of all vertices of Conv(D');

2) We define V,, = {p’—p| for each vertex p’ of Conv(D’)}

and construct the conical hull Cone(V,, p);
3) We obtain the set Ext(p) and each unit extreme vector
in it is perpendicular to a boundary facet of Cone(V),, p).
Time complexity. Let m be the maximum extreme vectors of
a point in D and B’ be the set of all vertices of Conv(D’).
In practice, we can compute the vertex set B’ in O(n|B’|)
time using linear programming (LP) [10]. For each p in D,
we construct the vector set V, in O(]B’|) time and obtain
Ext(p) in O(m) time [5] since there are O(m) boundary facets
in Cone(V,, p). Thus, the total time complexity of the above
procedure is O(n|B’| + nm). In low dimensional spaces, the
Quickhull algorithm [5] can also be adapted to computing F,.
We omit the details here and refer interested readers to [5].

IV. ALGORITHM

According to the solution overview described in Section III,
our algorithm consists of two major steps. Firstly, we compute
Fp (i.e., compute the extreme vectors Ext(p) that define F),)
and quantify the importance of F,, for each p in D. Secondly,
we employ a greedy algorithm based on the importance
obtained in the first step and determine a set S C D such
that UpesF, = FC. In the following, we first show how we
quantify the importance of each J,, in Section IV-A and then
present the algorithms in Section IV-B and Section IV-C.

A. Importance of Function Set

Recall that each utility vector has its norm equal to 1. Then,
we interpret that each utility vector lies on the surface of a
sphere, denoted by S, in the positive quadrant with radius 1
centered at the origin. That is, S = {u € R%| |ul| = 1}.

In Section III, F,, is defined to be a set of utility functions,
whose utility vectors are in Cone(Ext(p), O). In other words,
JFp can be represented as a partial spherical surface of S, i.e.,
Cone(Ext(p), O)NS. With a slight abuse of terminology, when
S is clear in the context, we also call the spherical surface
Cone(Ext(p), O) NS as the conical hull of p, denoted by C,,.
Clearly, C,, is also uniquely defined by Ext(p). Intuitively, if
there are more vectors in Cp, p is more important since it has

1013

the maximum utility w.r.t. more functions. However, since the
number of vectors in C), is uncountable, we use the “surface
area” (i.e., the (d — 1)-dimensional measure) to quantify the
importance of a point p. Specifically, we define the volume
of a conical hull of p (or simply, the volume of p), denoted
by Vol(p), to be AAr:a((%‘;), where Area(-) denotes the surface
area. The volume of a set S, denoted by Vol(S), is defined
to be %jg)c"). It is easy to see that Vol(S) € [0,1]. The
following lemma shows that our goal of finding a set .S with
UpesFp = FC is equivalent to finding a S with Vol(S5) = 1.

Lemma 4: UpegFp, = FC if and only if Vol(S) = 1.

Example 8: Consider the 3-dimensional example in Fig-
ure 8. S is drawn in solid lines, which is the set of all utility
vectors with norm equal to 1. Assume that C,, is formed by
3 extreme vectors, ie., Ext(p) = {vi,v2,v3}. Cp can be
regarded as a partial spherical surface of S, shown in shaded.
The volume Vol(p) is computed to be the surface area (i.e., the
2-dimensional measure) of C), divided by the surface area of S.
Consider Figure 9 where S is covered by the union of 6 conical
hulls. If S is the corresponding set of points, Vol(S) = 1.

To find the desired set .S with Vol(S) equal to 1, a crucial
operation is to compute Vol(S) for a given S. We first treat the
computation of Vol(.S) as a black box and present a conceptual
algorithm in Section IV-B. Since the exact (actual) volume
Vol(S) is time-consuming to compute especially in a high
dimensional space, we present an algorithm which utilizes the
approximate (estimated) volume Vol(S) in Section IV-C.

B. The Conceptual Algorithm

In this section, we first treat the computation of Vol(.S)
for a given set S as a black box. A natural greedy algorithm
works as follows. The algorithm adds points iteratively to the
solution S, initialized to be an empty set. In each iteration, the
point with the largest marginal volume is inserted into S until
Vol(S) = 1. The marginal volume of a point p is defined to
be Vol(SU{p}) - Vol(S). Intuitively, a large marginal volume
of p indicates that the probability that a utility function is
maximized by p but not points already in S is large. Let T'
be the total number of iterations. For ¢ € [1, T, S, represents
the set of points selected so far after the ¢-th round. Let p;
be the point selected in the ¢-th round. Denote the marginal
volume of p by 0,(S) = Vol(S U {p}) — VolI(S). In addition,
let 0; = minyep\s,_, m. The pseudocode is shown in
Algorithm 1, whose upper bound is given in Theorem 2.

Theorem 2: Denote the set returned by Algorithm 1 by Sp
and the optimal set with volume equal to 1 by S*.

|S7| < (1 + Inmin{kq, k2, k3 })[S™|

791)(50) : QP(ST) > 0}, k2 = 09—71“

where]61 = maxpeD’re[LT] {Qp(s‘r')

and k3 = 1/(1 — Vol(St_1)).

C. The Cone-Greedy Algorithm

Unfortunately, computing the exact value of Vol(S) (which
is not necessarily convex) is very expensive especially in a
high dimensional space. Thus, we utilize a sampling method to

Algorithm 1 The Conceptual Algorithm

Input: D, «
Output: A set S C D

I: So«0,t+0

2: for each point p € D do

3: Cp < the conical hull of p, Vol(p) + A/;:g(cs,;)

4: end for

5: while Vol(S;) #1 do

6: t—t+1

7: pr < argmaxpep\s, , 0p(Si—1), St < Si—1 U {p:}
8: end while

9: T+t

10: return St

1
Fig. 10. Estimated volume Fig. 11. s is not in Cp,

estimate the (marginal) volume of a conical hull. Specifically,
given a conical hull, we generate N unit samples from R‘j_ by a
d-dimensional uniform distribution and determine the number
of samples inside this conical hull (i.e., the samples which are
the conical combination of the extreme vectors that defines the
conical hull). Then, the volume of this conical hull is estimated
to be the ratio of the number of samples locating inside the
conical hull to the total number of samples, V.

We propose an algorithm, called CONE-GREEDY, for an-
swering the a-happiness query, which works in a similar
manner as Algorithm 1. The only difference is that we consider
the estimated volumes instead of the exact volumes. With
a slight abuse of notations, we let T be the total number
of iterations. For each ¢ in [1,7], S; denotes the set of
points selected so far after the ¢-th round and let p; be the
point selected in the ¢-th round. Note that 7', S; and p; in
CONE-GREEDY might be different from those in Algorithm 1.
We denote the estimated (marginal) volume p by Vol(p)
(0p(S) = Vol(S U {p}) — Vol(S)) and the actual (marginal)
volume of p by Vol(p) (¢,(S) = Vol(SU {p}) — Vol(95)). Let
0; = minyep\s,_, m and 0y = min,cp\g,_, m.
The pseudocode of CONE-GREEDY is shown in Algorithm 2.

CONE-GREEDY can also be interpreted in a set-cover man-
ner. We say that a sample s is covered by a conical hull C),
if s lies inside C),. The greedy algorithm starts with an empty
solution set S, and it adds points to S iteratively until all
samples are covered by some conical hulls corresponding to
the points in S. In each iteration, it adds the point whose
conical hull covers the largest number of uncovered samples
(i.e., the point with the largest estimated marginal volume).

Example 9: Consider the example in Figure 10, which are
the conical hulls of points in Table I with o = 0.9. In this 2-
dimensional example, each Cy, is an “arc” on S. We generate
6 samples (i.e., N = 6), drawn in the diamonds in the figure.
The sample sy is inside Cp, while sy is not inside Cy,. Since

1014

there are 4 out of 6 samples lying inside Cp,, the estimated
volume of pa, Vol(pa), is % = 0.666. For comparison, the
actual volume of pa, Vol(p3), can be computed to be 0.664.
CONE-GREEDY on this example works as follows. In each
iteration, it selects the point which has the largest estimated
marginal volume, or equivalently, the point whose conical hull
covers the largest number of uncovered samples. Specifically,
CONE-GREEDY first selects ps, whose conical hull covers 4
samples. The remaining 2 samples are covered by C,,,, which
is inserted to the solution S next. Finally, S is {p2,p3}. [

A basic operation of CONE-GREEDY is that given a sample
s and a conical hull C,, we determine whether s is in Cj,
which we call the conical hull location problem. The conical
hull location problem needs to be solved for each sample
and each conical hull combination. Thus, it is important to
solve it efficiently, which we will discuss in Section IV-C1.
The theoretical and complexity analysis of CONE-GREEDY are
presented in Section IV-C2 and Section IV-C3, respectively.
1) The Conical Hull Location Problem: We focus on the
conical hull location problem in this section: given a sample
s and a conical hull Cy, is s inside C),, denoted as “s € C),”?
According to the definition of conical hulls, s € C), if and
only if s is a conical combination of the extreme vectors
that defines Cp,. A naive solution of determining if s € C),
is to formulate it as a linear programming (LP) problem.
However, if the number of extreme vectors is large, it is
time-consuming to solve such an LP for each sample and
each conical hull combination. In the following, we present
a necessary condition for the conical hull location problem.
Given a conical hull C), specified by m unit extreme vectors,
namely v1,...,v, (JJv;]| = 1), we define a hyperplane for
p, denoted by h,. In geometry, a hyperplane is uniquely
defined by its normal and offset. Specifically, the normal of
hy, denoted by n,, is defined to be the unit vector in the same
direction as % Z;’;l v; and the offset of hy,, denoted by c,,
is defined to be min;e(y ;) 1y - v;. If @ point is on hy, its dot
product with n,, is equal to c¢,. Assume that the ray shooting
from O in the direction of v; intersects h, at v;. When the
context is clear, we simply say that v; intersects h, at v.
Similarly, we say that a sample s intersects h, at s’ if the
ray shooting from O to s intersects h, at s’. The necessary
condition for determining if s € C}, is summarized as follows.
Lemma 5: If s € Cp, ||| < 1.
According to Lemma 5, if ||¢'|| > 1, we can directly
conclude that s ¢ C, without solving the expensive LP.
Example 10: Consider Figure 11 where S (the set of all
utility vectors with norms equal to 1) is shown. The conical
hull C,,, defined by extreme vectors vy and vq, is drawn in
the figure. According to the construction above, we can define
the hyperplane hy,. The intersections between h,, and both
vy and vy (Which are in Cp,) have norms at most 1. Consider
another intersection, denoted by s', between hyp, and a sample
s. Since ||§'|| > 1, we conclude s ¢ C)p, by Lemma 5. 0

In short, we solve the conical hull problems in three steps:
1) Transform each C), to its corresponding hyperplane h,;

Algorithm 2 The CONE-GREEDY Algorithm

Input: D, «, confidence parameter §, error parameter €
Output: A set St C D

1: Create N samples from a d-dimensional uniform distribution
2: So0,t+0

3: for each point p € D do

4: C}p <+ conical hull of p, Vol(p) <+ the estimated volume of p
5: end for _

6: while Vol(S;) # 1 do

7: t—t+1

8: Pt <— argmaXpep\s;_, ép(St,l), St Si_1 U {pt}

9: end while

10: T+t

11: return St

2) For each sample s, we determine the set of hyperplanes
whose intersections with s has norm at most 1 and they
correspond to the candidate conical hulls containing s;

3) For each candidate hyperplane h,,, we check whether the
corresponding C), contains s by solving it as an LP.

Time complexity: Assume that C), is defined by m extreme
vectors. Determining whether s € C), can be formulated as an
LP with m variables and d constraints, which can be solved
in O(m) time in practice [6]. If the necessary condition in
Lemma 5 is satisfied, it simply takes O(1) to conclude s &
C) by checking the intersection between s and h,. Note that
the hyperplanes can be indexed using the techniques designed
for the ray shooting query [2]. Then, for each sample s, the
candidate conical hulls can be determined more efficiently.

2) Theoretical Analysis: Denote the set returned by CONE-
GREEDY by Sp. We analyze the performance of CONE-
GREEDY in this section. Specifically, we prove a lower bound
on Vol(St) and prove upper bounds on the output size |St|.

Since we approximate Vol(St) by Vol(S7) using sampling,
Vol(St) can be less than 1 even if Vol(Sy) = 1. Recall that
each function in FC is equally probable to be used by a user.
Given a set St with Vol(St) = 8 where 8 € [0,1] for the
a-happiness query, for each user, the probability that s/he will
be at least o happy with S is at least 3. The following lemma
provides a lower bound on the actual volume Vol(Sr).

Lemma 6: Given a confidence parameter J, a suffi-
ciently small error parameter ¢ and a sampling size N =
O(%&l/é)), with probability at least 1 — 4,

Vol(Sr) > 1 —|Srle.

Proof Sketch. We prove it with the well-known Chernoff-
Hoeffding Inequality [18] on the estimated volumes. For lack
of space, the proof appears in the technical report [27]. [

According to Lemma 6, the probability that a user will be
at least « happy with St is at least 1 —|St|e. Note that € is a
parameter that we can make arbitrarily small and the size |St|
is small in practice. Then, under practical settings, we have
|St|e < 1 and the bound is valid (i.e., Vol(St) > 1—|Sr|e >
0). To verify this assumption and show the usefulness of our
algorithm, we conducted experiments in Section VI by setting
a large € (i.e., we set a small sampling size N) and show that

1015

even this assumption is not true empirically, the output size is
still small while guaranteeing the happiness ratio.

The following lemma is a variation of Theorem 2, which
takes sampling into consideration and gives bounds on |St|.

Lemma 7: Given a confidence parameter J, a sufficiently
small error parameter € and a sampling size N = O(%&l/&))
such that g,,.(St—1) > €, with probability at least 1 — 6,

|ST| < [e(1 + Inmin{kq, k2})]|S™]

where ¢ = %ﬂﬁ /Cl = 9? kQ m,
is the optlmal set with Vol(S*) = 1.
Proof Sketch. The proof follows a similar framework as [23]
where actual volumes are considered. However, since actual
volumes are unknown (and expensive to obtain), we prove the
bounds using the estimated volumes in the sampling strategy.
The complete proof appears in our technical report [27].

and S*

The following lemma gives the upper bound on the output
size of CONE-GREEDY from the set-cover perspective.

Lemma 8: Given a confidence parameter ¢§, a suffi-
ciently small error parameter ¢ and a sampling size N =
O(%ﬁl/é)), with probability at least 1 — 6,

|ST| < (14 log N)|S™|.

where S* is the optimal solution with Vol(S*) = 1.
Proof Sketch. 1t is proven by the well-known approximate ratio
of the greedy algorithm for the set-cover problem. 0

We summarize our results in the following theorem.
Theorem 3: Given a confidence parameter §, a sufficiently
small parameter € and a sampling size N = O(%&l/ﬁ)) such
that 9,, (S7—1) > €, with probability at least 1 — §, CONE-
GREEDY returns a set St for the a-happiness query such that
D [S7| < min{[¢(1 + lanl{kl,kg})] 1 + log N}|S*|
wherecf% klfe— kg—m,
and S* is the optimal set with Vol(S*) = 1;
2) Vol(St) > 1—|St]e, i.e., for each user, the probability
that s/he will be at least « happy is at least 1 — |St|e.
Proof. Directly from Lemma 6, Lemma 7 and Lemma 8.

Other distributions of 7C. While we have assumed that all
functions in the class FC are equally probable to be used by a
user, the methods presented in this paper can be generalized to
other distributions of FC with the following two modifications.
Firstly, Vol(S) is defined based on the distribution of FC (e.g.,
by taking the integral over FC) instead of simply the surface
area. Secondly, when approximating Vol(S) by sampling, N
unit samples are generated based on the distribution of FC
instead of the d-dimensional uniform distribution.

3) Time Complexity Analysis: In Section III-B, we compute
C, for all p in D in O(n|B’| +nm) time where B’ is the set
of all vertices of Conv(D’) and m is the maximum extreme
vectors of a point in D. N samples can be generated in O(N)
time. For each sample s and each C},, we check whether
s € Cp, resulting in O(Nnm) time in total. The greedy set-
cover algorithm takes O(|S7|Nn) time. Thus, the total time
complexity of CONE-GREEDY is O(n|B’|+Nnm+|Sp|Nn).

Comparison. Compared with the existing algorithms, CONE-
GREEDY has some attractive differences. Firstly, the execution
time of CONE-GREEDY is less sensitive to large «, while
existing algorithms degrade rapidly when users require a high
happiness level (e.g., the time complexity of [13] is pro-
portional to m). Secondly, CONE-GREEDY provides
a log-factor bound on the output size by utilizing sampling
information, which has not been considered before. Finally,
different from previous approaches, the larger the happiness
level a user requires, the less time CONE-GREEDY needs
empirically. Intuitively, this is because that when « is larger,
the number of extreme vectors of a point in D tends to become
smaller, resulting in less time to solve the a-happiness query.
We will experimentally verify the last advantage in Section VI.

V. RELATED WORK

The regret minimization query was first introduced by
Nanongkai et. al in [15]. In particular, they focus only on the
k-regret query (i.e., the min-error version). Given an integer
k, a k-regret query returns a set S of at most k tuples
such that the “difference” between the maximum utility of
tuples in S and the maximum utility of tuples in the whole
dataset D is minimized. Equivalently, we can also say that
a k-regret query maximizes the happiness level of each user
(measured by how close the maximum utility in S is to the
maximum utility in D) which we quantify as maximizing the
minimum happiness ratio of users (the worst-case happiness
ratio over all users). Finding an optimal solution for a k-
regret query was proven in [3], [8], [9] to be an NP-hard
problem. Nanongkai et. al [15] proposed a space-partition
based algorithm which returns a set of tuples whose minimum
happiness ratio is lower bounded. This bound was improved
in [8], [26] which is derived based on the well-known e-
kernel problem [1]. Greedy-based algorithms which construct
the solutions iteratively were proposed in [9], [15], [16], [26].
Besides, the k-regret query can be solved in a set-cover manner
[4] while user interactions were considered in [14], [24], [25].

The min-size version of regret minimization, namely the
a-happiness query, was first considered by Agarwal et. al
in [3]. Specifically, given a real number « € [0,1], an «-
happiness query minimizes the output size while keeping the
users happy (i.e., the minimum happiness ratio is at least «).
Various algorithms were proposed for the a-happiness query
and they can be categorized into the following approaches.
The first approach formulated the a-happiness query as an
€-kernel problem [1] and approximate algorithms [3], [8]
were proposed to obtain a desired solution. However, due
to the large size of an e-kernel, e-kernel based approaches
might have large output size. The second approach [3], [4]
discretized the function space and formulated the c-happiness
query as a hitting set problem (or a set-cover problem), which
provides user-controlled approximations on both the minimum
happiness ratio and output size. More recently, Kumar et. al
[13] proposed CORESETHS (which is included in our exper-
iments) which combines e-kernel and hitting set approaches
and achieves better efficiency than previous algorithms.

1016

Some k-regret query algorithms can be modified to answer
an «-happiness query. One could set a proper k in the
theoretically bounded algorithms [8], [15], [26] so that the
lower bound on the minimum happiness ratio is at least .
Unfortunately, the value of k set in this approach can be
extremely large. For example, to guarantee 0.95 happy on a
3-dimensional dataset, the space-partition based algorithm in
[15] has to return 1400 tuples, which is unacceptable in real
scenarios. One could also modify the greedy-based algorithms
[9], [15], [16], [26] so as to include tuples greedily until the
minimum happiness level of users is satisfied (we consider
this approach in our experiments). Similarly, solutions for the
a-happiness query can also be extended to answer the k-
regret query: using an approach discussed in [3], [13], one
can perform a binary search on different happiness ratios to
obtain a solution set whose output size is at most k.

Compared with the existing studies [3], [4], [8], [13], we
interpret the a-happiness query from a geometric perspective
and our algorithm enjoys novel theoretical bounds on the
output size. In particular, the execution times of existing
approaches are large when the users require high happiness
levels (since they have to consider a large number of utility
functions when « is large), while our algorithm, which is
less sensitive to «, can guarantee high happiness efficiently.
According to our experimental evaluations, our algorithm
performs more efficiently and effectively than previous ap-
proaches. Under practical settings, we achieve up to two orders
of improvements in running time and return the least tuples
among all methods while guaranteeing the required happiness.

There is also recent literature on multi-criteria decision
making that uses geometric concepts. Peng et. al [16] defined
a convex hull for a fixed size set of tuples in k-regret queries,
but we focus on minimizing the solution set size in «-
happiness queries. Different from them, we shrink/scale (a
concept that does not appear in [16]) each tuple in the database
according to the required happiness level so that all shrunk
tuples are inside the convex hull of the solution set. This
idea cannot be applied in [16] for k-regret queries where the
happiness level is not known in advance. Soma and Yoshida
[22] also considered a shrunk convex hull but they focused
on the multi-objective function maximization, which takes an
approximation algorithm for each single objective function as
an input. Our problem has a single objective function (which
is treated as a black box in [22]) and thus, their analysis
could not be applied to our problem. Peng and Wong [17] also
determined a set of non-overlapping conical hulls so that the
total space “covered” by those conical hulls are maximized,
while the conical hulls in our problem are overlapping. This
makes the problem more challenging: in their case, the total
coverage of conical hulls is simply the sum of the individual
coverage of each conical hull (since their conical hulls are
non-overlapping), which, however, is not true in our case.

VI. EXPERIMENTAL EVALUATION

We conducted experiments on a machine with 3.20GHz
CPU and 8GB RAM. All programs were implemented in

C/C++. Most experimental settings follow those in [3], [13].
Both synthetic and real datasets were used in our experiments.

We generated anti-correlated datasets (the most interesting
synthetic dataset where the skyline size is large) by a dataset
generator originally developed for the skyline query in [7].
Unless stated explicitly, for each synthetic dataset, the num-
ber of tuples is set to be 100,000 (i.e., n = 100,000), the
dimensionality is set to be 3 (i.e., d = 3), the sampling size
is set to be 10,000 (i.e., N = 10,000), and « is set to be
0.99. The real datasets contain three datasets commonly used
in the existing studies. They are the Island dataset [15], the
Airline dataset [4] and the El Nino dataset [3], [9]. Island is
2-dimensional, containing 63,383 points, which characterize
geographic positions. Airline contains 5,810,462 records with
3 characterizing attributes, namely the actual elapsed time, the
distance and the arrival delay. El Nino contains 178,080 tuples
with four oceanographic attributes taken at the Pacific Ocean.
For all datasets, each attribute is normalized to (0, 1]. The
characteristics of real datasets are summarized in Table III

According to the results reported in [15], the naive al-
gorithms adapted from top-k and skyline queries (or even
constructing the solution by randomly selecting points) can
achieve a minimum happiness ratio of around 0.9 with a small
number of points (e.g., < 10 points); thus it becomes less
interesting to minimize the output size in these cases (since the
output size is already very small). This observation conforms
with our argument in Section I that users are interested in
small sets achieving high happiness levels. Motivated by this,
in our experiments, we concentrate on « close to 1. Similar
setting was also adopted in the existing studies [3], [13].

We implemented our algorithm, CONE-GREEDY. The com-
petitor algorithms are (1) the e-kernel based algorithm [3], [8],
denoted by CORESET; (2) the best performing hitting-set based
algorithm [13], denoted by CORESETHS; and (3) a variation
of the greedy algorithms, denoted by LP-GREEDY [15] (see
Section V), which is originally designed for the k-regret query.
The implementations of CORESET and CORESETHS are pro-
vided by the authors in [13]. Note that theoretically, both
CORESET and CORESETHS have to sample O(i—5om)
utility functions to construct the solutions. However, in their
practical implementations, the number of utility functions
they sampled is determined empirically (i.e., a number much
smaller than O (=550). We follow this setting and use the
reported parameters in [13] in our experiments.

Unless specified explicitly, the performance of each algo-
rithm is measured in terms of query time (i.e., efficiency) and
output size (i.e., quality). The query time of an algorithm is
the execution time of the algorithm. The output size of an
algorithm is the number of points returned by the algorithm.
Some results are plotted in log-scale for better visualization.

We first evaluate the sampling strategy in our algorithm in
Section VI-A. Then, we proceed with the experiments on the
synthetic and real datasets in Section VI-B and Section VI-C.
Finally, we summarize our findings in Section VI-D.

1017

TABLE III
REAL DATASETS

TABLE IV

VARY N IN CONE-GREEDY

[Dataset [d [[D] | | [Cone-Greedy [LP-Greedy | CoresetHS [Coreset |
Island 2 63,383 N 100 500 1k 5k 10k 50k 100k - - -
Airline 3 | 5,810,462 minHap(S) | 0.980 | 0.981 | 0.987 | 0.990 | 0.990 | 0.990 | 0.990 0.990 0.991 0.991
El Nino | 4 178,080 |S| 11 14 14 15 15 15 15 19 18 45

CoresetHS —=—
Coreset —=—

Cone-Greedy —+—
LP-Greedy —e—

minHap(S)-o
minHap(S)-o

0.03 S —— 0.04 —_—
0.95 0.97 0.99 0.9930.998 0.95 0.97 0.99 0.9930.998

(a) 3d (b) Airline

Fig. 12. Results on the minimum happiness ratio

A. Effectiveness of the Sampling Strategy

In this section, we demonstrate the effectiveness of the
sampling strategy in our CONE-GREEDY algorithm.

Similar to the existing algorithms for both k-regret queries
and a-happiness queries (e.g., CORESET and CORESETHS),
which relax both the happiness ratio and the output size
simultaneously, the happiness ratio in CONE-GREEDY is guar-
anteed with a certain probability. Thus, in this section, we first
verify whether the happiness ratio is guaranteed empirically in
CONE-GREEDY. Specifically, we conducted experiments by
varying « (and fixing the sampling size to the default value)
on both the 3-dimensional synthetic dataset and the Airline
dataset in Figure 12 (other datasets are similar). We reported
the difference between the minimum happiness ratio of the
returned set .S, namely minHap(S), and the required happiness
level a for each algorithm. Recall that minHap(S) is not
optimized in an a-happiness query. Thus, a larger difference
between minHap(S) and o does nor mean that the solution
is of better quality. Instead, as long as the difference is non-
negative (i.e., minHap(S) > «), S is a valid solution for the -
happiness query and its quality is measured by the output size,
which will be studied shortly in later subsections. In particular,
if the happiness difference of CONE-GREEDY is non-negative,
it means that the probability that a user will be at least «
happy with S is 100%. According to the results shown in
Figure 12, CONE-GREEDY achieves comparable performance
as the existing methods and its happiness difference is non-
negative in most of the cases. In other words, the happiness
ratio can be empirically guaranteed in CONE-GREEDY.

We also studied the effect of our sampling strategy by
varying the sampling size N (and set « to be 0.99, the default
value). Equivalently, it also means that we are varying the
error parameter € in the sampling strategy since they are
closely related (i.e., the larger the sampling size, the smaller
the error). The results on a 3-dimensional dataset are shown
in Table IV. When N is very small, minHap(S) can be less
than (but close to) «; for example, we can achieve a 0.98
happiness ratio with only 100 samples. When N becomes
larger (i.e., € becomes smaller), the estimated volume is

Cone-Greedy —+— CoresetHS —=a—
LP-Greedy —e— Coreset —v—

100 80 }/e/

1
095 097 0.99 0.993 0.998

size
time(s)

20

7
095 0.97

0.99 0.993 0.998

(a) 3d

CoresetHS —=&—
Coreset —v—
0 T

Cone-Greedy —+—
LP-Greedy —e—

size

10
0.95 0.97 0.99 0.993 0.998

(b) 4d

Fig. 13. Results on synthetic datasets

16
0.95 0.97 0.99 0.993 0.998

closer to the actual volume and thus, minHap(S) becomes
closer to a. In particular, when N > 5,000, the returned
set S achieves the required happiness level 0.99 and its size
becomes stable, i.e., the size does not increase further with
more sampling points. Compared with the competitors which
achieve the same happiness level, CONE-GREEDY outputs the
smallest number of points. Note that a large sampling size
N is useful in achieving the required happiness ratio, but
it can introduce additional time in solving the conical hull
location problems. On the other hand, a small N results in
a faster algorithm but it can also give a large error in the
estimated volume. Following the practical way of determining
the sampling size in CORESET and CORESETHS, we set the
default sampling size to be 10,000 in our experiments since
it achieves a reasonable trade-off between the efficiency and
the effectiveness according to the results in Table IV.

B. Results on Synthetic Datasets

We evaluated our algorithm, CONE-GREEDY, on both 3-
dimensional and 4-dimensional anti-correlated datasets. The
results are presented in Figure 13(a) and (b), respectively.
When considering the running times, LP-GREEDY has the
largest execution time (e.g., 30 minutes on the 4-dimensional
dataset when a = 0.999, which is too large to be plotted
in the figure), which is also observed in [4], [13]. Besides,
we observe that CONE-GREEDY enjoys a different trend
compared to other algorithms: when « increases, most of the
other algorithms consume more time to construct the solution
(since they have to sample more utility functions to guarantee
higher happiness) while the times needed by CONE-GREEDY
decreases. Intuitively, this is because when « is large, the
convex hull Conv(D’) is “close” to Conv(D) and thus, the

1018

Cone-Greedy —+— CoresetHS —=—
LP-Greedy —e— Coreset —=—
600 T T 10000

500

400
o
N300 +

200 10 ¢

100 : /

2 3 4 5

(a) Effect of d

Cone-Greedy —+— CoresetHS —=—
LP-Greedy —o— Coreset —=—
40 T

' ' ' ' 30 [
/‘\V/// 25
30 1 g0
g15

Zolﬁx 10|
//\,,/w\ .

10 | 0
1k 10k 50k 100k 500k 1m 1k

1000

100

time(s)

size

10k 50k 100k 500k 1m

n
(b) Effect of n
Fig. 14. Scalability test

portion of Conv(D’), which is visible from each p, becomes
small, resulting in a small set of extreme vectors in CONE-
GREEDY and a short time to solve the conical hull location
problems. In comparison, the execution time of the best-known
algorithm CORESETHS is sensitive to large « since its running
time is proportional to m (which, however, is removed
in our algorithm). For example, when o = 0.999 on the 4-
dimensional dataset, it takes CORESETHS around 500 seconds
to execute, but CONE-GREEDY only spends around 10 seconds
(an order of magnitude improvement) to return the solution.
Despite the significant speedup, CONE-GREEDY also produces
the smallest solution set in all settings. For example, CONE-
GREEDY achieves 27.82% and 39.97% improvement in terms
of the output size over the best-known previous algorithm,
CORESETHS, on 3d and 4d datasets, respectively. CORESET
has the largest output size in most cases due to the large size
of an e-kernel in CORESET under practical settings.

Note that given a1, e € [0, 1] with ai; > «, a solution for
the a;-happiness query is also a solution for the ay-happiness
query (but it may not be minimal). Although solving the a;-
happiness query (and using its solution as the solution for the
ag-happiness query) might take less time in CONE-GREEDY,
we argue that it is still necessary to spend slightly more time
to solve the ap-happiness query since its solution could have a
much smaller size; e.g., the output size of the 0.95-happiness
query is smaller than half of the output size of the 0.99-
happiness query in Figure 13(a). Besides, the solution of an
a1 -happiness query can be large and it may not be practical
to return them as the output. For example, the 1-happiness
query is the special case of our problem whose solution is
the set of vertices of Conv(D). Although the solution for a 1-
happiness query is a solution for any a-happiness query with
an arbitrary o, there are 569 points in the solution set on a 5-
dimensional dataset, which is too large to return. To make the
user’s decision easier, it is desirable to have a smaller output
size by setting a smaller «.. This is a typical trade-off between
user happiness and the output size in the a-happiness query.

We evaluated the scalability of CONE-GREEDY by varying

CoresetHS —&—
Coreset —v—
10 T T

Cone-Greedy —+—
LP-Greedy —e—

time(s)

o N A O ®

95 097 0.99 0.993 0.998 095 097 0.99 0.993 0.998
o

(a) Island

CoresetHS —&—
Coreset —v—

Cone-Greedy —+—
LP-Greedy —e—

21 |
20 -
%19

r ©18
3 a—e—@—% £y

oo N] 16 [1

1 [S S |

14
095 097 099 0.993 0.998
o

size
oMWk N®O©O

.95 0.97 0.99 0.993 0.998

(b) Airline

CoresetHS —=—
Coreset —v—

Cone-Greedy —+—
LP-Greedy —&—

0.95 0.97 0.99 0.993 0.998
o

0E
095 097 0.99 0.993 0.998

(¢) El Nino

Fig. 15. Results on real datasets

the dimensionality d and the dataset size n in Figure 14
where other parameters are fixed to the default setting stated
at the beginning of this section. According to the results, our
algorithm scales well w.r.t. both d and n compared with the
existing algorithms in most cases and its output size is con-
sistently smaller than the output sizes of all other algorithms
in all cases. For example, on a 5-dimensional dataset, CONE-
GREEDY returns 96 points as the solution, while the output
sizes of LP-GREEDY, CORESETHS and CORESET are 180,
189 and 548, respectively. When n = 1,000,000, CONE-
GREEDY takes around 10 seconds to return a solution with
15 points while CORESETHS spends around 30 seconds to
find a solution set with 18 points. In other words, CONE-
GREEDY does not only return a solution with better quality
(i.e., a smaller size), it does so faster than previous approaches.

C. Results on Real Datasets

In this section, we conducted experiments on three com-
monly used real datasets. The results are shown in Figure 15.

On the 2-dimensional Island dataset (Figure 15(a)), the
output sizes of all algorithms (except for CORESET which has
the worst output size) are small when « is small. However,
when « is large, the output sizes of the competitor algorithms
become much larger than our CONE-GREEDY algorithm,
which conforms with our argument at the beginning that large
« is the case of practical interest since a small number of
points can satisfy a small happiness ratio, making it useless
to minimize the output size in this case. On the other hand,
the running time of CONE-GREEDY decreases slightly when
« increases and it runs the fastest under all values of a. In

1019

particular, when a = 0.999, CONE-GREEDY only spends 0.56
second to execute, which is 16 times faster than LP-GREEDY.
The results on Airline are similar and they are shown in
Figure 15(b). Note that due to the large dataset size on Airline,
it takes an unnecessary long time for LP-GREEDY to return
the solution. Thus, the running time of LP-GREEDY is omitted
in the figure. According to Figure 15(b), CONE-GREEDY
outperforms CORESETHS and CORESET in both output size
and running time under all settings. For example, the output
size of CONE-GREEDY is 12.17% and 40.69% (on average)
smaller than the output sizes of CORESETHS and CORESET,
respectively. Meanwhile, CONE-GREEDY is consistently faster
than CORESETHS and CORESET under all values of o.
Finally, consider the experiments on the El Nino dataset
in Figure 15(c). Similar to the previous experiments, CORE-
SET performs poorly since it outputs much more points to
guarantee the same happiness level compared with the other
algorithms. In contrast, the output size of CONE-GREEDY is
the smallest. Moreover, although CONE-GREEDY is slightly
slower than some competitors for small «, it becomes faster
when the user requires a higher happiness ratio. In comparison,
the running times of CORESETHS and LP-GREEDY are very
sensitive to « and they become much slower than CONE-
GREEDY for large a. In particular, when o = 0.999, CONE-
GREEDY achieves a 30 times improvement in running time
compared with both CORESETHS and LP-GREEDY.

D. Summary

The experiments on both real and synthetic datasets demon-
strated our superiority over previous approaches. Specifically,
we achieve up to two orders of improvement in running time
compared with CORESETHS and LP-GREEDY under typical
settings; e.g., in Figure 13(b), CORESETHS and LP-GREEDY
took 8 and 30 minutes to return the solutions for o« = 0.999,
which is too long, while we only needed 10 seconds to execute
(i-e., 50 times and 180 times improvements over CORESETHS
and LP-GREEDY, respectively). Meanwhile, our solution has
the smallest size in all cases (e.g., half of CORESET on Island
for all «v). The scalability of our solution and the effectiveness
of our sampling strategy are also demonstrated. For example,
on a 5-dimensional dataset, our CONE-GREEDY algorithm
returned 96 points for a« = 0.999, while the output size of
CORESET is 548 which is too large for a user to examine.

VII. CONCLUSIONS

This paper studies the «-happiness query, which returns
a minimum number of tuples from the database such that
the minimum happiness ratio is at least «. We interpret the
problem from a geometric perspective and give a solution
with novel theoretical guarantees and superior empirical per-
formance. We conducted comprehensive experiments to verify
the efficiency and effectiveness of the proposed solution. As
for future research, we plan to devise a model that estimates
time/size cost given an « value. Other directions include han-
dling larger datasets (which could not fit in main memory) and
with higher dimensionalities as well as exploring parallelism.

ACKNOWLEDGMENT

We are grateful to the anonymous reviewers for their con-
structive comments on this paper. The research of Min Xie and
Raymond Chi-Wing Wong was supported by HKRGC GRF
16214017, while Vassilis J. Tsotras was supported by NSF
grants: 1IS-1838222, 1IS-1527984 and IIS-1447826.

REFERENCES

[1] P. Agarwal, S. Har-Peled, and K. Varadarajan. Approximating extent
measures of points. In JACM, volume 51, pages 606-635. ACM, 2004.
[2] P. Agarwal and J. Matousek. Ray shooting and parametric search. In
SIAM Journal on Computing, vol. 22, no. 4. IEEE, 1993.
[3] P. K. Agarwal, N. Kumar, S. Sintos, and S. Suri. Efficient algorithms
for k-regret minimizing sets. In SEA, 2017.
[4] A. Asudeh, A. Nazi, N. Zhang, and G. Das. Efficient computation of
regret-ratio minimizing set: A compact maxima representative. In Proc.
of 2017 ACM International Conference on Management of Data, 2017.
[5] C. Barber, D. Dobkin, and H. Huhdanpaa. The quickhull algorithm for
convex hulls. In TOMS, volume 22, pages 469—483. Acm, 1996.
[6] D. Bertsimas and J. Tsitsiklis. Introduction to linear optimization.
volume 6. Athena Scientific Belmont, MA, 1997.
[7]1 S. Borzsony, D. Kossmann, and K. Stocker. The skyline operator. In
Proc. of 17th International Conference on Data Engineering, 2001.
[8] W. Cao, J. Li, H. Wang, K. Wang, R. Wang, R. Wong, and W. Zhan.
k-regret minimizing: Efficient algorithms and hardness. In ICDT, 2017.
[9] S. Chester, A. Thomo, S. Venkatesh, and S. Whitesides. Computing
k-regret minimizing sets. In Proc. of the VLDB Endowment, 2014.
[10] J. Dul4, R. Helgason, and N. Venugopal. An algorithm for identifying
the frame of a pointed finite conical hull. INFORMS, 1998.
[11] T. K. Faulkner, W. Brackenbury, and A. Lall. k-regret queries with
nonlinear utilities. In Proc. of the VLDB Endowment, 2015.
[12] J. Hiriart-Urruty and C. Lemaréchal. Convex analysis and minimization
algorithms I: Fundamentals. 2013.
N. Kumar and S. Sintos. Faster approximation algorithm for the k-regret
minimizing set and related problems. In ALENEX, 2018.
D. Nanongkai, A. Lall, A. Sarma, and K. Makino. Interactive regret
minimization. In Proc. of the 2012 International Conference on
Management of Data, 2012.
D. Nanongkai, A. Sarma, A. Lall, R. Lipton, and J. Xu. Regret-
minimizing representative databases. In Proc. of the VLDB Endowment,
volume 3, pages 1114—1124. VLDB Endowment, 2010.
P. Peng and R. Wong. Geometry approach for k-regret query. In Proc.
of the 30th International Conference on Data Engineering, 2014.
P. Peng and R. Wong. k-hit query: Top-k query with probabilistic utility
function. In Proc. of the 2015 International Conference on Management
of Data, 2015.
[18] J. M. Phillips. Chernoff-hoeffding inequality and applications. In arXiv
preprint arXiv:1209.6396, 2012.
[19] J. Qi, F. Zuo, and J. Yao. K-regret queries: From additive to multiplica-
tive utilities. In CoRR, 2016.
[20] L. Qin, J. Yu, and L. Chang. Diversifying top-k results. In Proc. of the
VLDB Endowment, volume 5, pages 1124-1135, 2012.
M. Soliman, I. Ilyas, and C. Chang. Top-k query processing in uncertain
databases. In Proc. of the 23rd International Conference on Data
Engineering, pages 896-905. IEEE, 2007.
[22] T. Soma and Y. Yoshida. Regret ratio minimization in multi-objective
submodular function maximization. In AAAI, pages 905-911, 2017.
L. Wolsey. An analysis of the greedy algorithm for the submodular set
covering problem. In Combinatorica, pages 385-393. Springer, 1982.
M. Xie, T. Chen, and R. Wong. FindYourFavorite: An interactive system
for finding the user’s favorite tuple in the database. In Proc. of the 2019
ACM International Conference on Management of Data. ACM, 2019.
M. Xie, R. Wong, and A. Lall. Strongly truthful interactive regret
minimization. In Proc. of the 2019 ACM International Conference on
Management of Data. ACM, 2019.
M. Xie, R. Wong, J. Li, C. Long, and A. Lall. Efficient k-regret query
algorithm with restriction-free bound for any dimensionality. In Proc.
of the 2018 International Conference on Management of Data, 2018.
M. Xie, R. Wong, P. Peng, and V. Tsotras. Being happy with
the least: achieving «-happiness with minimum number of tuples
(technical report), http://home.cse.ust.hk/~raywong/paper/icde20-happy-
technical.pdf. 2020

[13]

[14]

[15]

[16]

[17]

[21]

(23]

[24]

[25]

[26]

(27]

1020

