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We consider the problem of optimal consumption from labor in-

come and investment in a general incomplete semimartingale mar-

ket. The economic agent cannot borrow against future income, so

the total wealth is required to be positive at (all or some) previous

times. Under very general conditions, we show that an optimal con-

sumption and investment plan exists and is unique, and provide a

dual characterization in terms of an optional strong supermartingale

deflator and a decreasing part, which charges only the times when

the no-borrowing constraint is binding. The analysis relies on the

infinite-dimensional parametrization of the income/liability streams

and, therefore, provides the first-order dependence of the optimal in-

vestment and consumption plans on future income/liabilities (as well

as a pricing rule).

1. Introduction. Optimal investment with intermediate consumption

and a stream of labor income (or liabilities) is one of the central prob-

lems in mathematical economics. If borrowing against the future income is

prohibited, the main technical difficulty lies in the fact that there are in-
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finitely many constraints. Even in the deterministic case of no stocks and

non-random income, a classical approach is based on the convexification

of the constraints that leads to a non-trivial dual problem formulated over

decreasing nonnegative functions.

Borrowing constraints imposed at all times not only affect the notion

of admissibility, leading to more difficult mathematical analysis, but also

change the meaning to fundamental concepts of mathematical finance such

as replicability and completeness. The latter is formulated via the attain-

ability of every (bounded) contingent claim by a portfolio of traded assets.

For a labor income/liability streams that pays off dynamically, there is no a

priori guarantee that such a replicating portfolio (if it exists at all) is admis-

sible, i.e., satisfies the constraints. Thus, in the terminology of [18], even a

complete market becomes dynamically incomplete under the borrowing con-

straints. The analysis of such a problem (in otherwise complete Brownian

settings with a corresponding unique risk-neutral measure), is performed in

[18] and later in [16]. The nonnegative decreasing processes (that parametrize

the dynamic incompleteness mentioned above) play an important role in the

characterizations of optimal investment and consumption plans. The analy-

sis in [18] and [16] is connected with optimal stopping techniques from [22].

Incomplete markets with no-borrowing constraints have been analyzed

only in specific Markovian models in [13] and [14] based on partial differ-

ential equations techniques. The goal of the present paper is to study the

problem of consumption and investment with no-borrowing constraints in

general (so, non-Markovian) incomplete models. This leads to having, simul-

taneously, two layers of incompleteness. One comes from the many martin-

gale measures, the other from a similar class of non-decreasing processes (as

above) that describe the dynamic incompleteness. We refer to [28] for the

examples of market incompleteness in finance and macroeconomics.

In contrast to [18] and [16], our model not only allows for incompleteness,

but also for jumps. Mathematically, this means we choose to work in a gen-

eral semimartingale framework. As in [18] and [16], our approach is based
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on duality. One of the principal difficulties is in the construction of the dual

feasible set and the dual value function. It is well-known that the martingale

measures drive the dual domain in many problems of mathematical finance.

On the other hand, the convexification of constraints leads to the decreasing

processes as the central dual object as well. We show that the dual elements

in the incomplete case can be approximated by products of the densities of

martingale measures and such nonnegative decreasing processes. This is one

of the primary results of this work, see section 5, that leads to the comple-

mentary slackness characterization of optimal wealth in section 6, where it

is shown that the approximating sequence for the dual minimizer leads to

a nonincreasing process, which decreases at most when the constraints are

attained. In turn, the dual minimizer can be written as a product of such a

nondecreasing process and an optional strong supermartingale deflator. In

the case of complete Brownian markets a similar result is proved in [18] and

[16].

In order to implement the approach, we increase the dimensionality of the

problem and treat as arguments of the indirect utility not only the initial

wealth, but also the function that specifies the number of units of labor

income (or the stream of liabilities) at any later time. This parametrization

has the spirit of [19], however unlike [19], we go into (infinite-dimensional)

non-reflexive spaces, which gives both novelty and technical difficulties to

our analysis. Also, our formulation permits to price by marginal rate of

substitution the whole labor income process. This is done through the sub-

differentiability results in section 4. Note that the sub differential elements

(prices) are time-dependent, so infinite-dimensional, unlike in [19].

Another contribution of the paper lies in the unified framework of admis-

sibility outlined in section 2. More precisely, we assume that no-borrowing

constraints are imposed starting from some pre-specified stopping time and

hold up to the terminal time horizon. This framework allows us to treat in

one formulation both the problem of no-borrowing constraints at all times

(described above) and the one where borrowing against the future income
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is permitted with a constraint only at the end. The latter is well-studied

in the literature, see [7], [24], [19], [35], and [31]. In such a formulation, the

constraints reduce to a single inequality and the decreasing processes in the

dual feasible set become constants.

Among the many possibilities of constraints, [6] considers the problem

of investment and consumption with labor income and no-borrowing con-

straints in Brownian market, even allowing for incompleteness. The dual

problem cannot be solved directly (in part because for these constraints the

dual space considered is too small) but the primal can be solved with di-

rect methods. An approximate dual sequence can then be recovered from

the primal. We generalize [18] and [16] (complete Brownian markets) and

[6] (possibly incomplete Brownian markets) to the case of general semi-

martingale incomplete markets. Our dual approach allows us, at the same

time to obtain a dual characterization (complementary slackness) of the op-

timal consumption plan (not present in [6]), similar to the complete case in

[18] and [16] and the possibility to study the dependence on labor income

streams, through the parametrization of such streams.

Embedding path dependent problems into the convex duality framework

have been analyzed in [37], [36], [29, Section 3.3], whereas without duality

but with random endowment it is considered in [33], in the abstract singular

control setting the duality approach is investigated in [1]. Our embedding

does not require any condition on labor income replicability, which becomes

highly technical in the presence of extra admissibility constraints. Even in

the case where the only constraint is imposed at maturity, in this part our

approach differs from the one in [19], where non-replicability of the endow-

ment (in the appropriate sense) is used in the proofs as it ensures that the

effective domain of the dual problem has the same dimensionality as the

primal domain. Note that even if the labor income is spanned by the same

sources of randomness as the stocks, the idea of replicating the labor income

and then reducing the problem to the one without it, does not necessarily

work under the borrowing constraints, see the discussion in [18, pp. 671-673].
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Some of the more specific technical contributions of this paper can be

summarized as follows:

• We analyze the boundary behavior of the value functions. Note that

the value functions are defined over infinite-dimensional spaces.

• The finiteness of the indirect utilities without labor income is imposed

only, as a necessary and sufficient condition that allows for the stan-

dard conclusions of the utility maximization theory, see [30].

• We show existence-uniqueness results for the unbounded labor income

both from above and below.

• We observe that the “Snell envelope proposition” [27, Proposition 4.3]

can be extended to the envelope over all stopping times that exceed a

given initial stopping time θ0.

• We represent the dual value function in terms of uniformly integrable

densities of martingale measures, i.e., the densities of martingale mea-

sures under which the maximal wealth process of a self-financing port-

folio that superreplicates the labor income, is a uniformly integrable

martingale, see Lemma 3.11 below.

Organization of the paper. In Section 2, we specify the model. We state

and prove existence, uniqueness, semicontinuity and biconjugacy results in

Section 3, subdifferentiability is proven in Section 4. Structure of the dual

domain is analyzed in Section 5 and complimentary slackness is established

in Section 6.

2. Model. We consider a financial market model with finite time hori-

zon [0, T ] and a zero interest rate. The price process S = (Si)di=1 of the

stocks is assumed to be a semimartingale on a complete stochastic basis(
Ω,F , (Ft)t∈[0,T ] ,P

)
, where F0 is trivial.

Let (e)t∈[0,T ] be an optional process that specifies the labor income rate,

which is assumed to follow a certain stochastic clock, that we specify below.

Both processes S and e are given exogenously.

We define a stochastic clock as a nondecreasing, càdlàg, adapted process
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such that

(2.1) κ0 = 0, P [κT > 0] > 0, and κT ≤ A

for some finite constant A. We note that the stochastic clock allows to include

multiple standard formulations of the utility maximization problem in one

formulation, see e.g., [30, Example 2.5 - 2.9]. Let us define

(2.2) Kt:=E [κt] , t ∈ [0, T ].

Remark 2.1. The function K defined in (2.2) is right-continuous with

left limits and takes values in [0, A].

We assume the income and consumption are given in terms of the clock κ.

Define a portfolio Π as a quadruple (x, q,H, c), where the constant x is the

initial value of the portfolio, the function q : [0, T ] → R is a bounded and

Borel measurable function, which specifies the amount of labor income rate,

H = (Hi)
d
i=1 is a predictable S-integrable process that corresponds to the

amount of each stock in the portfolio, and c = (ct)t∈[0,T ] is the consumption

rate, which we assume to be optional and nonnegative.

The wealth process V = (Vt)t∈[0,T ] generated by the portfolio is

Vt = x+

∫ t

0
HsdSs +

∫ t

0
(qses − cs) dκs, t ∈ [0, T ].

A portfolio Π with c ≡ 0 and q ≡ 0 is called self-financing. The collection

of nonnegative wealth processes generated by self-financing portfolios with

initial value x ≥ 0 is denoted by X (x), i.e.

X (x):=

{
X ≥ 0 : Xt = x+

∫ t

0
HsdSs, t ∈ [0, T ]

}
, x ≥ 0.

A probability measure Q is an equivalent local martingale measure if Q is

equivalent to P and every X ∈ X (1) is a local martingale under Q. We denote

the family of equivalent local martingale measures by M and assume that

(2.3) M 6= ∅.
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This condition is equivalent to the absence of arbitrage opportunities in

the market, see [9, 11] as well as [23] for the exact statements and further

references.

To rule out doubling strategies in the presence of random endowment,

we need to impose additional restrictions. Following [10], we say that a

nonnegative process in X (x) is maximal if its terminal value cannot be

dominated by that of any other process in X (x). As in [10], we define an

acceptable process to be a process of the form X = X ′ −X ′′, where X ′ is a

nonnegative wealth process generated by a self-financing portfolio and X ′′

is maximal.

Our unified framework of admissibility is given by a fixed stopping time

θ0. The no-borrowing constraints will hold starting at this stopping time

until the end. Let Θ be the set of stopping times that are greater or equal

than θ0.

Lemma 2.2. Let q1 and q2 be bounded, Borel measurable functions on

[0, T ], such that q1 = q2, dK-a.e. Then, the cumulative labor income pro-

cesses
∫ ·

0 q
i
sesdκs, i = 1, 2, are indistinguishable.

The proof of this lemma is given in section 3.1. Following [19], we denote

by X (x, q) the set of acceptable processes with initial values x, that dominate

the labor income on Θ:

X (x, q):= {acceptable X : X0 = x and

Xτ +

∫ τ

0
qsesdκs ≥ 0, P− a.s. for every τ ∈ Θ

}
.

Let us set

K:= {(x, q) : X (x, q) 6= ∅} ,

Let K̊ denote the interior or K in the R × L∞(dK)-norm topology. We

characterize K in Lemma 3.2 below that in particular asserts that under

Assumption 2.5, K̊ 6= ∅.
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The set of admissible consumptions is defined as

A(x, q):= {optional c ≥ 0 : there exists X ∈ X (x, q), such that∫ τ

0
csdκs ≤ Xτ +

∫ τ

0
qsesdκs, for every τ ∈ Θ

}
, (x, q) ∈ K.

Note that c ≡ 0 belongs to A(x, q) for every (x, q) ∈ K.

Remark 2.3. The no-borrowing constraints can also be written as

P
(∫ t

0
csdκs ≤ Xt +

∫ t

0
qsesdκs, for every θ0 ≤ t ≤ T

)
= 1.

We write the constraints in terms of stopping times τ ∈ Θ as we use the

stopping times τ ∈ Θ (and the corresponding decreasing processes that jump

from one to zero at these times) as the building blocks of our analysis.

Remark 2.4. It follows from Lemma 2.2, for every x ∈ R, we have

X (x, q1) = X (x, q2) and A(x, q1) = A(x, q2),

where some of these sets might be empty

Hereafter, we shall impose the following conditions on the endowment

process.

Assumption 2.5. There exists a maximal wealth process X ′ such that

X ′t ≥ |et|, for every t ∈ [0, T ], P–a.s..

Moreover, Assumption 2.5 and (2.3) imply that all the assertions of Lemma

3.2 hold.

Remark 2.6. If θ0 = {T}, then Assumption 2.5 is equivalent to the

assumptions on endowment in [19] (for the case of one-dimensional random

endowment).

The preferences of an economic agent are modeled with a utility stochastic

field U = U(t, ω, x) : [0, T ] × Ω × [0,∞) → R ∪ {−∞}. We assume that U

satisfies the conditions below.
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Assumption 2.7. For every (t, ω) ∈ [0, T ]×Ω, the function x→ U(t, ω, x)

is strictly concave, increasing, continuously differentiable on (0,∞) and sat-

isfies the Inada conditions:

lim
x↓0

U ′(t, ω, x) =∞ and lim
x→∞

U ′(t, ω, x) = 0,

where U ′ denotes the partial derivative with respect to the third argument.

At x = 0 we suppose, by continuity, U(t, ω, 0) = lim
x↓0

U(t, ω, x), which may

be −∞. For every x ≥ 0 the stochastic process U (·, ·, x) is optional. Below,

following the standard convention, we will not write ω in U .

The agent can control investment and consumption. The goal is to max-

imize expected utility. The value function u is defined as:

(2.4) u(x, q):= sup
c∈A(x,q)

E
[∫ T

0
U(t, ct)dκt

]
, (x, q) ∈ K.

In (2.4), we use the convention

E
[∫ T

0
U(t, ct)dκt

]
:=−∞ if E

[∫ T

0
U−(t, ct)dκt

]
=∞.

Here and below, W− and W+ denote the negative and positive parts of a

stochastic field W , respectively.

We employ duality techniques to obtain the standard conclusions of the

utility maximization theory. We first define the convex conjugate stochastic

field

(2.5) V (t, y):= sup
x>0

(U(t, x)− xy) , (t, y) ∈ [0, T ]× [0,∞),

and then observe that −V satisfies Assumption 2.7. In order to construct

the feasible set of the dual problem, we define the set L as the polar cone of

−K:

(2.6)

L:=

{
(y, r) ∈ R× L1(dK) : xy +

∫ T

0
qsrsdKs ≥ 0 for every (x, q) ∈ K

}
.
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Remark 2.8. Under the conditions (2.1), (2.3) and Assumption (2.5),

the set L is non-empty. By definition, it is closed in R× L1(dK)-norm and

σ(R × L1(dK),R × L∞(dK)) topologies. Also, as shown later, the set L =

(−K̊)o, i.e. the polar of −K̊.

By Z, we denote the set of càdlàg densities of equivalent local martingale

measures:

(2.7) Z:=

{
càdlàg

(
dQt

dPt

)
t∈[0,T ]

: Q ∈M

}
.

Let us denote by L0 = L0(dκ×P) the linear space of (equivalence classes of)

real-valued optional processes on the stochastic basis (Ω,F , (Ft)t∈[0,T ],P)

which we equip with the topology of convergence in measure (dκ × P). For

each y ≥ 0 we define

Y(y):=cl {Y : Y is càdlàg adapted and

0 ≤ Y ≤ yZ (dκ× P) a.e. for some Z ∈ Z} ,
(2.8)

where the closure is taken in L0. Now we are ready to set the domain of the

dual problem:

Y(y, r):= {Y : Y ∈ Y(y) and

E
[∫ T

0
csYsdκs

]
≤ xy +

∫ T

0
qsrsdKs,

for every (x, q) ∈ K and c ∈ A(x, q)} .

(2.9)

Note that the definition (2.9) requires that every element of Y(y, r) is in

Y(y), y ≥ 0. Also, for every (y, r) ∈ L, Y(y, r) 6= ∅, since 0 ∈ Y(y, r).

We can now state the dual optimization problem:

(2.10) v(y, r):= inf
Y ∈Y(y,r)

E
[∫ T

0
V (t, Yt)dκt

]
, (y, r) ∈ L,

where we use the convention:

E
[∫ T

0
V (t, Yt)dκt

]
:=∞ if E

[∫ T

0
V +(t, Yt)dκt

]
=∞.
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Also, we set

v(y, r):=∞ for (y, r) ∈ R× L1(dK)\L and

u(x, q):=−∞ for (x, q) ∈ R× L∞(dK)\K.
(2.11)

With this definition, it will be shown below in Theorem 3.1 that u < ∞
and v > −∞ everywhere, so u and v are proper functions in the language

of convex analysis. Let us recall that in the absence of random endowment,

the dual value function is defined as

w̃(y):= inf
Y ∈Y(y)

E
[∫ T

0
V (t, Ys)dκs

]
, y > 0,

whereas the primal value function is given by

(2.12) w(x):=u(x, 0), x > 0.

3. Existence, uniqueness, and biconjugacy.

Theorem 3.1. Let (2.1) and (2.3), Assumptions 2.5 and 2.7 hold true

and

(3.1) w(x) > −∞ for every x > 0 and w̃(y) <∞ for every y > 0.

Then we have:

(i) u is finite-valued on K̊ and u < ∞ on R × L∞(dK). The dual value

function v satisfies v > −∞ on R × L1(dK), and the set {v < ∞} is a

nonempty convex subset of L, whose closure in R× L1(dK) equals to L.

(ii) u is concave, proper, and upper semicontinuous with respect to the

norm-topology of R×L∞(dK) and the weak-star topology σ(R×L∞(dK),R×
L1(dK)). For every (x, q) ∈ {u > −∞}, there exists a unique solution to

(2.4). Likewise, v is convex, proper, and lower semicontinuous with respect to

the norm-topology of R×L1(dK) and the the weak topology σ(R×L1(dK),R×
L∞(dK)). For every (y, r) ∈ {v < ∞}, there exists a unique solution to

(2.10).
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(iii) The functions u and v satisfy the biconjugacy relations

u(x, q) = inf
(y,r)∈L

(
v(y, r) + xy +

∫ T

0
rsqsdKs

)
, (x, q) ∈ K,

v(y, r) = sup
(x,q)∈K

(
u(x, q)− xy −

∫ T

0
rsqsdKs

)
, (y, r) ∈ L.

Lemma 3.2. Let (2.3) and Assumption 2.5 hold. Then we have:

(i) for every x > 0, (x, 0) belongs to K̊ (in particular, K̊ 6= ∅),

(ii) for every q ∈ L∞(dK), there exists x > 0 such that (x, q) ∈ K̊,

(iii) sup
Q∈M

EQ
[∫ T

0 |es|dκs
]
<∞,

(iv) there exists a nonnegative maximal wealth process X
′′
, such that

X
′′
T ≥

∫ T

0
|es|dκs, P–a.s.,

(v) there exists a nonnegative maximal wealth process X
′′
, such that

X
′′
t ≥

∫ t

0
|es|dκs, t ∈ [0, T ], P− a.s.

Proof. First, via [21, Proposition I.4.49] and (2.1), we get∫ T

0
|es|dκs ≤

∫ T

0
X ′sdκs = −

∫ T

0
κs−dX

′
s + κTX

′
T

≤ −
∫ T

0
κs−dX

′
s +AX ′T = AX ′0 +

∫ T

0
(A− κs−)dX ′s.

Therefore, the exists a self-financing wealth process X̄, such that∫ T

0
|es|dκs ≤ X̄T .

Consequently, [10, Theorem 2.3] asserts the existence of a nonnegative max-

imal process X
′′
, such that ∫ T

0
|es|dκs ≤ X

′′
T ,

i.e., (iv) holds. Therefore (iii) is valid as well, by [11, Theorem 5.12].
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Relation (iv) and (2.3) imply (v). To prove (i) and (ii), without loss of

generality, we will suppose that in (v), X
′′
0 > 0. Let q ∈ L∞(dK) and ε > 0

be fixed. Let us define

x(q):=
(
||q||L∞(dK) + 2ε

)
X
′′
0 .

We claim that (x(q), q) ∈ K̊. Let us consider arbitrary

(3.2) |x′| ≤ ε and q′ ∈ L∞(dK) : ||q′||L∞(dK) ≤ ε,

and set

(3.3) X̃t:=
(
||q||L∞(dK) + 2ε+ x′

)
X
′′
t , t ∈ [0, T ].

Then, by item (v), we have

X̃t ≥
(
||q||L∞(dK) + ε

)
X
′′
t ≥

(
||q||L∞(dK) + ε

) ∫ t

0
|es|dκs

≥ −
∫ t

0
(qs + q′s)|es|dκs.

We deduce that X̃ ∈ X (
(
||q||L∞(dK) + 2ε+ x′

)
X
′′
0 , q + q′). In particular,

X (
(
||q||L∞(dK) + 2ε+ x′

)
X
′′
0 , q + q′) 6= ∅.

As x′ and q′ are arbitrary elements satisfying (3.2), we deduce that (x(q), q) ∈
K̊. This proves (ii).

In order to show (i), first we observe that K̊ is a convex cone. Therefore,

it suffices to prove that, for a given ε > 0, we have

(3.4)
(

2εX
′′
0 , 0
)
∈ K̊.

Again, let us consider x′ and q′ satisfying (3.2) and X̃ satisfying (3.3) for

q ≡ 0. Then for every t ∈ [0, T ], we have

X̃t ≥ εX
′′
t ≥ ε

∫ t

0
|es|dκs ≥ −

∫ t

0
q′s|es|dκs.

Thus, X ((2ε+ x′)X
′′
0 , q
′) 6= ∅. Consequently, as x′ and q′ are arbitrary ele-

ments satisfying (3.2), (3.4) holds and so is (i). This completes the proof of

the lemma.
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Remark 3.3. A close look at the proofs shows that the conclusions of

Theorem 3.1 also hold if instead of Assumption 2.5, we impose any of the

equivalent assertions (iii)− (v) of Lemma 3.2.

3.1. Characterization of the primal and dual domains. The polar, Ao, of

a nonempty subset A of R× L∞(dK), is the subset of R× L1(dK), defined

by

Ao:=

{
(y, r) ∈ R× L1(dK) : xy +

∫ T

0
qsrsdKs ≤ 1, for every (x, q) ∈ A

}
.

The polar of a subset of R× L1(dK) is defined similarly.

Proposition 3.4. Under Assumption 2.5 and conditions (2.1) and (2.3),

we have:

(i) Let (x, q) ∈ R × L∞(dK). Then c ∈ A(x, q) (thus, A(x, q) 6= ∅ so

(x, q) ∈ K ) if and only if

E
[∫ T

0
csYsdκs

]
≤ xy+

∫ T

0
qsrsdKs, for every (y, r) ∈ L and Y ∈ Y(y, r).

(ii) Likewise, for (y, r) ∈ R×L1(dK) we have (y, r) ∈ L and Y ∈ Y(y, r)

if and only if

E
[∫ T

0
csYsdκs

]
≤ xy +

∫ T

0
qsrsdKs, for every (x, q) ∈ K and c ∈ A(x, q).

We also have K = (−L)o = cl K̊, where the closure is taken both in norm

R× L1(dK) and σ(R× L∞(dK),R× L1(dK)) topologies.

Remark 3.5. It follows from Proposition 3.4 that for every (x, q) ∈
K,A(x, q) 6= ∅ as 0 ∈ A(x, q). Likewise, for every (y, r) ∈ L,Y(y, r) 6= ∅
as 0 ∈ Y(y, r). Moreover, for every (x, q) ∈ K̊, each of the sets A(x, q) and⋃
(y,r)∈L: xy+

∫ T
0 rsqsdKs≤1

Y(y, r) contain a strictly positive element, see Lemma

3.14 below.
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The proof of Proposition 3.4 will be given via several lemmas. Let

M′ be the set of equivalent local martingale measures, under which

X
′′

(from Lemma 3.2, item (v)) is a uniformly integrable martingale.

Note that by [10, Theorem 5.2], M′ is a nonempty, convex subset of M,

which is also dense in M in the total variation norm.

Remark 3.6. Even though the results in [10] are obtained under the

condition that S is a locally bounded process, they also hold without local

boundedness assumption, see the discussion in [20, Remark 3.4].

Let Z ′ denote the set of the corresponding càdlàg densities, i.e.,

Z ′ :=

{
càdlàg Z : Zt = E

[
dQ
dP
|Ft
]
, t ∈ [0, T ], Q ∈M′

}
.(3.5)

We also set

(3.6) Υ:=
{

1[0,τ ](t), t ∈ [0, T ] : τ ∈ Θ
}
.

Lemma 3.7. Let the conditions of Proposition 3.4 hold, Q ∈ M′, Z =

ZQ be the corresponding element of Z ′, and Λ ∈ Υ. Then there exists r ∈
L1(dK), uniquely defined by

(3.7)

∫ t

0
rsdKs = E

[∫ t

0
ΛsZsesdκs

]
, t ∈ [0, T ],

such that (1, r) ∈ L and ZΛ = (ZtΛt)t∈[0,T ] ∈ Y(1, r).

Proof. Let (x, q) ∈ K and c ∈ A(x, q). Then there exists X ∈ X (x, q),

such that

(3.8)

∫ τ

0
csdκs ≤ Xτ +

∫ τ

0
qsesdκs, for every τ ∈ Θ.

In particular, (3.8) holds for the particular τ , such that Λt = 1[0,τ ](t), t ∈
[0, T ]. Let Gt:=

∫ t
0 (qses)

+dκs, t ∈ [0, T ], where (·)+ denotes the positive part.

By [32, Theorem III.29, p. 128],
∫ t

0 Gs−dZs, t ∈ [0, T ], is a local martingale,
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so let (σn)n∈N be its localizing sequence. Then by the monotone convergence

theorem, integration by parts formula, and the optional sampling theorem,

we get

E
[∫ T

0
Zs(qses)

+Λsdκs

]
= lim

n→∞
E
[∫ σn∧τ

0
ZsdG

]
= lim
n→∞

E [Zσn∧τGσn∧τ ]− lim
n→∞

E
[∫ σn∧τ

0
Gs−dZs

]
= lim
n→∞

E [Zσn∧τGσn∧τ ] = lim
n→∞

EQ [Gσn∧τ ] = EQ [Gτ ] ,

(3.9)

where in the last equality we used the monotone convergence theorem again.

Here finiteness of EQ [Gτ ] = EQ [∫ τ
0 (qses)

+dκs
]

follows from Assumption 2.5

via Lemma 3.2, part (iii). In a similar manner, we can show that

E
[∫ T

0
(qses)

−ZsΛsdκs

]
= EQ

[∫ τ

0
(qses)

−dκs

]
<∞,

E
[∫ T

0
csZsΛsdκs

]
= EQ

[∫ τ

0
csdκs

]
<∞.

(3.10)

[19, Lemma 4] applies here and asserts that X in (3.8) is a supermartingale

under Q. Therefore, from (3.8), using (3.9) and (3.10), and taking expecta-

tion under Q, we get

(3.11) E
[∫ T

0
csΛsZsdκs

]
≤ x+ E

[∫ T

0
qsesZsΛsdκs

]
.

Let us define

Rt:=E
[∫ t

0
ΛsZsesdκs

]
, t ∈ [0, T ].

Using the monotone class theorem, we obtain

(3.12) E
[∫ T

0
q̃sesZsΛsdκs

]
=

∫ T

0
q̃sdRs, for every q̃ ∈ L∞(dK).

We claim that dR is absolutely continuous with respect to dK. First, using

the π − λ theorem, one can show that for every Borel-measurable subset A

of [0, T ], we have

K(A) = E
[∫ T

0
1A(t)dκt

]
and R(A) = E

[∫ T

0
1A(t)ΛtZtetdκt

]
.
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Thus, if for some A, K(A) = 0, then
∫ T

0 1A(t)dκt = 0 a.s. and

κAt :=
∫ t

0 1A(s)dκs, t ∈ [0, T ], satisfies κAT = 0 a.s. and
∫ T

0 ΛtZtetdκ
A
t =∫ T

0 ΛtZtet1A(t)dκt = 0 a.s.

As dR is absolutely continuous with respect to dK, there exists a unique

r ∈ L1(dK), such that (3.7) holds. Since the left-hand side in (3.11) is

nonnegative and since (x, q) is an arbitrary element of K, we deduce from

the definition of L, (2.6), that (1, r) ∈ L. Finally, it follows from (3.11) and

(3.12) that ZΛ ∈ Y(1, r). This completes the proof of the lemma.

Remark 3.8. The natural convexification of the set Υ consists of non-

negative left-continuous decreasing and adapted processesD such thatDθ0 =

1. In the context of utility-maximization constraints (and for θ0 = 0), this is

follows from [18] and [16]. We investigate convexification of the constraints

in the later Sections 5 and 6, where will extend Lemma 3.7 to a more gen-

eral set of decreasing processes than Λ that drives the dual domain and that

allows for the multiplicative decomposition of the dual minimizer.

Corollary 3.9. Let the conditions of Proposition 3.4 hold, Q ∈M′, Z
be the cádlág modification of the density process E

[
dQ
dP |Ft

]
, t ∈ [0, T ]. Then

there exists r ∈ L1(dK), such that Z ∈ Y(1, r), where∫ t

0
rsdKs = E

[∫ t

0
Zsesdκs

]
, t ∈ [0, T ],

and (1, r) ∈ L.

Proof of Lemma 2.2. Let us fix Q ∈ M′ and let Z ∈ Z ′ be the corre-

sponding density process. As in Lemma 3.7, we can show that there exists

r ∈ L1(dK), such that for every bounded and Borel measurable function q

on [0, T ] we have

(3.13)

∫ t

0
qsrsdKs = E

[∫ t

0
qsZs|es|dκs

]
, t ∈ [0, T ].

Let q̄:=|q1 − q2|, then as q̄ = 0, dK-a.e., we get

E
[∫ T

0
q̄s|es|Zsdκs

]
=

∫ T

0
q̄srsdK = 0.
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Therefore, using integration by parts and via (3.13), we obtain

0 =

∫ T

0
q̄srsdK = E

[∫ T

0
qsZs|es|dκs

]
= EQ

[∫ T

0
qs|es|dκs

]
.

Consequently,
∫ T

0 qs|es|dκs = 0, Q-a.s., and by the equivalence of Q and P,

also P-a.s. As, by construction
∫ t

0 qs|es|dκs = 0, t ∈ [0, T ], is a nonnegative

and non-decreasing process, whose terminal value is 0, P-a.s., we conclude

that it is indistinguishable from the 0-valued process. The assertions of the

lemma follows.

Lemma 3.10. Let the conditions of Proposition 3.4 hold, (x, q) ∈ K, and

c is a nonnegative optional process. Then c ∈ A(x, q) if and only if

(3.14) E
[∫ T

0
csΛsZsdκs

]
≤ x+ E

[∫ T

0
qsesΛsZsdκs

]
= x+

∫ T

0
qsrsdKs,

for every Z ∈ Z ′ and Λ ∈ Υ, where r is given by (3.7).

Proof. Let c ∈ A(x, q). Then for every Z ∈ Z ′ and Λ ∈ Υ, the validity

of (3.14) follows from the definition of A(x, q), integration by parts formula

and supermartingale property of every X ∈ X (x, q) under every Q ∈ M′,
which in turn follows from [19, Lemma 4].

Conversely, let (3.14) holds for every Z ∈ Z ′ and Λ ∈ Υ. Then, we have

(3.15) E
[∫ T

0
(cs − qses)ZsΛsdκs

]
≤ x,

which, in view of the definition of Υ in (3.6), localization, and integration

by parts, implies that

sup
Q∈M′,τ∈Θ

EQ
[∫ τ

0
(cs − qses)dκs

]
≤ x,

For X
′′

given by Lemma 3.2, item (v), let us denote

(3.16) ft:=||q||L∞(dK)X
′′
t +

∫ t

0
(cs − qses)dκs, t ∈ [0, T ].
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It follows from Assumption 2.5 and item (v) of Lemma 3.2 that f is a

nonnegative process. We observe that the proof of [27, Proposition 4.3] goes

through, if we only take stopping times in Θ and measures in M′. This

proposition allows to conclude that there exists a nonnegative càdlàg process

V , such that

(3.17) Vt = ess sup
τ∈Θ:τ≥t,Q∈M′

EQ [fτ |Ft] , t ∈ [0, T ],

which is a supermartingale for every Q ∈ M′. Therefore, by the density

of M′ in M in the norm topology of L1(P) and Fatou’s lemma, V is a

supermartingale under every Q ∈M. Moreover, V0 satisfies

V0 ≤ x+ ||q||L∞(dK)X
′′
0 ,

by (3.17), (3.15), and by following the argument in the proof of Lemma 3.7.

We would like to apply the optional decomposition theorem of Fölmer

and Kramkov, [17, Theorem 3.1]. For this, we need to show that V is a

local supermartingale under every Q, such that every X ∈ X (1) is a Q-local

supermartingale. However, M is dense in the set of such measures in the

norm topology of L1(P), by the results of Delbaen and Schachermayer, see

[11, Proposition 4.7]. Therefore, the supermartingale property of V under

every such Q follows from Fatou’s lemma and supermartingale property of

V under every Q ∈ M established above. Therefore, by [17, Theorem 3.1],

we get

Vt = V0 +H · St −At, t ∈ [0, T ],

where A is a nonnegative increasing process that starts at 0. Subtracting

the constant ||q||L∞(dK)X
′′
0 from both sides of (3.16), we get∫ τ

0
(cs − qses)dκs = fτ − ||q||L∞(dK)X

′′
0 ≤ Vτ − ||q||L∞(dK)X

′′
0

= V0 − ||q||L∞(dK)X
′′
0 +H · Sτ −Aτ ≤ x+H · Sτ , τ ∈ Θ,

where x + H · S is acceptable, since V is nonnegative. Consequently, c ∈
A(x, q). This completes the proof of the lemma.
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Proof of Proposition 3.4. The assertions of item (i) follow from Lemma 3.10.

It remains to show that the affirmations of item (ii) hold. Fix a (y, r) ∈ L.

If Y ∈ Y(y, r), (ii) follows from the definition of Y(y, r). Conversely, if (ii)

holds for a nonnegative process Y , then since (x, 0) ∈ K for every x > 0, we

have

E
[∫ T

0
csYsdκs

]
≤ 1 for every c ∈ A

(
1

y
, 0

)
.

Via [30, Proposition 4.4], we deduce that Y ∈ Y(y) and is such that (ii)

holds. Therefore, Y ∈ Y(y, r).

We have K̊ 6= ∅, where the interior is taken with respect to the norm-

topology. According to Proposition 3.4 (i) we have also K = (−L)o. The set

K, as the polar of L, is convex and closed both in (strong) R×L∞(dK) and

σ(R× L∞(dK),R× L1(dK)) topologies. Having non-empty strong interior,

we obtain K = cl K̊ where the closure is in the strong-topology. Since K is

also closed in the weaker σ(R × L∞(dK),R × L1(dK)) topology we obtain

that

K = (−L)o = cl K̊,

where the closure is taken in both topologies.

3.2. Preliminary properties of the value functions, in particular finiteness.

. Let L0
+ be the positive orthant of L0. The polar of a set A ⊆ L0

+ is defined

as

Ao:=

{
c ∈ L0

+ : E
[∫ T

0
csYsdκs

]
≤ 1, for every Y ∈ A

}
.

We recall that the sets Z and Z ′ are defined in (2.7) and (3.5), respectively.

Lemma 3.11. Under the conditions of Theorem 3.1, we have

(3.18) (Z ′)oo = Y(1)

and

(3.19) w̃(y) = inf
Y ∈Z′

E
[∫ T

0
V (t, yYs)dκs

]
<∞, y > 0.
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Proof. It follows from [10, Theorem 5.2] that Z ′ is dense in Z in L0. It

follows from Fatou’s lemma that

(Z ′)o = Zo.

Therefore, [30, Lemma 4.2 and Proposition 4.4] imply (3.18).

One can show that Z ′ is closed under countable convex combinations,

where the martingale property follows from the monotone convergence the-

orem and the càdlàg structure of the limit is guaranteed by [12, Theorem

VI.18], see also [26, Proposition 5.1] for more details in similar settings.

Now, (3.19) follows (up to a notational change) from [30, Theorem 3.3].

This completes the proof of the lemma.

Lemma 3.12. Under the conditions of Theorem 3.1, for every (x, q) ∈ K
and (y, r) ∈ L, we have

u(x, q) ≤ v(y, r) + xy +

∫ T

0
rsqsdKs.

Proof. Fix an arbitrary (x, q) ∈ clK, c ∈ A(x, q) as well as (y, r) ∈ L,

Y ∈ Y(y, r). Using Proposition 3.4 and (2.5), we get

E
[∫ T

0
U(t, cs)dκs

]
≤ E

[∫ T

0
U(t, cs)dκs

]
+ xy +

∫ T

0
rsqsdKs

− E
[∫ T

0
csYsdκs

]
≤ E

[∫ T

0
V (t, Ys)dκs

]
+ xy +

∫ T

0
rsqsdKs.

This implies the assertion of the lemma.

For every (x, q) in K, we define

B(x, q):=

{
(y, r) ∈ L : xy +

∫ T

0
rsqsdKs ≤ 1

}
,

D(x, q):=
⋃

(y,r)∈B(x,q)

Y(y, r).
(3.20)

The subsequent lemma established boundedness of B(x, q) for (x, q) in K̊ in

R× L1(dK).
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Lemma 3.13. Under the conditions of Theorem 3.1, for every (x, q) ∈ K̊,

B(x, q) is bounded in R× L1(dK).

Proof. Fix an (x, q) ∈ K̊. Then there exists ε > 0, such that for every

(3.21) |x′| ≤ ε and ||q′||L∞ ≤ ε,

we have (x+x′, q+ q′) ∈ K̊. Let us fix an arbitrary (y, r) ∈ B(x, q). Then for

every (x′, q′) satisfying (3.21), by the definitions of L and B(x, q), respec-

tively, we get

xy +

∫ T

0
qsrsdKs + x′y +

∫ T

0
q′srsdKs ≥ 0,

xy +

∫ T

0
qsrsdKs ≤ 1,

which implies that

(3.22) − x′y −
∫ T

0
q′srsdKs ≤ xy +

∫ T

0
qsrsdKs ≤ 1.

Taking

x′ = −ε and q′ ≡ 0,

we deduce from (3.22) that y ≤ 1
ε . Also, by the definition of L and Lemma

3.2, item (i), y ≥ 0. In turn, setting

x′ = 0 and q′ = −ε1{r≥0} + ε1{r<0},

we obtain from (3.22) that ||r||L1 ≤ 1
ε . This completes the proof of the

lemma.

Lemma 3.14. Let the conditions of Theorem 3.1 hold and (x, q) be an

arbitrary element of K̊. Then, we have:

(i) A(x, q) contains a strictly positive process.

(ii) The constant ȳ(x, q) given by

(3.23) ȳ(x, q):=
1

|x|+ ||q||L∞(dK) sup
Q∈M

EQ
[∫ T

0 |es|dκs
] ,



OPTIMAL INVESTMENT AND CONSUMPTION WITH LABOR INCOME 23

takes values in (0,∞) and satisfies

(3.24) ȳ(x, q)Z ′ ⊆ D(x, q).

In particular, for every z > 0, zD(x, q) contains a strictly positive process

Y such that

(3.25) E
[∫ T

0
V (s, Ys)dκs

]
<∞.

Proof. In order to show (i), we observe that the existence of a positive

process in A(x, q) follows from the fact that (x− δ, q) ∈ K for a sufficiently

small δ. Now the constant-valued consumption δ/A > 0, where A is the

constant that dominates the terminal value of the stochastic clock κ in (2.1),

is in A(x, q).

In order to prove (ii), let us consider ȳ(x, q) given by (3.23). It follows from

Lemma 3.2, item (iii), that ȳ(x, q) ∈ (0,∞). For this ȳ(x, q), using Corollary

3.9, one can show (3.24). This and Lemma 3.11 (note that finiteness of w̃

follows directly from (3.1)) imply that for every z > 0, there exists a positive

Y ∈ zD(x, q), such that (3.25) holds.

Lemma 3.15. Under the conditions of Theorem 3.1, for every (x, q) ∈ K̊
we have

−∞ < u(x, q) <∞.

and u <∞ on R× L∞(dK).

Proof. Let us fix an arbitrary (x, q) ∈ K̊. Since K̊ is an open convex

cone, there exists λ ∈ (0, 1), (x1, q1) ∈ K̊, and x2 > 0, such that

(x, q) = λ(x1, q1) + (1− λ)(x2, 0).

Note that (x2, 0) ∈ K̊ by Lemma 3.2. By (3.1), there c ∈ A(x2, 0), such that

(3.26) E
[∫ T

0
U (t, (1− λ)ct) dκt

]
> −∞.
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As A(x1, q1) 6= ∅ (see Remark 3.5), there exists c̃ ∈ A(x1, q1). As U(t, ·) is

nondecreasing, we get

u(x, q) ≥ E
[∫ T

0
U(t, λc̃t + (1− λ)ct)dκt

]
≥ E

[∫ T

0
U(t, (1− λ)ct)dκt

]
> −∞,

where the last inequality follows from (3.26). This implies finiteness of u on

K̊ from below.

In order to show finiteness from above, let us fix a process c ∈ A(x, q),

such that

E
[∫ T

0
U(t, ct)dκt

]
> −∞.

By Lemma 3.11, there exists Y ∈ Z ′, such that

(3.27) E
[∫ T

0
V (t, Yt)dκt

]
<∞.

It follows from Lemma 3.7 that Y ∈ Y(1, ρ) for some (1, ρ) ∈ L. Therefore,

by Proposition 3.4, we get

E
[∫ T

0
U(s, cs)dκs

]
≤ E

[∫ T

0
U(s, cs)dκs

]
+ x+

∫ T

0
ρsqsdKs

− E
[∫ T

0
csYsdκs

]
≤ E

[∫ T

0
V (s, Ys)dκs

]
+ x+

∫ T

0
ρsqsdKs.

(3.28)

As Y satisfies (3.27), we conclude that u(x, q) < ∞. Moreover, for (x, q) ∈
K, as A(x, q) 6= ∅ by Remark 3.5, every c ∈ A(x, q) satisfies (3.28) (with

the same Y ). This implies that u < ∞ on K and therefore, by (2.11), on

R× L∞(dK). This completes the proof of the lemma.

We recall that, for every (x, q) ∈ K, D(x, q) is defined in (3.20). Let

clD(x, q) denote the closure of D(x, q) in L0(dκ× P). The following lemma

proves a delicate point that, for (x, q) ∈ K̊, by passing from D(x, q) to

clD(x, q), we do not change the auxiliary dual value function.
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Lemma 3.16. Let the conditions of Theorem 3.1 hold and (x, q) ∈ K̊.

Then, for every z > 0, we have

(3.29)

−∞ < inf
Y ∈clD(x,q)

E
[∫ T

0
V (s, zYs)dκs

]
= inf

Y ∈D(x,q)
E
[∫ T

0
V (s, zYs)dκs

]
<∞.

Proof. Finiteness from above follows from Lemma 3.14. To show finite-

ness of both infima in (3.29) from below, by Lemma 3.15 we deduce the

existence of c ∈ A(x, q), such that

(3.30) E
[∫ T

0
U(s, cs)dκs

]
> −∞.

Let Y ∈ clD(x, q) and let Y n ∈ Y(yn, rn), n ≥ 1, be a sequence in D(x, q)

that converges to Y in L0(dκ× P). By Fatou’s lemma, Proposition 3.4, and

the definition of the set B(x, q) in (3.20), we get

E
[∫ T

0
Yscsdκs

]
≤ lim inf

n→∞
E
[∫ T

0
Y n
s csdκs

]
≤ sup
n≥1

(
xyn +

∫ T

0
rns qsdKs

)
≤ 1.

Therefore, we obtain

E
[∫ T

0
U(s, cs)dκs

]
≤ E

[∫ T

0
U(s, cs)dκs

]
+ 1− E

[∫ T

0
Yscsdκs

]
≤ E

[∫ T

0
V (s, Ys)dκs

]
+ 1,

which together with (3.30) implies finiteness of both infima in (3.29) from

below.

Let us show equality of two infima in (3.29). It follows from Lemma 3.14

that for every z > 0 there exists a process Y ∈ zD(x, q), such that

E
[∫ T

0
V (s, Ys)dκs

]
<∞.

Let us fix z > 0 and let Ȳ ∈ clD(x, q). Also, let (Y n)n∈N be a sequence in

D(x, q) that converges to Ȳ (dκ× P)-a.e. Let us fix δ > 0, then by Lemma
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3.11, there exists Z ′ ∈ Z ′, such that

E
[∫ T

0
V (t, δȳ(x, q)Z ′t)dκt

]
<∞,

where ȳ(x, q) is defined in (3.23). Note that ȳ(x, q)Z ′ ∈ D(x, q) by Lemma

3.14 (see (3.24)). Therefore, using Fatou’s lemma and monotonicity of V in

the spatial variable, we obtain

inf
Y ∈D(x,q)

E
[∫ T

0
V (t, (z + δ)Ys)dκs

]
≤ lim sup

n→∞
E
[∫ T

0
V (t, zY n

s + δȳ(x, q)Z ′s)dκs

]
≤E

[∫ T

0
V (t, zȲs + δȳ(x, q)Z ′s)dκs

]
≤E

[∫ T

0
V (t, zȲs)dκs

]
.

Taking the infimum over Y ∈ clD(x, y), we deduce that

(3.31)

inf
Y ∈D(x,q)

E
[∫ T

0
V (t, (z + δ)Ys)dκs

]
≤ inf

Y ∈clD(x,y)
E
[∫ T

0
V (t, zYs)dκs

]
.

Let us consider

φ(z):= inf
Y ∈D(x,q)

E
[∫ T

0
V (t, zYs)dκs

]
, z > 0.

By the first part of the proof (finiteness of both infima), φ is finite-valued on

(0,∞). Convexity of V in the spatial variable implies that φ is also convex.

Therefore, φ is continuous. As (3.31) holds for every δ > 0, by taking the

limit as δ ↓ 0 in (3.31), we conclude that both infima in (3.29) are equal.

This completes the proof of the lemma.

Let us define

(3.32) E :={(y, r) ∈ L : v(y, r) <∞}.
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Lemma 3.17. Under the conditions of Theorem 3.1, for every (y, r) ∈ L,

we have

v(y, r) > −∞.

Therefore, v > −∞ on R×L1(dK). The set E is a nonempty convex subset

of L, whose closure in R× L1(dK) equals to L, and such that

(3.33) E =
⋃
λ≥1

λE .

Proof. Let us fix (y, r) ∈ L, then finiteness of v(y, r) from below follows

from (3.1) and Lemma 3.12. To establish the properties of E , we observe

that the convexity of E and (3.33) follow from convexity and monotonicity

of V , respectively.

In remains to show that the closure of E in R×L1(dK) contains the origin.

In (3.20), let us consider (x, q) = (1, 0) ∈ K. In this case, we have

D(1, 0) =
⋃

(y,r)∈L:y≤1

Y(y, r) ⊆ Y(1),

where the last inclusion follows from the very definition of Y(y, r)’s in (2.9).

As, by (2.8), Y(1) is closed in L0(dκ × P) and D(1, 0) ⊆ Y(1), we deduce

that

(3.34) clD(1, 0) ⊆ Y(1).

By Lemma 3.14, Z ′ ⊂ D(1, 0), as ȳ(1, 0) = 1. Therefore, by the bipolar

theorem of Brannath and Schachermayer, [3, Theorem 1.3], we get

(3.35) (Z ′)oo ⊆ clD(1, 0).

On the other hand, Lemma 3.11 asserts that

(3.36) (Z ′)oo = Y(1).

Combining (3.34), (3.35), and (3.36), we conclude

clD(1, 0) = Y(1).
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Therefore, the sets clD(1, 0) = Y(1) and A(1, 0) satisfy the precise technical

assumptions of [30, Theorem 3.2], which, for every x > 0, grants the exis-

tence of ĉ(x) ∈ A(x, 0), the unique maximizer to w(x), where w is defined

in (2.12). For every x > 0, we set

Y·(x):=U ′(·, ĉ·(x)), (dκ× P)− a.e.

By [30, Theorem 3.2], for every x > 0, Y (x) satisfies

Y (x) ∈ w′(x) clD(1, 0) and E
[∫ T

0
V (t, Yt(x))dκt

]
<∞, x > 0,

where by [30, Theorem 3.2], w is a strictly concave, differentiable function

on (0,∞) that satisfies the Inada conditions. Therefore, as w′(x) can be

arbitrary close to 0 (by taking x large enough an by using the Inada condi-

tions) and by Lemmas 3.14 and 3.16, we conclude that the closure of E in

R× L1(dK) contains origin.

In order to prove that the closure of E in R × L1(dK) equals to L, let

(y, r) ∈ L\(0, 0) be fixed. Let us take ε > 0. We want to find (ỹ, r̃), such

that

(3.37) |ỹ − y|+ ||r̃ − r||L1(dK) < ε,

and

(3.38) (ỹ, r̃) ∈ E .

As the closure of E in R×L1(dK) contains origin, we can pick (y0, r0) ∈ E ,

such that

(3.39) |y0|+ ||r0||L1(dK) ≤ ε/3

and Y ∈ Y(y0, r0), such that

(3.40) E
[∫ T

0
V (t, Yt)dκt

]
<∞.
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Let us fix α > 1, such that

(3.41)
|y|+ ||r||L1(dK)

α
≤ ε/3

and set ε′:= 1
α ∈ (0, 1). By (3.33), (αy0, αr0) ∈ E . Let

ỹ:=(1− ε′)y + ε′αy0, r̃:=(1− ε′)r + ε′αr0.

Then

|y − ỹ|+ ||r − r̃||L1(dK) = ε′α| y
α
− y0|+ ε′α|| r

α
− r0||L1(dK)

≤
|y|+ ||r||L1(dK)

α
+ |y0|+ ||r0||L1(dK)

≤ 2ε

3
,

where in the last inequality we have used (3.39) and (3.41). Thus (ỹ, r̃) sat-

isfies (3.37). Further, as 0 ∈ Y(y, r), by convexity of L and using Proposition

3.4, we get

Y = (1− ε′)0 + ε′αY ∈ Y(ỹ, r̃),

which by (3.40) implies (3.38). This completes the proof of the lemma.

3.3. Existence and uniqueness of solutions to (2.4) and (2.10); semicon-

tinuity and biconjugacy of u and v.

Lemma 3.18. Under the conditions of Theorem 3.1, the value function

v is convex, proper, and lower semicontinuous with respect to the topology of

R × L1(dK). For every (y, r) ∈ E, there exists a unique solution to (2.10).

Likewise, u is concave, proper, and upper semicontinuous with respect to the

strong topology of R×L∞(dK). For every (x, q) ∈ {u > −∞} there exists a

unique solution to (2.4).

Proof. Let (yn, rn)n∈N be a sequence in L that converges to (y, r) in

R× L1(dK). Passing if necessary to a subsequence, we will assume that

(3.42) lim
n→∞

v(yn, rn) = lim inf
n→∞

v(yn, rn).
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Let Y n ∈ Y(yn, rn), n ∈ N, be such that

(3.43) E
[∫ T

0
V (t, Y n

t )dκt

]
≤ v(yn, rn) +

1

n
, n ∈ N.

By passing to convex combinations and applying Komlos’-type lemma, see

e.g. [9, Lemma A1.1], we may suppose that Ỹ n ∈ conv
(
Y n, Y n+1, . . .

)
,

n ∈ N, converges (dκ× P)-a.e. to some Ŷ .

For every (x, q) ∈ K and c ∈ A(x, q), by Fatou’s lemma, we have

E
[∫ T

0
ctŶtdκt

]
≤ lim inf

n→∞
E
[∫ T

0
ctỸ

n
t dκt

]
≤ xy +

∫ T

0
qsrsdKs.

Therefore, by Proposition 3.4, Ŷ ∈ Y(y, r). With ȳ:= sup
n≥1

yn, we have

(Ỹ n)n∈N ⊆ Y(ȳ). Therefore, by [30, Lemma 3.5], we deduce that V −(t, Ỹ n
t ),

n ∈ N, is a uniformly integrable sequence. Combining uniform integrability

with the convexity of V in the spatial variable, we get

v(y, r) ≤ E
[∫ T

0
V (t, Ŷt)dκt

]
≤ lim inf

n→∞
E
[∫ T

0
V (t, Ỹ n

t )dκt

]
≤ lim inf

n→∞
E
[∫ T

0
V (t, Y n

t )dκt

]
= lim inf

n→∞
v(yn, rn),

(3.44)

where in the last equality we have used (3.42) and (3.43). Since (yn, qn) was

an arbitrary sequence that converges to (y, r), lower semicontinuity of v in

strong topology of R×L1(dK) follows. Since L is closed and v =∞ outside

of L, we deduce that v is lower semicontinuous on R×L1(dK). The function

v is proper by Lemma 3.17. Note that (3.44) also implies that E defined in

(3.32) is R×L1(dK)-norm closed. For (y, r) ∈ E , by taking (yn, rn) = (y, r),

n ∈ N, we deduce the existence of a minimizer to (2.10). Strict convexity

of V results in the uniqueness of the minimizer to (2.10). Convexity of v

follows. Upper semicontinuity of u with respect to the norm-topology of

R× L∞(dK) can be proven similarly, first proving semi-continuity on K by

a Fatou-type argument, then using the closedness of K and the definition of

u outside it.
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Corollary 3.19. Under the conditions of Theorem 3.1, −u and v are

also lower semicontinuous with respect to the weak topologies σ(R×L∞(dK),

(R× L∞)∗(dK)) and σ(R× L1(dK),R× L∞(dK)), respectively.

Proof. The assertions of the corollary is a consequence of [2, Proposition

2.2.10], see also [15, Corollary I.2.2].

We recall that clD(x, q) denotes the closure of D(x, q) in L0(dκ× P).

Lemma 3.20. Under the conditions of Theorem 3.1, for every (x, q) in

K̊, and a nonnegative optional process c, we have

c ∈ A(x, q) if and only if

E
[∫ T

0
csYsdκs

]
≤ 1 for every Y ∈ clD(x, q).

Proof. Let (x, q) in K̊, c is a nonnegative optional process such that

(3.45) E
[∫ T

0
csYsdκs

]
≤ 1 for every Y ∈ clD(x, q).

Consider arbitrary Z ∈ Z ′ and Λ ∈ Υ. Let the corresponding r be given by

(3.7) and we set

y′:=x+

∫ T

0
qsrsdKs.

If y′ = 0, then yΛZ ∈ D(x, q) for every y > 0. Thus, by (3.45), we obtain

that E
[∫ T

0 csyΛsZsdκs

]
≤ 1. Taking the limit as y →∞, we get

(3.46)

E
[∫ T

0
csΛsZsdκs

]
= 0 = x+

∫ T

0
qsrsdKs = x+ E

[∫ T

0
qsesΛsZsdκs

]
,

where in the last equality we have used (3.7).

If y′ > 0, then 1
y′ΛZ ∈ D(x, q) and thus by (3.45), we obtain

E
[∫ T

0
cs

1

y′
ΛsZsdκs

]
≤ 1 =

x+
∫ T

0 qsrsdKs

y′

=
1

y′

(
x+ E

[∫ T

0
qsesΛsZsdκs

])
,
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where in the last equality, we have used (3.7) again. Consequently, we deduce

E
[∫ T

0
csΛsZsdκs

]
≤ x+ E

[∫ T

0
qsesΛsZsdκs

]
,

which together with (3.46), by Lemma 3.10, imply that c ∈ A(x, q).

Conversely, let (x, q) ∈ K̊, c ∈ A(x, q) and Y ∈ clD(x, q). Then there

exists a sequence Y n ∈ Y(yn, rn) convergent to Y , (dκ × P)-a.e., where

(yn, rn) ∈ B(x, q). As,

E
[∫ T

0
csY

n
s dκs

]
≤ 1, n ∈ N,

by Fatou’s lemma, we get

E
[∫ T

0
csYsdκs

]
≤ lim inf

n→∞
E
[∫ T

0
csY

n
s dκs

]
≤ 1.

This completes the proof of the lemma.

Lemma 3.21. Under the conditions of Theorem 3.1, for every (x, q) in

K̊, we have

(3.47) u(x, q) = inf
(y,r)∈L

(
v(y, r) + xy +

∫ T

0
rsqsdKs

)
.

Proof. Let us fix (x, q) ∈ K̊. By Lemma 3.14, A(x, q) and clD(x, q)

contain strictly positive elements. Therefore, using Lemma 3.20 we deduce

that the sets A(x, q) and clD(x, q) satisfy the assumptions of [30, Theorem

3.2]. From this theorem, Lemma 3.16, and the definition of the set B(x, q),

we get

u(x, q) = inf
z>0

(
inf

Y ∈clD(x,q)
E
[∫ T

0
V (t, zYs)dκs

]
+ z

)
= inf

z>0

(
inf

Y ∈D(x,q)
E
[∫ T

0
V (t, zYs)dκs

]
+ z

)
= inf

z>0

(
inf

(y,r)∈zB(x,q)
v(y, r) + z

)
≥ inf

(y,r)∈L

(
v(y, r) + xy +

∫ T

0
qsrsdKs

)
.
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Combining this with the conclusion of Lemma 3.12, we deduce that (3.47)

holds for every (x, q) ∈ K̊.

Before proving the biconjugacy relations of item (iii), Theorem 3.1, we

need a preliminary lemma. Essentially following the notations in [15], we

define

v∗(x, q):= inf
(y,r)∈R×L1(dK)

(
v(y, r) + xy +

∫ T

0
qsrsdKs

)
,

(x, q) ∈ R× L∞(dK).

(3.48)

v∗∗(y, r):= sup
(x,q)∈R×L∞(dK)

(
v∗(x, q)− xy −

∫ T

0
qsrsdKs

)
,

(y, r) ∈ R× L1(dK).

(3.49)

Remark 3.22. In [15], conjugate convex functions are considered on

general spaces V and V ∗ supplied with σ(V, V ∗) and σ(V ∗, V ) topologies,

which in our case are V = R × L1(dK), V ∗ = R × L∞(dK). Thus, the

starting point of our analysis is v, not u. We remind the reader we have

already proved that the dual value function v is convex, proper and lower-

semicontinuous on the space V = R× L1(dK).

Lemma 3.23. Under the conditions of Theorem 3.1, we have

(3.50) v∗∗ = v,

(3.51) v∗(x, q) = −∞, for every (x, q) ∈ R× L∞(dK)\K.

Proof. To show (3.50), we observe that by Lemma 3.18, v is lower semi-

continuous in the R×L1(dK)-norm topology (and therefore, by [15, Corol-

lary I.2.2], also in the weak topology σ(R × L1(dK),R × L∞(dK))). As a

result, by [15, Proposition I.4.1], we get (3.50).

The proof of (3.51) will be done in several steps.
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Step 1. Let (x, q) ∈ R× L∞(dK)\K. According to Proposition 3.4, there

exists (y, r) ∈ L, such that

C:=xy +

∫ T

0
qsrsdKs < 0.

Therefore, as L is a cone, for every a > 0, (ay, ar) ∈ L, and we have

(3.52) xay +

∫ T

0
qsarsdKs = aC < 0.

Note that 0 ∈ Y(ay, ar), a > 0.

Step 2. Let us consider Z ∈ Z ′, such that

(3.53) E
[∫ T

0
V
(
t, 1

2Zt
)
dκt

]
<∞.

The existence of such a Z is granted by Lemma 3.11. Further, by Corollary

3.9, there exists ρ ∈ L1(dK), such that (1, ρ) ∈ L, Z ∈ Y(1, ρ), and∫ t

0
ρsdKs = E

[∫ t

0
Zsesdκs

]
, t ∈ [0, T ].

Let us set

D:=x+

∫ T

0
qsρsdKs ∈ R.

Step 3. In (3.52), let us pick

a =
|D|+ 1

−C
> 0.

Then, we have

(3.54) aC +D = −|D|+D − 1 < 0.

Step 4. Let us define

(3.55) Y :=1
2Z, y′:=1

2ay + 1
2 , and r′:=1

2ar + 1
2ρ.

Then by (3.53), we obtain

(3.56) E
[∫ T

0
V (t, Yt) dκt

]
<∞.
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As Z ∈ Y(1, ρ) and 0 ∈ Y(ay, ar), by convexity of L and Proposition 3.4,

we have

(3.57) Y ∈ Y(y′, r′),

where y′ and r′ are defined in (3.55). Now, it follows from (3.56) and (3.57)

that (y′, r′) ∈ E (where E is defined in (3.32)). Therefore, we obtain

2(xy′ +

∫ T

0
qsr
′
sdKs) = (ay + 1)x+

∫ T

0
(ars + ρs)qsdKs

= a(xy +

∫ T

0
qsrsdKs) + x+

∫ T

0
qsρsdKs = aC +D < 0,

where the last inequality follows from (3.54). To recapitulate, we have shown

the existence of (y′, r′), such that

(3.58) (y′, r′) ∈ E and xy′ +

∫ T

0
qsr
′
sdKs < 0.

Step 6. For y′ and r′ defined in (3.55), as v(y′, r′) < ∞ and xy′ +∫ T
0 qsr

′
sdKs < 0 by (3.58), from the monotonicity of V , we get

∞ > v(y′, r′) ≥ v(λy′, λr′), λ ≥ 1.

As
⋃
λ≥1

(λy′, λr′) ⊂ L, we conclude via (3.58) that

v∗(x, q) ≤ lim
λ→∞

(
v(λy′, λr′) + λ

(
xy′ +

∫ T

0
qsr
′
sdKs

))
= −∞.

Therefore, (3.51) holds. This completes the proof of the lemma.

Lemma 3.24. Under the conditions of Theorem 3.1, we have

(3.59) v(y, r) = sup
(x,q)∈K

(
u(x, q)− xy −

∫ T

0
rsqsdKs

)
, (y, r) ∈ L,

(3.60) u(x, q) = inf
(y,r)∈L

(
v(y, r) + xy +

∫ T

0
qsrsdKs

)
, (x, q) ∈ K.
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Proof. Lemma 3.21 and (2.11) imply that on K̊, for v∗ defined in (3.48),

we have

(3.61) v∗ = u.

By Lemma 3.23, v∗ = −∞ on R × L∞(dK)\K. From [15, Definition I.4.1]

and Lemma 3.18, respectively, we deduce that both v∗ and u are upper

semicontinuous in the topology of R× L∞(dK). Consequently, from (3.61),

using [15, Corollary I.2.1], we get

(3.62) v∗ = u, on R× L∞(dK).

As a result, with v∗∗ being defined in (3.49), for every (y, r) ∈ R× L1(dK),

we obtain

(3.63) u∗(y, r):= sup
(x,q)∈R×L∞(dK)

(
u(x, q)− xy −

∫ T

0
qsrsdKs

)
= v∗∗(y, r).

Therefore, from (3.50) in Lemma 3.23 and (3.63), we get

v = u∗, on R× L1(dK).

As a result, applying Lemma 3.23 again and since u = −∞ outside of K by

(2.11), we deduce

v(y, r) = sup
(x,q)∈R×L∞(dK)

(
u(x, q)− xy −

∫ T

0
rsqsdKs

)
= sup

(x,q)∈K

(
u(x, q)− xy −

∫ T

0
rsqsdKs

)
, (y, r) ∈ L,

Thus, (3.59) holds.

In turn, from (3.62) using (2.11), we conclude that

u(x, q) = inf
(y,r)∈R×L1(dK)

(
v(y, r) + xy +

∫ T

0
qsrsdKs

)
,

= inf
(y,r)∈L

(
v(y, r) + xy +

∫ T

0
qsrsdKs

)
, (x, q) ∈ K,
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which proves (3.60) and extends the assertion of Lemma 3.21 to the bound-

ary of K̊.

Proof of Theorem 3.1. The assertions of item (i) follow from Lem-

mas 3.15 and 3.17, item (ii) results from Lemma 3.18, whereas the validity

of item (iii) come from Lemma 3.24. This completes the proof of the theo-

rem.

4. Subdifferentiability of u. In order to establish subdifferentiability

of u, we need to strengthen Assumption 2.5 and to impose the following

condition.

Assumption 4.1. There exists an a.s. bounded away from 0 and ∞
process ϕ, such that

dκ(ω) = ϕdK, for P− a.e. ω ∈ Ω.

Let

(4.1) P := {ρ : (1, ρ) ∈ L} ,

Remark 4.2. P defined in (4.1) needs to be uniformly integrable with

respect to the measure dK in order for the proof of subdifferentiability of u

to go through. Assumption 2.5 through Lemma 3.2 only implies that P is L1

bounded. A stronger condition on the stochastic clock and income stream

is, therefore, needed to obtain uniform integrability.

The following theorem characterizes subdifferentiability of u over K̊, where

we are looking for an R × L1(dK)-valued subgradient. Under our assump-

tions, we can find elements of the sub gradient which both belong to the

effective domain of v, E , and are bounded, i.e. in R× L∞(dK).
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Theorem 4.3. Let the conditions of Theorem 3.1 and Assumption 4.1

hold. Then for every (x, q) ∈ K̊, the subdifferential of u at (x, q) is a nonempty

and contains an element of E, i.e.,

(4.2) ∂u(x, q) ∩ E 6= ∅.

Moreover, for (x, q) ∈ K̊ and (y, r) ∈ L, (y, r) ∈ ∂u(x, q) if and only if the

following conditions hold:

(4.3) |v(y, r)| <∞,

thus, (y, r) ∈ E,

(4.4) E
[∫ T

0
Ŷt(y, r)ĉt(x, q)dκt

]
= xy +

∫ T

0
qsrsdKs,

(4.5) Ŷt(y, r) = U ′(t, ĉt(x, q)), (dκ× P)− a.e.,

where ĉ(x, q) and Ŷ (y, r) are the unique optimizers to (2.4) and (2.10),

respectively.

4.1. Uniform integrability of P.

Lemma 4.4. Let the conditions of Theorem 4.3 hold. Then P is L∞(dK)-

bounded, and, therefore, a uniformly integrable family.

Proof. Step 1. For an arbitrary q : [0, T ]→ [0, 1], let us define

β(q):= sup
Q∈M

EQ
[∫ T

0
q(s)|es|dκs

]
= sup

Q∈M,τ∈Θ
EQ
[∫ τ

0
q(s)|es|dκs

]
.

Note that by Assumption (2.5), we have

β(q) = sup
Q∈M

EQ
[∫ T

0
q(s)|es|dκs

]
≤ sup

Q∈M
EQ
[∫ T

0
q(s)X ′sϕdKs

]
≤
∫ T

0
q(s) sup

Q∈M
EQ [CX ′s] dKs

≤ CX ′0
∫ T

0
q(s)dKs,
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where C ∈ R is such that |ϕ| ≤ C. It follows from [27, Proposition 4.3]

and [17, Theorem 3.1] that there exists a nonnegative càdlàg process V =

β(q) +H · S, such that

Vt ≥ ess sup
Q∈M,τ∈Θ,τ≥t

EQ
[∫ τ

0
q(s)|es|dκs|Ft

]
, t ∈ [0, T ].

Consequently, V satisfies

Vτ ≥
∫ τ

0
q(s)|es|dκs ≥

∫ τ

0
q(s)esdκs, P–a.s., τ ∈ Θ,

and thus, (β(q),−q) ∈ K. As a result, from the definitions of L and P, we

get

β(q) ≥ sup
ρ∈P

∫ T

0
q(s)ρ(s)dKs.

One can see that for every ρ ∈ P, we have ρ ≤ f :=CX ′0, dK-a.e.

Step 2. For an arbitrary q : [0, T ]→ [−1, 0], let us set

β̃(q):= sup
Q∈M

EQ
[∫ T

0
q(s)(−|es|)dκs

]
.

As in Step 1, we can construct a càdlàg process Ṽ = β̃(q) +H · S, s.t.

Ṽt ≥ ess sup
Q∈M,τ∈Θ,τ≥t

EQ
[∫ T

0
q(s)(−|es|)dκs|Ft

]
≥ ess sup

Q∈M,τ∈Θ,τ≥t
EQ
[∫ T

0
q(s)esdκs|Ft

]
.

This implies that (β̃(q),−q) ∈ clK. Therefore,

β(q) ≥
∫ T

0
q(s)ρ(s)dKs, for every ρ ∈ P.

Similarly to Step 1, one can see that ρ ≥ −f , dK-a.e. for every ρ ∈ P.

Step 3.In view of Steps 1 and 2, uniform integrability of P under dK

follows from the integrability of f under dK.

Lemma 4.5. Let the assumption of Theorem 4.3 hold and (x, q) ∈ K̊.

Then

{r : (y, r) ∈ B(x, q)}

is L∞-bounded, so a uniformly integrable subset of L1(dK).
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Proof. By Lemma 3.13, we deduce the existence of a constant M > 0,

such that

y ≤M, for every (y, r) ∈ B(x, q).

We conclude that

{r : (y, r) ∈ B(x, q)} ⊆
⋃

0≤λ≤M
λP,

and thus by Lemma 4.4, {r : (y, r) ∈ B(x, q)} is a uniformly integrable fam-

ily.

4.2. Closedness of D(x, q) for every (x, q) ∈ K̊.

Lemma 4.6. Under the conditions of Theorem 4.3, for every (x, q) ∈ K̊,

the set D(x, q) is closed in L0(dκ× P).

Proof. Let (x, q) ∈ K̊ and Y be an arbitrary element of clD(x, q).

We claim that there exists (y, r) ∈ B(x, q), such that Y ∈ Y(y, r). Let

Y n ∈ Y(yn, rn), n ≥ 1, be a sequence in D(x, q), such that lim
n→∞

Y n = Y ,

(dκ × P)-a.e. Since (yn, rn)n≥1 ⊂ B(x, q), which is bounded in the sense

of Lemma 3.13, Komlos’ lemma implies the existence of a subsequence of

convex combinations (ỹn, r̃n) ∈ conv((yn, rn), (yn+1, rn+1), . . . ), n ≥ 1, such

that (ỹn)n≥1 converges to y and (r̃n)n≥1 converges to r, dK-a.e. Lemma 4.5

implies that (r̃n)n≥1 is uniformly integrable. Therefore (r̃n)n≥1 converges to

r in L1(dK). Note that the corresponding sequence of convex combinations

of (Y n)n≥1, (Ỹ n)n≥1 converges to Y , (dκ× P)-a.e. Then we have

1 ≥ lim
n→∞

(
xỹn +

∫ T

0
qsr̃

n
s dKs

)
= xy +

∫ T

0
qsrsdKs.

Therefore, (y, r) ∈ B(x, q).

Let us fix an arbitrary (x′, q′) ∈ K and c ∈ A(x′, q′). Using Proposition 3.4,

Fatou’s lemma, and Lemma 4.5, we obtain

0 ≤ E
[∫ T

0
Yscsds

]
≤ lim inf

n→∞
E
[∫ T

0
Ỹ n
s csds

]
≤ lim

n→∞

(
x′ỹn +

∫ T

0
q′sr̃

n
s dKs

)
= x′y +

∫ T

0
q′srsdKs,
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where the uniform integrability of B(x, q) in needed once again in the last

equality. From Proposition 3.4, we conclude that that Y ∈ Y(y, r).

Proof of Theorem 4.3.. Let (x, q) ∈ K, ĉ(x, q) be the minimizer to

(2.4), whose existence and uniqueness are established in Lemma 3.18. Let

us also set

Ŷt := U ′(t, ĉt(x, q)), (t, ω) ∈ [0, T ]× Ω, and

z := E
[∫ T

0
ĉs(x, q)Ŷsdκs

]
.

(4.6)

Note that the sets A(x, q) and clD(x, q) satisfy the conditions of [30, The-

orem 3.2], which implies that Ŷ ∈ zclD(x, q) is the unique solution to the

optimization problem

inf
Y ∈zclD(x,q)

E
[∫ T

0
V (t, Ys)dκs

]
= E

[∫ T

0
V (t, Ŷs)dκs

]
∈ R,

where finiteness follows from Lemma 3.16. Note that by Lemma 4.6, Ŷ ∈
Y(zy, zr) for some (y, r) ∈ B(x, q). It follows from the definition of Ŷ in

(4.6) that for ĉ(x, q) and Ŷ we have the following relation

U(t, ĉt(x, q)) = V (t, Ŷt) + ĉt(x, q)Ŷt, (t, ω) ∈ [0, T ]× Ω,

which together with Lemma 3.21 implies that

(4.7) u(x, q) = v(zy, zr) + z

(
xy +

∫ T

0
qsrsdKs

)
,

Ŷ (zy, zr) = Ŷ , (dκ× P)− a.e.,

where Ŷ (zy, zr) is the unique minimizer to the dual problem (2.10). By (4.7),

(zy, zr) ∈ E . (4.7) and [15, Proposition I.5.1] assert that (zy, zr) ∈ ∂u(x, q).

In particular, we get

∂u(x, q) ∩ E 6= ∅,

i.e., (4.2). Note that even though, e.g., [2, Corollary 2.2.38 and Corollary

2.2.44] imply that ∂u(x, q) 6= ∅, over the interior of the effective domain, its
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elements are in R× (L∞)∗(dK). Relation (4.2) shows that ∂u(x, q) contains

at least a bounded element of E ⊆ L ⊂ R× L1(dK).

Let (x, q) ∈ K and (y, r) ∈ L. Suppose that (4.3), (4.4), and (4.5) hold.

Then by conjugacy of U and V , we get

(4.8) 0 = v(y, r)− u(x, q) + xy +

∫ T

0
qsrsdKs.

Lemma 3.24 and [15, Proposition I.5.1] imply that (y, r) ∈ ∂u(x, q) ∩ E .

Conversely, let (x, q) ∈ K and (y, r) ∈ L∩∂u(x, q). Then by [15, Proposition

I.5.1] and Lemma 3.24, we deduce that (4.8) holds. Lemma 3.15 implies

the finiteness of u(x, q), which together with (4.8) results in the finiteness of

v(y, r), thus (4.3) holds and (y, r) ∈ E . By Lemma 3.18, there exists a unique

optimizer ĉ(x, q), for (2.4), and Ŷ (y, r), for (2.10), respectively. Therefore,

from conjugacy of U and V , Proposition 3.4, and (4.8), we obtain

0 ≤ E
[∫ T

0

(
V (t, Ŷt(y, r))− U(t, ĉt(x, q)) + Ŷt(y, r)ĉt(x, q)

)
dκt

]
≤ v(y, r)− u(x, q) + xy +

∫ T

0
qsrsdKs = 0.

This implies (4.4) and (4.5). This completes the proof of the theorem.

5. Structure of the dual feasible set. By Assumption 4.1, there

exists at most countable subset (sk)k∈N of [0, T ], where κ has jumps. We

define D′ the set of non-increasing, left-continuous and adapted processes D

that start at 1 and with the property that Dθ0 = 1, DT ≥ 0 and that, there

exists some n ∈ N such that D is constant off the discrete grid Tn:=
2n⋃
j=1
{sj}∪{

k
2nT, k = 0, . . . , 2n

}
.

Lemma 5.1. Let G′:={ZD = (ZtDt)t∈[0,T ] : Z ∈ Z ′, D ∈ D′}. Assume

the conditions of Proposition 3.4 hold. Then G′ is convex.

Proof. Let Z1D1 and Z2D2 are the elements of G′ and let λ ∈ (0, 1)

We need to show that λZ1D1 + (1 − λ)Z2D2 = ZD for some Z ∈ Z ′ and
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D ∈ D′. There exists n ∈ N, such that D1 and D2 decrease at most on Tn.

Let tk’s be the elements of Tn arranged in an increasing order. Let us define

Z0 = D0 = 1 and for every k ∈ {0, . . . , 2n − 1}, with

At := λZ1
tk
D1
t + (1− λ)Z2

tk
D2
t

αt :=
λZ1

tk
D1
t

At
1{At 6=0} +

λZ1
tk

λZ1
tk

+ (1− λ)Z2
tk

1{At=0},

(note that At = 0 if and only if both D1
t = 0 and D2

t = 0) we set

Zt :=Ztk

(
αtk+

Z1
t

Z1
tk

+ (1− αtk+)
Z2
t

Z2
tk

)
, for t ∈ (tk, tk+1],

Dt :=
Atk+

Ztk
, for t ∈ (tk, tk+1].

(5.1)

One can see that ZD = λZ1D1 + (1 − λ)Z2D2 and that Z ∈ Z ′, see e.g.,

[17], [34], [25], and [5] for discussions of the sets of processes with similar

convexity-type properties to the one given in (5.1). To show that D ∈ D′,
for k ≥ 1, we observe that

Dtk+ =
Atk+

Ztk

=
λZ1

tk
D1
tk+ + (1− λ)Z2

tk
D2
tk+

Ztk−1

(
αtk−1+

Z1
tk

Z1
tk−1

+ (1− αtk−1+)
Z2
tk

Z2
tk−1

)
≤

λZ1
tk
D1
tk

+ (1− λ)Z2
tk
D2
tk

Ztk−1

(
αtk−1+

Z1
tk

Z1
tk−1

+ (1− αtk−1+)
Z2
tk

Z2
tk−1

)
=

λZ1
tk
D1
tk

+ (1− λ)Z2
tk
D2
tk

Ztk−1

(
λZ1

tk−1
D1

tk

Atk−1+

Z1
tk

Z1
tk−1

+
(1−λ)Z2

tk−1
D2

tk

Atk−1+

Z2
tk

Z2
tk−1

)1{Atk−1+
>0}

+ 0 · 1{Atk−1+
=0}

=
Atk−1+

Ztk−1

λZ1
tk
D1
tk

+ (1− λ)Z2
tk
D2
tk

λD1
tk
Z1
tk

+ (1− λ)D2
tk
Z2
tk

1{Atk−1+
>0}

=
Atk−1+

Ztk−1

1{Atk−1+
>0}

= Dtk .
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Above, the inequality follows from the monotonicity of D1 and D2. There-

fore, D is nonincreasing. Also, clearly D is nonnegative. Thus ZD ∈ G′.

The following lemma is an extension of Lemma 3.10 and amounts to a

first layer of convexification of the set Υ, i.e., of the budget constraints.

Lemma 5.2. Let the conditions of Proposition 3.4 hold, (x, q) ∈ K, and

c is a nonnegative optional process. Then c ∈ A(x, q) if and only if

E
[∫ T

0
csDsZsdκs

]
≤ x+ E

[∫ T

0
qsesDsZsdκs

]
,

for every Z ∈ Z ′ and D ∈ D′.
(5.2)

Proof. The idea is to use the assertion of Lemma 3.10 and to approx-

imate a given D ∈ D′ by (finite) linear combinations of the elements of Υ,

where Υ is defined in (3.6).

For a stopping time τ , let us denote

Λτ :=1[0,τ ] ∈ Υ,

and fix D ∈ D′. Then there exists l ∈ N, such that D has has jumps at

most on {t0, t1, . . . , tl} for some increasing ti’s. For every j ∈ {0, . . . , l},
k ∈ {0, . . . 2n}, and n ∈ N, let us set

Ak,n,j :=

{
ω : Dtj (ω) > 0 and

Dtj+(ω)

Dtj (ω)
∈
(
k − 1

2n
,
k

2n

]}
,

τk,n,j :=T1Ak,n,j
+ tj1Ac

k,n,j
,

Note that D0 = 1 by definition of D′, Ak,n,j ∈ Ftj , and

k − 1

2n
Λτ

k,n,j

tj+ =


k − 1

2n
on Ak,n,j

0 on Ack,n,j

.

By construction, we have

Dtj+ = Dtj lim
n→∞

2n∑
k=1

k − 1

2n
Λτ

k,n,j

tj+ ,
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where the sequence

Kn
tj+:=

2n∑
k=1

k − 1

2n
Λk,n,jtj+ , n ∈ N,

is increasing on {Dtj > 0}, i.e.,

Kn
tj+1{Dtj>0} ↑

Dtj+

Dtj

1{Dtj>0}.

Thus, for an arbitrary j ∈ {0, . . . , l}, we have constructed a sequence of

elements of Υ, whose finite linear combinations monotonically increase to
Dtj+

Dtj
on {Dtj > 0} (i.e., if j < l, we have approximated D on the interval

(tj , tj+1]).

In order to construct a sequence that approximates D at every point of

its potential jumps, we first observe that for two stopping times τ and σ, we

have

ΛτΛσ = 1[0,τ ]1[0,σ] = 1[0,τ∧σ] = Λτ∧σ.

Therefore, for every n ∈ N,

(5.3)

Kn
tj+K

n
tj+1+ =

(
2n∑
k=1

k − 1

2n
Λk,n,jtj+

)(
2n∑
k=1

k − 1

2n
Λk,n,j+1
tj+1+

)
=

4n∑
i=1

λn,iΛ
σn,i

tj+1+,

for some finite sequences of stopping times (σn,i)
4n
i=1 and [0, 1)-valued con-

stants (λn,i)4n
i=1. Here Λσn,i are such that for both t = tj and t = tj+1 on

{Dtj+1 > 0}, we have

lim
n→∞

4n∑
i=1

λn,iΛ
σn,i

t+ =
Dt+

Dt
.

Similarly, with r(t):= max{i : ti < t}, let us define

Dn
t :=

r(t)∏
j=0

Kn
tj+1{Dtj>0}, t ∈ [0, T ], n ∈ N.

As in (5.3), for every n ∈ N, Dn can be written as a finite linear combination

of Λ’s, such that Dn
t+ ↑ Dt+ for every t ∈ {t0, . . . , tl}.
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Finally, (5.2) can be obtained from Lemma 3.10 by the approximation of

D by Dn’s as above and via the monotone convergence theorem (applied

separately to (et)
+ and (et)

−).

Corollary 5.3. Let the conditions of Proposition 3.4 hold. Then, for

every pair Z ∈ Z ′ and D ∈ D′, there exists rZD ∈ L1(dK), such that

ZD ∈ Y(1, rZD), where (1, rZD) ∈ L.

Proof. The existence of rZD, such that ZD ∈ Y(1, rZD) follows from

Lemma 5.2 (equation (5.2)) and the approximation procedure in Lemma

5.2 (again, applied separately to (et)
+ and (et)

−) combined with the mono-

tone convergence theorem. As, the left-hand side in (5.2) is nonnegative,

(1, rZD) ∈ L.

For a given Z ∈ Z ′ and D ∈ D′, let us recall that rZD is given in Corollary

5.3. We set

B′(x, q):=
{

(y, yrZD) ∈ B(x, q) : y > 0, Z ∈ Z ′, D ∈ D′
}
,

G(x, q):=
{
yZD ∈ D(x, q) : (y, yrZD) ∈ B′(x, q)

}
, (x, q) ∈ K̊,

Lemma 5.4. Let the conditions of Proposition 3.4 hold, then for every

(x, q) ∈ K̊, the closure of the convex, solid hull of G(x, q) in L0 coincides

with clD(x, q).

Proof. Let (x, q) ∈ K̊ be fixed. Along the lines of the proof of Lemma

3.20, one can show that

(G(x, q))o = A(x, q).

Therefore,

(G(x, q))oo = (A(x, q))o = clD(x, q),

where in the last equality we have used the conclusion of Lemma 3.20. As

G(x, q) ⊂ clD(x, q), the assertion of the lemma follows from the bipolar

theorem of Brannath and Schchermayer, [3, Theorem 1.3].



OPTIMAL INVESTMENT AND CONSUMPTION WITH LABOR INCOME 47

Corollary 5.5. Let the conditions of Proposition 3.4 hold and (x, q) ∈
K̊. Then for every maximal element Y of clD(x, q) there exists yn ≥ 0,

Zn ∈ Z ′, Dn ∈ D′, n ∈ N, such that (ynZnDn)n∈N ⊂ G(x, q) and

Y = lim
n→∞

ynZnDn, (dκ× P)− a.e. and on
⋃
n∈N
Tn.

Proof. The (dκ×P)-a.e. convergence follows from Lemma 5.4. By pass-

ing to subsequences of convex combinations, we also deduce the convergence

on
⋃
n∈N
Tn.

Remark 5.6. It follows from Corollary 5.5 and Fatou’s lemma that the

maximal elements of clD(x, q) are strong supermartingales. Moreover, every

maximal element of clD(x, q) is an optional strong supermartingale deflator,

which is optional strong supermartingale Y , such that XY is an optional

strong supermartingale for every X ∈ X (1). We refer to [12, Appendix

1] for a general characterization and to [8] for results on strong optional

supermartingales as limits of martingales. The following section gives a more

refined characterization of the dual minimizer.

6. Complementary slackness. For better readability of this section,

we recall some notations and results that will be used below. Throughout

this section, (x, q) ∈ K̊ will be fixed, ĉ = ĉ(x, q) is the optimizer to (2.4), V̂

is the corresponding wealth process, i.e.,

(6.1) V̂ = x+

∫ ·
0
ĤsdSs −

∫ ·
0
ĉsdκs +

∫ ·
0
qsesdκs,

where Ĥ is some S-integrable process, Ŷ be such that Ŷt = U ′(t, ĉt), (dκ×P)-

a.e., i.e. We recall that Ŷ is the optimizer to (2.10) for some (y, r) ∈ E ∩
∂u(x, q), i.e. Ŷ = Ŷ (y, r) ∈ Y(y, r). We also denote, similarly to the proof

of 4.3 by

z = E
[∫ T

0
ĉtŶtdkt

]
.

From Corollary 5.5, we know that Ŷ can be approximated by a sequence

ynDnZn, n ∈ N, where yn is a nonnegative constant, Dn ∈ D′, and Zn ∈ Z ′,
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n ∈ N, such that

(6.2) ynDnZn ∈ Y(yn, rn), xyn +

∫ T

0
qsr

n
s dKs ≤ z.

Above, rn is given by Corollary 5.3 (which has a similar interpretation to

Lemma 3.7) by∫ t

0
rns dKs = ynE

[∫ t

0
ZnsD

n
s esdκs

]
, t ∈ [0, T ].

We would like to point out that, unlike in Lemma 3.7 or Corollary 5.3),

here, the value of yn has to be taken into account. In what follows, for any

right-continuous increasing process A satisfying

At = 0, 0− ≤ t ≤ θ0−, AT = 1,

i.e., for any probability measure dA on the closed interval [θ0, T ] (extended to

[0, T ]) we will associate a process D which is left-continuous and decreasing

Dt:=1−At− = dA([t, T ]), 0 ≤ t ≤ T.

One can also think that DT+ = 0, although this is not necessary. It is clear

that such A ↔ D are in bijective correspondence. Below, all processes A’s

and D’s (with indexes) will be in such bijective correspondence, except for

the case of the limiting process Â (which is right-continuous) and the limiting

process D̂ (that may be not left-continuous). The will be in a similar but

more subtle correspondence. More precisely:

Theorem 6.1. Let the conditions of Theorem 4.3 hold and fix (x, q) ∈
K̊. Let V̂ be the optimal wealth process, ĉ the optimal consumption, and

Ŷt = U ′(t, ĉt), (dκ× P)-a.e. Then, there exists an (y, r) ∈ ∂u(x, q) such that

Ŷ = Ŷ (x, q), i.e. Ŷ ∈ Y(y, r),

E
[∫ T

0
V (t, Ŷt)dκt

]
= inf

Y ∈Y(y,r)
E
[∫ T

0
V (t, Yt)dκt

]
,

such that Ŷ can be decomposed as

Ŷ = yẐD̂,
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where Ẑ is a strong supermartingale Ẑ = lim
n→∞

Zn (for Zn ∈ D′, where the

limit is in the sense of [8]) and a right-continuous increasing process Â with

Ât = 0 ∀0− ≤ t ≤ θ0−, ÂT = 1,

and a decreasing process D̂ with D̂t = 1, 0 ≤ t ≤ θ0 and satisfying the

complementary slackness condition

P
(
D̂t ∈

[
1− Ât, 1− Ât−

]
, ∀ θ0 ≤ t ≤ T )

)
= 1,

P

(∫
[θ0,T )

1{V̂t− 6=0,V̂t 6=0}dÂt

)
= 0.

(6.3)

The proof of the Theorem 6.1 is split in several results.

Lemma 6.2. Let the conditions of Theorem 4.3 hold. With

z:=E
[∫ T

0
ĉsŶsdks

]
,

there exist yn > 0, Zn ∈ Z ′, and Dn ∈ D′, such that ynZnDn ∈ zG(x, q),

n ∈ N, and

Ŷ = lim
n→∞

ynZnDn, (dκ× P)− a.e.

(yn, rn)→ (y, r) ∈ L, y > 0,
(6.4)

where the last convergence is weak in L1 and

z = xy +

∫ T

0
qsrsdKs, (y, r) ∈ ∂u(x, q), Ŷ = Ŷ (y, r).

For An, n ∈ N, being in relation to Dn exactly as described before Theorem

6.1 we have

(6.5) E
[∫ T

θ0

V̂tZ
n
t dA

n
t

]
= E

[
ZnT

∫ T

θ0

V̂tdA
n
t

]
→ 0.

Proof. Optimality of Ŷ and Corollary 5.5 imply the first convergence

in (6.4). According to Lemma 4.5, the sequence (rn)n∈N is uniformly inte-

grable, so it is relatively compact in the weak topology of L1(dK), by the
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Dunford-Pettis Theorem. According to the Eberlein-Šmulian Theorem, it

has a further convergent subsequence. As an immediate consequence of the

same Lemma 4.5 and the very definition of B(x, q), we also obtain that the

sequence (yn)n∈N is bounded. Altogether, we have a further subsequence

such that (yn, rn)→ (y, r) where the convergence in the second component

is in the weak L1-sense. Now, using almost identical arguments as the proof

of Theorem 4.3 and Lemma 4.6 from (6.2) we obtain the whole conclusion

of the Lemma, expect for the relation (6.5) that we prove below. By (4.4)

and Fatou’s lemma, we get

(6.6) z = E
[∫ T

0
Ŷsĉsdκs

]
≤ lim inf

n→∞
ynE

[∫ T

0
ZnsD

n
s ĉsdκs

]
.

Let us fix n ∈ N and consider E
[∫ T

0 ZnsD
n
s ĉsdκs

]
. Using localization and

integration by parts (along the lines of the proof of Lemma 3.7), we have

E
[∫ T

0
ZnsD

n
s ĉsdκs

]
= E

[
ZnT

∫ T

0
Dn
s ĉsdκs

]
= E

[
ZnT

∫ T

0

(
1−Ans−

)
ĉsdκs

]
= E

[
ZnT

(∫ T

0
ĉsdκs −

∫ T

0
Ans−ĉsdκs

)]
= E

[
ZnT

(∫ T

0
ĉsdκs −AnT

∫ T

0
ĉsdκs

+

∫ T

0

(∫ t

0
ĉsdκs

)
dAnt

)]
= E

[
ZnT

∫ T

0
(

∫ t

0
ĉsdκs)dA

n
t

]
.

The latter expression, using (6.1) and with X̄:=||q||L∞(dK)X
′′ (where in turn

X ′′ is given by the assertion (v) of Lemma 3.2), we can rewrite as

(6.7)

E
[
ZnT

∫ T

0

(
(x+

∫ t

0
ĤsdSs + X̄t) +

(∫ t

0
qsesdκs − X̄t

)
− V̂t

)
dAnt

]
.
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Let us denote

T1 := E
[
ZnT

∫ T

0

(
x+

∫ t

0
ĤsdSs + X̄t

)
dAnt

]
,

T2 := E
[
ZnT

∫ T

0

(∫ t

0
qsesdκs − X̄t

)
dAnt

]
.

It follows from nonnegativity of V̂ in (6.1), Lemma 3.2, and nonnegativity

of ĉ that

x+

∫ t

0
ĤsdSs + X̄t ≥

∫ t

0
ĉsdκs + X̄t −

∫ t

0
qsesdκs

≥X̄t −
∫ t

0
qsesdκs ≥ 0, t ∈ [0, T ],

(6.8)

i.e., the integrand in T1 is nonnegative. Let Qn be the probability measure,

whose density process with respect to P is Zn. As (x +
∫ ·

0 ĤsdSs + X̄) and

X̄ are local martingales under Qn, by [32, Theorem III.27, p. 128], An− · (x+∫ ·
0 ĤsdSs + X̄) and An− · X̄ are local martingales. Let (τk)k∈N be a localizing

sequence for both An− · (x +
∫ ·

0 ĤsdSs + X̄) and An− · X̄. By the monotone

convergence theorem and integration by parts, we get

T1 = lim
k→∞

EQn

[∫ τk

0

(
x+

∫ t

0
ĤsdSs + X̄t

)
dAnt

]
= lim
k→∞

(
EQn

[∫ τk

0
(−Ant−)d(x+

∫ t

0
ĤsdSs + X̄t)

+ Anτk

(
x+

∫ τk

0
ĤsdSs + X̄τk

)])
= lim
k→∞

EQn

[
Anτk

(
x+

∫ τk

0
ĤsdSs + X̄τk

)]
.

(6.9)

Let us consider T2. With Eq:=
∫ ·

0 qsesdκs, Lemma 3.2 implies positivity of

Eqt − X̄t, t ∈ [0, T ], which in turn allows to invoke the monotone convergence

theorem, and we obtain

T2 = EQn

[∫ T

0

(
Eqt − X̄t

)
dAnt

]
= lim

k→∞
EQn

[∫ τk

0
Eqt dAnt −

∫ τk

0
X̄tdA

n
t

]
.
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By positivity of X̄ and the monotone convergence theorem, we have

lim
k→∞

EQn

[∫ τk

0
X̄tdA

n
t

]
= EQn

[∫ T

0
X̄tdA

n
t

]
.

Therefore, lim
k→∞

EQn [∫ τk
0 E

q
t dA

n
t

]
= EQn

[∫ T
0 E

q
t dA

n
t

]
. We deduce that

EQn

[∫ τk

0
X̄tdA

n
t

]
= EQn [−(An− · X̄)τk + X̄τkA

n
τk

]
= EQn [

X̄τkA
n
τk

]
.

Whereas, in the other term in T2, we get

EQn

[∫ T

0
Eqt dAnt

]
= EQn [EqTAnT − (An− · Eq)T

]
= EQn [EqT − (An− · Eq)T

]
= EQn [

((1−An−) · Eq)T
]

= EQn
[(Dn · Eq)T ] .

using integration by parts and localization, as in the proof of Lemma 3.7,

we can rewrite the latter expression as

E
[∫ T

0
Dn
sZ

n
s qsesdκs

]
.

We conclude that

T2 = − lim
k→∞

EQn [
X̄τkA

n
τk

]
+ E

[∫ T

0
Dn
sZ

n
s qsesdκs

]
.

Combining this with (6.9), we obtain

T1 + T2 = E
[∫ T

0
Dn
sZ

n
s qsesdκs

]
+ lim
k→∞

EQn

[
Anτk

(
x+

∫ τk

0
ĤsdSs + X̄τk

)]
− lim
k→∞

EQn [
AnτkX̄τk

]
.

As both limits in the right-hand side exist and by positivity of(
x+

∫ τk
0 ĤsdSs + X̄τk

)
, established in (6.8), we can bound the difference of

the limits as

lim
k→∞

EQn

[
Anτk

(
x+

∫ τk

0
ĤsdSs + X̄τk

)]
− lim
k→∞

EQn [
AnτkX̄τk

]
≤ lim

k→∞
EQn

[
x+

∫ τk

0
ĤsdSs + X̄τk

]
− lim
k→∞

EQn [
AnτkX̄τk

]
≤ lim

k→∞
EQn

[
x+

∫ τk

0
ĤsdSs

]
+ lim
k→∞

EQn [
(1−Anτk)X̄τk

]
.
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By definition ofM′, X̄ is a uniformly integrable martingale under Qn. There-

fore, as (1−Anτk) is bounded, we can pass the limit inside of the expectation

to obtain lim
k→∞

EQn [
(1−Anτk)X̄τk

]
= 0. In turn x +

∫ ·
0 ĤsdSs is a super-

martingale under Qn (see the argument in the proof of Lemma 3.7). We

conclude that

T1 + T2 ≤ x+ E
[∫ T

0
Dn
sZ

n
s qsesdκs

]
= x+

∫ T

0
qsρ

n
s dKs,

for some ρn, which is well-defined by Corollary 5.3, and such that yn(1, ρn) ∈
zB(x, q), since ynZnDn ∈ zG(x, q). Thus, from (6.6) and (6.7), we get

z ≤ (x+

∫ T

0
qsρ

n
s dKs)y

n − lim
n→∞

ynE
[
ZnT

∫ T

0
V̂tdA

n
t

]
.

By optimality of Ŷ , z ≥ (x+
∫ T

0 qsρ
n
s dKs)y

n ≥ 0. Therefore, by nonnegativ-

ity of E
[
ZnT
∫ T

0 V̂tdA
n
t

]
, and since yn converges to a strictly positive limit,

we conclude that

lim
n→∞

E
[
ZnT

∫ T

0
V̂tdA

n
t

]
= 0.

Applying integration by parts and localization we deduce the assertion of

the lemma.

Remark 6.3. We emphasize again that dAn are probability measures on

[θ0, T ], which can have mass at the endpoints, and Dn
t = 1−Ant−, θ0 ≤ t ≤ T ,

Dn
T+ = 0.

In the subsequent part, we will follow the notations of Lemma 6.2 and

we will work with a further subsequence, still denoted by n, such that yn →
y > 0,

(6.10) ZnDn → Ŷ

y
, (dκ× P)− a.e,

and

(6.11)

∞∑
k=n

E
[
ZnT

∫ T

0
V̂tdA

n
t

]
≤ 2−n

n
,
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where the existence of a subsequence satisfying (6.11) follows from (6.5).

The next results is a Komlos-type lemma, largely based on the results in [8],

applied to the double-sequence of processes (Zn, (Dn)−1). We observe that

the process (Dn)−1 takes values in [1,∞] is increasing, left-continuous, and

satisfies

(Dn
t )−1 = 1, 0 ≤ t ≤ θ0.

Lemma 6.4. Let the conditions of Theorem 4.3 hold. In the notations of

Lemma 6.2, for each n, there exist a finite index N(n) and convex weights

αn,k ≥ 0, k = n, ..., N(n),

N(n)∑
k=n

αn,k = 1,

and there exists a strong optional super-martingale Ẑ and a non-decreasing

(not necessarily left-continuous) process D̂ with D̂t = 0, ∀0 ≤ t ≤ θ0, such

that, simultaneously,

1. Z̃n:=
∑N(n)

k=n αn,kZ
k → Ẑ in the sense of [8] i.e. for any stopping time

0 ≤ τ ≤ T we have

Z̃nτ −→PẐτ ,

and

2.

P

N(n)∑
k=n

αn,k(D
k
t )−1 → (D̂t)

−1, ∀0 ≤ t ≤ T+

 = 1

We have set DT+ = Dk
T+ = 0.

Furthermore, with the notation

(6.12) Ât=1− D̂t+, 0 ≤ t ≤ T, Â0− = 0,

we have the probability measure dÂ on [θ0, T ] such that

P
(
D̂t ∈

[
1− Ât, 1− Ât−

]
, ∀ θ0 ≤ t ≤ T )

)
= 1.
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Denoting by

Ãnt :=1−

N(n)∑
k=n

αn,k(1−Akt )−1

−1

= 1−

N(n)∑
k=n

αn,k(D
k
t+)−1

−1

,

0 ≤ t ≤ T, Ãn0− = 0,

(6.13)

the point-wise convergence in time (at all times where there is continuity)

additionally implies

dÃn ⇀ dÂ, P− a.e.

in the sense of weak convergence of probability measures on [θ0, T ].

Proof. The proof reduces to applying the Komlos-type results in [8] to

the sequence Zn and [4, Proposition 3.4] to the sequence (Dn)−1, simulta-

neously. We observe that:

1. first, no bounds are needed forD−1’s since we can apply the unbounded

Komlos lemma in [9, Lemma A1.1] (and Remark 1 following it) to the

proof from [4, Propositions 3.4], and this works even for infinite values

(according to Remark 1 after [9, Lemma A1.1]). Also, predictability

can be replaced by optionality, without any change to the proof.

2. the Komlos arguments can be applied to both sequences Zn and Dn

simultaneously, with the same convex weights. In order to do this,

we first apply Komlos to one sequence, then replace both original se-

quences by their convex combinations with the weights just obtained,

and then apply Komlos again for the other sequence, and update the

convex weight to both sequences.

Corollary 6.5. Let the conditions of Theorem 4.3 hold. In the nota-

tions of Lemma 6.4, we have the representation

Ŷ = yẐD̂, (dκ× P)− a.e.
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Proof. Consider an observation that, for non-negative numbers ak, bk,

k = n, . . . , N(n), we have

min
k=n,...,N(n)

(
ak
bk

)
≤
∑N(n)

k=n αn,ka
k∑N(n)

k=n αn,kbk
≤ max

k=n,...,N(n)

(
ak
bk

)
.

We apply this to ak = Zk, bk = (Dk)−1, to obtain

min
k=n,...,N(n)

(
ZkDk

)
≤

∑N(n)
k=n αn,kZ

k∑N(n)
k=n αn,k(Dk)−1

= Z̃nD̃n ≤ max
k=n,...,N(n)

(
ZkDk

)
,

pointwise a.e. in the product space, where D̃n:= 1∑N(n)
k=n αn,k(Dk)−1

. Since

(ZnDn)n∈N → Ŷ /y, (dκ× P)-a.e., we conclude that both(
mink=n,...,N(n)

(
ZkDk

))
n∈N and

(
maxk=n,...,N(n)

(
ZkDk

))
n∈N converge to

Ŷ
y , (dκ× P)-a.e., therefore

(6.14) Z̃nD̃n → Ŷ

y
, (dκ× P)− a.e.

Using (6.10) above, if we did not plan to identify the limit Ẑ as a strong-

supermartingale, but only as a (dκ× P)-a.e. limit in the product space, we

could only apply Komlos arguments to the single sequence D−1, to conclude

convergence of the other convex combination Z̃n to Ŷ

yD̂
, defined up to a.e.

equality in the product space.

With our (stronger) double Komlos argument, we have that, in addition

to (6.10) we have

(6.15)

Ẑτ D̂τ = P− lim
n
Z̃nτ D̃

n
τ , for every [0, T ]− valued stopping time τ,

(where Ẑ is a strong supermartingale, and D̂ is well defined at all times).

It remains to prove that Ŷ /y = ẐD̂, (dκ× P)-a.e. We point out that the

convergence (6.15) is topological. Let us consider an arbitrary optional set

O ⊂ Ω× [0, T ] and fix an upper bound M . It follows from (6.14) that

1O min
{
Z̃nD̃n,M

}
→ 1O min

{
Ŷ

y
,M

}
, (dκ× P)− a.e.
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Therefore, we get

(6.16)

E
[∫ T

0
1O(t, ·) min

{
Z̃nt D̃

n
t ,M

}
dκt

]
→ E

[∫ T

0
1O(t, ·) min

{
Ŷt
y
,M

}
dκt

]
.

Recall that the stochastic clock has a density dκt = ϕtdKt with respect to

the deterministic clock dKt. For each fixed t, from (6.15) we have

1O(t, ·) min
{
Z̃nt D̃

n
t ,M

}
ϕt → 1O(t, ·) min

{
ẐtD̂t,M

}
ϕt, in− P.

Recalling that E[ϕt] <∞ we have, for fixed t, that

M×E[ϕt] ≥ E
[
1O(t, ·) min

{
Z̃nt D̃

n
t ,M

}
ϕt

]
→ E

[
1O(t, ·) min

{
ẐtD̂t,M

}
ϕt

]
.

We integrate the above with respect to the deterministic clock dKt to obtain

E
[∫ T

0
1O(t, ·) min

{
Z̃nt D̃

n
t ,M

}
dκt

]
=

∫ T

0
E
[
1O(t, ·) min

{
Z̃nt D̃

n
t ,M

}
ϕt

]
dKt

→
∫ T

0
E
[
1O(t, ·) min

{
ẐtD̂t,M

}
ϕt

]
dKt

=E
[∫ T

0
1O(t, ·) min

{
ẐtD̂t,M

}
dκt

]
(6.17)

Together with (6.16) we have

E

[∫ T

0
1O(t, ·) min

{
Ŷt
ŷ
,M

}
dκt

]
= E

[∫ T

0
1O(t, ·) min

{
ẐtD̂t,M

}
dκt

]
,

which holds for any optional set O and any bound M , therefore Ŷ = yẐD̂,

(dκ× P)-a.e.

Proof of the Theorem 6.1. Since

N(n)∑
k=n

αn,k(D
k
t )−1 → (D̂t)

−1, t ∈ [0, T ],
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recalling that Â was defined from D̂ and (6.13). As the processes An, there-

fore Ãn only increase by jumps. Therefore we get

∆Ãns =
1

N(n)∑
k=n

αn,k
1
Dk

s

− 1
N(n)∑
k=n

αn,k
1

Dk
s+

=

N(n)∑
k=n

αn,k
1

Dk
s+

N(n)∑
k=n

αn,k
1

Dk
s+︸ ︷︷ ︸

≤1

∆Aks
Dk
s

1
N(n)∑
k=n

αn,k
1
Dk

s︸ ︷︷ ︸
≤1

.
(6.18)

As
αn,k

1

Dk
s+(

N(n)∑
k=n

αn,k
1

Dk
s+

) ≤ 1 and
N(n)∑
k=n

αn,k
1
Dk

s
≥ 1, we can bound the latter term

in (6.18) by
N(n)∑
k=n

∆Ak
s

Dk
s

for s ∈ [0, T ]. We deduce that

∆Ãns ≤
N(n)∑
k=n

∆Aks
Dk
s

, s ∈ [0, T ].

Therefore, we have

∫ t

0
V̂udÃ

n
u ≤

N(n)∑
k=n

(Dk
t )−1

∫ t

0
V̂udA

k
u, t ∈ [0, T ],

and thus, we obtain

(
min

k=n,...,N(n)
(Zkt D

k
t )

)∫ t

0
V̂udÃ

n
u ≤

N(n)∑
k=n

(Zkt D
k
t )(Dk

t )−1

∫ t

0
V̂udA

k
u

=

N(n)∑
k=n

Zkt

∫ t

0
V̂udA

k
u, t ∈ [0, T ].

(6.19)

Since the process

Lnt :=

N(n)∑
k=n

Zkt

∫ t

0
V̂udA

k
u, 0 ≤ t ≤ T
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is a non-negative right-continuous submartingale, the maximal inequality

and (6.11) together imply

P

(
sup

0≤t≤T
Lnt ≥

1

n

)
≤ nE[LnT ] ≤ 2−n,

so

(6.20) sup
0≤t≤T

Lnt → 0, P− a.s.

Since ZnDn → 1
y Ŷ > 0, (dκ× P)-a.e., consequenlty

min
k=n,...,N(n)

(ZkDk)→ 1

y
Ŷ > 0 (dκ× P)− a.e.,

we obtain from(6.19) and (6.20) that the increasing RC process

L̃nt :=

∫ t

0
V̂udÃ

n
u, 0 ≤ t ≤ T,

converges to zero in the product space. Denoting by O ⊂ Ω × [0, T ] the

exceptional set where convergence to zero does not take place, and taking

into account that L̃n are increasing, we have that for for

TO(ω) = inf{0 ≤ t ≤ T : (ω, t) ∈ O},

we have

(TO, T ] ⊂ O.

Now

(dκ× P)(O) = 0,

implies that TO ≥ T, P − a.s. (here used an assumption that T is the

minimal time horizon in the sense that the deterministic clock K is such that

Kt < KT , for every t ∈ [0, T ), this assumption does not restrict generality).

Thus, there exists a a set Ω∗ of full probability P(Ω∗) = 1 such that, for

each ω ∈ Ω∗ and t < T we have∫ t

0
V̂u(ω)dÃnt (ω)→ 0.
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Let us fix an ω ∈ Ω∗ and such that, for this ω, the probability measure

dÃn(ω) converges weakly to dÂ(ω) over the interval [θ0(ω), T ]. The set of

such ω’s still has probability 1. The Skorokhod representation theorem as-

serts that there exists a new probability space Ωω and a sequence of random

times (tn(ω))n∈N as well as t̂(ω) such that the distribution of tn(ω) is dÃn,

the distribution of t̂(ω) is dÂ(ω) and

tn(ω)→ t̂(ω), Pω − a.s.

on the new, artificial, probability space. Fix t < T . We have

Eω[V̂tn(ω)(ω)1{tn(ω)≤t}] =

∫ t

θ0

V̂u(ω)dÃnu(ω)→ 0.

One can see that

ξ(ω) := lim inf
n

V̂tn(ω)(ω) ∈ {V̂t̂(ω)−(ω), V̂t̂(ω)(ω)}, Pω − a.s.

and

1{tn(ω)≤t} → 1{t̂(ω)≤t} on {t̂(ω) < t}, Pω − a.s.

Therefore, applying Fatou’s lemma on Ωω, we obtain

Eω[ξ(ω)1{t̂(ω)<t}] = 0.

We recall that both V̂ (ω) and V̂−(ω) are nonnegative, consequently we have

0 ≤ min{V̂t̂(ω)−(ω), V̂t̂(ω)(ω)} ≤ ξ(ω),

and therefore we get

Eω[min{V̂t̂(ω)−(ω), V̂t̂(ω)(ω)}1{t̂(ω)<t}] = 0.

This means that the distribution of t̂(ω) over the interval [θ0(ω), t) only

charges the complement of the set of times{
u < t : V̂u−(ω) = 0 or V̂u(ω) = 0

}
.

By taking t→ T , one completes the proof.
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