ASYMPTOTIC ANALYSIS OF THE EXPECTED UTILITY
MAXIMIZATION PROBLEM WITH RESPECT TO PERTURBATIONS
OF THE NUMERAIRE

OLEKSII MOSTOVYI

ABSTRACT. In an incomplete model, where under an appropriate numéraire, the stock
price process is driven by a sigma-bounded semimartingale, we investigate the sensitivity
of the expected utility maximization problem to small perturbations of the numéraire.
We establish a second-order expansion of the value function and a first-order approxima-
tion of the terminal wealth. Relying on a description of the base return process in terms
of its semimartingale characteristics, we also construct wealth processes and corrections
to optimal strategies that match the indirect utility function up to the second order.
We also relate the asymptotic expansions to the existence of the risk-tolerance wealth
process and link perturbations of the numéraire to distortions of the finite-variation part

and martingale part of the stock price return.

1. INTRODUCTION

In the settings of a complete financial market, it is proven in [GEKR95] that the choice
of a numéraire affects neither arbitrage-free prices of the securities nor replicating strate-
gies (see also a discussion in [HH09]). However, by an appropriate change of numéraire
(sometimes combined with a change of measure), one can simplify a valuational frame-
work, see, e.g., [GEKR95]. Possibly the most illuminating example corresponds to the
LIBOR market interest rate model, which is based on a dynamic change of numéraire and
which allows for pricing a wide class of interest rate derivatives.

In incomplete markets the situation is more delicate in general. As numéraire is a

crucial ingredient in essentially all problems of mathematical finance, it is important
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to understand their sensitivity to misspecifications of the numéraire. In this paper in a
general incomplete semimartingale model of a financial market, we investigate the response
of the value function and the optimal solution to the expected utility maximization from
terminal wealth problem to small perturbations of the numéraire. To the best of our
knowledge sensitivity of the expected utility maximization problem to perturbations of
numéraire has not been studied in the literature. We establish a second-order expansion
of the value function, a first-order approximation of the terminal wealth, and construct
wealth processes and corrections to optimal strategies that match the indirect utility
function up to the second order. The latter development is conducted via a representation
of base return process in terms of its semimartingale characteristics. In particular, we
establish an envelope-type theorem for both primal and dual value functions. We also
relate the asymptotic expansions to the existence of the risk-tolerance wealth process,
which was introduced in [KS06b], and give a characterization of the correction terms
in terms of a Kunita-Watanabe decomposition under certain changes of measure and
numéraire.

Our results provide a way to estimate the effect of misspecification of the initial data
on the expected utility maximization problem. This in particular applies to models,
which allow for explicit solutions, see e.g., [Zar01], [GKO03|, [HIMO05], [Liu07], [KS06b],
[GR12], [HHI*14], [ST14], and to so-called asymptotically complete models, see [Robl17,
RSA17]. In many cases, a closed-form solution ceases to exist under perturbations of
model parameters. Note that [KS06b], [HHIT14], and [ST14] deal with a general utility
function. This, in particular, emphasizes the importance of non confining oneself to power
or logarithmic utilities.

In order to obtain the asymptotic expansions mentioned above, we introduce a linear
parametrization of returns of a perturbed family of numéraires such that the corresponding
numeéraires are positive wealth processes for the values of the parameter being sufficiently
close to 0. Note that positivity is a necessary condition for a process to be considered
a numéraire. Even though, in principle, by a numéraire one can choose any strictly
positive semimartingale, in this work we focus on tradable numéraires, in the terminology
of [Bec01], i.e., the ones can be obtained as outcomes of trading strategies. Such a choice
is standard in the mathematical finance literature, see for example [BecO1], [KS06a],
[KS06b], [KKO07].

In the case when the stock price process is one-dimensional and continuous, our struc-
ture of perturbations is closely connected to distortions of the finite-variation part of the
return of the stock (as in [MS19]) and perturbations of the volatility (as in [HMKS17]), see
the discussion in section 6.5 below. The proofs rely on the auxiliary minimization prob-
lems, which in turn are closely related to the ones in [CLP98], [PRS98], [LP99], [CKO07],
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[CS13], [JMSS12], see also an overview of several approaches to quadratic problems in
[Pha09]. Asymptotics analysis based on Malliavin calculus is implemented in [Mon13].
Simultaneous primal-dual asymptotic expansion method in mathematical finance has been
(arguably) introduced in [Hen02] in the context of a utility-based pricing problem. Re-
lated analysis has been performed (at approximately the same time) in [HH02|, [Kal02].
The first-order differentiability of the value functions with respect to the perturbations
of the initial wealth and convergence of the optimizers are established in [KS99], whereas
twice-differentiability is investigated in [KS06a].

As we expand the value function also in the initial wealth, analysis from [KS06a] turns
out to be very helpful in the present work. On the other hand, Remark 4.3 below gives
corrections to the optimal trading strategy, such that the corresponding wealth processes
match the indirect utility up to the second order. This complements the results in [KS06a].
In this part, a representation of the base return process and in terms of its semimartingale
characteristics is crucial.

The closest paper (to the best of our knowledge), mathematically, is [MS19], which
deals with different perturbations, namely of the market price of risk, and where the
underlying framework includes a continuous and one-dimensional stock price process. In
the present paper, we impose neither one-dimensionality nor continuity of the stock (and
the perturbations are different from the ones in [MS19)]).

The remainder of this paper is organized as follows. In section 2 we present the model, in
section 3 we formulate auxiliary minimization problems and state the expansion theorems;
section 4 contains an explicit construction of nearly optimal wealth processes that match
the primal value function up to the second order and corrections to the optimal strategies.
In section 6.2 we give proofs of these results. In section 5 we relate the expansion theorems
to the existence of a risk-tolerance wealth process, and we conclude the paper with section
7, where we show the necessity of Assumptions 2.3 and 2.8, under which the expansion

theorems are proven.

2. MODEL

2.1. Parametrized family of stock prices processes. Let us consider a complete
stochastic basis (Q, F, {F; }iejor), P), where T' € (0,00) is the time horizon, F satisfies
the usual conditions, and Fy is a trivial o-algebra. For the 0-model, we assume that there
is a bank account with zero interest rate and d traded stocks, whose returns are modeled
via a general d-dimensional semimartingale (p!,...,p%). We set R = (0,p',...,p%) and

suppose that (every component of) Ry = 0.
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The numéraire of 0-model is N° = 1, equivalently the numéraire, whose return equals
to zero and whose initial value equals 1. For perturbed models, we introduce linear

perturbations of the returns of the numéraires, which are given by

(2.1) ed-R, € (—ep,e0),
where 6 is some predictable and R-integrable process that represents the proportions
of a wealth process invested in the corresponding stocks for some portfolio (i.e., 6° =

d
1—>20; t €]0,T]) and that satisfies Assumptions 2.3 and 2.8 below, and &y is a positive
i=1

constant specified via Assumption 2.3. Equivalently, (2.1) can be restated in terms of the

parametrized family of numéraires (N®).c(_c, ), that satisfy
(2.2) Ne=E((ef)-R), €€ (—¢o,¢0),

where £ denotes the stochastic exponential. Thus, the family of stock price processes

under numéraires N¢ is given by

(L gy £
Se = (F, Ne ,...,W , €€ (-80,80).

2.2. Primal problem. Let U be a utility function satisfying Assumption 2.1 below.

Assumption 2.1. The function U: (0, 00) — R is strictly increasing, strictly concave, two

times continuously differentiable, and there exist positive constants ¢; and ¢y, such that

U'(x)x
) S

o < Ax) =
The family of primal feasible sets is defined as
X(z,e)={x+H-5>0: His S®—integrable}, (z,¢) € [0,00) X (—¢0,¢&p),

where H is a predictable and S®-integrable process representing the amount invested in

the stock. The corresponding family of the value functions is given by

(2.3) u(z,e) = Xes;cl(g E)]E U(X7)], (z,¢) € (0,00) X (—&0,¢0).

We use the convention
E[U(X7)] :=—o00, if E[U (X7)] = o0,

where U~ is the negative part of U.
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2.3. Dual problem. The investigation of the primal problem (2.3) is conducted via the

dual problem. First, let us define the dual domain for the 0-model as follows:
V(y,e) :={Y : Y is a nonnegative supermartingale, such that Yy =y
(2.4) and XY = (X;V}),5, is a supermartingale
for every X € X(1,¢) }, (y,e) € [0,00) x (—&0,0)-
Remark 2.2. Definition (2.4) is an alternative version of a two-step natural definition

of the dual domain, where in the first step one defines Y(y,0) as above and then sets

V(y,e) = Y(y,0)N=. However, Lemma 6.1 asserts that both constructions are equivalent.

We set the convex conjugate to U as

V(y) :=sup (U(z) —ay), y € (0,00).

>0

Note that for y = U’(x), we have

1
V”(y) - U//(x) )
and
Viy)  Alz)
Therefore, Assumption 2.1 implies that
1 1
C2 G

The parametrized family of dual value functions is given by

(2.5) v(y,e) == YE?(E,E)E[V (Yr)], (y,e) € (0,00) x (—&0,£0).

We use the convention
E[V (Y7)] =00, if E[V'(Y7)] = o0,
where V' is the positive part of V.
2.4. Technical assumptions. For nondegeneracy of 0-model, we suppose that
(2.6) u(z,0) < oo for some x> 0.

One needs to ensure that the perturbations of the form (2.1) (or equivalently in the
form (2.2)) are such that the resulting processes N are nonnegative at least for € be-
ing sufficiently close to 0, as a necessary way of making N¢’s numéraires. This can be
achieved via the following condition. Example 7.2 below demonstrates the necessity of a

boundedness Assumption 2.3.



6 OLEKSII MOSTOVYI

Assumption 2.3. We suppose that there exists ¢y > 0 such that the jumps of the process
R := —0 - R are bounded by ﬁ, ie.,

AR < 5~, te€]0,T].

2ep?

Note that Assumption 2.3 implies that N¢ in (2.2) is a strictly positive process P-a.s.,

for every € € (—eg, £¢).

2.5. Absence of arbitrage. The absence of arbitrage opportunities in the 0-model in
the sense of no unbounded profit with bounded risk follows from condition (2.7), which

by the results of [KK07] can equivalently be stated as
(2.7) Y(1,0) contains a strictly positive element.

We refer to [KKO07] for characterizations of no unbounded profit with bounded risk con-

dition, which is also equivalent to the existence of a strict sigma-martingale density, see
[TS14] for details.

Remark 2.4. Condition (2.7) and Lemma 6.1 imply no unbounded profit with bounded

risk for every € € (—¢eq, ), thus
Y(Le) #0, €€ (—¢co,e0)

Remark 2.5. Assumption 2.1 implies that U satisfies the Inada conditions and that as-
ymptotic elasticity of U (in the sense of [KS99]) is less than 1, see [KS06a, Lemma 3] for
the proof. Therefore, under (2.1), (2.6), and (2.7), existence and uniqueness of a solution
to (2.3) for every x > 0 and other standard assertions of the utility maximization theory
follow from the abstract theorems in [KS99].

Remark 2.6. [KKS16, Theorem 2.1] gives a characterization of no unbounded profit with
bounded risk condition in terms of the existence of local martingale deflators (as opposed

to supermartingale deflators in [KKO07]).

For every x > 0, under Assumption 2.1, (2.6), and (2.7) it follows from Remark 2.5,
that y = wu,(x,0) exists and is unique and there exist unique solutions to (2.3) and
(2.5), X(x,0) and Y (y, 0), respectively, such that X (z,0)Y (y,0) is a uniformly integrable
martingale under P. An important role will be played by the probability measures R(x),
given by

d]R(J?) ‘?T(xv O)}AT(yv 0)
2' = = .
(2.8) P 7 , x>0, y=u.(z0)

Note that, R(z) defined in (2.8) coincides with the measure R(x) in the notations of
[KS06a], [KS06b] and with measure R(z,0) in terminology of [MS19], and that R(z)
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naturally appears in the asymptotic analysis of optimal investment, see [KS06a], [KS06b],
and [MS19].

Since we consider an expansion also in the initial wealth, in order for the value function
u to be twice differentiable in the first argument (which corresponds to the initial wealth
x), we need to impose the sigma-boundedness assumption, see [KS06a, Definition 1] for
the definition, also [KS06b] and [BS12] contain discussions on this subject and applications

of sigma-bounded processes to the problem of the expected utility maximization.

Assumption 2.7. Let = > 0 be fixed. We suppose that the process

SR ::< v a€(p)) x5<pd>)

~

X(2,0) X(2,0) " X(z,0)

is sigma-bounded.

When using sX (@0)we discount the assets by the normalized primal optimizer for the
0-model. We also need the following integrability assumption on perturbations, whose

necessity is demonstrated in Example 7.1 below.
Assumption 2.8. Let z > 0 be fixed. There exists ¢ > 0, such that
E*® [exp {c (| Rr| + [R, R]r) }] < cc.
3. EXPANSION THEOREMS

We begin with an envelope theorem.

Theorem 3.1. Let x > 0 be fized, assume that (2.6) and (2.7) as well as Assumptions
2.1, 2.3, 2.7, and 2.8 hold, and let y = u,(x,0). Then there exists € > 0 such that for
every € € (—&,€), u(-, &) and v(-,€) are finite-valued functions. The functions u and v are
jointly differentiable (and, consequently, continuous) at (x,0) and (y,0), respectively. We

also have

= 4 an v = -
o (7)) e - (7))

where
Ua(l', O) - U5<y, 0) = xyER(x) [RT} .

Note that, the key formula in Theorem 3.1 is the expression for u.(x,0). In the case

when Y(y,O) is a uniformly integrable martingale itself, this process is often used to

define a new measure Q(y) via %ﬁmy) = @. Then, the first-order derivatives in € can

be restated as
us(z,0) = v.(y, 0) = yEOW [XT(x, O)RT] :
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In order to characterize the second-order derivatives of the value functions, we will
need the following notations. For every z > 0, let H3(R(z)) denote the space of square
integrable martingales under R(x) that start at 0. Let us recall that SX@0 was defined

in Assumption 2.7 and set
M2(z,0) = {M e H3(R(z)): M = H - S%m} ,
N?(y,0) := {N € Hj(R(z)) : MN is R(z) — martingale for every M € M?*(z,0)},
here y = u,(z,0).

Auxiliary minimization problems. As in [KS06al, for x > 0 let us consider

- . R(z) v 2
(3.2) a(z,x) : MGEQf(x?O)E [A(XT(x,O))(l + Mry) } ;
. = inf ER® |B®Y; 1+ Np)? =
(3.3) b(y,y) vt o) [ (Yr(y,0))(1 + T)], Yy = ug(z,0),

where A is the relative risk aversion and B is the relative risk tolerance of U, respectively.
We refer to [KS06a] for the details behind the derivation of (3.2) and (3.3). Note that

(3.2) and (3.3) govern the second-order derivatives of v in x and v in y, respectively.

Remark 3.2. Existence and uniqueness of a solution to every quadratic minimization
problem in this paper follows from the closedness of its domain (in the appropriate sense),

convexity of the objective, and Komlos’ lemma, see [KS06a, Lemma 2].

Let us also set
(34) F .= RT and G := [R, R]T

We consider the following minimization problems:

o : R(z) % 2 2012
(3.5) alee) = Me./l\fllg‘(x,O)E [A(XT(x,O))(MT+xF) 20F My — o (F +G)},
b = inf ER@ |B(Y, Nr —yF)? +2yF Ny — y?(F? — :
(3.6) ble,e) ved o [ (Yr(y, 0))(Nr — yF)* + 2y FNr — y*( G)]

Quadratic minimization problems (3.5) and (3.6) govern the second-order correction terms
associated with perturbations in € in the expansion for u and v, where the exact structure
is given through Theorem 3.3. Denoting by M!(x,0) and N'(y,0) the unique solutions
to (3.5) and (3.6) respectively, we also set
(3.7)

a(z,¢) := ER@ [A()?T(x, 0))(1 + M2z, 0))(zF + Mk(z,0)) — 2F(1 + M (x, 0))} ,

(3.8) by ) == E) [B(Tr(y, 0))(1+ Nj(y, 0))(N}(y, 0) — yF) + yF (1 + N3 (y,0))]
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Theorems 3.3, 3.5, and 3.6 contain the second-order expansions of the value functions,

derivatives of the optimizers, and properties of such derivatives.

Theorem 3.3. Let x > 0 be fived. Assume all conditions of Theorem 3.1 hold, with
y = uz(x,0). Let us define

a(z,z) a(z,e)
(3.9) H,(z,0) == x( o) a(m)),

where a(z,x), a(e,€), and a(z, e) are specified in (3.2), (3.5), and (3.7), and, respectively,

(
, (v,y) b(y,e)
H.(9,0) := ( by, e) b(a,e)) ’
where b(y,y), b(e,e), bly,e) are specified in (3.3), (3.6), and (3.8). Then, the value

functions u and v admit the second-order expansions around (x,0) and (y,0), respectively,

Az

u(z + Az,e) = u(z,0) + (Az  e)Vu(z,0) + 5(Az  e)H,(z,0) ( )

) + o(Ax? + €7),

and

v(y +Ay,e) = v(y,0) + (Ay  €)Vu(y,0) + 5(Ay &) H,(y,0) (iy) +o(Ay® + %),

Remark 3.4. Similarly to [MS19], even though we only have second-order expansions, we
may abuse the language and call H,(x,0) and H,(y,0) the Hessians of u and v, without
having twice differentiability.

Theorem 3.5. Let z > 0 be fized, the assumptions of Theorem 3.1 hold, and y = u,(z,0).

Then, the auxiliary value functions satisfy
a(r,z) 0\ (b(y,y) O\ (10
a(z,e) =7/ \bly,e) —% 01
La(e,2) + “b(e, £) = alz,2)b(y, ©).
T Y
The optimizers to auxiliary minimization problems are related via the following formulas.

U"(Xr(z,0))Xr(x,0) Mz (z,0) +1 _[wz) 0 Py, 0) Nz (y,0) +1
(T, T\L, MA(x,0) + xF a(x,e) _5 Y, N(y,0) — yF ;

P00 (0. 0) < 1+N2(?,0) ) ( 0 ) ( 1+ MY (z,0) ) |
—yF + N(y,0) oF + M} (z,0)
Moreover, the product of any of X (z,0), X(z,0) MO (2,0), X(z,0)M"'(x,0) and any of
Y(y,0), Y (y,0)N°(y,0), Y (y, 0)N'(y, 0) is a martingale under P, where M2(x,0), M%(x,0),
N2(y,0), and N1(y,0) are the solutions to (3.2), (3.5), (3.3), and (3.6), correspondingly.

and
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Theorem 3.6. Let x > 0 be fized, the assumptions of Theorem 3.1 hold, and y = u,(x,0).
Then, if we define

~ -~

X (,0) = 2P0 a0 0), .00 = D04 vggy0)),
and
X3(,0) = 220D i 0) 4 oF), Vi, 0) = TEOD (1 0) - y),
we have

lim —‘X (r+ Az, e) — Xp(x,0) — Az X7 (x,0 engO’—O,
|Ax|+le]—»0 |Az| + |e] 4 )~ T< )~ r(7,0) =

lim —)Y 4 Ay, e) — Vily, 0) — AyY2(y, 0) — Yz ,o):o,
|Ay|+|a|—>o|Ay|+|5| Y y,€) = Yr(y,0) yYr(y.0) 7(y:0)

where the convergence takes place in P-probability.

4. CONSTRUCTION OF NEARLY OPTIMAL WEALTH PROCESSES

Here x > 0 will be fixed 7 will denote the optimal proportion invested in stock for

0-model and initial wealth x, i.e., T satisfies
X(z,0)=2E (7 R),

where R = (p°, p', ..., p?), p° = 0. For the results below, we will need a representation of
R in terms of its predictable characteristics. Notation-wise here, we follow [JS03]. Thus,
we fix the truncation function h(zx) : © — xlyz<y and denote by R° the continuous
martingale part of R, by B the predictable finite variation part of R (corresponding to the
truncation function h), by p the jump measure of R, i.e., a random counting measure on

[0, 7] x R? defined by

p([0,t] x E) == > Lpmpop(AR,), te[0,T],ECRY
0<s<t

where 1g is the indicator function of a set E, by v we denote the predictable compen-
sator of u, i.e., a predictable random measure on [0,T] x R? such that, in particular,
($1{|x\§1}) * (u — v) is a purely discontinuous local martingale. Setting the quadratic
covariation process C := [R®, R°] of R¢, we call (B, C,n) the triplet of predictable charac-
teristics of R (associated with the truncation function h).

It it well-known (see for example [JS03]), that semimartingale R can be represented in
terms of (B, C,n) as

R=R+ B+ (2lgazy) * (1 —v) + (2lany) * 1.
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Note that predictable characteristics (B, C,v) are unique up to a P-null set. Moreover,
let us define a predictable scalar-valued locally integrable increasing process process A as
A= ZVCLT’ (BY) —1—20” (min(1, |z]?)) * v,

1<d 1<d

where Var(B®) denotes the variation process of BY, i = 1,...,d. Then B, C, and v are

absolutely continuous with respect to A, therefore
B=b-A, C=c-A and v=n-A,

where b is a predictable R?valued process, c is a predictable process with values in the
set of nonnegative-definite matrices, and v is a predictable Levy-measure-valued process.

Let us define a vector-valued process R{™} as

(4.1) R = R—@ﬂum_@iag*w

1+7 Tz

Note that, the process R{™ governs the return of the traded assets under the numeraire
X(2,0)
xr

note that R{™ is a semimartingale as

HS () @n) <

=0 s<-

Let M>(z) denote the set of uniformly bounded elements of M?(z).

= & (7 - R). Here end below superscript T denotes the transpose of a vector. Also

Lemma 4.1. Let us assume that the assumptions of Theorem 3.1 hold. Then every

element of M>(z) be represented as a stochastic integral with respect to R},

Proof. Let M € M®(x). Then for a sufficiently large constant C’ > 0, we have

C’'E (7 R)
4.2 0<C'+M=C'+H-8"=—"—"—"~
(4.2) SO - E@R)
for some predictable and R-integrable process 7. First, as A(7 - R) > —1, we have
E(7-R)
—=&(D
E(m-R) (D),
where

D= R-R-R [ R~ (RG] - X (MG R -7 Ry

t<-

AT - Ry )

which is a (well-defined) semimartingale in view of finiteness of > (A7 - R;)? and Y (A7
t<. t<-

R,)?, see [KKO7, Lemma 3.4]. Therefore, we can restate S

smR) A8
(4.3) g%%%%:g«ﬁ—%yRﬁn.
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Using representation (4.3), in (4.2) we obtain
C'+M=C¢E(7-7) R =0+ {g (7 =7)-R™)_ (7 - %)} . R

Solving for M, we get

M= {0'5 (F—7)-R™) (7 - %)} . R,
which completes the proof. 0J

Let M° and M" denote the solutions to (3.2) and (3.5), respectively. It follows from
[KS06a, Lemma 6] that there exist sequences (M%"),>; and (M"),>; in M>(x), such
that

lim My™ = MY and lim M;" = M}, P-as.

n—roo n—oo
Without loss of generality, we may assume that M°" is bounded by n, n > 1. Therefore,
the jumps of M%" are bounded by 2n and the quadratic variation of M°" is locally

bounded, where
T} ::inf{t >0: [M*"], > k}, k>1,

is a localizing sequence for [M%"]. Note that [M®"]y, < k + 4n%. Let us define

MO = O te(0,T]n > 1.

min(¢,Ty)’
Then M%" is bounded by n, its quadratic variation is bounded n + 4n?2, and its jumps
are bounded by 2n. Moreover, by construction we have

lim Mp™ = MY, P-as.

n—oo

Analogously, we can construct a sequence MY n>1, of martingales under R(z), such
that M is bounded by n, its quadratic variation is bounded by n + 4n2, and its jumps
are bounded by 2n, n > 1, and such that

lim M;" = M}, P-as.

n—oo

Lemma 4.1 implies the existence of predictable R{™}-integrable processes 7% and '™,
n > 1, such that
MO,n

(4.4) Ao R = : =
T T

We define the family of processes (R{EG})ge(,go,EO) as

(4.5) REDY = R—e(ch)-A—c¢ ( bz > * I,



ASYMPTOTIC ANALYSIS OF THE EXPECTED UTILITY MAXIMIZATION PROBLEM 13

where R{} governs the returns of the traded assets under N¢, and similarly to the
verification after (4.1), one can show that R{*%} is a semimartingale for every e € (—¢g, g¢).

Finally, let us define the family as

()N(Aa:,e,n)
(Ax’f':’n)e(*xzoo)X(*Eo,Eo)XN
(4.6) XAren . (x + Ax)g ((%—i- Ax’yo’" + 5(—9 + ,yl,n)) 'R{gg}) .

Theorem 4.2. Let x > 0 be fized and the assumptions of Theorem 3.1 hold. Then we

have.
(1) For every n € N, there exists § = §(n) > 0, such that,
XAmen € X(x+ Aw,e), (Aw,e) € Bsw(0,0),
where Bsy(0,0) denotes a ball of radius 6(n) centered at (0,0).
(2) There exists a function n = n(Az,e) : (—x,00) X (—&¢,0) = N, such that
(4.7) E [U (X?I’E’n(m’s)ﬂ = u(r + Az, e) — o(Ax? + 7).

(3) The processes XAzen(Aze) rg from the previous item have the following proportions

wnvested in the corresponding stocks:
(4.8) ((1 —e)l + EHTT) (7 + AxrOmB29) 4 g(—f 4 Ay
where I is (d+1) x (d+ 1) identity matriz and 017 is the outer product of 6 and

the vector, whose every component equals to 1.

Remark 4.3. By taking ¢ = 0, Theorem 4.2 theorem gives corrections to optimal propor-
tions invested in stock with respect to perturbations of the initial wealth only. In this

case the nearly optimal family of wealth processes is given by
XA = (x4 Ax)E ((F + Azy™") - R),  (Az,n) € (—z,00) x N,
where 7% are given in (4.4). Theorem 4.2 asserts that there exists a function n = n(Ax) :
(—x,00) — N, such that
E [U (XTAm’n(Ax)ﬂ = u(x + Ax,0) — o(Az?).

This allows to construct corrections to optimal trading strategies in the settings of [KS06a].

5. RELATIONSHIP TO THE RISK-TOLERANCE WEALTH PROCESS

We recall here that for an initial wealth = > 0, the risk-tolerance wealth process is
defined as a maximal wealth process R(z), such that
_U'(Xr(2,0))

U"(Xr(z,0))

i.e. it is a replication process for the random payoff given by the right-hand side of

(5.1). The term risk-tolerance wealth process was introduced in [KKS06b] in the context of
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asymptotic analysis of utility-based prices, in general it may not exist. As in [KS06b], for

x> 0 and with y = u,(x,0), let us define

dR () ‘: Re(x)Yr(y, 0)
dP Ro(z)y

Ro(x)

and choose as a numeéraire in the O-model, i.e., let us set

ror (Rol@) Ro(@EG)  Rol@)E(0)
o (R(az)’ R@ 7 R(@) )

We define the spaces of martingales
M2(x,0) == {M € HE(R(x)) : M = H-S%) |,

and denote by N2(y,0) the orthogonal complement of MVZ(x, 0) in H%(]li(w)) Theorem
5.1 below relates the structural properties of the approximations in Theorems 3.3, 3.5, and
3.6 to a Kunita-Watanabe decomposition (under the changes of measure and numéraire
described above), under the assumption that the risk-tolerance process exists. Theorem
5.1 is stated without a proof, as line by line adaptation of the proof of [MS19, Theorem
8.3] applies here.

Theorem 5.1. Let © > 0 be fized, assume that (2.7), (2.6), and Assumption 2.1 hold,
and denote y = u,(x,0). Let us also assume that the risk-tolerance process R(x) exists.

Consider the Kunita- Watanabe decomposition of the square integrable martingale
p, .= Ef® [(A()?T(a;, 0)) — 1) xF|}}} L te0,T]
given by
(52) P=Py—M"—N', where M'e M>*(,0), N'eN?%y0), P eR.

Then, the optimal solutions M*(z,0) and N*(y,0) of the quadratic optimization problems
(3.5) and (3.6) can be obtained from the Kunita- Watanabe decomposition (5.2) by reverting

to the original numéraire through the identities

— X (x,0) ~,
M =R ) N! = =N} t T].
t Rt<l’> t<x70)7 t y t(y70)7 € [07 ]
With
C, = 2?ER® FQA(XT/\(JU’())) -1 -G,
A(Xr(z,0))

C, := KR [G +F? (1 "y ()A(T(x, 0)))} ,
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the Hessian terms in the quadratic expansion of u and v are given by

alorc) = Rox(:c) ot ) [(MT aF (4 (Ze(.0) - 1))1 4+ C..
B (] B
and
Ro(zx)

L ent ER) {(K/T +yF (A (Xr(2,0) - 1))2} LG

-RED Ly we [(m)] 22 () R

T

We also have
y B
ra(r,z)

a(z,e) =Py, and b(y,e) ==
With these notations, all the conclusions of Theorem 3.3 hold true.

Remark 5.2. In many references, in order to call (5.2) the Kunita-Watanabe decompo-
sition of P, one additionally needs N' to be orthogonal to S™®  which amounts to
N1GR@) being a martingale under I@(az) Some authors, see e.g., [KS06b, p. 2181], do not

require this.

6. PROOFS

6.1. Characterization of primal and dual admissible sets. The following lemma

gives a useful characterization of the primal and dual admissible sets after perturbations.

Lemma 6.1. Under Assumption (2.7), for every € € (—&o,&g), we have

(6.1) X(1,6) = (1, O);g,
(6.2) Y(1,2) = Y(1,0)N°,

where we have used the following notations

1 X X,
X(1,0)— = { & = (—) L X eXx(1,0,
Ne {Ns Nt/ sepor)

Y(1,0)N {YN (Vi) s Y € y(1,0)}.

In particular, both X (1,¢) and Y(1,¢) are non-empty and no unbounded profit with bounded

risk holds for every e € (—¢, ).
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Proof. Let us fix € € (—eg,€09). Then, for an arbitrary predictable and S¢-integrable
process 1, such that A(¢ - S%) > —1, let us set X := &€ (¢ - S°). Then X € X(1,¢). Let
us consider X? := X°€ (—£R). One can see that X° € X(1,0). This implies that

X(1,£)N° C X(1,0).

Similarly, one can show the reverse inclusion. Therefore, (6.1) is valid.

Let us fix Y € Y(1,0) and take an arbitrary X¢ € X(1,¢). By (6.1), X°N¢ € X(1,0).
Therefore, Y X¢N°¢ is a supermartingale. We deduce that Y N¢ € )(1,¢). As a conse-
quence, we have

Y(1,0)N® C Y(1,¢).

In a similar manner, one can show that Y(1,0)N® D Y(1,¢). As a result, (6.2) holds. [

We will need the following lemma from [MS19].

Lemma 6.2 (Mostovyi, Sirbu, 2017). Under Assumption 2.1, for every z > 0 and x > 0,

we have

U'(zz) <max (272,1) U'(z) < (272 + 1) U'(x),
_V'(22) < max (fé, 1) (—V'(2)) < (z—i + 1) (—V'(z)).

For brevity of notations in the proof of Lemma 6.3 below, we denote by G the contin-
uous part of [R, R] evaluated at T and let H;, where H; takes values in [ L1 } ;1€ N,

" 220 260

are the jumps of R up to T. Note that, with G being defined in (3.4), we have
(6.3) G°+> H!=G, Pas.
i=1

We define

i=1

N¢ := exp (—EF —l2ae 4 Z (log(1 —eH;) + sHi)> , €€ (—¢o,¢0),

and observe that the series > (log(1 — eH;) + €H;) converges absolutely for every ¢ €
i=1
(—€0,€0), P-a.s., in view of (6.3) and since |log(1 + z) — z| < 2? for every z € [—1, 1].

22
Lemma 6.3. Let x > 0 be fized and the conditions of Theorem 3.1 hold, and y = u,(z,0).
Let o and o' be the terminal values of some elements of M>(z). With & :== X(x,0)
denoting the solution to (2.3) corresponding to x > 0 and € = 0, we define

P(s,t) = i (z+ s(1+a%) +ta') %,

w(s,t) :=E[UEY(s,t))], (s,t) € R X (—eg,e0).



ASYMPTOTIC ANALYSIS OF THE EXPECTED UTILITY MAXIMIZATION PROBLEM 17

Then w admits the following second-order expansion at (0,0).

w(s,t) =w(0,0) + (s t)Vw(0,0) + (s t)H, (j) + o(s* + 17),

where
wS(O, O) = ux(ma 0)7

wt(07 O) - xy]ER(x) [F] ’

0o wgs(0,0)  wg(0,0)
T \we(0,0) wy(0,0))
where the second-order partial derivatives of w at (0,0) are given by

ws(0,0) = —TE* [A(€)(1 +a%)7].

and

wy(0,0) = —QER@ [A©)(1 + a®)(xF + ') — 2F(1+ a%)]
we(0,0) = yER( V[A©)(a + 2F)? — 22Fa' — 22(F2 + G)].

Proof. As a® and ! are bounded, there exists a positive constant e < min(egg, 1), such
that

x
(6.4) e(la”+ 1] +a']) < 3
Let us fix an arbitrary (s,t) € B.(0,0) and define

U(z) == (zs,2t), z€(=1,1).

As by construction of (Hg)ken, see (6.3), we have that _ (log(1 — tHy) + tHy) converges
k=1
—tH}?
—iH,

for every t € [—¢/2,¢/2], P-a.s., and the series of term by term derivatives, Z

converges uniformly in t € [—£/2,¢/2], where 1t—1£1k is continuous in ¢ on [—&/2, 5/ 2] for

every k > 1, we deduce that

d
atZ(log(l—tHk )+ tHy) = Zl—tH te(—¢/2,¢/2),

k>1 k>1
and we get
at 14+a
) = —— [ F+tGe+t d (s, t ,
vels 1) xN*t () ( - * ; 1 —tHk> and (s, f) = r Nt

Consequently, we obtain

U(2) = (52, t2)s + Py (sz, t2)t

(6.5) 1+a H?
= - F tG° t _— t.
P a:Nt+¢() +ZG+ZZl—thk

k>1
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2
Similarly, since P-a.s., ) lt_ljl’flk converges for every t € [—¢/2,¢/2], since the series of
k>1

2
term by term partial derivatives, > (1_15—;%)2, converges uniformly in t € [—¢/2,¢/2], and
k>1

from continuity of % in t on [—¢/2,¢/2] for every k > 1, we deduce that

9] tHE \ H?
&(;14&)_2(14&)2’ te(=e/2e/2),

k>1
and we get
20(1 2
t) = F+tG°+t
Vals,t) = Tha ( e ;1—tHk>

2
2 H2
+ (s, 1) <F+th+tzl—tHk> +GC+21——tHk) ;

k>1

2

1+ a° H
F 4+ tG* . = 0.
Yar(s,t) = T ( +tG° + tz . tHk) , and (s, t) =0

x k>1

Therefore, we obtain

V" (2) = (28, 28)12 + 20y (25, 28)ts + Yys (25, 21) 52

20t H2
- FoatGeyty — Tk
(mzt( TR Z1—thk>

k>1

~ H2
+(2) <F+ztGC+ztzl_—thk> +GC+Z l_ZtHk £

1+aY H2
9 FAoaGetty —Fk )¢
+ o ( TG+ 2 Zl_thk> s.

z
x k>1

Setting W (z) := U(£(z)), z € (—1,1), by direct computations, we get
W'(z) = U'(60(2))ev'(2),

(6.6) - - 2 ~ ~
W'(2) = U"(60(2)) (€0/(2)) + U'(60(2))0" (2).

Let us define
J=1+|F|+G.
As
<2|zt|G, ze(-1,1),

2tGE + 2t Z

k>1

from (6.5) using (6.4) and since

< Y(z)N* ze(=1,1),

l\DIO»D

1
2~
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we deduce the existence of a constant b; > 0, such that

10/ (2)| < biJexp(bie), and ¥(z)"2+1 < byexp(be]), z€ (—1,1).
Therefore, from (6.19) using Lemma 6.2, we obtain

sup [W'(2)| < sup U'(€)¢ (({/F(z))—@H)
(6.7) ze(=1,1) 2€(~1,1)

< BU(€)€] exp(2bie ).

el

Similarly, from (6.19) applying Assumption 2.1 and Lemma 6.2, we deduce the existence
of a constant by > 0, such that

(6.8) sup [W(2)] < bU'(E)ET2 explbac ).

z€(—1,1)

Combining (6.7) and (6.13), we obtain
sup (|W'(2)| + |[W"(2)]) < U'(&)¢€ (b%J exp(2b1.J) + by J? exp(b2ej)) )

ze(—1,1)

Consequently, as 1 < J < J2, one can find a constant b > 0 such that for every z; and 2,
y

in (—1,1), we get

(6.9) W(z1)—W(z2)

21 —%2

< BU'(€)EJ? exp(bel).

I ‘W’(z1)7W’(zz)

21—22

By passing to a smaller ¢, if necessary, and by applying Holder’s inequality, we deduce
from Assumption 2.8 that the right-hand side of (6.9) integrable. Since the bound in (6.9)
is uniform in (s,t) € B.(0,0), applying the dominated convergence theorem we deduce

the assertions of the lemma. O

6.2. Proofs of Theorems 3.1, 3.3, 3.5, and 3.6. From (2.7) it follows that the re-
spective closures of the convex solid hulls of {Xr: X € X(1,0)} and {Y7: Y € Y(1,0)}
satisfy [MS19, Assumption 5.1]. Using Lemma 6.1, we get

{ﬁ; X eX(l,O)} ={Xr: XX},

{YrN;: Y eY1,0)} ={Yr: YeY(l,e)}, e€(—¢oc0)

Consequently, the respective closures of convex solid hulls of
{Xr: XeX(1,e)} and {Yr: Y e)Y(1,¢)}

also satisfy [MS19, Assumption 5.1] for every € € (—&g, &¢).
From Assumption 2.7 and [KS06a, Lemma 6], we deduce that the sets M?*(z) and
N?Z(z) satisfy [MS19, Assumption 5.3]. With the notations (3.4), using Assumption 2.3,

we get

1
max (N;, F) <exp ([eF|+€°G), €€ (—€o,¢0).
T

Therefore, Assumption 2.8 is analogous to [MS19, Assumption 5.2].
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In view of Lemma 6.3, from which the greatest lower bound for the quadratic expansion
of u can be obtained, the least upper bound for v can be obtained similarly. Moreover, even
though in [MS19] and the present paper, the perturbations are different, the second-order
expansions for the value functions, which stem from Lemma 6.3 and its consequences,
coincide (here and in [MS19]). Now, in view of the structures of perturbations represented
by N% here and by L? in [MS19, p.14], the assertions of Theorems 3.1, 3.3, 3.5, and 3.6
follow from the line by line adaptation of the proofs of [MS19, Theorem 5.4, Theorem
5.6, Theorem 5.7, and Theorem 5.8], respectively. Further details are not included for the

brevity of the exposition.

6.3. Proofs of the assertions from section 4. For the proof of Theorem 4.2, we will
need the following technical lemma. First, for (Az,e,n) € (—x,00) X (—&p,e0) X N,
let us recall that Vu(z,0), H,(x,0), and X2*5"s are defined in (3.1), (3.9), and (4.6),
respectively, and set

(6.10)

€

w(z,0) + (Az €)Vu(z,0) + L(Azx &) H,(x,0) (M) ~E|U (X))

f(Ax,g,n) = Ax2 + 2

Lemma 6.4. Assume that x > 0 is fived and the assumptions of Theorem 3.1 hold. Then,

for f defined in (6.10), there exists a monotone function g, such that

(6.11) gn)> lim f(Azx,e,n), neN,
| A +|e|—0
and
(6.12) lim g(n) = 0.
n—oo

Proof. The proof goes along the lines of the proof of Lemma 6.3. We only outline the

main steps for brevity. For a fixed € > 0, let us define

x4 Az & ((AzyO" + ey'n) - RIFY)
T E((e0) - R) ’

w(Az,e) :=E [U()?T(x,om(m,a))] . (Az,e) € (—1,00) X (—€0,£0),

Y(Ax,e) =

Let us first fix &/ > 0, then fix (Ax,¢) € B.(0,0), and set
0(z) = (2Az, 28), z€(=1,1).
Setting W (z) := U()A(T(x, 0)1;(2)), z € (—1,1), by direct computations, we get
W'(2) = U' (X (x, 0)9(2)) X (x, 0)¢ (2),

W (2) = U"(Rr (2, 0)8(2)) (R (2, 000'(2)) + UK, 0)(2)) X, 003" (2).
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As in Lemma 6.3, from boundedness of 4% - R} = MO ~bn. REY — Afbn their
quadratic variations and jumps, via Lemma 6.2 and Assumption 2.8, one can show that
W(Zl) — W(ZQ) W/(Zl) — W/(Zg) < 1

— )
21 — 22

+

21— 2o
for some random variable 7, which depend on & and which is integrable for a sufficiently
small &’. The derivatives of W plugged inside the expectation result in the exact form
of the gradient Vu(z,0) and the Hessian H(z,0), such that nh_)rgo H!(z,0) = Hy(z,0).
This results in the existence of a function g satisfying (6.11) and (6.12). Finally, g can be

selected to be monotone. OJ
Proof of Theorem 4.2. Let us fix n € N and consider

(40 4 A1) . REY Z 00 4 i € M),
By construction, the jumps of this process process are bounded by 4n. Therefore, setting

1

5-), we obtain that for every (A, ) € Bs»)(0,0), the jumps of

6(n) := min (eo,
AzMO™ + M and (e6)- R
take values in (—1,1). Consequently, for every (Az,e) € Bsn)(0,0), we get
E((Axy*" +ey™™) - R¥) >0 and E£((0) - R) > 0.

Therefore, via direct computations, we obtain

E ((Azy®" +ey') - RPY)  £((F + Axy®" +ey'm) - R)  XAwen
E((e9) - R) B E((eb) - R) o+ Az

In view of Lemma 6.1, this implies that

0<E(FR)

(6.13) XAmen € X(x+ Aw,e), (Az,e) € By (0,0).

This completes the proof of the first assertion of the theorem.

In order to prove the second assertion, we proceed as follows. First, for f defined in
(6.10), via Lemma 6.4, we deduce the existence of a monotone function g, such that (6.11)
and (6.12) hold. Let us define

O(n) = {(Ax,e) : f(tAz,te,n) < 2g(n), for every t € [0,1]}, n €N,
m(n) :=2inf {m >n: By;,(0,0) C ®(n)}, neN.

Note that m(n) < oo for every n € N. With

n(Azx,e) := min {n eN: m(n) > L

> \/ﬁ}’ (Az,e) € (—x,00) X (—&0,€0),

we have

=0.

|Az|+|e|—0 Ax? 4 &2
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In order to prove the third assertion of this theorem, let us consider

o (i E(pY) E(pd)>7

Ne’ Ne 77 Ne

the (d + 1)-dimensional stock price process under N¢. By direct computations, we get

(L £(pH) 5<pd>>
(615) Ne?» Ne 9 Ne

( 1 E(pY) £(ph) )
E((c0)'R)’ E((0)-R)’ """ E((e0)-R)

= (E((e*—<b) - R{ee}),...,5((ed—ae)-R{€9})),

where ¢’ is the constant-valued process whose i-th component equals to 1 and all other
ce(—eo.e) defined in (4.5). Therefore,

introducing the vector of returns under the numéraire N¢, R®, from (6.15) we get

components equal to zero at all times and (R{E(’})

1
1—¢

R = ((60 — 89) . R{Ee}, ey (ed — 59) . R{SG}) ,

equivalently

1 R
(6.16) R= (- e10") - R0

where %_E is a normalization constant.

Following the construction above, see (6.13) and (6.14), for every (Az,¢) in a certain
neighborhood of the origin, one can find n(Az,¢), such that XAzen(Aze)g form a family
of wealth processes that match the indirect utility up to the second order. To show that
the corrections to optimal proportions (invested in the corresponding stocks) are given by
(4.8), for every e being sufficiently close to 0 and every Ax > —z, we need to show that
X225 defined in (4.6) can be represented as

(6.17)
X829 = (24 Ax)E (((ﬁ + Ay 4 g(—0 +44)) ((1 —e)l + 5T0T>>T - Ra) :

. T
Here € (((% 4 Ay (=0 4T ((1 Sy ng)) : RE> € X(1,¢), by the sub-

sequent argument. We recall that 6) = 1 — z i, t € [0,T], as the £(0 - R) is a wealth

process of a self-financing portfolio, and therefore

176 =1.
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Consequently, we have

£ <<(% + AzyO 4 e(—0 + ) ((1 —e)l + sIeT))T : RE)

=£ (((/7? + Az +e(—0 + 71’"))T (I + J—GT)> (1 —-¢)R)

(6.18) 1—-<170
=€ ((F + Azy"" +e(—0 + ")) - R{ae})
E((T + A" +e9"") - R)
= e X(1,¢),
E((0)- ) (1e)
by Lemma 6.1 and where the third line in (6.18) is exactly % from (4.6). Note that
in (6.17), we used the Sherman-Morrison inversion formula, which asserts that
(I—ng) R S R 1
1—¢lT6 l—¢

where in the last equality, we have used again 1'0 = 1. Therefore, the invertibility of
(I — €THT> holds if and only if € # 1. Thus, in view of (6.18), the processes in (6.17)
match the indirect utility up to the second order in the sense (4.7). Now, in (6.17) the

integrand can be rewritten as follows.

((%jL A" 4 (0 +717"))T ((1 —e)l + sfﬁT))T
_ ((1 —e)l + sé)TT> (7 + Azy™" + (=0 +9"7)) .

The latter expression coincides with the one in (4.8), and, in view of (6.17), these are the

proportions invested in traded assets under the numéraire N¢. 0

6.4. On perturbations of models that admit closed-form solutions. There are
many models that admit explicit solutions, see [Zar01], [GKO03], [HIMO05], [Liu07], [KS06b],
[GR12], [HHI"14], and [ST14] for their constructions and characterizations. In most cases,
these solutions depend heavily on the exact dynamics of the stock price, and such solutions
cease to exist under perturbations of the model parameters. The results of this paper
provide both a stability result (as Theorems 3.1 and 3.6 assert that the value functions and
the optimizers of the perturbed models are close to the ones of the unperturbed models)
and a constructive way of obtaining nearly optimal wealth processes and strategies.

In the preferences are given by power utilities, then closed-form solutions are obtained in
[Liu07] and [GR12], among others. In the asymptotic analysis, the corrections associated

with perturbations of the initial wealth are trivial, as we have

X(z,0) = 2X(1,0) = 2€ (7 - R)..
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Ln’g have to be estimated as v°" = 0. The

Thus, for the power utility case, in (4.6), only ~y
Kunita-Watanabe decomposition provides a characterization of v", as the risk-tolerance
wealth process exists for the power utility and it is equal to X (1,0) up to a multiplicative
constant. Therefore, the measures R and R coincide. This, in particular, is implicitly
used in [LMZ18], in the context of perturbations of the market price of risk.

In the case of general utility functions satisfying Assumption 2.1, models that admit
closed-form or fairly explicit solutions, are also studied, see, e.g., [KS06b] and [MS19].
By [KS06b, Theorem 6], a class of models that gives the existence of the risk-tolerance
wealth process for every utility function satisfying Assumption 2.1 is the one, where the
dual domain Y(1,0) admits a maximal element in the sense of the second-order stochastic

dominance, i.e., an element Y € Y(1,0), such that for every Y € Y(1,0), we have

/ P[Yy > yldy > / PlYr > yldy, z>0.
0 0

For example, this holds in a market, where there is a bank account with 0 interest rate

and only one traded stock, whose return is given by:
pz} =pt+oBy, te [OvT]a

for some constants g and o > 0, where the filtration is generated by (B, W) a two-
dimensional Brownian motion. Let us consider a one-dimensional and p!-integrable pro-

_ 1—0!
cess ', such that Assumption 2.8 holds for R = —6' - p! = —0 - R, where 0 = ( g )

In this case, the corresponding family of numéraires is
Ne=E(e0' - pl), c€eR.

Here g from Assumption 2.3 can be set to oo, as there are no jumps of the underlying
process p'. For a given z > 0, let us consider 7! and 7%, such that X (z,0) = z€ (7' - p*)
and R(z) = Ro(z)€ (7% - p'). Here, both 7' and 7! can be written in terms of the
solution to a heat equation. Using an R(z) local martingale RR! := p! — 71 . [p!] and
following Theorem 5.1, one needs to consider (5.2), which gives the decomposition of the

process P, and which in the present settings becomes

P=Py—p R — ot W,
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for some processes ¢ and . With

1._ Ri(z) ( R1 7
Xz, 0)Ro(x) o
g)? = 1 t17
Ri(z) R R,1 1
g X, (z,0) <( D, (=) + %) z’

and by defining

A0 = (g?) and ~' = (Z?) ,

one can construct 4", i = 0,1 and n € N, appearing in (4.6) via setting 7" = "1}y,
and yb" = 711[0,%], n € N, where 7,,, n € N, is a localizing sequence for both M°(z,0)
and [M°(z,0)] and o,, n € N, is a localizing sequence for both M'(x,0) and [M*(x,0)].
Note that to get further characterizations of 4", one typically needs 6 to be chosen in
a more explicit (and restrictive) form that admits a characterization of ¢ in terms of a

system of ordinary differential equations in the spirit of [LMZ18, Example 5.3]. Then,

7,M

with such 4*™’s, the nearly optimal wealth processes are given by (4.6), which reads

XAven (x + Ax)E ((/7? + Az + e(—0+ 71’”)) . R{ae}) ,

and where R is specified in (4.5) that in the current settings becomes

RU0Y — 0 .
pt — 0 [p']

Therefore, we can rewrite the expression for XA%%" ag

(z+ Az)E (7' + Az Lo r) +e(—0" 4+ v'1,) - (0" —€0' - [p']))

! is the second component of 7. Note that for the wealth process X2%<" the

where T
proportions of the capital invested in the bank account and stock under the numéraire

N¢ are given by (4.8), which in the current settings reads

(6.19) (1—¢) (1= (7' + Az, + (0" + v 1 p,,))) +e(1 —6Y)
' (1—¢) (7' + Azl 4+ e(—0" + v 1j0,)) + 0 '
Further, with

FLAzent 21y Apcll g0 + vl lg,)),

one can rewrite (6.19) as

(6:20 (<1—e> (1 - 7aver) +e<1—91>).

(1 — e)Fitdnant 4 o1
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To recapitulate, in the context of the stochastically dominant model specified above,
(6.20) gives proportions invested in the traded assets under the (perturbed) numéraires
Ne = £(eb' - p')’s, such that the corresponding wealth processes XAzeng match the
indirect utility up to the second order in the sense of Theorem 4.2, see (4.7) in the

statement of this theorem.

6.5. On an alternative parametrization of perturbations and a relation to per-
turbations of the drift and/or volatility. In view of the family R¥" ¢ € (—gg, &)
defined in (4.5), that drive the processes (4.6), a different type of parametrization of per-
turbations of the form (4.5) can be used. We will illustrate this in the settings, where

R is continuous. In this case, if 6 is of the form —te’, where 1 is a one-dimensional
d

bounded and predictable, | > [p, p’] |-integrable process, and e’ is a (constant-valued)
7=0

vector whose i-th component equals to 1 and all other components equal to zero, we the

following dynamics of the returns of the stocks for perturbed models:
R =pl, if j#i,

d
R =p tepp- (Z[p’%pﬂ) , if =14,

k=0

(6.21)

which in turn corresponds to perturbations of the finite-variation part of the i-th asset
return only. This allows to consider perturbations of the finite-variation part of the return
process. Moreover, by a different choice of 8, we can achieve simultaneous perturbations
of multiple returns.

The relationship between these parametrization and the one considered in the remaining
part of the paper can be obtained following the argument in the proof of Theorem 4.2,
see (6.16) there. Thus, for perturbations of the form (6.21), under appropriate regularity
conditions (similar to the ones in Theorem 3.1), the expansions of the value functions,
derivatives of the optimal wealth processes, and approximations of trading strategies of
the form (4.6) follow from the results of the present paper.

Let us discuss the relation to the framework in [MS19], where there is one traded stock,

whose return, p!, follows

where M is a continuous local martingale. In this case, (6.21) gives the following dynamics

for the perturbed models

R =p' ey (M)
=M+ (A+ey)- (M),
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which is the parametrization of perturbations in [MS19]. Further, the prototypical wealth

process for a perturbed model, for some 7, is given by
XT = af(m- (42t (M))).

Under the appropriate boundedness of ¢, with 7 := 7(A + €1), the evolution of X can

be rewritten as

X =2 ((W(AJraw))' (A'<M>+)\+A€w-i\/[>) = x€ (7?- (A-<M>+/\+)\€¢-M)).

This corresponds to perturbations of the martingale part (or volatility) of the return,
similar to the ones in [HMKS17].

7. COUNTERXAMPLES

The following example demonstrates the necessity of Assumption 2.8.

FExample 7.1. Let us assume that the market consists of a bond with zero interest rate and
one stock with return B, where B is a Brownian motion on the filtered probability space
(Q, F, (Ft)te[o,l] ,]P’), where 1 is the time horizon and (F}).cjo,1) is the usual augmentation
of the filtration generated by B. In this case P is the martingale measure. Let us also
suppose that U(z) = %p, x € (0,00), where p € (0,1). An application of Jensen’s
inequality implies that for every y > 0, v(y) = V(y) = %CI, where ¢ = 1%, and (a
constant-valued process) y is the dual minimizer.

For the perturbed models, where R = —0- B is such that Ry = |B;|**sign(B;) for some

d > 0. Then, R(xz) =P, z > 0, and for every constant ¢ > 0, we have

E*) Jexp (c(|Ba| + [R. R1))] = E [exp (c|Bi|**sign(B1))]

= o= / exp (cly[**’sign(y) — 34°) dy
R

:OO7
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i.e., Assumption 2.8 does not hold. Nevertheless, N© = &£ (—5R) is a strictly positive

wealth process for every € € R and thus a numéraire. For every z > 0 and € # 0, we have

ceoslo ()

=F [U (xexp <6R1 + %[R Rh)ﬂ
> %;)]E [exp (€pR1)]
— %E [exp (ep|B1|*"’sign(By1))]

xP .
/ exp (ply*sign(y) — 1v7) dy
21 JRr

pV2m

= OQ.

The following example shows that without Assumption 2.3, we might have a family of

processes (IN®)ec(—co,e0), such that for every € # 0, N7 < 0 with positive probability.

FExample 7.2. Let us consider model, where there are three times: 0, 1, and 2, where the

process R is a one-dimensional semimartingale such that
Ry = Ry =1, P-as., and Ry equals to 3/2 or 1/2 with probability 1/2 each.
Let us also consider a predictable process 6, such that
61 = 0, P-a.s., O3 = n with probability 2%, n € N.
Then in (2.1), for every ¢ # 0,
P[A((¢0) - R), < —1] =P[eby(Rs — Ry) < —1] > 0,
thus, N5 < 0 with positive probability. Therefore, for every ¢ # 0, N¢ is not a numéraire.

On the necessity of the remaining assumptions.

(1) Conditions (2.6) and (2.7) are necessary for the expected utility maximization
problem to admit standard conclusions of the utility maximization theory, see the
abstract theorems in [KS99] and [KKO07, Proposition 4.19]. Note that we only
impose them for € = 0.

(2) Modeling the evolution of stocks with semimartingales is necessary for the absence
of arbitrage as above, see [Karl3, Theorem 1.3], see also [KP11, Theorem 1.3] for
the case of the nonnegative stock price process.

(3) If sigma-boundedness in the sense of Assumption 2.7 does not hold, then the
second-order expansion in the initial wealth might not exist, see [KS06a, Exam-
ple 3].
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(4) [KS06a, Example 1 and Example 2] show the necessity of Assumption 2.1 for two-

times differentiability of the value function in x. Note that, by the concavity of

the value function in the x variable, two-times differentiability in the x variable

at x > 0 holds if and only if the value function admits a quadratic expansion at x
(in the z variable), see [HUL96, Theorem 5.1.2].
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