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Abstract. In this paper, we investigate three geometrical invariants of
knots, the height, the trunk and the representativity.

First, we give a conterexample for the conjecture which states that the
height is additive under connected sum of knots. We also define the minimal

height of a knot and give a potential example which has a gap between the

height and the minimal height.
Next, we show that the representativity is bounded above by a half of the

trunk. We also define the trunk of a tangle and show that if a knot has an

essential tangle decomposition, then the representativity is bounded above by
half of the trunk of either of the two tangles.

Finally, we remark on the difference among Gabai’s thin position, ordered

thin position and minimal critical position. We also give an example of a knot
which bounds an essential non-orientable spanning surface, but has arbitrarily

large representativity.

1. Introduction

We study a knot in the 3-sphere via a standard Morse function h : S3 → R. We

derive two geometrical invariants of a knot, one is “height” from the vertical direction of

h, and another is “trunk” from the horizontal direction.

Our main results are counterexamples for the additivity of “height” with respect to

connected sum (Theorem 2.1), and the inequality between “representativity” and “trunk”

(Theorem 3.1). In the following Sections 2 and 3, we explain height of knots, represen-

tativity and trunk of knots respectively. In Section 4, we give proofs for results in those

sections. Finally, we discuss several versions of thin position, waist and representativity,

representativity and non-orientable spanning surfaces in Sections 5, 6 and 7 respectively.

2. Height of knots

It is often difficult to determine how geometrically defined knot invariants behave

with respect to connected sum. Some classical invariants are known to be predictably

well-behaved such as genus and bridge number [34]. While others are only conjectured to

be well-behaved such as crossing number and unknotting number. Still others have been

shown to exhibit complicated behavior with respect to connected sum such as tunnel

number [17] and width [6]. In this paper we study the behavior of height of a knot with

respect to connected sum and show that this invariant best fits in the third category

by demonstrating that height is not additive with respect to connected sum, giving a

counterexample to Conjecture 3.5 of [25].
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Let K be an ambient isotopy class of knot in S3 and let h : S3 → R be the standard

height function. If γ is a smooth embedding of knot type K, h|γ is Morse and all critical

points of h|γ have distinct critical values, then we will write γ ∈ K. Though an abuse of

notation, we will also let γ denote the image of the embedding.

Then the bridge number of γ ∈ K is denoted by β(γ) and is defined to be the number

of maxima of h|γ . The bridge number of K, β(K), is the minimum of β(γ) over all γ ∈ K.

Schubert showed that the bridge number of a connected sum K1#K2 always satisfies the

equality

β(K1#K2) = β(K1) + β(K2)− 1.

Bridge number is closely related to the width of a knot which was originally defined

by Gabai and used in the proof of the property R conjecture [10]. To define width, we

first need some additional structure. If t is a regular value of h|γ , then h−1(t) is called

a level sphere with width w(h−1(t)) = |γ ∩ h−1(t)|, where | ∗ | denotes the number of

connected components of ∗. If c0 < c1 < ... < cn are all the critical values of h|γ , choose
regular values r1, r2, ..., rn such that ci−1 < ri < ci. Then the width of γ is defined by

w(γ) =
∑

w(h−1(ri)). The width of K, w(K), is the minimum of w(γ) over all γ ∈ K.

We say that γ ∈ K is a thin position for K if w(γ) = w(K) and write γ ∈ TP(K) where

TP(K) denotes the set of all thin positions of K.

Based in part on Schubert’s equality, it was widely conjectured that the width of a

connected sum K1#K2 always satisfies the equality

w(K1#K2) = w(K1) + w(K2)− 2.

Rieck and Sedgwick made progress on this conjecture when they showed that the above

equality always holds when K1 and K2 are mp-small knots [28]. Additionally, Scharle-

mann and Schultens showed that w(K1#K2) ≥ max{w(K1), w(K2)} [31]. However,

Scharlemann and Thompson proposed counterexamples to the equality in [33] and Blair

and Tomova proved that an infinite class of the Scharlemann-Thompson examples were

counterexamples [6]. However, there are alternative definitions of width for which width

is well-behaved with respect to connected sum [36]. In general, the best known inequal-

ities for w(K1#K2) are

max{w(K1), w(K2)} ≤ w(K1#K2) ≤ w(K1) + w(K2)− 2

with each of these individual inequalities known to be equalities for certain choices of K1

and K2.

To define the height of a knot, we first need to introduce the notion of thick and thin

level. A level sphere h−1(t) for γ ∈ K is called thin if the highest critical point for γ

below it is a maximum and the lowest critical point above it is a minimum. If the highest

critical point for γ below h−1(t) is a minimum and the lowest critical point above it is

a maximum, then the level sphere is called thick. As the lowest critical point of K is a

minimum and the highest is a maximum, a thick level sphere can always be found. Note

that some embeddings will have no thin spheres. When this occurs the unique thick

sphere is called a bridge sphere and the embedding is said to be a bridge position for K.

Given γ ∈ K such that γ is a thin position, we define the height of γ, denoted by
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ht(γ) to be the number of thick level spheres for γ. Here, thick spheres are considered

up to isotopy with respect to γ. Similarly, the height of a knot type K is defined in [19]

as

ht(K) = max
γ∈TP(K)

ht(γ).

Alternatively, we will define the min-height of a knot type K to be

htmin(K) = min
γ∈TP(K)

ht(γ).

Clearly, htmin(K) ≤ ht(K) for all knots K.

We are interested in understanding how height behaves with respect to connected

sum. It was remarked in [25] that the height is additive with respect to connected sum

for meridionally small knots (cf. [22, Theorem 1.8]), and conjectured that for non-trivial

knots K1 and K2, ht(K1#K2) = ht(K1) + ht(K2) always holds. By a similar argument,

it follows that min-height is also additive with respect to connected sum for meridionally

small knots. Hence, it is natural to ask if min-height is always additive with respect to

connected sum. Our first results provide counterexamples to each of these conjectures by

defining an infinite class of knots K such that for every K ∈ K, htmin(K) = ht(K) = 3

and the following theorem holds.

Theorem 2.1. Let K ∈ K and let K2 be any two-bridge knot, then

ht(K#K2) = ht(K) = 3,

htmin(K#K2) = htmin(K) = 3.

Since the height of any two-bridge knot is one, Theorem 2.1 gives a counterexample

to Conjecture 3.5 of [25] that for all knots K1 and K2, ht(K1#K2) = ht(K1) + ht(K2).

By Theorem 2.1, the additivity of height does not hold with respect to connected sum

of knots. At this stage, we expect the following.

Conjecture 2.2. For any two knots K1,K2, it holds that

max{ht(K1), ht(K2)} ≤ ht(K1#K2) ≤ ht(K1) + ht(K2),

max{htmin(K1), htmin(K2)} ≤ htmin(K1#K2) ≤ htmin(K1) + htmin(K2).

For a knot K given in Theorem 2.1, we have htmin(K) = ht(K). But it is natural

to think that the gap between the min-height and the height can be arbitrarily large in

general.

Conjecture 2.3. There exists a knot K such that htmin(K) < ht(K).

We give a potential example K for Conjecture 2.3 in Figure 1. The width of the

embedding γ ∈ K on the left is 222/2 = 242 while the width of the embedding on the
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right γ′ ∈ K is 182/2 + 142/2− 62/2 = 242.

γ γ′

Figure 1. A potential example for Conjecture 2.3, where w(γ) =

w(γ′) = 242.

3. Representativity and trunk of knots

To measure the “density” of a graph embedded in a closed surface, Robertson and

Vitray introduced the representativity in [29] as the minimal number of points of inter-

section between the graph and any essential closed curve on the closed surface. This

concept was applied to a knot K in the 3-sphere S3 in [20] and extended to a spatial

graph in the 3-sphere in [23]. Let F be a closed surface containing the knot K. We define

the representativity of a pair (F,K) as

r(F,K) = min
D∈DF

|∂D ∩K|,

where DF denotes the set of all compressing disks for F . Moreover, we define the repre-

sentativity of a knot K as

r(K) = max
F∈F

r(F,K),

where F denotes the set of all closed surfaces containing K.

The representativity measures the “spatial density” of a knot. We summarize the

known values of representativity of knots.

(i) r(K) = 1 if and only if K is the trivial knot ([23, Example 3.2]).

(ii) r(K) = 2 for composite knots ([23, Example 3.6]).

(iii) r(K) ≤ 2n for knots with essential n-string tangle decompositions ([23, Example

3.6]).
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(iv) r(K) = 2 for 2-bridge knots ([23, Example 3.4]).

(v) r(K) = min{p, q} for (p, q)-torus knots ([23, Example 3.3]).

(vi) r(K) ≤ 3 for algebraic knots ([24, Theorem 1.5] for large case. The small case

follows from [23, Theorem 1.2] since small algebraic knots are Montesinos knots

with length 3).

(vii) For a (p, q, r)-pretzel knot K, r(K) = 3 if and only if (p, q, r) = ±(−2, 3, 3) or

±(−2, 3, 5) ([24]).

(viii) r(K) = 2 for alternating knots ([13]).

(ix) r(K) = p for inconsistent cable knots with index p ([3]).

(x) r(K) ≤ β(K) ([23, Theorem 1.2]).

(xi) r(K) ≤ 160δ(K), where δ(K) denotes the distortion of K ([27]).

We remark that the inequality (x) was used to show the above (i), (iv), (v), (vi),

(vii). In this paper, we refine the inequality (x).

As in [22], we define the trunk of a knot K as

trunk(K) = min
γ∈K

max
t∈R

|h−1(t) ∩ γ|,

It follows by the definition that trunk(K) ≤ 2β(K).

The bridge number of knots behaves as expected under taking connected sums, that

is, Schubert proved that β(K1#K2) = β(K1)+β(K2)−1 ([34]). On the other hand, it was

naturally expected that trunk(K1#K2) = max{trunk(K1), trunk(K2)} ([22, Conjecture

1.7]). Davies and Zupan showed in [8] that this is true, namely, for two knots K1 and

K2,

trunk(K1#K2) = max{trunk(K1), trunk(K2)}.

In several cases, the trunk turned out to be useful. For example, it was shown in

[35] that m(K) ≥ trunk(K)/2, where m(K) denotes the multiplicity index of K. It

was also shown in [11] that a knot K is embeddable into an (m× n)-tube if and only if

trunk(K) < (m+ 1)(n+ 1).

The following theorem refines [23, Theorem 1.2].

Theorem 3.1. For any knot K, we have

r(K) ≤ trunk(K)

2
.

In the following, we introduce a “local trunk” of a knot, that is, the trunk of a tangle

which lies in the pair of the 3-sphere and a knot.

Let (B, T ) be a tangle, where B is a 3-ball and T is a proper ambient isotopy class

of properly embedded arcs in B. Let h : B → R be a standard Morse function with a

single maximal point p and B − p ∼= ∂B × (1, 0].
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If γ is a smooth embedding in the proper ambient isotopy class of T , h|γ is Morse

and all critical points of h|γ in the interior of γ have distinct critical values, then we will

write γ ∈ T .

We define the trunk of a tangle (B, T ) as

trunk(B, T ) = min
γ∈T

max
t∈R

|h−1(t) ∩ γ|.

Then we obtain the next theorem which is a local version of Theorem 3.1.

Theorem 3.2. Let K be a knot admitting an essential tangle decomposition

(S3,K) = (B1, T1) ∪ (B2, T2). Then we have

r(K) ≤ min{trunk(B1, T1), trunk(B2, T2)}
2

.

In some cases, Theorem 3.2 is more useful than Theorem 3.1 and (iii). Indeed, we

can reprove (vi) above after Theorem 3.2.

Corollary 3.3 ([24, Theorem 1.5]). For a large algebraic knot K, r(K) ≤ 3.

Proof. Let K be a large algebraic knot (i.e. algebraic knot with an essential Conway

sphere). Then, K admits an essential tangle decomposition (S3,K) = (B1, T1)∪(B2, T2),

where (B1, T1) is a union of two rational tangles. It is easy to see that trunk(B1, T1) = 6.

By Theorem 3.2, we obtain r(K) ≤ 3. □

Theorem 3.2 can be regarded as a local version of Theorem 3.1, namely, “a local

property determines a global property”. Such results can be seen in Theorem 3.1 in

[7] which restates Theorem 4.4 in [12] for the bridge number, and in [14] and [30] for

determinants.

4. Proof of theorems

4.1. Proof of Theorem 2.1

In this subsection we utilize the results in [31] to give a lower bound on the height

and min-height of some satellite knots.

The following theorem is Corollary 5.4 in [31].

Theorem 4.1. Suppose h : S3 → R is the standard height function and H ⊂ S3 is

a handlebody for which horizontal circles of ∂H with respect to h constitute a complete

collection of meridian disk boundaries. Then there is a reimbedding f : H → S3 so that

• h = h ◦ f on H and

• f(H) ∪ (S3 \ f(H)) is a Heegaard splitting of S3.

The proof of the following theorem is a slight variation on the proof of Corollary 6.3

of [31].

Theorem 4.2. Suppose γ is an embedding of knot-type K in an unknotted solid

torus H in S3. Suppose f : H → S3 is a knotted embedding of H and γ′ = f(γ)
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is an embedding of knot-type K ′. If w(K) = w(K ′), then htmin(K
′) ≥ htmin(K) and

ht(K ′) ≤ ht(K).

Proof. Let γ∗ ∈ TP(K ′) such that γ∗ has htmin(K
′) thick levels with respect to h. Let

H∗ be the image of f(H) under an isotopy taking γ′ to γ∗. We can additionally assume

∂H∗ is in a Morse position with respect to h after this isotopy. For every regular value

s of h|∂H∗ , (h|∂H∗)−1(s) is an unlink in S3. By standard Morse theory and since ∂H∗

is a torus, there exists a regular value s∗ such that (h|∂H∗)−1(s∗) has a component c

that is an essential loop in ∂H∗. Moreover, since H∗ is a knotted solid torus, c is a

meridian curve for H∗. By Theorem 4.1, there is a reimbedding g : H∗ → S3 of H∗ that

preserves height and results in g(H∗) being unknotted. Moreover, after a suitable choice

of g, we can assume that g(γ∗) ∈ K, see [31] for details. Since g is height preserving,

γ∗ and g(γ∗) have the same number of thick levels and w(γ∗) = w(g(γ∗)). Since γ∗ is

a thin position for K ′ and w(K) = w(K ′), then g(γ∗) is a thin position for K. Hence,

htmin(K
′) ≥ htmin(K).

Alternatively, let γ∗ ∈ TP(K ′) such that γ∗ has ht(K ′) thick levels with respect to

h. By the same argument as give above, we can find a height preserving reimbedding g

and g(γ∗) ∈ K such that w(K) = w(K ′) = w(γ∗) = w(g(γ∗)) and ht(K ′) = ht(γ∗) =

ht(g(γ∗)). Hence, ht(K ′) ≤ ht(K). □

Remark 4.3. It is interesting to note that Theorem 4.2 does not hold if the hy-

pothesis of w(K) = w(K ′) is omitted. For example, if L is a 2-bridge knot, it is an

easy exercise to show that ht(L) = 1 and ht(L#L) = 2. However, declaring L = K and

L#L = K ′ meets all the hypotheses of Theorem 4.2 except w(K) = w(K ′). Additionally,

in Figure 2 we give an example of a thin position γ′ for a knot-type K ′ embedded in

a knotted solid torus f(H) together with an embedding γ of knot type K contained in

the unknotted solid torus H such that γ′ = f(γ). (K is a Montesinos knot with length

4, and the knot type of f(H) is a trefoil.) The embedding γ′ depicted in Figure 2 is a

thin position of K ′ by Lemma 6.0.6 of [5]. Hence htmin(K
′) = 1. Since β(K) = 4, then

the embedding γ in the figure illustrates that no bridge position for K is a thin position.

Hence, htmin(K) ≥ 2 and moreover htmin(K) = 2 since the maximal number of disjoint,

non-parallel, planar, meridional, essential surfaces in the exterior of K is equal to 1 by

[18]. Thus, 1 = ht(K ′) = htmin(K
′) < htmin(K) = ht(K) = 2 and w(K ′) > w(K).

In [6], Blair and Tomova construct an infinite collection of ambient isotopy classes

of knots K from the schematic depicted in the left-hand side of Figure 3 by inserting

suitable braids B1, ..., B4 into the boxes shown. By Theorems 12.1 and 12.2 of [6], for all

K ∈ K, w(K) = 134 and any thin position for K has exactly three thick levels of width

10 and exactly two thin levels of width 4. Hence, htmin(K) = ht(K) = 3 for all K ∈ K.

Note that if we consider the height function to be increasing from the bottom to the top

of Figure 3, then, for suitable choices of B1, ..., B4, the left-hand side of the figure depicts

a thin position for any knot in K.

Proof of Theorem 2.1. By [6], w(K) = 134 and Figure 3 gives a thin position for K.

Figure 3 demonstrates that w(K2#K) ≤ w(K) = 134. By Corollary 6.4 of [31],

w(K2#K) ≥ w(K) and, therefore, w(K2#K) = w(K). Hence, Figure 3 demonstrates
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γ′ ∈ K ′ γ ∈ K

Figure 2. A counterexample for Theorem 4.2 without the condition

w(K) = w(K ′)

a thin position or K2#K with three thick levels. In particular, ht(K2#K) ≥ 3 and

htmin(K2#K) ≤ 3.

If we apply Theorem 4.2 to the embeddings of K2#K and K depicted in Figure

3 where f(H) is the knotted “swallow-follow” torus that contains K2#K, swallows

K and follows K2, then, since w(K2#K) = w(K), ht(K2#K) ≤ ht(K) = 3 and

htmin(K2#K) ≥ htmin(K) = 3. Hence, ht(K2#K) = 3 and htmin(K2#K) = 3. □

4.2. Proof of Theorems 3.1 and 3.2

Proof of Theorem 3.1. Firstly, if K is the trivial knot, then we have r(K) = 1 and

trunk(K) = 2, and hence the inequality of Theorem 3.1 holds.

Next, we will show that for a non-trivial knot K, a height function h : S3 → R and

a closed surface F containing K,

r(F,K) ≤ maxt∈R |h−1(t) ∩K|
2

.
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γ ∈ K

Figure 3. K ∈ K and K#K2

By taking maximal of the left-hand side and minimal of the right-hand side, we have

max
F∈F

r(F,K) ≤ minγ∈K maxt∈R |h−1(t) ∩ γ|
2

.

Thus,

r(K) ≤ trunk(K)

2
.

By perturbing F relative to K, we may assume that any critical point of F is not on

K and F is also in a Morse position with respect to h. Since the genus of F is greater

than 0, there exists a regular value t ∈ R for F such that h−1(t) ∩ F contains at least

two essential loops in F . Take two distinct loops l1, l2 of h−1(t) ∩ F which are essential

in F and innermost in h−1(t) among all essential loops of h−1(t) ∩ F . Let D1, D2 be

mutually disjoint disks in h−1(t) which are bounded by l1, l2 respectively. Then we have

|∂D1 ∩K|+ |∂D2 ∩K| ≤ max
t∈R

|h−1(t) ∩K|.

Without loss of generality, we may assume that

|∂D1 ∩K| ≤ maxt∈R |h−1(t) ∩K|
2

.

By cutting and pasting D1 if necessary, we may assume that D1 ∩ F = ∂D1. Thus, D1
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is a compressing disk for F and we have

r(F,K) ≤ |∂D1 ∩K|.

□

Let K be a knot admitting an essential tangle decomposition (S3,K) = (B1, T1) ∪S

(B2, T2), where S is a tangle decomposing sphere. In the following, we show

r(K) ≤ min{trunk(B1, T1), trunk(B2, T2)}
2

.

Proof of Theorem 3.2. Let F be a closed surface containing K. Let hi : Bi → R be a

standard Morse function for i = 1, 2. It suffices to show that

r(F,K) ≤ maxt∈R |h−1
i (t) ∩ Ti|
2

,

for i = 1, 2.

We remark that K is non-trivial since K admits an essential tangle decomposition.

Hence the genus of F is greater than 0 and we may assume that 2 ≤ r(F,K). Since

F and S are essential in the exterior of K, we may assume that each loop of F ∩ S is

essential in F . If F ∩ S consists of a single essential loop, then both F ∩B1 and F ∩B2

are surfaces with strictly positive genus. Then, there exists a regular value ti ∈ R for F

such that h−1
i (ti) ∩ F contains at least two essential loops in F for i = 1, 2. Otherwise,

F ∩S consists of at least two essential loops and h−1
i (0)∩F contains at least two essential

loops in F for i = 1, 2. Similarly to Proof of Theorem 3.1, we obtain a compressing disk

D for F in Bi such that

r(F,K) ≤ |∂D ∩ Ti| ≤
maxt∈R |h−1(t) ∩ Ti|

2
.

□

5. Several versions of thin position

The bridge number β(K), the trunk trunk(K) and the width w(K) are fundamental

geometrical invariants of a knot K. In this section, we consider several versions of

thin position TP(K), MCP(K) and OTP(K) which attain w(K), β(K) and trunk(K)

respectively.

In the previous part of this paper, we considered Gabai’s thin position TP(K) ([10]),

that is, the set of all position γ minimizing the width w(γ) =
∑

w(h−1(ri)) for chosen

regular values r1, r2, ..., rn. Then we have already established the following.

TP-1 There exists a knot K = Kα in [6] such that β(K) cannot be obtained in TP(K).

TP-2 w(K) can be always obtained in TP(K).

TP-3 There exists a candidate knot K = K4,1,3,3 in [8] such that trunk(K) cannot be

obtained in TP(K).

TP-4 There exists a candidate knot K in Figure 1 such that ht(K) > htmin(K).
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TP-5 There exist two knots K and K ′ in Theorem 2.1 such that ht(K#K ′) < ht(K) +

ht(K ′).

TP-6 There exists a knot K in [7] such that γ ∈ TP(K) has a compressible thin level

sphere.

TP-7 Every thinnest level sphere for γ ∈ TP(K) is incompressible in the complement of

a knot [37].

Next, let MCP(K) be the set of all Morse positions of K which have minimal critical

points among all Morse positions. We say that a knot belonging to MCP(K) is in a

minimal critical position. Similarly to TP(K), we can define the MCP-height and the

min-MCP-height of K respectively as

htMCP(K) = max
γ∈MCP(K)

ht(γ),

htMCP
min (K) = min

γ∈MCP(K)
ht(γ).

Note that htMCP
min (K) = 1 for any knot K. Then we have the following.

MCP-1 β(K) can be always obtained in MCP(K).

MCP-2 There exists a knot K = Kα in [6] such that w(K) cannot be obtained in

MCP(K).

MCP-3 There exists a candidate knot K = K4,1,3,3 in [8] such that trunk(K) cannot be

obtained in MCP(K).

MCP-4 There exists a knot K in Figure 4 such that htMCP(K) > htMCP
min (K).

MCP-5 There exist two knots K and K ′ in Figure 4 such that htMCP(K#K ′) >

htMCP(K) + htMCP(K ′).

MCP-6 There exists a knot K in Figure 4 such that γ ∈ MCP(K) has a compressible

thin level sphere.

MCP-7 There exists a knot K in Figure 4 such that γ ∈ MCP(K) has a compressible

thinnest level sphere.

Note that a knot K in Figure 4 is not in a thin position, thus we have γ ∈
MCP(K)\TP(K). Moreover, we remark that there exists a knot K = Kα in [6] such

that TP(K) ∩MCP(K) = ϕ.

Finally, we define the ordered thin position OTP(K), that is, a Morse position γ of

K which minimizes the lexicographical order of monotonically non-increasing ordered

sequences {wi}, where wi (i = 1, . . . , k) is the number of points of intersection between

thin/thick level spheres and γ, and k is the total number of thin/thick level spheres.

For example, the embedding γ ∈ K#K ′ in Figure 4 has the complexity

{10, 10, 10, 8, 8}, but it can be reduced to {8, 8, 2} and we obtain an embedding γ′ ∈
OTP(K#K ′).
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Figure 4. A minimal critical position of K#K′

Similarly to TP(K), we define the OTP-height and the min-OTP-height of K respec-

tively as

htOTP(K) = max
γ∈OTP(K)

ht(γ),

htOTP
min (K) = min

γ∈OTP(K)
ht(γ).

Then we have the following.

OTP-1 There exists a candidate knot K = K4,1,3,3 in [8] such that β(K) cannot be

obtained in OTP(K).

OTP-2 There exists a candidate knot K = K4,1,3,3 in [8] such that w(K) cannot be

obtained in OTP(K).

OTP-3 trunk(K) can be always obtained in OTP(K), as the first term of the monoton-

ically non-increasing ordered set {wi}.

OTP-4 For any knot K, htOTP(K) = htOTP
min (K).

OTP-5 There exist a candidate knot K4,1,3,3 in [8] and a two-bridge knot K2 such that

htOTP(K4,1,3,3#K2) < htOTP(K4,1,3,3) + htOTP(K2) as in Theorem 2.1.

OTP-6 There exists a candidate embedding γ ∈ K in [7] such that γ ∈ OTP(K) and γ

has a compressible thin level sphere.

OTP-7 Every thinnest level sphere for γ ∈ OTP(K) is incompressible in the complement

of a knot (by a similar argument to [37]).

In Figure 5, we summarize a relation on several versions of thin position. For each

region, we give an example of an embedding in the corresponding subset of Morse embed-

dings. Each of these examples is conjectural with the exception of the 2-bridge embedding

and the embedding from Figure 4, which can easily be verified. Potential examples of

embeddings k2,1,3,7, k
′
2,1,3,7, k4,1,3,3 and k′4,1,3,3 are referred from [8]. We have a potential

example γ′ ∈ (TP(K) ∩OTP(K))\MCP(K) from Figure 1.
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Figure 5. Venn diagram for TP, MCP and OTP

6. Waist and representativity

Theorem 3.1 is compared with the inequality between the waist and trunk of knots.

We define the waist of a knot K as

waist(K) = max
F∈F

min
D∈DF

|D ∩K|,

where F denotes the set of all closed surfaces in S3 −K, and DF denotes the set of all

compressing disks for F in S3 ([22]). Then, we have waist(K) = 0 for the trivial knot

K since any closed surface in S3 −K is compressible, and by considering the peripheral

torus ∂N(K), waist(K) ≥ 1 for non-trivial knots. It is known that waist(K) = 1 for

3-braid knots ([15]), alternating knots ([16]), almost alternating knots ([1]), Montesinos

knots ([18]), toroidally alternating knots ([2]), algebraically alternating knots ([21]), and

that waist(K) = p · waist(J) for inconsistent cable knots with index p, where J is a

companion knot for K ([3]).

Theorem 6.1 ([22, Theorem 1.9]). For any knot K, we have

waist(K) ≤ trunk(K)

3
.

Theorems 3.1 and 6.1 bear a close resemblance to each other. We expected in [23,

Problem 26] that waist(K) ≤ r(K) for any knot K. For example, any alternating knots

satisfy this inequality since waist(K) = 1 ([16]) and r(K) = 2 ([13]). However, it does

not hold for composite knots in general. The waist behaves as expected under taking

connected sums, that is, waist(K1#K2) = max{waist(K1),waist(K2)} ([22, Proposition

1.2]). On the other hand, we have r(K1#K2) = 2 whenever K1 and K2 are non-trivial.

This shows that the representativity of knots behaves dissimilarly to other geometric

knot invariants.
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7. Representativity and non-orientable spanning surfaces

Aumann proved that any alternating knot bounds an essential non-orientable span-

ning surface ([4]). Indeed, he showed that both checkerboard surfaces for a reduced

alternating diagram are essential. Recently, Kindred proved in [13] that r(K) = 2 for

any non-trivial alternating knot K, which confirmed Conjecture 4 in [23]. From these

results to extend the result in [13], one might expect that if a knot K bounds an essential

non-orientable spanning surface, then r(K) = 2. However, we have the next theorem.

Theorem 7.1. For any integer n ≥ 2, there exists a knot with r(K) ≥ n which

bounds an essential once punctured Klein bottle.

Proof. Let V ∪F W be a genus two Heegaard splitting of S3. Take a loop C on ∂V

as shown in Figure 6. Note that C bounds a Möbius band M properly embedded in V

which is formed by a non-separating disk and a band. Let A be a loop obtained from a

train track T on ∂V as shown in Figure 6, where m, n ≥ 1. By adding a band B along

A to M , we obtain a once punctured Klein bottle F = M ∪ B properly embedded in V

and a knot K = ∂F .

It is easy to see that K is min{2m, 2n + 2}-seamed with respect to a complete set

of essential disks {D1, D2, D3} in V , that is, K has been isotoped to intersect
∪

∂Di

minimally and for each pair of pants P obtained from ∂V by cutting along
∪

∂Di, and

for each pair of two boundary components of P , there exist at least min{2m, 2n+2} arcs

of intersection in K ∩ P that connect that pair of boundary components. The following

lemma can be proved by an elementary cut and paste argument.

Lemma 7.2. If K ⊂ ∂V is k-seamed with respect to a complete set of meridian disks

{Di} in V and ∆ is an essential disk in V , then |K ∩ ∂∆| ≥ 2k.

By this lemma, for any compressing disk ∆ for F in V , ∂∆ intersects K at least

2min{2m, 2n+ 2} points.

Finally, to obtain a knot K with r(K) ≥ 2min{2m, 2n+2}, we re-embed V in S3 so

that S3 − intV is boundary-irreducible. Then there exists no compressing disk for ∂V

in S3 − intV , and we have r(F,K) ≥ 2min{2m, 2n+ 2}. □

Remark 7.3. We remark that there exists a knot which does not bound an essential

non-orientable spanning surface ([9]), that denies the strong Neuwirth conjecture ([26]).

Each of our knots produced in Theorem 7.1 admits two distinct “Neuwirth surfaces”, ∂V

and ∂N(F ), where ∂V is the boundary of the genus two handlebody V and ∂N(F ) is

the boundary of a regular neighborhood of an essential once punctured Klein bottle F .

It is conjectured that for any non-trivial knot K, there exists a closed surface (Neuwirth

surface) S containing K such that S −K is connected and S ∩ E(K) is essential, that

is, the Neuwirth conjecture ([26]).
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