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Abstract

Encoding a large-scale network into a low-dimensional space
is a fundamental step for various network analytic prob-
lems, such as node classification, link prediction, commu-
nity detection, etc. Existing methods focus on learning the
network representation from either the static graphs or time-
aggregated graphs (e.g., time-evolving graphs). However,
many real systems are not static or time-aggregated as the
nodes and edges are timestamped and dynamically chang-
ing over time. For examples, in anti-money laundering anal-
ysis, cycles formed with time-ordered transactions might be
red flags in online transaction networks; in novelty detection,
a star-shaped structure appearing in a short burst might be
an underlying hot topic in social networks. Existing embed-
ding models might not be able to well preserve such fine-
grained network dynamics due to the incapability of dealing
with continuous-time and the negligence of fine-grained in-
teractions. To bridge this gap, in this paper, we propose a
fine-grained temporal network embedding framework named
FiGTNE, which aims to learn a comprehensive network rep-
resentation that preserves the rich and complex network con-
text in the temporal network. In particular, we start from the
notion of fine-grained temporal networks, where the tempo-
ral network can be represented as a series of timestamped
nodes and edges. Then, we propose the time-reinforced ran-
dom walk (TRRW) with a bi-level context sampling strat-
egy to explore the essential structures and temporal contexts
in temporal networks. Extensive experimental results on real
graphs demonstrate the efficacy of our FiGTNE framework.

Introduction
Representation learning over graph-structured data, which
aims to encode the meaningful patterns and rich net-
work context into a low-dimensional space, has received
great success in various domains, ranging from social
networks (Kipf and Welling 2016) to collaborative net-
works (Dong, Chawla, and Swami 2017), from knowl-
edge graphs (Wang et al. 2014) to protein-protein net-
works (Cannistraci, Alanis-Lobato, and Ravasi 2013). By
learning the network embedding, conventional vector-based
machine learning algorithms can be naturally incorporated
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Figure 1: An example of Fine-Grained Temporal Net-
works. (a) A movie review network with three users and
three movies. (b) The corresponding streaming system logs,
which is presented in the form of timestamped (i.e., t =
{t1, t2, t3}) interactions between users and movies within
a certain duration δ = {δ1, δ2, δ3}. For each movie review,
the timestamp t indicates when a user comments a movie,
while δ records the active time of the review on the website.

to solve various high-impact tasks in graph analysis, such
as node classification (Perozzi, Al-Rfou, and Skiena 2014),
link prediction (Grover and Leskovec 2016), community de-
tection (Wang et al. 2017), etc.

Despite the success of network embedding on static
graphs, many real systems are not static as the nodes and
edges are evolving over time, i.e., the vertices and edges may
appear, vanish, or even reappear. In Fig. 1, we present a illus-
trative example of movie review network. Existing temporal
network embedding approaches either model the networks
as discrete-time dynamic graphs (Yu, Yin, and Zhu 2017)
or continuous-time dynamic graphs (Nguyen et al. 2018).
The former aims to capture the graph-level dynamics, which
aggregates temporal information into a sequence of snap-
shots. While the latter one aims to preserve the node-level
dynamics, which is often presented as a collection of times-
tamped edges. However, most of them neglect the existing
duration of temporal nodes and edges in the real systems.
For example, the length of bank account history (i.e., du-
ration of nodes) is a key indicator for identifying synthetic
identities (Zhou et al. 2018a); the average communication



delay between sensors (i.e., duration of edges) is often used
for studying the reliability of sensor networks (Chen et al.
2015).

Needless to say, it is crucial to encode such fine-grained
dynamic patterns into a salient representation. In this paper,
we want to answer the following open answers: First (C1.
Model), how to define a complementary temporal network
model, which preserves the fine-grained graph dynamics?
Second (C2. Context Sampling) how to identify and sam-
ple the key structural and temporal patterns that exist in the
real systems? Third (C3. Algorithm), how to learn a salient
network representation that captures the rich and complex
network contexts of the network structures and network dy-
namics?

To address the aforementioned challenges, we formally
define the fine-grained temporal network embedding prob-
lem and present a salient temporal network embedding
framework named FiGTNE. The objective of FiGTNE is to
learn a salient network embedding that preserves the struc-
tural and temporal contexts in temporal networks. In partic-
ular, we propose the time-reinforced random walk (TRRW)
to sample the structural and temporal contexts over net-
work evolution. Moreover, to guide the context sampling of
TRRW, we develop a bi-level sampling strategy that care-
fully selects the key nodes with certain timestamps as initial
points of random walks to extract the temporal network con-
text.

To summarize, our work makes the following contribu-
tions:
• A novel notion of temporal networks and the formal prob-

lem definition of fine-grained temporal network embed-
ding;

• A fine-grained temporal network embedding (FiGTNE)
framework, which is able to admit a variety of fine-
grained structural-temporal patterns and encode rich tem-
poral network context into a salient representation;

• Extensive experiments on several real datasets, showing
FiGTNE achieves consistent prediction performance im-
provement over baseline methods.
Our paper is organized as follows. Related works are re-

viewed in Section 2, followed by the notation and problem
definition in Section 3. In Section 4, we present our proposed
framework FiGTNE. Experimental results are reported in
Section 5 before we conclude the paper in Section 6.

Related Work
Network embedding (Zhang et al. 2019) has been increas-
ingly employed to learn low-dimensional representations
of networks, such that the vector-based machine learning
models can be easily performed on various graph analytic
tasks, such as classification (Perozzi, Al-Rfou, and Skiena
2014), recommendation (Tang et al. 2015; Liu et al. 2019),
truth discovery (Zhou and He 2017), rare category charac-
terization (Zhou et al. 2018c; 2018b). A number of meth-
ods are proposed for the static graphs, which can be typi-
cally categorized into the matrix factorization based meth-
ods (Li et al. 2018), the random walks based methods (Per-
ozzi, Al-Rfou, and Skiena 2014; Grover and Leskovec 2016;

Nguyen et al. 2018) and the graph neural network based
methods (Kipf and Welling 2016; Wu, He, and Xu 2019).

More recently, there is a growing interest in learning net-
work embedding in a dynamic setting. In general, the ex-
isting models can be categorized into discrete dynamic net-
work embedding and continuous dynamic network embed-
ding, where the former one assumes the graph aggregates
temporal information into a series of graph snapshots and the
latter one targets the graph with continuously timestamped
nodes and edges. In the context of discrete dynamic network
embedding, Zhu et al. generates node embeddings by em-
ploying non-negative matrix factorization with the tempo-
ral smoothness constraint on a series of time-evolving adja-
cency matrices; Another line of works (Yu, Yin, and Zhu
2017) is developed based on graph convolution networks
(Kipf and Welling 2016) for dealing with attributed tem-
poral networks; Point process is a commonly-used method
for random events in time, which has been introduced to
model the neighborhood formation sequence (Zuo et al.
2018) and interleaved dynamics (Trivedi et al. 2018); Zhou
et al. proposes DynamicTriad to model how to derive a
closed triad from an open triad. Unlike discrete dynamic net-
works, the continuous dynamic networks (Paranjape, Ben-
son, and Leskovec 2017) are often presented as a collection
of timestamped interactions between entities. Nguyen et al.
is one of the first to learn the time-respecting representation
of continuous-time dynamic networks by simulating tempo-
ral random walks. However, most of the existing methods
neglect the fact that duration information of nodes and edges
in real systems. Moreover, noisy temporal contexts and non-
uniform distributions over timestamped graph elements are
also overlooked. All aforementioned issues would lead to the
incomplete delineation of fine-grained structures in tempo-
ral networks. Therefore, in this paper, we propose a generic
framework for learning the representation of the fine-grained
temporal network by introducing the novel notion of tempo-
ral networks and two techniques for preserving fine-grained
network dynamics.

Problem Definition
A conventional way to model temporal networks is to build
time-aggregated graphs (e.g., strictly growing graphs, time-
evolving graphs), which typically collect the changes over
time and aggregate the temporal information into a sequence
of snapshots. However, an open question here is how to se-
lect the temporal granularity, i.e., the sliding window size,
for generating time-aggregated graphs. When the granular-
ity is coarse, some fine-grained patterns (e.g., a dense cluster
showing in a short burst) may be ignored; when the granular-
ity is fine, it may result in a huge number of snapshots and
prohibitive computational costs (Zhou et al. 2015). To ad-
dress this issue, various continuous-time dynamic network
models (Rossi et al. 2013; Paranjape, Benson, and Leskovec
2017; Nguyen et al. 2018) are proposed to address the tem-
poral granularity issues. While, most, if not all, existing
works either model the network as increasing graphs or ig-
nore the duration of graph elements (e.g., nodes, edges). In
this paper, we introduce the definitions of the temporal node,
temporal edge and the induced temporal network as follows.



Definition 1 (δ-Temporal Node) In the temporal network,
a δ-temporal node v(t,δ) represents the vertex v that appears
at timestamp t and exists for δ duration.
Definition 2 (δ-Temporal Edge) In the temporal network,
a δ-temporal edge (u, v)(t,δ) represents the connection be-
tween node u and node v that appears at timestamp t and
exists for δ duration.
Definition 3 (Temporal Network) A temporal network
G̃ = (V,E) is formed by a collection of n temporal
nodes V = {v(tv1 ,δv1 )1 , v

(tv2 ,δv2 )
2 , . . . , v

(tvn ,δvn )
n } and a

sequence of m temporal edges E = {e1, e2, ..., em}, where
ei := (uei , vei)

(tei ,δei ).
Definition 3 provides a generic definition of the aforemen-

tioned networks. In particular,
• when tv1 = tv2 = ... = tvn = te1 = te2 = ... = tem and
δv1 = δv2 = ... = δvn = δe1 = δe2 = ... = δem =∞, G̃
represents a static graph, where all nodes and edges exist
once the graph is created.

• when δv1 = δv2 = ... = δvn = ∞ and δe1 = δe2 = ... =

δem = ∞, G̃ represents a strictly growing graph, where
the nodes and edges can be only added but not removed.

• when {tvi}ni=1 and {tei}mi=1 only has p unique values
t1 < t2 < ... < tp (p << n and p << m), δvi =
tk+1 − tk, ∀i ∈ [1, n] and δei = tk+1 − tk, ∀i ∈ [1,m]

and k ∈ [1, p], G̃ represents a time-evolving graph that all
nodes and edges exist within a single snapshot.
In (Nguyen et al. 2018), the authors define the temporal

walk as a sequence of edges with non-decreasing times-
tamps. However, the temporal non-decreasing constraint
would easily discard a number of informative edges, which
leads to too short random walks. Following the similar
mechanism but without the temporally non-decreasing con-
straint, we introduce the notion of k-Length Temporal Walk
as a sequence of temporal edges.
Definition 4 (k-Length Temporal Walk) In the
temporal network, a k-length temporal walk
W̃ = {w̃1, . . . , w̃k} is defined as a sequence of inci-
dent temporal edges traversed one after another, i.e.,
{(uw̃1

, vw̃1
)(tw̃1

,δw̃1
), . . . , (uw̃k

, vw̃k
)(tw̃k

,δw̃k
)}.

With the above notations, our problem can be formally
defined as follows:
Problem 1 Fine-Grained Temporal Network Embedding

Input: (i) a temporal network G̃ = (V,E), (ii) the user-
defined dimension of embedding space d.

Output: a d-dimensional network embedding D.

Proposed Algorithm
In this section, we introduce the details of our proposed
FiGTNE framework. We begin with reviewing the basics of
static network embedding and then generalize it to the dy-
namic setting, by (1) introducing the mechanism of TRRW,
and (2) developing a bi-level sampling strategy to jointly
guide random walks to focus on the key regions of the tem-
poral network.

Static Network Embedding
We briefly introduce the basics of static network embedding
approaches (Perozzi, Al-Rfou, and Skiena 2014; Grover and
Leskovec 2016) that based on word2vec model (Mikolov et
al. 2013a). In general, these methods operate in two steps:
(1) they first sample and extract pair-wise graph context
information, mostly node-context pairs (v, c), via random
walks; then (2) they leverage the node proximity manifested
to learn a low-dimensional vector-wise representation for
each node in the observed graph. Usually, given a static
graph G = (V,E), the network embedding method aims
to maximize the overall likelihood of G in terms of the local
structures by the following objective function

L =
∏
v∈V

∏
c∈N (v)

p(c|v; θ) (1)

where N (v) is the neighborhood of v, p(c|v; θ) defines the
conditional probability of having a context c given a node v
and θ denotes the trainable embedding representation.

Fine-Grained Temporal Network Embedding
Here, we generalize the Skip-Gram based framework to
learn the node representation that incorporates fine-grained
context information (e.g., timestamp) in the temporal net-
work. The critical challenge is how to extract such tempo-
ral context information from the observed graph. To achieve
this, we propose TRRW, which is designed for extracting
both topological structure and temporal context information
from temporal networks. Also, we design a bi-level context
sampling strategy to guide the evolutionary random walk to
select the network context from the key regions and times-
tamps. The overall framework is given in Fig. 2.

Time-Reinforced Random Walk. One key challenge is
how to perform random walks on the temporal networks,
where each node and edge are associated with a specific
timestamp t. The conventional static random walk can be
interpreted as a Markov Chain process where each node rep-
resents a single state. However, there are possibly multiple
edges between the same two nodes, which makes it impossi-
ble to differentiate which edge is traversed by recording the
node sequence. Therefore, same with (Nguyen et al. 2018),
we define the transition probability matrix P ∈ Rm×m

based on edge streams, which is

P (eout|ein) =
w(eout|ein)∑

e∈I(vein )

w(e|ein) (2)

where w(eout|ein) is the weight of observing eout given the
previous temporal edge ein in the given temporal network
G̃; I(vein) denotes the set of edges that are incident (only
out-edges are considered if the graph is directed) to the node
vein . Comparing with the static random walks, the process
of transition defined by Eq. 2 can be described as a Markov
Chain process, where each temporal edge represents a single
state.

Based on Eq. 2, we can easily simulate random walks
on temporal networks by initializing w(eout|ein) with equal
weights or temporally biased distributions (e.g., (Nguyen et
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Figure 2: An illustration of the proposed framework.

al. 2018)). However, in this way, we may be still not able to
fully capture the evolution process of temporal networks. In-
spired by Vertex Reinforced Random Walk (Pemantle 1992),
which dynamically modifies the transition probability be-
tween each pair of nodes based on the visiting times of ran-
dom walks step by step, we propose a novel random walk
model named TRRW to extend this idea to model the evo-
lution process of temporal networks. In particular, we define
the cross-edge weight w(eout|ein) as

w(eout|ein, s) = min[n(eout|ein, s) + ε, wT (eout|ein)]
(3)

where n(eout|ein, s) indicates the number of visiting times
for the edge pairs (ein, eout) at step s. ε is a small posi-
tive constant to ensure the random walk can be conducted
properly from the beginning when n(eout|ein, s) = 0. Here
we set ε to 1 if eout ∈ I(vein) otherwise 0. The tempo-
ral context function wT (eout|ein) measures the relationship
between ein and eout based on the timestamp of temporal
edges. From the definition of Eq. 3, we can conclude that
starting with temporally unbiased strategy of random walk,
w(eout|ein, s) would gradually transit into the temporal con-
text defined by wT (eout|ein). In this process, the generated
random walks encode both temporally unbiased and tempo-
rally biased information at the same time. As for the tem-
poral context function wT (eout|ein), a number of temporal
contexts can be selected here, and two different strategies
are discussed in the following.
Unbiased: In this naive case, the cross-edge weight does not
depends on the timestamp of ein and eout, and all edges in
I(vein) share the same weight, which is

wT (eout|ein) = 1 (4)

Rank: In this case, the cross-edge weight depends on time
closeness between ein and eout, i.e. the difference value of
tout and tin, which is

wT (eout|ein) = rank(|tout − tin|,∆t) (5)

where ∆t = {|te − tin| : e ∈ I(vein)}; the function
rank(x, s) outputs the rank of x in the sequence s, which
is sorted in a descending order.

As a summary, the details of TRRW are presented in Al-
gorithm 1.

Algorithm 1 Time-Reinforced Random Walk
Require:

Temporal network G̃ = (V,E), temporal context
wT (eout|ein), walking length l, number of random
walks nw.

Ensure:
A sequence of random walks W̃ .

1: Initialize the weight of each pair of connected temporal
edges ein and eout to be 1, i.e., w(eout|ein) = 1, and
compute P based on Eq. 2.

2: for i = 1 : nw do
3: for j = 1 : l do
4: Conduct TRRW for one step based on the current

transition probability matrix P .
5: Add the traversed temporal edge (u, v)(t,δ) to one

random walk in W̃ .
6: Update w using Eq. 3 and recalculate P using

Eq. 2.
7: end for
8: end for
9: Return W̃ .

Bi-Level Context Sampling. Different from the static
graph, the nodes and edges may appear multiple times at
different timestamps in the temporal network. As temporal
nodes and edges are mostly not distributed uniformly over
the structural domain and temporal domains, that is to say,
the importance of network structures showing at different
regions of the graph and at different timestamps may vary
a lot. Sampling the network context by uniformly traversing
each node at each timestamp is not a good option to capture
the key temporal network context in terms of computational
efficiency. In this paper, we propose a bi-level context sam-
pling strategy to guide our embedding framework to select
the initial temporal node v(t,δ) for conducting TRRW.

Here, we focus on estimating the sampling probability
distribution, i.e., Pr(y = 1|v(t,δ)) = Pr(y = 1|vs, vt),
of each temporal nodes v(t,δ), where y = 1 indicates v(t,δ)
will be sampled, vs and vt denote the structural location (the
distribution over nodes) and temporal location (the distribu-



tion over time) of v(t,δ). To estimate the overall sampling
probability Pr(y = 1|vs, vt), we assume the structural lo-
cation and the temporal location of v(t,δ) follow a weak de-
pendence (Abney 2002) given y = 1. Then, we have

Pr(y = 1|vs, vt)

=
Pr(y = 1)Pr(vs, vt|y = 1)

Pr(vs, vt)

≥ αPr(y = 1)Pr(vt|y = 1)Pr(vs|y = 1)

Pr(vs, vt)

= α
Pr(y = 1)Pr(y=1|vt)Pr(vt)

Pr(y=1)
Pr(y=1|vs)Pr(vs)

Pr(y=1)

Pr(vs, vt)

=
α

Pr(y = 1)
Pr(y = 1|vt)Pr(y = 1|vs)

Pr(vt)Pr(vs)

Pr(vt, vs)

= γPr(y = 1|vt)Pr(y = 1|vs)
Pr(vt)Pr(vs)

Pr(vt, vs)
(6)

where γ = α
Pr(y=1) is a constant. In practical, we let

Pr(y = 1|vt) and Pr(y = 1|vs) follow a uniform distribu-
tion over structural and temporal domains, which could also
be any other user-defined distributions; Pr(vs), Pr(vt) and
Pr(vt, vs) can be estimated using empirical distribution or
kernel density estimation approaches (Scott 2015). As a spe-
cial case, given a temporal node v(t,δ), when the structural
location and temporal location are conditional independent,
i.e., Pr(vs, vt|y = 1) = Pr(vs|y = 1)Pr(vt|y = 1), then
α = 1 and Inequality 6 becomes equality. By estimating the
joint distribution Pr(y = 1|vs, vt), our method can guide
the TRRW to extract the network context from the key re-
gions of the temporal network.

Algorithm 2 Fine-Grained Temporal Network Embedding
Require:

Temporal network G̃ = (V,E), negative sampling size
k, embedding size d.

Ensure:
A temporal network embedding D.

1: Compute the sampling distribution Pr(y = 1|v(t,δ))
based on Eq. 6.

2: while not converged do
3: Sample a batch of temporal nodes S following the

sampling distribution Pr(y = 1|v(t,δ)).
4: for s ∈ S do
5: Sample positive pairs (i, c) using TRRW in Alg. 1.
6: Sample k negative pairs for each (i, c).
7: end for
8: Update D via optimizing Eq. 1.
9: end while

10: Return D.

Optimization Algorithm
Now, we are ready to present our proposed FiGTNE algo-
rithm, which is summarized in Algorithm 2. The algorithm
is optimized via negative sampling (Mikolov et al. 2013b).

The given inputs are the temporal network G̃, negative sam-
pling size k, and embedding size d. Step 1 computes the
sampling distribution Pr(y = 1|v(t,δ)) for selecting initial
temporal nodes. Within each batch iteration, we first sample
a batch of initial temporal nodes S in Step 3; then, for each
initial node, our algorithm samples positive pairs from gen-
erated random walks and k negative pairs for each positive
pair; in Step 8, we adopt stochastic gradient descent (SGD)
to train our model using the sampled positive and negative
node-context pairs. The algorithm finally returns the learned
temporal network embedding D after convergence.

Experiments
In this section, we demonstrate the performance of our pro-
posed FiGTNE algorithm on quantitative evaluations and pa-
rameter sensitivity analysis.

Experiment Setup

Table 1: Statistics of datasets
Name #Nodes #Edges #Labels Timespan (days)

DBLP 1909 8237 4 9855
Taobao 10924 97479 5 229
Epinion 40331 112929 3 4322
Criteo 22158 65503 7 90

Datasets: The statistics of all datasets used in our experi-
ments are summarized in Table 1.

DBLP (Zhou et al. 2018b) is a citation network based on
papers from several visualization conferences. Each cita-
tion would create an edge between two papers and the
timestamps of the edges are in years. These papers are
categorized into four different topics, which serve as the
label of each paper.
Taobao1 is a bipartite online shopping network, where
both customers and items are considered as vertices, and
the behavior of purchasing an item would create an undi-
rected edge between the item and the customer. The cate-
gory of the item is considered as the label of the node.
Epinion2 is a consumer review network between users
and items, and each rating corresponds to a temporal edge
between the related user and item. We consider the cate-
gory of the item as the label.
Criteo3 is an action network. Each action is timestamped,
which creates a temporal edge between the customer and
product, and the category of the product is considered as
the label.
Comparison Methods: Our proposed method is com-

pared with two static network embedding approaches

1https://tianchi.aliyun.com/datalab/dataSet.html?spm=5176.100/
073.0.0.4703ea7EOGscIdataId=649

2https://www.cse.msu.edu/ tangjili/trust.html
3http://ailab.criteo.com/criteo-sponsored-search-conversion-

log-dataset/



(i.e., DeepWalk (Perozzi, Al-Rfou, and Skiena 2014) and
node2vec (Grover and Leskovec 2016)) and two dynamic
network embedding approaches, i.e., TNE (Zhu et al. 2016)
and CTDNE (Nguyen et al. 2018). The dimension of the
node embedding is set to 64.

For the static network embedding baselines, we aggregate
all our datasets into unweighted graphs. As for hyperparam-
eters, we tune three hyperparameters in DeepWalk, which
are the number of random walks nw, the walk length l and
the window sizew, respectively. All combinations of param-
eters are tested given nw ∈ {10, 30, 50}, l ∈ {10, 30, 50}
and w ∈ {3, 5, 7}, and the best metric is reported; node2vec
extends DeepWalk by introducing a mechanism of gener-
ating biased random walks. Two hyperparameters p and q
control the procedure of generating random walks. We test
all combinations of p ∈ {0.5, 1, 1.5} and q ∈ {0.5, 1, 1.5}.

For the dynamic network embedding baselines, we first
aggregate all our datasets into ten snapshots with equal time
intervals to accommodate the input of TNE; CTDNE is de-
signed for continuous-time dynamic networks, where each
node and edge are timestamped. Same with DeepWalk, we
test CTDNE given different combinations of the number of
random walks nw, the walk length l and the window size w.
In addition, we test CTDNE variants with uniform and linear
distributions.

Three different variants of FiGTNE with different defi-
nitions of w(eout|ein) are compared here. w(eout|ein) in
FiGTNE-Unbiased and FiGTNE-Rank are set to fixed tem-
poral contexts defined in Eq. 4 and Eq. 5, respectively.
w(eout|ein, s) in FiGTNE-TRRW is set to the dynamic
weight defined in Eq. 3 with wT (eout|ein) setting to the one
defined in Eq. 5.

Quantitative Evaluations
In each dataset, we apply the embedding methods on the
following two tasks:

Node Classification: The task of node classification is to
predict the label of the node based on its features. By con-
sidering the embedding representations generated by the
network embedding methods as node features, we train a
logistic classifier with a given number of training data and
predict the labels of the rest nodes. We report the Micro-
F1 with different sizes of training data to measure the per-
formance of the methods.
Link prediction: The task of link prediction aims to pre-
dict the probability of two nodes that are connected by an
edge. Here we use the dot product to compute the prob-
ability of two nodes being linked based on the learned
embedding vectors. For each dataset, we randomly select
a specific ratio (i.e., 0.1%, 0.5% and 1%) of edges from
the most recent time as positive ones and remove them
from the original dataset. Then the same number of node
pairs that are not connected by an edge is also randomly
sampled as negative ones. We report the AUC with dif-
ferent ratios of sampled edges to evaluate the comparison
methods.
Qualitative results regarding node classification and link

prediction are shown in Fig. 3 and Fig. 4, respectively. In

summary, we have the following observations: (1) our pro-
posed algorithm FiGTNE-TRRW outperforms the compari-
son methods across all the datasets in most cases of the two
tasks; (2) there are two exceptions that node2vec performs
slightly better than FiGTNE in the link prediction task. A
possible guess here is that the temporal context would possi-
bly introduce noise to the link prediction model, when some
certain connections between some vertices that belong to the
same category but are not closed in the time; (3) the perfor-
mance of TNE is worse than the static network embedding
methods (DeepWalk and node2vec). A potential explanation
would be that naively aggregating the networks into several
snapshots would break the temporal patterns to several snap-
shots, which deteriorates the performance.
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Figure 3: Node classification results (Micro-F1) with differ-
ent ratios of training data.
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Figure 4: Link prediction results (AUC) with different ratios
of sampled edges.

To test the effectiveness of bi-context sampling, we com-
pare it with the case that Pr(y = 1|vs, vt) is set to uniform
distribution based on FiGTNE-TRRW, and Table 2 gives the
relative performance gain. We can obverse that bi-context
sampling performs better than the uniform distribution.



Table 2: Relative performance gain of bi-context sampling
on the two tasks of node classification and link prediction
with different ratios of training data.

Node Classification Link Prediction
Dataset 30% 50% 70% 0.1% 0.5% 1.0%

DBLP 0.5% 1.2% 1.1% 1.2% 1.4% 0.9%
Taobao 2.3% 2.5% 2.7% 1.6% 2.1% 2.3%
Epinion 3.3% 3.9% 2.8% 4.0% 3.1% 3.0%
Criteo 2.7% 3.6% 3.6% 2.5% 2.9% 2.1%

Case Study
Here we conduct further analysis on the Criteo dataset to
demonstrate the effectiveness of the temporal context that is
defined based on the similarity of time duration. In the Criteo
dataset, each edge also has an attribute called time duration
that represents the time between the action and conversion
(the action leads to one consumption). Therefore, we gener-
ate the embedding representations of users using FiGTNE-
TRRW based on the temporal context defined as

wT (eout|ein) =

rank(|tout − tin|,∆t) + rank(|δout − δin|,∆d)
(7)

where ∆t = {|te − tin| : e ∈ I(vein)} and ∆d =
{|δe − δin| : e ∈ I(vein)}. Then we visualize part of them
(three thousand users) using t-SNE, which is shown in Fig.
5a. Similarly, we give a mininature that forms a small cluster
in Fig. 5b. We can see that the five users show similar inter-
est on the products and behaviors, which suggests that there
may be a brushing for making fake sales.
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Figure 5: (a) Visualization of embedding representations
generated from Criteo using t-SNE; (b) Visualization of the
mininature consists of nodes marked in Fig. 5(a). The times-
tamp and time duration of the edge are labeled on the edge.

Parameter Analysis
In this section, we study the two additional hyperparam-
eters in TRRW, which are the interval of updating edge
weights K and the increment per update ∆. The intro-
duction of K is mainly for parallel implementation. If the
transition matrix P is fixed, we can easily have multi-
ple walkers and generate the random walks starting from
different nodes in a parallel way. But if we update P
once an edge is traversed, the random walks can only be

generated in a sequential way, which is quite inefficient.
In addition, other than the simplest case given in Eq. 3,
we can increase the speed of evolution of w(eout|ein, s)
by multiplying n(eout|ein, s) with a positive constant ∆
that is larger than 1. The two hyperparameters control
how fast P would fully encode temporal information.
Here we test all combinations on the dataset Taobao given
K ∈ {nr, 2nr, 3nr, 4nr, 5nr, 6nr, 7nr, 8nr, 9nr, 10nr}
(nr represents the number of updates of P when deal-
ing with one batch of nodes in Algorithm 1) and ∆ ∈
{1, 2, 4, 8, 16, 32, 64, 128}. The results are shown in Figure
6. We can see that a relatively fast speed (i.e., large ∆ and
smallK) of changing P leads to high Micro-F1 score. There
are also some spikes. We presume that they would relate to
the randomness of generating random walks.
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Figure 6: Hyperparameter analysis on Taobao.

Conclusion
In this paper, we propose a fine-grained temporal network
embedding framework named FiGTNE. We start by intro-
ducing the novel notions of temporal networks, where each
node and edge are timestamped and exist within a certain
duration. On top of that, we propose two techniques that
are designed for preserving the structural and temporal con-
texts in temporal networks: time-reinforced random walk
and bi-level context sampling. Extensive experiments on
several real-world networks demonstrate the performance of
FiGTNE in terms of effectiveness and parameter sensitivity.
Our future work would focus on how to design a learnable
temporal context function since current temporal contexts
are all hand-crafted, which limits the performance of our
proposed model.
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