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ABSTRACT Recent advances in assistive hand devices have produced high degree of freedom systems
which are capable of complex grasping, however user-friendly control of these sophisticated devices is still
an open topic in research. Synergy-based controllers which dimensionally reduced the control problem were
present in the literature, however they used spatial/postural synergies which are static over time. In this paper,
we proposed the first control system based on spatiotemporal synergies which is scalable to any number of
degrees of freedom, any number of synergies, and any duration of synergy. The controller was tested on prior
data in which ten subjects performed 50 object grasps and 36 American Sign Language letters and numbers.
The tuned response of the controller, the l1-norm reconstruction error, and the simulation error were all
reported in detail. The angular error between the simulated model and recorded states decayed rapidly from
23.1±19.98% with the first synergy to 6.18±8.75% for synergies 1 to 6 and 2.29±3.35% for synergies 1 to
10 and was statistically similar to the reconstruction error of the angular trajectories. Minor improvements in
performance were observed when using higher-order synergies, implying a tradeoff between accuracy and
control complexity. The data shown here can be used to select the number of synergies to use in control
based on the accuracy of the controller and the accuracy of the controlled robotic system. The resulting
system achieved high grasping dexterity with minimal computational or manual effort for assistive devices.

INDEX TERMS Assistive devices, prosthetics, dimensionality reduction, exoskeleton, kinematics, object
grasping, robotics and controls, spatiotemporal synergies, torque control, virtual hand.

I. INTRODUCTION
Individuals who experience paralysis or loss of a limb risk
losing their ability to independently conduct activities of daily
living (ADL). Out of the 185,000 individuals who suffer limb
loss every year in the US [1], 15% will undergo a transradial
and 8% will undergo a transhumeral amputation [2]. Stroke
alone, affecting an estimated 795,000 individuals per year [3],
leaves 65% unable to integrate their affected hand into normal
activities six months post-stroke [4]. Some hand function
can be restored through diligent rehabilitation, however those
who do not regain enough function for ADL face hardships.
The persistent loss of hand function for ADL reduces the indi-
vidual’s ability to independently care for themselves and dras-
tically affects their quality of life. This manifests as financial,
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emotional, social, and mental hardship on the affected indi-
vidual and their loved ones or close caretakers [5]. Assistive
devices such as prosthetics and wearable robotics offer a
promising method of reducing this functional gap, however
more development needs to be undergone before they become
ubiquitous.

The control and function of assistive devices are among the
most commonly-cited needs for improvement in prosthetics
andwearable robotics for the upper limb [6]. Hand prosthetics
and exoskeletons aim to improve device dexterity beyond
single degree of freedom (DoF) hand open-close motions by
increasing the number of independently actuated joints. This
leads to more sophisticated devices capable of a richer variety
of hand motions, however the added DoF leads to increased
difficulty for the user to control. A user may be able to control
several DoF using as many muscles through electromyog-
raphy (EMG), however it is not possible to fully control,
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for instance, the 26-DoF Modular Prosthetic Limb with this
method. There has been a significant push to maintain the
dexterousness of high-DoF devices without increasing the
control complexity for the user.

One approach to simplify the control of high-DoF devices
is based on basic science research in motor neurophysiology.
High-DoF biological systems, such as the limbs of animals
and hands of humans, were hypothesized to be controlled
by relatively few patterns of motion during normal opera-
tion [7]. This hypothesis was supported by experiments in
frogs [8] and cats [9] which showed coupled activations of
muscles of the limb when stimulating individual neurons in
the spinal cord. Furthermore, the motion patterns observed
as a result of neural stimulations showed significant correla-
tion with the motor patterns derived from kinematic obser-
vations [10]. This coordinated behavior was also observed
during cortical stimulation, demonstrating that the surface
areas dedicated to activating particular muscles or motor
units overlapped in the motor cortex [11]. This experimen-
tal evidence was formulated into the concept of synergies,
or ‘‘a collection of relatively independent degrees of freedom
that behave as a single functional unit’’ [12]. These func-
tional units or movement patterns serve as building blocks
of movement which can be summed and scaled to reproduce
hand and arm motion. Kinematic synergies are movement
patterns defined in terms of kinematic states of the system
(joint angles/angular velocities) while muscular synergies are
defined in terms of co-activations of muscles. These cate-
gories can be further divided into postural/spatial synergies,
in which the activation patterns are constant in time, and
spatiotemporal synergies, in which these patterns of activa-
tion change over a certain time duration. These synergies
can be biomechanically derived using decomposition tools to
extract linearly independent motion profiles from reach and
grasp data [13] and have been used in several applications
including brain-computer interfaces (BCIs) [14], hand grasp
reconstruction [15], and bilateral arm reaching reconstruc-
tion [16].

Synergies have been demonstrated experimentally and
computationally, so research groups have integrated these
motion patterns into systems aimed at replicating and assist-
ing grasps used in ADL. Synergies are mathematically
represented as a set of linearly independent vectors, with
coordinates in these vectors being referred to as synergy
recruitments or weights. Some notable groups have realized
these vectors as mechanisms which convert motion of rel-
atively few actuators into whole-hand motion of the joints
of a prosthetic or exoskeleton hand [17]–[21]. Other groups
have designed control laws which operate on the mathe-
matical definition of synergies. Notably, the DLR hand was
controlled using an impedance control law operating in the
synergy recruitment domain to implement two synergies,
with a method that is scalable to any number of synergies
desired [22]. Postural kinematic and muscle synergies were
used to successfully estimate hand endpoint trajectories from
EMG signals of the upper limb [23]. Several groups have

FIGURE 1. General block diagram of the synergy controller. A synergy
recruiter (SR) converts the synergy recruitments weights, ū, into joint
setpoints q̄s. A control law (K) compares the plant states, q̄, and the
setpoints and computes a compensatory torque τ̄ .

used hand synergies to perform autonomous grasp plan-
ning [24]–[26] and object manipulation [27].

With the exception of [19], the vast majority of synergy
implementations in prosthetic and exoskeleton hands have
used postural, or time-invariant synergies. These synergies
encode linear relationships between the joints of the hand
while representing a significant amount of variability in mea-
sured grasp data. However, these synergies are derived from
grasp end postures, and so do not encode the complex dynam-
ics of the hand during reaching and grasping. Spatiotempo-
ral synergies are extracted from the entire object grasping
timeseries, and so encode the subtle variations in motion
during the grasp process. The major drawback is that their
time-varying nature is difficult to integrate into control laws,
which typically operate on a sample-to-sample basis without
considering a forward trajectory.

In this paper, we present the first control system based
on spatiotemporal synergies. A state space synergy recruit-
ment system is designed which converts synergy recruitment
weights into angle and angular velocity trajectories for the
hand. A control law based on the state space representation
is used to control a virtual hand implemented in Simulink.
This simulated system is used to replicate natural-paced
grasping and American Sign Language data previously cap-
tured and shown in [13]. We hypothesize that the synergy
controller can actuate the virtual hand along a synergy tra-
jectory, and that it can sufficiently replicate reach-to-grasp
movements representative of ADL grasping given enough
synergies.

II. MATERIAL AND METHODS
In general, we wish to implement a control system of the form
shown in Fig. 1. The system accepts a time-series of m syn-
ergy recruitments, ū ∈ Rm, and actuates a plant which can be
a virtual, prosthetic, or wearable robotic system along J DoF,
of which the full state q̄ ∈ R2∗J includes angles and velocities
for each DoF. For high-DoF systems we want to simplify the
control problem by setting m < J . The synergy controller
is composed of two subsystems: a Synergy Recruiter (SR)
and a control law (K). The SR expands the low-dimensional
control inputs in the synergy domain into high-dimensional
commands in the plant’s state space. The control law uses
these commands and observations of the plant’s current state
to apply a control input to the plant. Our SR, therefore, needs

112328 VOLUME 7, 2019



M. K. Burns et al.: Dynamic Control of Virtual Hand Grasp Using Spatiotemporal Synergies

to map ū ⇒ q̄s ∈ R2∗J according to trajectories defined
by spatiotemporal synergies, where q̄s is a vector of full-
state setpoints of the J -DoF plant. We accomplish this with a
discrete state space system.

A. STATE SPACE SYNERGY RECRUITMENT MODEL
A discrete state space model for our inputs ū and outputs q̄s
is written as

x̄+ = Ax̄− + Bū (1)

q̄s = Cx̄+ + Dū (2)

where x̄ is an internal state and A, B, C , and D are matrices.
For our system, we always assumeD = [0]. x̄− and x̄+ are the
prior and propagated state. Our input, or recruitment weights,
and output vectors, or state setpoints, are defined as

ū =
[
u1 u2 . . . um

]T (3)

q̄s =
[
θ1 θ2 . . . θJ ω1 ω2 . . . ωJ

]T (4)

where um is the synergy recruitment for the mth synergy and
θj and ωj are the angles and angular velocities for the jth DoF
of the system. We choose our x̄ vector to be the angles and
angular velocities of the current timestep for the system as
well as the angular velocities for the next T timepoints, where
T is the duration of our spatiotemporal synergies in samples.

x̄ =
[
θ̄ (1) ω̄(1) ω̄(2) . . . ω̄(T )

]T (5)

With this format, we design the A matrix to numerically
integrate the instantaneous velocity into the current angles
and to advance the future velocities one timestep:

A =

 I J×J 1t ∗ I J×J 0J×(J∗T−J)

0(J∗T−J )×2J I
(
J∗T-J

)
×(J∗T−J )

0J×(J+J∗T )


(6)

where 0R×C IR×C are zero and identity matrices of size R
rows and C columns. The time step size for each sample is
1t , which is determined by the sample rate of the original
synergies. Next, we encode our spatiotemporal synergies, Sm,
into the B matrix:

Sm =


sm1 (1) sm2 (1) . . . smJ (1)
sm1 (2) sm2 (2) . . . smJ (2)

...

sm1 (T ) sm2 (T ) . . . smJ (T )

 (7)

Bs =



s11(1) s21(1) sm1 (1)
s12(1) s22(1) sm2 (1)
...

... . . .
...

s1J (1) s2J (1) smJ (1)
...

...
...

s1J (T ) s2J (T ) smJ (T )


(8)

B =
[
0J×m

Bs

]
(9)

TABLE 1. Masses and dimensions of virtual hand model.

Each of the m matrices Sm have J joints defined across
columns and T time samples defined across rows. These are
reformatted into a new synergy matrix, Bs, which encodes
each of the m synergies along columns and the J ∗ T joints
at each instant of time across the rows. The C matrix is now
defined as

C = I2∗J×(J∗T+J) (10)

which returns only the current angles and angular velocities
to q̄s. We can verify the observability of the system indepen-
dent of the specific synergy profiles by computing the rank
of the observability matrix O:

rank
([
C CA . . . CAn−1

]T)
= JT + J (11)

This model allows us to compute the current angle and angu-
lar velocity according to arbitrary synergies of any duration
in time. For T = 1 this system reduces to the spatial syn-
ergy case, augmented with numerical integration to get joint
angles.

B. DYNAMICS MODEL AND CONTROL LAW
The virtual hand used as the plant was created using the
CADHumans model sized for a 50th percentile human
male. Inertial properties including mass and center of mass
were generated by applying a uniform tissue density of
1.11g/cm3 [28]. The MCP and PIP joints can rotate freely
between 90 degrees extension and 180 degrees flexion to
accommodate the range of motion of the recorded data. The
DIP joint angle is constrained to be proportional to the PIP
angle with a gain of 5/7. Table I shows key parameters for
the handmodel, which has an overall wrist-to-fingertip length
of 19.94 cm. Each body is named with the first initial of the
finger followed by the first initial of the phalange, i.e. RM is
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the ring finger middle phalange link. The standard form for
this dynamic system is

M (q) q̈+ C (q̇, q) q̇+ G (q) = τint + τext (12)

which can be derived through Lagrangian mechanics.
q, q̇, q̈ ∈ RJ are the joint angle, velocity, and accelera-
tion vectors of the virtual hand. M (q) is the postural inertia
matrix,C (q̇, q) is the Coriolis matrix, and G(q) is the vector
of gravity torques. τint is the vector of internal torques of
the hand model, and τext is the external torque applied to
the model. The external torque can be decomposed into two
separate torques:

τext = τenv + τc (13)

where τenv is the joint torques generated from interactions
with the environment and τc is the torque applied by our
controller. For this paper we assume τint = τenv = 0
to simulate a healthy subject’s hand operating in an open,
unobstructed environment.

We compute τc to be a function of the desired setpoint
motion, qs, q̇s, q̈s, and the measured plant kinematics

τc = M (q)
(
q̈s − Kd q̇e − Kpqe

)
+C (q̇, q) q̇+ G (q) (14)

qe = q− qs, q̇e = q̇− q̇s (15)

where Kp and Kd are J × J tuning matrices for the angle
error, qe, and the velocity error, q̇e, respectively. The tuning
matrices are formatted as block-diagonal matrices including
the 2 controlled DoF for each finger. Each 2×2 block was
tuned in isolation to achieve a step response with 10 ∗1t time
constant, or 0.116s. The multi-input, multi-output (MIMO)
control system was tuned using a model linearization about
the 0-degree resting posture for all joints.

After tuning, the state space synergy recruiter was substi-
tuted into the control law by defining observer matrices for
the different components of the hidden state x̄+:

qs = Cqx̄+, q̇s = Cq̇x̄+, q̈s = Cq̈x̄+ (16)

Cq =
[
I J×J 0J×J∗T

]
(17)

Cq̇ =
[
0J×J I J×J 0J×J∗(T−1)

]
(18)

Cq̈ = 1t ∗
[
0J×J −I J×J I J×J 0J×J∗(T−2)

]
(19)

Therefore Cq,Cq̇,Cq̈∈RJ×J∗(T+1). The control law in (14)
receives setpoints for each DoF of the hand. Substituting (1)-
(2) and (15)-(19) into (14), expanding, and regrouping terms
yields a new control law which takes m spatiotemporal syn-
ergy recruitments, ū, as an input:

τc = M (q)
(
CKAx̄− + CKBū− Kd q̇− Kpq

)
+C (q̇, q) q̇+ G(q) (20)

The resulting control law has one term, CKAx̄−, which tracks
the future synergy trajectory, one term, CKBū, receives the
instantaneous synergy recruitment input, and one term each
for the current plant angle and angular velocity. The differ-
ence between the synergy-generated trajectory and the virtual
hand states is used to produce a desired acceleration, which
is applied using torques computed from the dynamics of the
hand model. The control matrices for the trajectory and input,
CKA and CKB respectively, are constants which are initialized
from the synergy model and tuning matrices:

CKA =
(
Cq̈ + KdCq̇ + KpCq

)
A (21)

CKB =
(
Cq̈ + KdCq̇ + KpCq

)
B (22)

We use (1) to propagate the prior state forward and (2) to
observe the angle and angular velocity setpoints. The prior
state is initialized as x̄0 to set the initial hand posture. We will
use this control law to drive the virtual hand along an arbitrary
trajectory based on spatiotemporal synergies, defined entirely
by the timeseries of synergy gains ū and the initial synergy
trajectory state x̄0.

C. REPLICATING NATURAL GRASP/ASL POSTURES
In order to test our control system we turn to prior data in nat-
ural grasping and American Sign Language (ASL) [13], [15].
Fig. 2 shows a high-level diagram of how this data was pro-
cessed to test the synergy controller. In this dataset, 10 healthy
subjects performed 50 rapid-paced grasps of 25 objects con-
sisting of spheres, discs, rectangles, pentagons, and nuts and

FIGURE 2. Block diagram outlining the testing scheme for the synergy controller. Rapid tasks (VR ) from the grasp data are used to
derive synergies (S) using principal component analysis (PCA). The natural and ASL tasks from the grasp dataset are reconstructed
using S in the l1-norm algorithm to get ū(t). The synergy control matrices are formed in M, and the resulting controller and plant are
simulated using the synergy weights to produce q̄(t). The simulated hand states are compared to the measured states from the grasp
data, q̄m.
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bolts of various sizes. Subjects then performed 50 natural-
paced grasps of the same 25 objects, then formed 36 ASL
hand postures which include 26 alphabetical letters and 10
numbers. Principal Component Analysis (PCA) was used to
extract spatiotemporal synergies (S) from the R rapid tasks
(V R) under the assumption that the rapid pace minimized
sensory feedback and thus the data approximated an impulse
response of the hand-shaping system:

V R
=



v11 (1) v21 (1) vR1 (1)

v12 (1) v22 (1) vR2 (1)
...

...

v1J (1) v2J (1) . . . vRJ (1)
...

...

v1J (T ) v2J (T ) vRJ (T )


(23)

V R
= Us6S (24)

6 = diag(λ1, λ2, . . . , λm) (25)

S =



s11 (1) s21 (1) sm1 (1)
...

...

s1J (1) s2J (1) . . . smJ (1)
...

...

s1J (T ) s2J (T ) smJ (T )

⇒ (26)

Sm =


sm1 (1) sm2 (1) . . . smJ (1)
sm1 (2) sm2 (2) . . . smJ (2)

...

sm1 (T ) sm2 (T ) . . . smJ (T )

 (27)

The angular velocities were computed from joint angles
measured with a CyberGlove from CyberGlove Systems
(San Jose CA, USA) by numerical differentiation and apply-
ing a 5-sample smoothing filter. The rapid task length, and
therefore synergy length, was set to the average sample length
of the windowed rapid tasks across subject (T = 60 samples).
We examined the variance accounted for by the first m syner-
gies, σ 2

λ , using the sum-squared variance:

σ 2
λ =

λ21 + λ
2
2 + . . .+ λ

2
m

λ21 + λ
2
2 + . . .+ λ

2
50

(28)

The synergy state space and control matrices A,B,C,CKA,
and CKB were formed according to (6)-(10), (21)-(22). It is
worth noting that in this form, S = Bs from equation (8). The
synergies S were then used to reconstruct the natural-paced
and ASL tasks using l1-norm minimization. The problem is
formulated as

v̄row ≈ c̄Bsyn (29)

where v̄row is the vector of natural task velocities (VN )
formatted identically to the rows of V R for a total task time
of Tt . The matrix Bsyn is the synergy bank of S and holds
no direct relation to B of the state space model. The rows
of Bsyn contain every temporal offset of the first m synergies
and so represent recruitment of a particular synergy at a

particular time. The vector c̄, therefore, contains the weights
for each row of Bsyn and so contains the synergy recruitments
for each synergy at each point in time. The elements of c̄
were optimally computed using the l1-norm minimization
algorithm:

Minimize ‖c̄‖1 +
1
λ

∥∥c̄Bsyn − v̄row∥∥22 (30)

This algorithm minimizes the error between the measured
data and the approximation while minimizing the magnitude
of the recruitment weights with a regularization parameter λ.
This reconstruction was repeated for every task, every
subject, and using every set of synergies from m = 1 to
m = 10.
The c̄ vector contains the timeseries recruitments for each

synergy, so we reshape it into a matrix U which contains the
synergy recruitment commands for each time instant in its
columns:

c̄ =
[
c1 (0) . . . c1 (Tt) . . . cm (Tt)

]
⇒ (31)

U =


c1 (0) c1 (1) . . . c1 (Tt)
c2 (0) c2 (1) . . . c2 (Tt)

...

cm (0) cm (1) . . . cm (Tt)

 (32)

U =
[
ū(0) ū(1) . . . ū(Tt )

]
(33)

Finally, the initial posture of the virtual hand x̄0 for each task
was computed as the mean of the first 20 samples of the
recorded hand angles.

The synergy recruitment timeseries was padded with zeros
such that the recruitments began at t = 1 s. This allowed
the model to stabilize at the initial hand posture before the
task started. Each simulated grasp was run for a 4 second
total duration. The dynamics model and control system were
implemented in MATLAB/Simulink with a discrete sample
rate of Fs = 86 Hz to match the experiment data.

III. RESULTS
A. RAPID GRASP KINEMATICS AND PRINCIPAL
COMPONENT ANALYSIS
Several kinematic factors were computed from the rapid
grasping data. The mean of the maximum absolute angular
velocity across tasks, joints, and subjects was 3.81±2.67 rad/s
with an absolute maximum angular velocity of 12.66 rad/s.
The measured joint angles ranged from −1.17 to 2.24 rad
or −67.0 to 128.6 degrees. This discrepancy in range
of motion may be due to glove calibration biases, since
the average range of motion across tasks, subjects, and
joints is as expected at 0.785±0.529 rad or 45.0±30.4
degrees.

Principal component analysis yielded synergies with
sum-squared variances shown in Fig. 3. The first four
synergies accounted for 80.7±7.79, 8.15±3.41, 2.85±1.87,
and 1.87±0.6% variance. 80% cumulative variance was
achieved by the first synergy, and 95% cumulative variance
was achieved by the fifth synergy.
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FIGURE 3. Sum-squared variance for each of the first 10 synergies
averaged across subjects, shown as bars. The cumulative sum of the first
m synergies is shown as the solid line, with the 95% threshold overlaid
with a dotted line.

FIGURE 4. Examples of velocity reconstruction (top) and corresponding
angular profiles (bottom) using 2, 6, and 10 synergies. Data is from
subject 1, task 45, middle PIP joint.

B. NATURAL GRASP/ASL POSTURE KINEMATICS AND
RECONSTRUCTION
Similar kinematic parameters were examined for the
natural-paced and ASL tasks. The average absolute
angular velocity across joints, tasks, and subjects was
2.49±2.14 rad/s, with a maximum velocity across all tasks,
joints, and subjects of 13.51 rad/s. The measured joint
angles during all tasks ranged from −1.095 to 2.642 rad
or −62.7 to 151.4 degrees, with a mean range of motion
across joints, tasks, and subjects of 0.767±0.567 rad or
43.9±32.49 degrees. The angle bounds of the virtual hand
model were set to 90 degrees of extension and 180 degrees of
flexion to avoid artificially cropping the simulated response.
Each task lasted for Ttask = 199 recorded samples, or 2.33s
of data.

FIGURE 5. Reconstruction error when using the first m synergies. The
velocity (a) and angle (b) errors are shown, which are computed as
normalized sums over time and joints of the squared error, averaged
across subjects and tasks.

An example of task reconstruction is shown in Fig. 4.
The velocity profile (top) is reconstructed using sequentially
many synergies, with synergies 2, 6, and 10 shown. The angle
profile for each synergy is integrated numerically, with the
initial posture set to the average of the first 20 samples of the
recorded data. The first two synergies can replicate the shape
of the velocity and/or angle profile, however higher-order
synergies are needed to fine-tune the approximation and
approach the correct hand trajectory. Adding more syner-
gies also decreases error in the final hand posture. However,
adding more synergies leads to diminishing returns, as there
is less improvement from 6 to 10 synergies as in 2 to 6.
Fig. 5(a) shows the velocity reconstruction error averaged
across subjects and tasks for each number of synergies while
Fig. 5(b) shows the angular reconstruction error. The velocity
reconstruction error drops from 42.2±18.5% for one synergy
to 9.79±8.53% for six synergies and 3.64±3.24% for ten.
The angle reconstruction error follows a similar trend with
23.1±20.0% for the first synergy, 6.05±8.76% for the first
six synergies, and 2.14±3.33% for the first ten.

C. CONTROL SIMULATION
The standard torque control law (6) was autotuned finger-by-
finger as five individual two input, two outputMIMO systems
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FIGURE 6. Step response of the tuned torque controller for all joints. The
95% rise time averaged across all joints is 0.131s.

with a time constant of 0.116s, or ten times the time step of the
simulated data. The 1.571 rad (90 degree) simultaneous step
response of all joints is shown in Fig. 6. The average rise time,
calculated as the time at which a joint reached 95% of the step
response, is 0.131s. An example of one simulated task from
subject 6, task 74, with 10 synergies is shown in Fig. 7. In this
plot, the solid black line represents the measured trajectory,

the dotted black line represents the virtual synergy trajectory
computed from the synergy weight inputs, and the blue/red
lines are the simulated angles and velocities for the corre-
sponding DoF. There is close accuracy in the angular profiles
between the measured and simulated data with the exception
of the thumb MCP joint. Two accuracy comparisons were
made to quantify the system performance: the accuracy of
the simulated states relative to the synergy-generated setpoint
trajectories, and the accuracy of the states relative to the
measured data.

The accuracy of the simulated states to the virtual synergy
trajectories gave a measure of the tuned controller’s ability
to actuate according to the synergy weights given as inputs.
The overall error of the system averaged across tasks, joints,
subjects, and synergies was 0.15±0.0073% for angles and
8.13±3.65% for velocities. The error compared over numbers
of recruited synergies showed that the lower-order synergies
were more accurately controlled than the higher-order syner-
gies (Fig. 8). Comparing results with two one-way ANOVAs
with α = 0.05 found significant differences among angular
error (p � 0.001) and velocity error (p = 0.004). A Tukey-
Kramer post-hoc test was performed for angle and veloc-
ity error. For the velocity error, significant differences were
found between synergy 1 (7.56%) and synergies 4-10. For
the angle error, significant differences were found between

FIGURE 7. Example data from simulation of subject 6, task 74 using 10 synergies. The left and right columns are the MCP and PIP joints for each finger,
respectively. Each finger is labeled on the left, with dotted lines delineating the different DoF. The upper and lower plots for each DoF show angles and
velocities, respectively. The solid black line is the measured data, the dotted black line is the synergy trajectory generated by the optimally computed
synergy weights, and the blue and red lines are the simulated angles and velocities of the virtual hand, respectively. Time is along the x axis in seconds.
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FIGURE 8. Simulation error compared to synergy trajectories for different numbers of synergies. (a) Velocity error, where synergy 1 was
significantly different from synergies 4-10 (p = 0.004). Results found using one-way ANOVA with α = 0.05. (b) Angle error, where synergy
1 was significantly lower than 2-10, synergy 2 was significantly different from synergy 1 and 4-10, and synergy 3 was significantly
different from synergy 1 and 7-10 (p� 0.001).

FIGURE 9. Normalized error between measured data and reconstructed (white) and simulated (blue) data. The reconstructed error is
identical to the data shown in FIGURE 5. (a) Normalized velocity error. The simulated states have an increased error relative to the
reconstructed states which were used as setpoints. (b) Normalized angle error, with little increased reconstruction error relative to the
synergy trajectory. This mirrors the larger velocity error relative to the angle error when comparing the simulation to the synergy trajectories.

synergy 1 (0.12%) and synergies 2-10, synergy 2 (0.14%)
was significantly different from synergies 1 and 4-10, and
synergy 3 (0.15%) was significantly different from synergy
1 and synergies 7-10. Statistically meaningful increases in
error occurred due to increasing the number of synergies,
however this effect appears to be small relative to the practical
applications and is only present in the lower synergies. The
angular error of the thumb MCP joint was computed as
5.6±27.6% averaged across synergies, tasks, and subjects
compared to 0.22±0.47% for the remaining fingers. This
discrepancy is likely due to the higher mass of the thumb
compared to the other fingers, and would likely be solved by
using a higher operational frequency for the controller.

The simulated states were then compared to the measured
data from the original experiment. Fig. 9 is a bar plot which

shows the reconstruction errors, identical to Fig. 5, next to the
simulation errors, both of which are computed relative to the
measured data. The discrepancy between the two bars is due
to the compounded error of the synergy reconstruction and the
controller error. The difference in velocities was statistically
significant for all synergies (p < 0.001 for synergy 1, p �
0.001 for all others) using t-tests with a corrected α = 0.005
for multiple comparisons. The difference in angle errors was
not statistically significant by the same method (p� 0.005).
Although the controller did not ideally replicate the velocity
profile, it did not result in a statistically meaningful increase
in angular error.

An example task simulation is shown in Fig. 10, including
the hand poses produced by the control law. The raw angles,
reconstructed angles, and simulated angle are shown on the
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FIGURE 10. Example simulation of subject 5, task 14, repetition 2. The angles for the task are shown at left, in the order of thumb MCP, thumb PIP, index
MCP, index PIP, . . . in radians. The original recorded data is shown in solid black, the reconstructed angular profile for m = 10 synergies is shown in dotted
black, the simulated angles using m = 6 synergies are shown in solid red, and the simulated angles using m = 10 synergies is shown in solid blue.
At right, images of the hand are shown for the measured profile, the m = 6 simulation, and the m = 10 simulation from t = 0.5s to t = 1.7s. Using a
full-synergy controller yields the best results, however a dimensionally reduced control law yields comparable results throughout the grasp.

left, with images of the simulated hand from t = 0.5 to
1.7s shown. Two synergy conditions are shown in this plot to
demonstrate the visual similarity between the measured data,
the dimensionally reduced simulation, and the full-synergy
simulation. The m = 6 synergy condition may be a useful
example as it reduces hand grasping complexity to the 6-DoF
case, which is commonly handled with traditional control
methods. The average angle error for m = 6 is 6.18±8.75%,
and for m = 10 is 2.29±3.35%. Fewer synergies may be
used at the discretion of the control designer, with the 10%
accuracy level achieved by m = 4 with 10.7±13.26% (p =
0.062, one-tailed t test).

The torques applied to the joints of the virtual hand
can be useful for designing assistive devices. The abso-
lute maximum instantaneous torque applied across all joints,
tasks, synergies, and subjects was 6.61 Nm with an aver-
age of 2.17±1.15 Nm. Converting these torques to actuator
torques or forces will require a detailed geometric model of
the robotic system, which is reserved for future work.

IV. DISCUSSION
This paper presented a novel method to recruit synergies
from a time series of synergy recruitment weights. The state
space formulation shown here has several benefits which can
facilitate its application to robotic control problems. First, this

method generalizes synergy recruitment from the postural
synergy case, used in many papers to-date, to the spatiotem-
poral case, shown here for the first time. Using synergies of
length T = 1 yields the postural case, however the state
space model can be initialized to any number of synergies
defined across any number of joints for any number of sample
lengths. Second, the formulation lends itself to discrete real-
time applications in a compact form using basic matrix opera-
tions. Third, the expression as a standard state space model is
readily substituted into control laws, and the properties of the
system such as controllability, reachability, and observability
are trivially computed. Furthermore, the state space model
has an equivalent transfer function formwhichmay lend itself
to additional types of analysis than what is currently possible.
The operational workspace in synergy coordinates is also
readily computed for a given subject’s synergies, allowing
bounds to be set in the synergy domain which prevent the
system from violating range of motion constraints. Finally,
the state space model allows new mathematical optimiza-
tion methods to be used to compute synergy weights for
reconstruction of natural grasping data. Whereas l1-norm
minimization expresses synergy recruitment as a linear vector
optimization problem, the state space model can be treated as
a dynamic system to be controlled such that the error from a
grasping task is minimized.
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The proposed synergy recruiter is integrated into a torque
controller with spring and damping matrices. Each finger
was tuned as a 2-DoF MIMO system and combined into a
10-DoF controller. The controller was tuned as accurately as
the sample rate allowed before unstable responses appeared.
The resulting controller accuracy was high for the recruited
joint angles, and within reasonable bounds for the recruited
velocity trajectory. The thumb MCP and PIP joints appear
to have higher error than the remaining joints, perhaps due
to its higher mass compared to the other links of the hand.
Better results may be obtained by increasing the sample rate
of the simulation. In this work, we fixed the sample rate to
match the prior grasping data measured at 86Hz. However,
a real-time system aimed at grasp assistance can be operated
at higher sample rates which can lead to improved controller
performance due to tighter tuning. Synergies can be captured
at standard sample rates for data gloves or optical hand
tracking, then be interpolated to match the sample rate of
the controller. The matrix sizes in the state space model will
increase with higher sample-length synergies, which must be
considered when determining the achievable controller cycle
time on a hardware system. Higher accuracies may also be
possible by integrating the synergy recruiter into alternative
control laws beyond the torque controller shown here. Slid-
ing mode control, H∞ control, or an LQR controller may
be implemented for systems with varying requirements for
robustness, response time, and processor power. It is impor-
tant to consider the controllability of the synergy system
when implementing these methods. A synergy-based system
will not be fully linearly controllable for m < J , however
practical results may be achievable by restricting methods to
a controllable subset of the total state space.

The goal of this paper was to demonstrate a controller
based on spatiotemporal synergies in simulation. Our results
showed similar characteristics to postural and spatiotempo-
ral synergies found elsewhere in the literature. Task recon-
struction yielded similar error levels to those found in other
studies [14], [16] while the variances accounted for by our
synergies are in line with that found in other literature [22].
Furthermore, the extracted spatiotemporal synergies showed
patterns of functional grouping which are present in related
works in upper limb reaching and grasping. We found
low-order synergies to encode gross hand movements such
as the whole-hand grasp and a three-finger grasp, while
higher order synergies encoded finer motions. The next steps
involve deploying a spatiotemporal synergy-based controller
to real-time hardware systems for assistance and rehabilita-
tion. There are several challenges which must be overcome
to accomplish this, especially if the hardware system is a
soft wearable hand exoskeleton. The controller we propose
here is based on several assumptions. First, we assumed a
known dynamics model of a healthy hand with no model
uncertainty or spring/damper effects from tissue properties.
Second, we assumed we can perfectly apply torques to each
joint independently and instantaneously. Third, we assumed
perfect sensor feedback for position and velocity from every

joint. These assumptions will generally not hold in practice,
so several additional methods will need to be used to create a
functional system.

A soft hand exoskeleton has several sources of model
uncertainty which will need to be considered. The unique
kinematic and dynamic properties of the user’s hand will
affect the response of the exoskeleton. This includes finger
link lengths, ranges of motion, tissue compliance, and hand
spasticity in the case of a stroke-affected individual. The
compliance of the soft exoskeleton will also cause the robot
to deform during use, causing the geometric properties of the
system to change. We can approach this problem by using
an idealized model of the hand with tunable properties that
are estimated from calibration data. We can establish bounds
on our model uncertainty, and therefore the robustness of our
controller, using this information.

There is uncertainty in the actuation of the hand in addition
to the uncertainty in the dynamic response of the sys-
tem. Variations in actuators, response times, friction, and
co-contractions due to the device’s construction and the user’s
anatomy will all impact the system’s ability to control each
joint. Most soft exoskeleton devices use Bowden cables or
fluid-based actuators which may apply force to multiple
joints at once. An actuator Jacobian may be calibrated to
model the co-contraction of individual joints as a function
of force from one actuation. The Jacobian matrix can then
be inverted to compute actuator torques based on the desired
joint torques. The low-level force controllers responsible for
applying the desired force will also have to operate faster
than the high-level controller to minimize the response time
of the system, and so maintain actuation accuracy. These
will need to be tuned to overcome variations in friction and
actuators.

Finally, measuring joint angles and velocities of the hand is
difficult to do reliably. The sensors that can be implemented
in soft systems have variation in responses, reliability issues,
and in some cases excessive noise which makes it difficult
to get good measurements of the kinematic states. Because
of this, special design considerations will need to be made
in the mechanical system as well as the signal processing to
maximize sensor performance and minimize external effects.
Estimators may need to be designed which can produce accu-
rate joint angles and velocities despite noisy and/or missing
sensor data.

In this paper we assume we have the synergy recruitment
weights necessary to replicate natural grasping. This allows
us to test our controller with a controlled dataset, however
this assumption does not hold in practical scenarios. A full
BCI system which uses this controller in real time will need
a method of extracting synergy weights from user inputs.
These inputs can be in the form of basic inputs such as button
presses, joystick controls, keyboard/touch screen controls,
tongue controls or breath switches. Motion tracking methods
may also be used to extract synergy weights such as ocu-
lar tracking or arm tracking during reaching. Noninvasive
biosignals may be used such as EMG or EEG, as well as
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invasive techniques such as implanted spinal or peripheral
nerve electrodes or ECoG.

V. CONCLUSION
This paper has presented a novel state-space expression for
synergy recruitment. This method is generalizable to pos-
tural as well as spatiotemporal synergy recruitment and is
expressed in a form which can readily be used in standard
control laws and controls analysis. A dynamics model of
a 50th percentile male hand was used to simulate a torque
control law based on spatiotemporal synergy recruitment.
Thismodel was used to replicate natural grasps andASL hand
motions using only optimally computed synergy weights.
Reconstruction and simulation accuracy were characterized,
yielding data useful to determine how many synergies should
be used to control a robotic system. The next steps are dis-
cussed to realize this controller with a robotic device such as a
soft hand exoskeleton or prosthetic. Major challenges include
model uncertainty in the hand and sensor reliability.
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