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Abstract 11 

Neural synchrony in the brain at rest is usually variable and intermittent, thus intervals of 12 
predominantly synchronized activity are interrupted by intervals of desynchronized activity.  Prior 13 
studies suggested that this temporal structure of the weakly synchronous activity might be functionally 14 
significant:  many short desynchronizations may be functionally different from few long 15 
desynchronizations even if the average synchrony level is the same.  In this study, we used 16 
computational neuroscience methods to investigate the effects of spike-timing dependent plasticity 17 
(STDP) on the temporal patterns of synchronization in a simple model.  We employed a small network 18 
of conductance-based model neurons that were connected via excitatory plastic synapses.  The 19 
dynamics of this network was subjected to the time-series analysis methods used in prior experimental 20 
studies.  We found that STDP could alter the synchronized dynamics in the network in several ways, 21 
depending on the time scale that plasticity acts on.  However, in general, the action of STDP in the 22 
simple network considered here is to promote dynamics with short desynchronizations (i.e. dynamics 23 
reminiscent of that observed in experimental studies).  Complex interplay of the cellular and synaptic 24 
dynamics may lead to the activity-dependent adjustment of synaptic strength in such a way as to 25 
facilitate experimentally observed short desynchronizations in the intermittently synchronized neural 26 
activity. 27 

 28 

1 Introduction 29 

Synchronization of neural activity in the brain is involved in multiple neural functions (e.g. Buzsáki 30 
and Draguhn, 2004; Fell and Axmacher, 2011; Fries, 2015; Harris and Gordon, 2015).  Neural 31 
synchronization that is either too strong or too weak may be one of the neurophysiological factors 32 
behind symptoms of several disorders such as Parkinson's disease and schizophrenia (Schnitzler and 33 
Gross, 2005; Uhlaas and Singer, 2006; Oswal et al., 2013; Pittman-Polletta et al., 2015).  Thus, the 34 
synchronization of neural activity is a ubiquitous phenomenon.  In the rest state, the strength of this 35 
synchronization is usually moderate.  This means that the intervals of stronger synchrony are 36 
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interspersed with desynchronized intervals.  This is probably not surprising given the plausibility of 37 
the very general nature of the transient character of neural activity (Rabinovich et al., 2008). 38 

Recent developments in time-series analysis allowed for the exploration of the temporal patterning of 39 
synchronized activity in brain dynamics on very short time-scales.  Studies of different brain signals 40 
in different conditions and species suggest an apparently universal feature:  synchronous activity is 41 
interrupted by very short (although potentially numerous) intervals of desynchronized dynamics (as 42 
opposed to few longer desynchronized episodes).  This phenomenon was observed in the synchrony 43 
between local field potentials (LFPs) and spikes in different parts of the basal ganglia and EEG in 44 
Parkinson's disease (Park et al., 2010; Ratnadurai-Giridharan et al., 2016; Ahn et al., 2018), in 45 
synchronization between LFPs recorded in the prefrontal cortex and hippocampus of normal and 46 
amphetamine-sensitized mice (Ahn et al., 2014), in EEG of healthy human subjects (Ahn and 47 
Rubchinsky, 2013), and in EEG in autism spectrum disorders (Malaria et al., 2020).  The differences 48 
in the temporal patterning are correlated with certain behavioral features but the prevalence of short 49 
desynchronizations persisted nevertheless (Ahn et al., 2014, 2018; Malaia et al., 2020). Therefore, short 50 
desynchronizations may be functionally important and the properties and mechanisms of 51 
desynchronization durations merit exploration. 52 

These observations of the persistence of short desynchronizations naturally suggests the question about 53 
the biological mechanisms behind this phenomenon.  The modeling study (Ahn and Rubchinsky, 2017) 54 
suggested one possible mechanism:  the short desynchronization dynamics was promoted by the 55 
substantial difference in the timescales of spike-producing sodium and potassium currents.  The relative 56 
slowness of the potassium delayed-rectifier current may be one of the reasons for why short 57 
desynchronizations are observed in different neural systems.  However, there may also be other 58 
mechanisms.  This paper is aimed at the exploration of one potential mechanism related to synaptic 59 
plasticity.  We use computational modeling to explore how spike-timing dependent plasticity (STDP) 60 
can affect the temporal patterning of neural synchrony on short timescales. 61 

STDP is a very common neural phenomenon with potentially multiple effects on neural 62 
synchronization.  In particular, a synapse whose conductance is modulated by STDP can enhance 63 
neural synchrony (Nowotny et al., 2003; Cassenaer and Laurent, 2007; Ratnadurai-Giridharan et al., 64 
2015).  We use a simple neural network of two conductance-based model neurons coupled via 65 
excitatory synapses with STDP and apply the same time-series analysis techniques as were used in the 66 
prior experimental studies.  While this model network can hardly adequately model field potentials 67 
recorded in some of the experimental studies mentioned above, it serves as a simple model system 68 
exhibiting rich synchronization dynamics, which is substantially modulated by synaptic plasticity. 69 
Numerical analysis of this model shows that STDP may affect not only the strength of synchronization, 70 
but also the temporal patterning of synchronization, with an ability to facilitate the short 71 
desynchronizations dynamics observed in experiments. 72 

 73 

2 Methods 74 

2.1 Neuronal and synaptic modeling 75 

We utilize the network model from (Ahn and Rubchinsky, 2017) except that the synapses are plastic 76 
in this study.  The model is described below. 77 
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The neurons are modeled using a two-dimensional conductance-based model of a Hodgkin-Huxley 78 
type that is mathematically equivalent to the Morris-Lecar model (Izhikevich, 2007; Ermentrout and 79 
Terman, 2010).  The sodium conductance is assumed to activate instantaneously and to have no 80 
inactivation, while the potassium conductance is controlled by its gating variable and so varies 81 
dynamically. 82 
 83 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝐼𝐼𝑁𝑁𝑁𝑁 − 𝐼𝐼𝐾𝐾 − 𝐼𝐼𝐿𝐿 − 𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠 + 𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎 84 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
𝑤𝑤∞(𝑣𝑣) − 𝑤𝑤

𝜏𝜏(𝑣𝑣)
 85 

Here 𝑣𝑣 is the neuron's transmembrane potential and 𝑤𝑤 is the gating variable for the potassium current.  86 
The synaptic current between neurons, 𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠, is given below and 𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎 is a constant input current to each 87 
neuron to control the frequency of spiking.  The sodium, potassium, and leak currents are: 88 

𝐼𝐼𝑁𝑁𝑁𝑁 = 𝑔𝑔𝑁𝑁𝑁𝑁𝑚𝑚∞(𝑣𝑣)(𝑣𝑣 − 𝑣𝑣𝑁𝑁𝑁𝑁) 89 

𝐼𝐼𝐾𝐾 = 𝑔𝑔𝐾𝐾𝑤𝑤(𝑣𝑣 − 𝑣𝑣𝐾𝐾) 90 

𝐼𝐼𝐿𝐿 = 𝑔𝑔𝐿𝐿(𝑣𝑣 − 𝑣𝑣𝐿𝐿) 91 

𝑔𝑔𝑁𝑁𝑁𝑁, 𝑔𝑔𝐾𝐾, and 𝑔𝑔𝐿𝐿 are the maximal conductances for the sodium, potassium and leak currents, 92 
respectively.  The steady-state values for the gating variables of the sodium and potassium currents 93 
are: 94 

𝑚𝑚∞(𝑣𝑣) =
1

1 + 𝑒𝑒𝑒𝑒𝑒𝑒 �−2 𝑣𝑣 − 𝑣𝑣𝑚𝑚1
𝑣𝑣𝑚𝑚2

�
 95 

𝑤𝑤∞(𝑣𝑣) =
1

1 + 𝑒𝑒𝑒𝑒𝑒𝑒 �−2 𝑣𝑣 − 𝑣𝑣𝑤𝑤1
𝛽𝛽 �

 96 

The voltage-dependent activation time constant of the potassium current is: 97 

𝜏𝜏(𝑣𝑣) =
1
𝜖𝜖
∗

2

𝑒𝑒𝑒𝑒𝑒𝑒 �𝑣𝑣 − 𝑣𝑣𝑤𝑤1
2𝛽𝛽 � + 𝑒𝑒𝑒𝑒𝑒𝑒 �𝑣𝑣𝑤𝑤1 − 𝑣𝑣

2𝛽𝛽 �
 98 

All synapses are excitatory, and the synaptic current to neuron 𝑖𝑖 is given by: 99 

𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖 = 𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠(𝑣𝑣𝑖𝑖 − 𝑣𝑣𝑠𝑠𝑠𝑠𝑠𝑠)�𝑠𝑠𝑗𝑗
𝑗𝑗≠𝑖𝑖

 100 

Where 𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠 is the maximal conductance of the synapse (i.e. the synaptic strength), and 𝑠𝑠𝑗𝑗  is the synaptic 101 
variable for neuron 𝑗𝑗 and the summation is taken over all neurons that are connected to the 𝑖𝑖-th neuron.  102 
The synaptic variable 𝑠𝑠 is governed by: 103 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝛼𝛼𝑠𝑠(1 − 𝑠𝑠)𝐻𝐻∞(𝑣𝑣 − 𝜃𝜃𝑣𝑣) − 𝛽𝛽𝑠𝑠𝑠𝑠 104 

𝐻𝐻∞ is a sigmoidal function whose input is the presynaptic neuronal voltage: 105 
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𝐻𝐻∞(𝑣𝑣) =
1

1 + 𝑒𝑒𝑒𝑒𝑒𝑒 �− 𝑣𝑣
𝜎𝜎𝑠𝑠
�
 106 

The values of cellular and synaptic parameters are the same as used in (Ahn and Rubchinsky, 2017):  107 
𝑔𝑔𝑁𝑁𝑁𝑁 = 1, 𝑔𝑔𝐾𝐾 = 3.1, 𝑔𝑔𝐿𝐿 = 0.5, 𝑣𝑣𝑁𝑁𝑁𝑁 = 1, 𝑣𝑣𝐾𝐾 = −0.7, 𝑣𝑣𝐿𝐿 = −0.4, 𝑣𝑣𝑚𝑚1 = −0.01, 𝑣𝑣𝑚𝑚2 = 0.15, 𝑣𝑣𝑤𝑤1 =108 
0.08, 𝛽𝛽 = 0.145, 𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎 = 0.045, 𝜀𝜀1 = 0.02, 𝜀𝜀2 = 1.2𝜀𝜀1, 𝑣𝑣𝑠𝑠𝑠𝑠𝑠𝑠 = 0.5, ∝𝑠𝑠= 5, 𝛽𝛽𝑠𝑠 = 0.2, 𝜃𝜃𝑣𝑣 = 0.0, 𝜎𝜎𝑠𝑠 =109 
0.2. 110 

STDP modeling follows (Zhigulin et al., 2003).  If neuron 𝑖𝑖 spikes at time 𝑡𝑡𝑖𝑖 and neuron 𝑗𝑗 spikes at 111 
time 𝑡𝑡𝑗𝑗, then the strength of the synapse from neuron 𝑖𝑖 to neuron 𝑗𝑗 is additively updated by the amount 112 

∆𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑠𝑠𝑠𝑠𝑠𝑠(∆𝑡𝑡)𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(−𝑘𝑘|∆𝑡𝑡|) 113 

where ∆𝑡𝑡 = 𝑡𝑡𝑗𝑗 − 𝑡𝑡𝑖𝑖. The synaptic conductance from neuron 𝑗𝑗 to neuron 𝑖𝑖 is simultaneously updated by 114 
an equal, but opposite, amount.  While the additive update rule does not necessary need to be symmetric 115 
(as it is here), there is experimental evidence supporting the nature of the update, see for example 116 
(Zhang et al., 1998, Feldman, 2012).  We varied the values of our plastic parameters, in particular 𝐴𝐴 ∈117 
[0.0001,0.01],𝑘𝑘 ∈ [0.01,50]. The synaptic conductance is bounded below by zero. 118 

2.2 Numerical Implementation 119 

The system of differential equations was solved numerically in Python using the built-in odeint 120 
function from the SciPy module (v.1.4.1).  This function implements either the Adams method or a 121 
backward differentiation formula (BDF) method depending on the stiffness of the problem.  The 122 
solution was reported at multiples of the time step 𝑑𝑑𝑑𝑑 = 0.1 (assuming the time units are milliseconds), 123 
however the function uses an adaptive step size and there was no lower bound on the length of the 124 
intermediate time steps that may be used (similarly, there was no upper bound restriction on the number 125 
of intermediate steps that were taken).  The absolute and relative tolerances for the method were kept 126 
at the default value of 1.49 × 10−8.  While the solution depends on the initial conditions, its statistical 127 
properties (such as the firing rate, synchrony pattern characteristics etc.) do not. The system was solved 128 
on the time interval [0,25000], the first 20% of the time-series was removed from analysis. To 129 
implement plasticity, the integration was paused after each time step and, if necessary, the synaptic 130 
strength was updated.  Specifically, the voltage threshold to define an action potential was set at 0.2.   131 

 132 

2.3 Synchronization analysis 133 

The time-series analysis of synchronized dynamics in the network follows that of (Ahn et al., 2011; 134 
Ahn and Rubchinsky, 2017) and is similar to the analysis of the temporal patterns of neural synchrony 135 
in the experimental studies mentioned in the Introduction.  We will briefly describe this analysis here. 136 

The phase, 𝜑𝜑(𝑡𝑡), of a neuron is defined as 137 

𝜑𝜑(𝑡𝑡) = tan−1 �
𝑣𝑣(𝑡𝑡) − 𝑣𝑣�
𝑤𝑤(𝑡𝑡) − 𝑤𝑤�

� 138 

where (𝑤𝑤� , 𝑣𝑣�) is a point selected inside the neuron's limit cycle in the (𝑤𝑤, 𝑣𝑣) – plane.  The 139 
synchronization strength is computed as 140 
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𝛾𝛾 = �
1
𝑁𝑁
�𝑒𝑒𝑒𝑒𝑒𝑒 �𝑖𝑖∆𝜑𝜑�𝑡𝑡𝑗𝑗��
𝑁𝑁

𝑗𝑗=1

� 141 

where ∆𝜑𝜑�𝑡𝑡𝑗𝑗� = 𝜑𝜑1�𝑡𝑡𝑗𝑗� − 𝜑𝜑2(𝑡𝑡𝑗𝑗) is the difference of the phases of neurons 1 and 2 at time 𝑡𝑡𝑗𝑗.  𝑁𝑁 is the 142 
number of data points.  The value of 𝛾𝛾 ranges from 0 to 1, which represent a complete lack of synchrony 143 
and perfect phase synchrony, respectively. 144 
If there is some degree of phase locking present, then there is a synchronized state, i.e. a preferred 145 
value of the phase difference ∆𝜑𝜑.  For each cycle of oscillation one can check if the actual phase 146 
difference is close to this preferred value or not.  Note that the index 𝛾𝛾 only represents an average value 147 
of phase-locking over the interval [𝑡𝑡1, 𝑡𝑡𝑁𝑁], however to describe the patterning of synchrony one needs 148 
to look at the transitions to and from a synchronized state on much shorter timescales.  This is done as 149 
follows.  150 

When 𝜑𝜑1 increases past zero, say at time 𝑡𝑡𝑗𝑗,𝑖𝑖, then 𝜑𝜑2�𝑡𝑡𝑗𝑗,𝑖𝑖� is recorded.  This generates a sequence of 151 
numbers �𝜑𝜑2�𝑡𝑡𝑗𝑗,𝑖𝑖��𝑖𝑖=1

𝑀𝑀
.  Due to the presence of some synchrony, there is a clustering about some phase 152 

value, say 𝜑𝜑0.  This is taken as the preferred phase value, and if 𝜑𝜑2�𝑡𝑡𝑗𝑗,𝑖𝑖� =  𝜑𝜑𝑖𝑖, for 1 ≤ 𝑖𝑖 ≤ 𝑀𝑀, differs 153 
from it by more than 𝜋𝜋

2
 then the neurons are desynchronized, otherwise they are synchronized.  The 154 

choice of 𝜋𝜋
2

 is not only convenient (it partitions the (𝜑𝜑𝑖𝑖 ,𝜑𝜑𝑖𝑖+1) space into quadrants) but was also used 155 
in the experimental studies described in the Introduction. 156 
The length of a desynchronization event is defined as the number of consecutive times the system 157 
spends in the desynchronized states.  In other words, the length of desynchronization is the length of 158 
the time interval the system is away from the synchronized state (as defined above); this length is 159 
measured not in the absolute time units, but in the number of cycles of oscillations (in line with the 160 
experimental studies mentioned in the Introduction).  The lengths of all desynchronization events are 161 
recorded and the distribution of durations is reconstructed. The mode of this distribution is used as a 162 
characteristic of the temporal patterning of synchronized dynamics.  For later reference, a "mode 𝑛𝑛" 163 
system means that the mode of all lengths of desynchronization events for that particular system is 𝑛𝑛.  164 
Thus a mode 1 system (𝑛𝑛 = 1 case) is the system with synchronized dynamics interrupted by 165 
predominantly short desynchronization intervals.  The larger 𝑛𝑛 is, the more prominent the tendency for 166 
long desynchronizations is. This does not necessarily affect the overall synchrony strength, because it 167 
depends not only on the duration of desynchronizations, but also on their number. The mode is used to 168 
characterize the durations because experimental studies used the mode for this purpose. 169 

An illustration of different desynchronization durations and dynamics with different modes of 170 
desynchronizations is provided in Figure 1. Voltages and distributions of desynchronization durations 171 
for mode 1 dynamics are in the left column, the ones for mode 2 dynamics are in the right column. The 172 
synchronization is not perfect and synchronized dynamics (phase difference is close to the preferred 173 
one) are interspersed with desynchronized intervals. Note that the preferred phase difference is not 174 
necessarily zero so that the zero lag state is not necessarily a synchronized state. 175 

 176 
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177 
Figure 1. Illustration of dynamics with different desynchronization durations (mode 1 and mode 2 178 
dynamics). A–D depict voltage traces of two partially synchronized neurons (solid and dashed lines). 179 
When the neurons exhibit the preferred time difference the voltage traces are thin lines, indicating 180 
proximity to a synchronized state. However, when the phase difference is not close to the preferred 181 
one, the lines are thick to indicate the desynchronizations (as defined above). A and C illustrate short 182 
desynchronizations (lasting one cycle of oscillations), B and D show longer desynchronizations (lasting 183 
two cycles of oscillations). A and B are artificially generated examples, while C and D present 184 
examples generated by the network considered in the section below. In a longer time-series, the 185 
desynchronizations of different durations may coexist, however, usually one duration will prevail. The 186 
distributions showing relative frequency of different desynchronizations for the dynamics with 187 
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predominantly short desynchronizations (like A and C) and with longer desynchronizations (like B and 188 
D) are presented in E and F respectively. The mode of the distribution in E is 1, thus this is mode 1 189 
dynamics; the mode of the distribution in F is 2, thus this is mode 2 dynamics. 190 

 191 

Finally, we would like to reiterate that in this approach the time is measured in terms of cycles of 192 
oscillations of the neural activity, not in absolute time units.  This allows one to compare the properties 193 
of variability of synchrony of brain rhythms with different frequencies. 194 

The phase-locking strength index 𝛾𝛾 was observed to be usually about 0.2-0.3 in this study (even after 195 
STDP adjustments). These are moderate values, comparable with experimental results (in particular 196 
with the results reported in the studies references in the Introduction). With this moderate synchrony 197 
strength, synchronization effects are hard to see by the naked eye, however, the quantitative time-series 198 
analysis techniques are able to quantify the synchronized dynamics and its properties including the 199 
temporal patterning of weakly synchronous dynamics. 200 

 201 

3 Results 202 

Building on (Ahn and Rubchinsky, 2017), we used a simple network consisting of two neurons 203 
connected via excitatory synapses (see Figure 2); however the synapses are now plastic.  The two 204 
neurons have a slightly different firing rate, i.e. their respective 𝜀𝜀 values differ slightly (see the list of 205 
parameter values in Methods).  The initial value of the maximal synaptic conductance is 𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠 =206 
0.005, so that the coupling is weak.  This heterogeneity and weak synaptic coupling ensure that the 207 
synchrony between the two neurons is relatively weak. 208 
The dynamics of the non-plastic variant of this system was studied in (Ahn and Rubchinsky, 2017).  209 
Based on that study, we vary values of three parameters of the potassium current in such a way as to 210 
change the dynamics of the non-plastic network from exhibiting predominantly short 211 
desynchronizations (i.e. those observed in experiments) to one with a large mode of desynchronization 212 
durations.  These parameters are 𝜀𝜀 (the reciprocal of the peak value of the activation time-constant 213 
𝜏𝜏(𝑣𝑣)), 𝛽𝛽 (which characterizes the widths of the activation time-constant 𝜏𝜏(𝑣𝑣) and the steady-state 214 
function 𝑤𝑤∞(𝑣𝑣)) and 𝑣𝑣𝑤𝑤1 (a horizontal translation in 𝑤𝑤∞(𝑣𝑣) and 𝜏𝜏(𝑣𝑣) which changes their values over 215 
the specific voltage range).  Changes in all these parameters effectively change the activation time-216 
constant 𝜏𝜏(𝑣𝑣) to either large or small, which delays or accelerates the activation of potassium current, 217 
respectively.  Consequently, the lengths of the desynchronization events shift to predominantly short 218 
or long.  Next, we explore how the introduction of plasticity affects the durations of desynchronization 219 
events.  Hence our parameter space is two-dimensional for each case considered, and consists only of 220 
the plasticity parameters 𝐴𝐴 and 𝑘𝑘. 221 

 222 

 223 
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Figure 2. The schematics of the network: two neurons coupled with mutually excitatory synapses. 224 
 225 

In most of the simulations the synaptic weights do not reach a steady state, but rather exhibit fairly 226 
stationary variations, as illustrated in Figure 3. 227 

 228 

 229 

Figure 3. An example of typical temporal evolution of synaptic weights in a network with plasticity 230 
(𝜀𝜀 = 0.15, 𝐴𝐴 = 0.009,𝑘𝑘 = 0.3). 231 

 232 

3.1 Variation of ε 233 

Let us mention here that 𝜀𝜀 ∝ 1
𝜏𝜏
 and the maximum value of 𝜏𝜏(𝑣𝑣) is 1

𝜀𝜀
.  Hence as 𝜀𝜀 is increased, the 234 

value of 𝜏𝜏(𝑣𝑣) is decreased across its entire domain as it is a unimodal function.  This in turn 235 
accelerates the activation of potassium current because 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
∝ 1

𝜏𝜏(𝑣𝑣)
.  From (Ahn and Rubchinsky, 2017) 236 

we know that smaller values of 𝜀𝜀 promote shorter desynchronization events. 237 

For 𝜀𝜀 = 0.05, the non-plastic system is mode 1. This means the synchronized dynamics has the 238 
following property. As the system is exhibiting partially synchronized dynamics, it will be either close 239 
in the synchronized state or away from synchronized state, the latter is termed desynchronization. The 240 
desynchronized interval length (measured in the number of cycles of oscillations) varies in time. We 241 
obtain the distribution of the desynchronization durations from numerical simulation and find the mode 242 
of this distribution. If this mode equals one cycle of oscillation, then the system is mode 1  (see Methods 243 
for a more detailed explanation).  Mode 1 means the desynchronizations are predominantly short.  244 
Now the non-plastic system is changed to include STDP.  The changes in the temporal patterning of 245 
synchronization dynamics are illustrated in Figure 4.  Figure 4A is a diagram of the mode of the 246 
desynchronization durations in the space of plasticity parameters, 𝐴𝐴 and 𝑘𝑘.  The plasticity effects are 247 
negligible across the top (very large 𝑘𝑘 implies a quick decay of the change in synaptic strength), and 248 
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especially in the upper left corner (large 𝑘𝑘 and a small amplitude 𝐴𝐴).  In these areas the values of the 249 
plasticity parameters are such that the magnitude of the update, ∆𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠, is negligible (the average update 250 
is usually in the interval [0.0, 10−5], on the larger end this corresponds to about 0.2% of the initial 251 
value of 𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠).  Hence, the plastic system continues to be mode 1 in these areas. 252 

 253 

 254 
Figure 4. A system exhibiting mode 1 dynamics in the non-plastic case is subjected to plasticity (𝜀𝜀 =255 
0.05).  A:  Mode is colored via gray scale, see legend on the right of the diagram.  The amplitude of 256 
the synaptic update, 𝐴𝐴, is varied along the horizontal axis.  The reciprocal of the time-scale of the 257 
synaptic update, 𝑘𝑘, is varied along the vertical axis.  B, C and D show the changes in the histogram of 258 
desynchronization durations as plasticity becomes stronger.  B:  The system without plasticity.  C:  The 259 
system with very weak plasticity:  𝐴𝐴 = 0.0047,𝑘𝑘 = 20.0.  D:  The system with moderate plasticity:  260 
𝐴𝐴 = 0.0047,𝑘𝑘 = 0.05.   261 
 262 
The rest of the parameter space, in particular the central region, displays a high proportion of mode 1 263 
dynamics as well.  In these areas plasticity is not negligible, as the synaptic strength can vary to a 264 
substantial degree.  However, even in the presence of STDP, mode 1 dynamics persist.  For the diagram 265 
in Figure 4A, about 85% of the parameter space points correspond to mode 1 systems. 266 
To illustrate the effect of plasticity on a distribution of desynchronization durations, refer to Figure 4B, 267 
4C and 4D.  Plasticity effects increase from left to right.  The distribution of durations changes:  at a 268 
weak level of plasticity the durations are exclusively length one, while at a stronger level of plasticity 269 
some longer durations are observed.  Yet the preponderance of length one desynchronization durations 270 
is preserved. 271 
Now let us look at the effect of plasticity on the dynamics in systems with a mode larger than one.  We 272 
consider 𝜀𝜀 = 0.15.  The non-plastic system is mode 2 (the synchronization index 𝛾𝛾 is virtually 273 
unchanged from that of 𝜀𝜀 = 0.05, although the frequency of oscillations increases by several times, 274 
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Ahn and Rubchinsky, 2017). Mode 2 means the desynchronizations tend to be longer than those of the 275 
mode 1 case. 276 
Figure 5 shows the effect of STDP on the system that is mode 2 in the non-plastic case.  As explained 277 
earlier, the plasticity effects are negligible across the top of Figure 5A, and especially in the upper left 278 
corner.  We note that this region of the parameter space exhibits mode 2 dynamics (as expected).  279 
However, throughout the entire parameter space it is seen that a majority of parameter values 280 
correspond to mode 1 systems (the large central region in Figure 5A).  Overall, about 20% of the 281 
parameter space points stay mode 2, while over 65% exhibit mode 1 dynamics (and less than 15% 282 
correspond to larger than mode 2 systems). 283 
To illustrate the effect of plasticity on a distribution of desynchronization durations, refer to Figure 5B, 284 
5C and 5D.  Plasticity effects increase from left to right.  Here we see that the introduction of weak 285 
plasticity can be sufficient to shift the system from mode 2 to mode 1 (Figure 5C).  This means 286 
desynchronizations tend to become shorter in the plastic case. At stronger levels of plasticity (Figure 287 
5D), the distribution widens, however the vast majority of desynchronization events remain length one. 288 
 289 

 290 
Figure 5. A system exhibiting mode 2 dynamics in the non-plastic case is subjected to plasticity (𝜀𝜀 =291 
0.15).  A:  Mode is colored via gray scale, see legend on the right of the diagram.  The amplitude of 292 
the synaptic update, 𝐴𝐴, is varied along the horizontal axis.  The reciprocal of the time-scale of the 293 
synaptic update, 𝑘𝑘, is varied along the vertical axis.  B, C and D show the changes in the histogram of 294 
desynchronization durations as plasticity becomes stronger.  B:  The system without plasticity.  C:  The 295 
system with very weak plasticity:  𝐴𝐴 = 0.0047,𝑘𝑘 = 20.0.  D:  The system with moderate plasticity:  296 
𝐴𝐴 = 0.0047,𝑘𝑘 = 0.7. 297 

 298 
Overall, we have seen that mode 1 dynamics are generally preserved when STDP is introduced to a 299 
non-plastic mode 1 system.  When STDP is introduced to a non-plastic mode 2 system, the dynamics 300 
largely shifts from mode 2 to mode 1.  The same was found with other non-plastic systems exhibiting 301 
higher modes:  the introduction of STDP generally shifts the mode of the system down to one.  Finally, 302 
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we would like to note that there are several points in the parameter space (see Figure 4A and Figure 303 
5A) that have very large modes.  For example, in Figure 4A when 𝐴𝐴 = 0.0006,𝑘𝑘 = 0.01, the resulting 304 
system is mode 38 (i.e. most common desynchronizations are very long).  Generally, these cases have 305 
a wide distribution of desynchronization durations.  Therefore, while these systems have a large mode, 306 
the mode does not present a strong tendency in the distribution.  Nevertheless, these situations are 307 
relatively rarely found. 308 
 309 

3.2 Variation of β   310 

The parameter 𝛽𝛽 changes the widths of the voltage-dependent time-constant of activation 𝜏𝜏(𝑣𝑣) and the 311 
width of the steady-state activation function 𝑤𝑤∞(𝑣𝑣) for potassium current.  In particular, as 𝛽𝛽 is 312 
decreased, the slope at the half-height of 𝑤𝑤∞(𝑣𝑣) is increased, and this decreases the width of the step 313 
(𝑤𝑤∞(𝑣𝑣)  is a sigmoidal function).  Similarly, for 𝜏𝜏(𝑣𝑣), a decrease in 𝛽𝛽 decreases the width of the 314 
function around the peak.  This causes an advancement in the activation of the potassium current. 315 

A larger value of 𝛽𝛽 promotes shorter desynchronization durations (Ahn and Rubchinsky, 2017).  For 316 
𝛽𝛽 = 0.124, the non-plastic system is mode 1.  The effect of STDP on this system is presented in Figure 317 
6.  Across the top and in the upper left corner of Figure 6A we see that virtually every point corresponds 318 
to a mode 1 system, as expected.  Indeed, a substantial portion of the entire parameter space displays 319 
mode 1 dynamics; about 80% of the parameter space studied. 320 
To illustrate the effect of plasticity on a distribution of desynchronization durations, refer to Figure 6B, 321 
6C and 6D.  Plasticity effects increase from left to right.  The introduction of plasticity has a minimal 322 
effect on the distribution; there is very little change visibly.  Indeed, the proportion of 323 
desynchronization durations of length one increases with plasticity. 324 
 325 

 326 
Figure 6.  A system exhibiting mode 1 dynamics in the non-plastic case is subjected to plasticity (𝛽𝛽 =327 
0.124).  A:  Mode is colored via gray scale, see legend on the right of the diagram.  The amplitude of 328 
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the synaptic update, 𝐴𝐴, is varied along the horizontal axis.  The reciprocal of the time-scale of the 329 
synaptic update, 𝑘𝑘, is varied along the vertical axis.  B, C and D show the changes in the histogram of 330 
desynchronization durations as plasticity becomes stronger.  B:  The system without plasticity.  C:  The 331 
system with very weak plasticity:  𝐴𝐴 = 0.0052,𝑘𝑘 = 20.0.  D:  The system with moderate plasticity:  332 
𝐴𝐴 = 0.0052,𝑘𝑘 = 0.7. 333 
 334 

Decreasing 𝛽𝛽 increases the mode of a system.  If 𝛽𝛽 = 0.091, the non-plastic system is mode 2.  With 335 
the introduction of very weak plasticity (across the top and the upper left corner of Figure 7A) we see 336 
that the dynamics are relatively unchanged, i.e. the mode of most systems remains two.  However, if 337 
plasticity is not very weak, the dynamics shift to mode 1 in a significant portion of the parameter space.  338 
The effect is not as substantial as in the previous section, but about 35% of parameter space becomes 339 
mode 1 (about 45% remains mode 2, i.e. the mode is unchanged). 340 
To illustrate the effect of plasticity on a distribution of desynchronization durations, refer to Figure 7B, 341 
7C and 7D.  Plasticity effects increase from left to right.  We see that the vast majority of 342 
desynchronization durations become length one as plasticity becomes stronger. 343 
              344 

 345 
Figure 7. A system exhibiting mode 2 dynamics in the non-plastic case is subjected to plasticity 346 
(β=0.091).  A:  Mode is colored via gray scale, see legend on the right of the diagram.  The amplitude 347 
of the synaptic update, 𝐴𝐴, is varied along the horizontal axis.  The reciprocal of the time-scale of the 348 
synaptic update, 𝑘𝑘, is varied along the vertical axis.  B, C and D show the changes in the histogram of 349 
desynchronization durations as plasticity becomes stronger.  B:  The system without plasticity.  C:  The 350 
system with very weak plasticity:  𝐴𝐴 = 0.0047,𝑘𝑘 = 20.0.  D:  The system with moderate plasticity:  351 
𝐴𝐴 = 0.0047,𝑘𝑘 = 0.7. 352 

 353 

3.3 Variation of  𝒗𝒗𝒘𝒘𝒘𝒘 354 
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The parameter 𝑣𝑣𝑤𝑤1 affects a horizontal translation in 𝑤𝑤∞(𝑣𝑣) and 𝜏𝜏(𝑣𝑣).  Increasing 𝑣𝑣𝑤𝑤1 shifts both 355 
curves to the right, i.e. towards higher voltages; this results in a potassium current that activates faster. 356 

Smaller values of 𝑣𝑣𝑤𝑤1 result in short desynchronization durations (Ahn and Rubchinsky, 2017).  For 357 
𝑣𝑣𝑤𝑤1 = 0.102, the non-plastic system is mode 1.  The effect of STDP on this system is presented in 358 
Figure 8.  We see that mode 1 dynamics is observed not only for the weak plasticity region (top and 359 
upper left corner of Figure 8A), but for most of the parameter space (about 85% of the parameter space 360 
studied). 361 
To illustrate the effect of plasticity on a distribution of desynchronization durations, refer to Figure 8B, 362 
8C and 8D.  Plasticity effects increase from left to right.  We see that as plasticity increases to a higher 363 
level, the prevalence of mode 1 is unchanged. 364 
 365 

 366 
Figure 8. A system exhibiting mode 1 dynamics in the non-plastic case is subjected to plasticity (𝑣𝑣𝑤𝑤1 =367 
0.102).  A:  Mode is colored via gray scale, see legend on the right of the diagram.  The amplitude of 368 
the synaptic update, 𝐴𝐴, is varied along the horizontal axis.  The reciprocal of the time-scale of the 369 
synaptic update, 𝑘𝑘, is varied along the vertical axis.  B, C and D show the changes in the histogram of 370 
desynchronization durations as plasticity becomes stronger.  B:  The system without plasticity.  C:  The 371 
system with very weak plasticity:  𝐴𝐴 = 0.0047,𝑘𝑘 = 20.0.  D:  The system with moderate plasticity:  372 
𝐴𝐴 = 0.0047,𝑘𝑘 = 0.7. 373 
 374 

Varying 𝑣𝑣𝑤𝑤1 to larger values leads to shorter desynchronization durations becoming less prevalent.  375 
For 𝑣𝑣𝑤𝑤1 = 0.161, the non-plastic system is mode 2.  The effect of STDP is presented in Figure 9.  376 
When plasticity is added we see that the dynamics are similar to the non-plastic case when plasticity is 377 
weak enough (top and upper left corner of Figure 9A).  However, when the plasticity effects are 378 
moderate, the system exhibits mode 1 dynamics frequently (central region of Figure 9A).  For the 379 
domain of parameter space studied, the majority of points (about 45%) correspond to mode 1 systems, 380 
the rest are either mode 2 (about 40%) or higher. 381 
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To illustrate the effect of plasticity on a distribution of desynchronization durations, refer to Figure 9B, 382 
9C and 9D.  Plasticity effects increase from left to right.  We see that the mode of the system shifts 383 
down from two to one as plasticity becomes stronger. 384 
 385 

 386 
Figure 9. A system exhibiting mode 2 dynamics in the non-plastic case is subjected to plasticity (𝑣𝑣𝑤𝑤1 =387 
0.161).  A:  Mode is colored via gray scale, see legend on the right of the diagram.  The amplitude of 388 
the synaptic update, 𝐴𝐴, is varied along the horizontal axis.  The reciprocal of the time-scale of the 389 
synaptic update, 𝑘𝑘, is varied along the vertical axis.  B, C and D show the changes in the histogram of 390 
desynchronization durations as plasticity becomes stronger.  B:  The system without plasticity.  C:  The 391 
system with very weak plasticity:  𝐴𝐴 = 0.0047,𝑘𝑘 = 20.0.  D:  The system with moderate plasticity:  392 
𝐴𝐴 = 0.0054,𝑘𝑘 = 1.0. 393 

 394 

3.4 Variation of 𝜷𝜷𝒘𝒘 and 𝜷𝜷𝝉𝝉 395 

Varying either 𝜀𝜀, 𝛽𝛽 or 𝑣𝑣𝑤𝑤1 may affect not only the durations of the desynchronizations, but also 396 
synchronization strength and the frequency of activity in the system.  To control desynchronization 397 
durations while keeping both spiking frequency and synchronization strength near constant in a non-398 
plastic system, one can consider the parameter 𝛽𝛽 and separate it into two independent parameters, 𝛽𝛽𝜏𝜏 399 
and 𝛽𝛽𝑤𝑤.  As a result, the lengths of desynchronization events are almost independent of the frequency 400 
and synchrony strength (Ahn and Rubchinsky, 2017). 401 

Smaller 𝛽𝛽𝑤𝑤 and larger 𝛽𝛽𝜏𝜏 result in shorter desynchronization durations (Ahn and Rubchinsky, 2017).  402 
For 𝛽𝛽𝑤𝑤 = 0.098,𝛽𝛽𝜏𝜏 = 0.079, the non-plastic system is mode 1.  Figure 10 illustrates the impact of 403 
STDP on this system.  Mode 1 dynamics is observed not only for the weak plasticity region (top and 404 
upper left corner of Figure 10A), but for the majority of the parameter space (about 60% of the 405 
parameter space studied). 406 
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To illustrate the effect of plasticity on a distribution of desynchronization durations, refer to Figure 407 
10B, 10C and 10D.  Plasticity effects increase from left to right.  We see that as plasticity progresses 408 
to a moderate level, the proportion of short desynchronizations stays largely unchanged.  In particular, 409 
the system is still mode 1.   410 
 411 

 412 
Figure 10. A system exhibiting mode 1 dynamics in the non-plastic case is subjected to plasticity 413 
(𝛽𝛽𝑤𝑤 = 0.098,𝛽𝛽𝜏𝜏 = 0.079).  A:  Mode is colored via gray scale, see legend on the right of the diagram.  414 
The amplitude of the synaptic update, 𝐴𝐴, is varied along the horizontal axis.  The reciprocal of the time-415 
scale of the synaptic update, 𝑘𝑘, is varied along the vertical axis.  B, C and D show the changes in the 416 
histogram of desynchronization durations as plasticity becomes stronger.  B:  The system without 417 
plasticity.  C:  The system with very weak plasticity:  𝐴𝐴 = 0.0049,𝑘𝑘 = 50.0.  D:  The system with 418 
moderate plasticity:  𝐴𝐴 = 0.0052,𝑘𝑘 = 0.7. 419 

 420 

If 𝛽𝛽𝑤𝑤 = 0.115,𝛽𝛽𝜏𝜏 = 0.071, the non-plastic system is mode 2.  Figure 11 illustrates the impact of STDP 421 
on this system.  With the addition of plasticity, we see that the system is largely mode 2 if the plasticity 422 
is weak (top and upper left corner of Figure 11A).  However, stronger plasticity shifts the dynamics to 423 
mode 1 for a substantial portion of the parameter space (about 55% of points considered). 424 
To illustrate the effect of plasticity on a distribution of desynchronization durations, refer to Figure 425 
11B, 11C and 11D.  Plasticity effects increase from left to right.  We see that the distribution is largely 426 
unchanged for very weak plasticity, but as plasticity increases, the system becomes mode 1. 427 
 428 
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 429 
Figure 11. A system exhibiting mode 2 dynamics in the non-plastic case is subjected to plasticity 430 
(𝛽𝛽𝑤𝑤 = 0.115,𝛽𝛽𝜏𝜏 = 0.071).  A:  Mode is colored via gray scale, see legend on the right of the diagram.  431 
The amplitude of the synaptic update, 𝐴𝐴, is varied along the horizontal axis.  The reciprocal of the time-432 
scale of the synaptic update, 𝑘𝑘, is varied along the vertical axis.  B, C and D show the changes in the 433 
histogram of desynchronization durations as plasticity becomes stronger.  B:  The system without 434 
plasticity.  C:  The system with very weak plasticity:  𝐴𝐴 = 0.0049,𝑘𝑘 = 50.0.  D:  The system with 435 
moderate plasticity:  𝐴𝐴 = 0.0054,𝑘𝑘 = 0.7. 436 

 437 

4 Discussion 438 

This study considered intermittent synchronous dynamics in a small network of simple conductance-439 
based model neurons.  While strong synaptic strength in general can promote synchronization between 440 
neurons, moderate values of synaptic coupling lead to dynamics with relatively weak synchronization, 441 
and where the episodes of synchronization are interspersed with episodes of desynchronized dynamics.  442 
Intermittent synchronization in the presence of moderate (and fixed in time) coupling is quite typical 443 
for coupled oscillatory systems (Pikovsky et al., 2001).  In other words, temporal variability of 444 
correlations is observed due to the relative weakness of a fixed coupling strength.  The temporal 445 
signatures of this variability have been previously modeled in (Ahn and Rubchinsky, 2017) and were 446 
in good agreement with the analysis of the temporal variability observed in experimental data (see 447 
Introduction and references therein). 448 

However, many actual synapses are plastic and thus the synaptic coupling between neurons experiences 449 
temporal variations.  This variation may contribute to the temporal variability of intermittent synchrony 450 
as well.  This study considered how one common type of neural plasticity – spike-timing dependent 451 
plasticity – might affect this temporal variability.  Experimental data ubiquitously points to the 452 
prevalence of short desynchronization dynamics in neural synchrony.  This kind of dynamics is 453 
naturally generated in synaptically coupled conductance-based model neurons.  We showed here that 454 
the introduction of STDP under quite general conditions preserves this realistic fine temporal structure 455 
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of intermittent neural synchrony.  Moreover, when the non-plastic system parameters are selected in 456 
such a way as to predominantly express longer desynchronizations, STDP changes the intermittently 457 
synchronous dynamics back to one with short desynchronizations.  This was observed while varying 458 
several different parameters, so that STDP may reverse dynamics from long to short 459 
desynchronizations regardless of how the desynchronizations were obtained in the non-plastic system. 460 

The overall dependence of the dynamics on the characteristics of plasticity is quite complicated.  461 
Numerical simulations indicate that some plasticity parameter values may promote very unrealistic 462 
synchronized dynamics.  However, under the conditions considered, the short desynchronization 463 
dynamics were obtained in large regions of the parameter space.  This was regardless of whether the 464 
corresponding non-plastic system was mode 1, or had a higher mode. 465 

The results of these numerical simulations suggest that STDP may be one of the contributing factors 466 
behind experimentally observed short desynchronization dynamics.  Moreover, STDP and cellular 467 
mechanisms proposed in (Ahn and Rubchinsky, 2017) may act cooperatively in promoting short 468 
desynchronizations. 469 

The results discussed here were obtained in the framework of relatively simple modeling.  The actual 470 
neuronal synchrony is, of course, a much more complicated phenomenon than the model considered 471 
here, and there were multiple factors not included in the model.  For example, inhibitory synapses (e.g. 472 
see Nowotny et al., 2008).  The experimental observations of short desynchronizations were mostly 473 
done with LFP and EEG signals, and the simple network considered here is too simple to adequately 474 
model these signals. However, the similarity between experimentally observed intermittent neural 475 
synchrony and the temporal patterning of synchrony observed in our study with a relatively simple 476 
model with STDP may speak to the very general nature of this phenomenon. 477 

The variability of the dynamics on short time-scales may be a functionally beneficial phenomenon.  478 
Short desynchronization dynamics (which is essentially a high degree of variability of synchrony on 479 
very short time-scales) have been conjectured to be conducive for quick and efficient formation and 480 
break-up of neural assemblies (Ahn and Rubchinsky, 2013, 2017).  As was noted in these studies, the 481 
ease of formation and disappearance of synchronized states at rest may suggest that a transient 482 
synchronized assembly may be easily formed whenever needed to facilitate a particular function.  The 483 
results of this study suggest that the temporal variability of synaptic strength due to STDP may 484 
potentially further facilitate this phenomenon. 485 
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