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Abstract. We study methods for computing the bridge number of a knot

from a knot diagram. We prove equivalence between a geometric and a combi-
natorial definition of the bridge number of a knot diagram. For each notion of

diagrammatic bridge number considered, we find crossing number minimizing

knot diagrams which fail to minimize bridge number. Furthermore, we con-
struct a family of minimal crossing diagrams for which the difference between

diagrammatic bridge number and the actual bridge number of the knot grows

to infinity.

1. Introduction

Bridge number and crossing number are two classical measures of the complexity
of a knot, and we are interested in the existence of knot diagrams which simulta-
neously minimize both of these complexities. We prove two negative results in this
regard (Theorem 1.3 and Theorem 5.1).

In contrast to the crossing number of a diagram, which is simply the number of
crossings, the bridge number of a knot diagram can be reasonably defined in several
essentially different ways. In Theorem 1.2, we prove equivalence between a natural
geometric definition of the bridge number of a knot diagram, the perpendicular
bridge number b⊥, and a combinatorial definition more amenable to computation,
the Wirtinger number ω. We show that none of these diagrammatic notions of
bridge number is realized in every crossing number minimizing diagram. However,
we conjecture that every knot admits at least one diagram which realizes both
bridge number and crossing number.

1.1. Compatibility of the crossing number and the bridge number. Let K
be a knot-type in R3 and let γ ∈ K be a smooth embedding of the knot-type K.
Let p : R3 → R2 be given by p(x, y, z) = (x, y), h : R3 → R by h(x, y, z) = z and
h|| : R3 → R by h||(x, y, z) = y.

We denote by C(K) the set of embeddings γ ∈ K which are regular and have
minimal crossing number with respect to p; namely, these are crossing number
minimizing embeddings. Also we denote by B(K) the set of embeddings γ ∈ K
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which have the minimal number of maximal points with respect to h; namely, these
are bridge number minimizing embeddings.

We have experimentally verified in [5] that C(K)∩B(K) ̸= ∅ for at least 450,000
prime knots of up to 16 crossings. Does an embedding simultaneously minimizing
crossing number and bridge number exist for every knot? That is, we put forth:

Conjecture 1.1. For any knot K, C(K) ∩ B(K) ̸= ∅.

Conjecture 1.1 implies that the set of possible positions of any knot forms an
infinite rectangle region of integer lattice in the Cartesian coordinate system of
crossing number and bridge number. In the region, an embedding γ ∈ C(K)∩B(K)
becomes a vertex of the region.

1.2. Equality of the Wirtinger number and the perpendicular bridge
number of a diagram. In order to study this conjecture, we introduce several
diagrammatic notions of bridge number. These are integers associated to knot di-
agrams with the property that the minimum of the bridge number of D over all
diagrams D of a given knot K is equal to the bridge number of K.

Alternatively, the typical diagrammatic depiction of knots obtaining their bridge
number suggests defining the “parallel” bridge number of a diagram D, b||(D), as
the minimal number of maxima of h|||γ for any embedding γ that projects to D.
We remark that this definition of diagrammatic bridge number is not very effective
at calculating bridge number of a knot.

We focus instead on the perpendicular bridge number of a knot diagram D,
b⊥(D) (Definition 2.2), and the Wirtinger number of D, ω(D) (Definition 2.4).
The Wirtinger number is defined combinatorially, and the fact that the minimum
value of ω(D) over all diagrams D of a knot K equals the bridge number of K
is non-trivial – see [3] for a proof. On the plus side, the Wirtinger number is
algorthmically computable. This allowed the detection of bridge numbers for nearly
half a million knots from minimal crossing diagrams, and the tabulation of bridge
numbers for the majority of these knots for the first time. By contrast, b⊥(D)
is defined geometrically, and it follows easily that taking the minimum of b⊥(D)
over all diagrams of a knot gives the bridge number, but b⊥(D) can be challenging
to compute directly. Additionally, it is a straight forward exercise to show that
b⊥(D) ≤ b||(D) for all knot diagrams, making b⊥(D) more effective at calculating
the bridge number of a knot from one of its diagrams. Our next result relates the
geometric invariant ω(D) and the combinatorial invariant b⊥(D).

Theorem 1.2. For a knot diagram D, ω(D) = b⊥(D).

1.3. Incompatibility of the bridge number and the crossing number for
a fixed diagram. In light of Theorem 1.2, we will sometimes use b(D) to denote
either of these quantities for a knot diagram, that is, b(D) := ω(D) = b⊥(D).
Throughout, β(K) denotes the bridge number of K. We leverage the above equality
to prove the following.

Theorem 1.3. For every positive integer n, there exists an alternating knot K
and a crossing number minimizing diagram D of K, with the property that b(D)−
β(K) ≥ n.

We see from this theorem that not all minimal diagrams of alternating knots have
Wirtinger number equal to the bridge number. Note, however, that the examples
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given in the proof of Theorem 1.3 are composite knots. This fact is leveraged in
order to show that the difference b(D) − β(K) can be made arbitrarily large. A
more difficult question is whether a prime, reduced alternating diagram of a knot
K always realizes the Wirtinger number of K. More generally, since any two prime
reduced alternating diagrams of the same knot are related by a sequence of flypes,
it is interesting to know whether the Wirtinger number is invariant under flypes.
In an appendix by the first author and Nathaniel Morrison, they answer these two
questions in the negative. Namely, they exhibit a knot whose crossing number
and Wirtinger number are both realized in a prime, reduced alternating diagram;
after performing a flype on this diagram, the Wirtinger number is seen to strictly
increase. In light of this construction, we expect that the result of Theorem 1.3
would also hold with the additional assumption that the alternating knot K is
prime.

Question 1.4. For a minimal diagram D of a prime alternating knot K, then
b(D) = β(K).

2. Preliminaries

Let K, p, h and γ be as above. Among the many equivalent definitions of bridge
number of a knot, we favor the following one.

Definition 2.1. The bridge number of K, β(K), is the minimal number of maxima
of h|γ over all γ ∈ K.

The first definition of diagrammatic bridge number we consider is the following.
Let K, γ, p, h be as above. When p|γ is regular and |p−1(x, y)| ≤ 2, ∀(x, y) ∈ R2, we
say p(γ) is a knot projection for K. Hence, every knot projection is a finite, 4-valent
graph in the plane. A knot diagram of K is a knot projection p(γ) together with
labels that indicate which strand is the over-strand and which is the under-strand
at each double point. Given a diagram D and an embedding γ of a knot type K,
we say that γ presents D if the following hold:

(1) h|γ is Morse;
(2) p(γ) is a knot projection of K;
(3) p(γ) together with crossing labels is equal to D.

Definition 2.2. Given a knot diagram D of knot K, define the perpendicular
bridge number of D, b⊥(D), to be the minimal number of maxima of h|γ over all γ
presenting D.

For any diagram D of a knot K, if γ presents D, by definition γ ∈ K, so
b⊥(D) ≥ β(K). Furthermore, since, after an arbitrarily small perturbation that
preserves the number of maxima of h|γ , any γ ∈ K has a diagram, β(K) is realized
as b⊥(D) for some diagram D of K. Therefore, b⊥(D) has the desired properties of
a diagrammatic bridge number. Our first result, Thorem 1.2, is to prove that the
perpendicular bridge number of a diagram D equals its Wirtinger number, ω(D).

The Wirtinger number of a diagram D is calculated algorithmically and is closely
related to the problem of finding the minimal number of Wirtinger generators in
D which suffice to generate the group of K. The Wirtinger number was intro-
duced in [3], and it follows from the main theorem therein that ω(D) constitutes a
diagrammatic bridge number in the above sense. We recall the definition here.
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Figure 1. Two coloring moves on the knot 817, corresponding
to the shaded crossings. The coloring process terminates at this
stage. More generally, this diagram is not 2-colorable. 817 is a
three-bridge knot.

Let D be a knot diagram with n crossings and let v(D) be the set of crossings
c1, c2,..., cn in the plane. Since we think of deleting a neighborhood of each under-
strand from a knot projection to form the diagram D, then D consists of n disjoint
closed arcs in the plane called strands. Denote by s(D) the set of strands s1, s2,...,
sn for the diagram D. Two strands si and sj of D are adjacent if si and sj are the
under-strands of some crossing in D. In what follows we assume that n > 1 so, in
particular, no strand is adjacent to itself.

We call D k-partially colored if we have specified a subset A of the strands of
D and a function f : A → {1, 2, . . . , k}. We refer to this partial coloring by the
tuple (A, f). Next, we define an operation that allows us to pass from one partial
coloring on a diagram to another.

Definition 2.3. Given k-partial colorings (A1, f1) and (A2, f2) of D, we say
(A2, f2) is the result of a coloring move on (A1, f1) if the following conditions
hold:

(1) A1 ⊂ A2 and A2 \A1 = {sj} for some strand sj in D;
(2) f2|A1

= f1;
(3) sj is adjacent to si at some crossing c ∈ v(D), and si ∈ A1;
(4) the over-strand sk at c is an element of A1;
(5) f1(si) = f2(sj).

We denote the above coloring move by (A1, f1) → (A2, f2). Two consecutive
coloring moves are illustrated in Figure 1, which we borrowed from [3]. We say
a knot diagram D is k-colorable if there exists a k-partial coloring (A0, f0) =
({si1 , si2 , . . . , sik}, f0(sij ) = j) and a sequence of coloring moves which result in
coloring the entire diagram.

Definition 2.4. Let D be a knot diagram. The smallest integer k such that D is
k-colorable is the Wirtinger number of D, denoted ω(D).

For a proof that the minimum value of ω(D) over all diagrams D of a knot K
equals the bridge number of K we again refer the reader to [3]. The Wirtinger
number is our main tool for computing bridge numbers of minimal diagrams and
comparing these to the bridge numbers of the corresponding knots.

In Section 3 we prove that ω(D) = b⊥(D) for any knot diagram D. In Section 4
we analyze how Wirtinger number behaves with respect to diagrammatic connected
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sum and we use these results to show that given any knot K you can always find
a diagram D such that the difference between ω(D) and β(K) is arbitrarily large.
Finally, we extend these results to show that the difference between ω(D) and β(K)
can be arbitrarily large even among crossing number minimizing diagrams if com-
posite knots are allowed. We conclude by exhibiting a crossing number minimizing
diagram of a prime knot which also fails to realize the Wirtinger number.

3. Equality of the Wirtinger number and the perpendicular bridge
number of a diagram

Theorem 1.2 relates the Wirtinger number of a diagram to its perpendicular
bridge number. It is proved in [3] that ω(D) can be calculated by computer from
Gauss code for D, while the more geometric b⊥(D) tends to be rather elusive.

To prove this Theorem 1.2, some additional notation must be established. As
above, given a diagram D, s(D) denotes the set of strands s1, s2,..., sn and v(D)
the set of crossings c1, c2,..., cn. Furthermore, if γ presents D, we denote by s1,
s2,..., sn the subarcs of p(γ) obtained by extending each of s1, s2,..., sn slightly so
that the endpoints of the arcs s1, s2,..., sn are contained in v(D). In particular,
if we consider p(γ) as a finite, 4-valent graph, then si is the union of all edges in
p(γ) whose interiors intersect si. Additionally, let {a+i , a

−
i } := (p|γ)−1(vi), where

h(a+i ) > h(a−i ) for all i. Finally, observe that (p|γ)−1(si) consists of a closed
arc of positive length, possibly together with a collection of isolated points in γ,
corresponding to crossings of D where si is the over-strand. We denote the closed
arc component of (p|γ)−1(si) by ŝi.

Lemma 3.1. Let D be a knot diagram and γ an embedding that presents D and
minimizes b⊥(D). Then, after an isotopy of γ which fixes p(γ) pointwise, we can
assume the following: for every si ∈ s(D), ŝi contains at most three critical points
of h|γ ; if ŝi contains exactly three critical points of h|γ , then two of these critical
points are minima and one is a maximum; all critical points of h|γ corresponding
to minima are contained in the set {a−1 , a

−
2 , ..., a

−
n }.

Proof. Assume γ an embedding that presents D and minimizes b⊥(D). Consider a
strand si ∈ s(D). Let U denote the portion of the interior of p−1(si) that lies above
ŝi. By definition of strand, U is disjoint from γ. Hence, there is an ambient isotopy
of γ supported in an arbitrarily small open neighborhood of U in R3, after which
ŝi is replaced by an arc with one maximum and at most two minima and p(γ) is
preserved pointwise. See Figure 2. This is a contradiction to the minimality of h|γ ,
unless ŝi contains at most three critical points of h|γ . Moroever, this isotopy shows
that we can assume that if ŝi contains exactly three critical points of h|γ , then two
of these critical points are minima and one is a maximum.

As an intermediate next step, we arrange that the critical points of h|γ are
contained in the interiors of the ŝi. Indeed, since (pγ)

−1(v(D)) is a discrete set
in γ, after an arbitrarily small ambient isotopy of γ that fixes p(γ) pointwise and
preserves that number of critical points, we can assume that no critical point of h|γ
is contained in p−1(v(D)).

We have already shown that, if ŝi contains exactly three critical points of h|γ ,
then two of these critical points are minima and one is a maximum. To conclude
the proof, we need to isotope γ, preserving p(γ) pointwise, so that all critical points
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Figure 2. Isotopy decreasing the number of critical points for ŝi,
if it contains more than three critical points of h|γ . The red line is
the projection, si, and the black dots represent the lifts of strands
over which si passes.

of h|γ corresponding to minima are contained in the set {a−1 , a
−
2 , ..., a

−
n }. By the

above, each arc si fits into one of three mutually disjoint categories:

(1) Type I: ŝi contains no minima of h|γ .
(2) Type II: ŝi contains exactly one minimum and no maximum of h|γ .
(3) Type III: ŝi contains exactly one minimum and exactly one maximum of

h|γ .
(4) Type IV: ŝi contains exactly two minima and exactly one maximum of h|γ .
In each of these cases, we let U denote the portion of the interior of p−1(si) that

lies above ŝi. Recall that, by the definition of strand, U is disjoint from γ.
If si is an edge of Type II, let vj and vk be the endpoints of si and suppose

h(a−j ) ≤ h(a−k ). Let U ′ be the portion of U below the plane {z = h−1(h(a−j ))}.
Then there is an ambient isotopy of γ supported in an arbitrarily small open neigh-
borhood of U ′ in R3 after which ŝi is replaced by an arc with no critical points in its
interior, h|γ has a minimum at a−j , and p(γ) is preserved pointwise. See Figure 3.

U ′

Figure 3. Isotopy for a strand of Type II.
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If si is an edge of Type III, let Mi be the maximum of h|γ in ŝi and let mi be
the minimum of h|γ in ŝi. Let vj and vk be the endpoints of si and suppose a−j
is closer to mi than it is to Mi, along ŝi. Let U∗ be the portion of U below the
plane {z = h−1(h(a−j ))} and let U ′ be the component of U∗ whose closure in U

contains mi and a−j . Note that Mi is not contained in the closure of U ′ as this
would imply that there is an ambient isotopy of γ that eliminates a minimum and
a maximum while preserving p(γ), a contradiction to the minimality assumption
for γ. Subsequently, there is an ambient isotopy of γ supported in an arbitrarily
small open neighborhood of U ′ in R3 after which ŝi is replaced by an arc with a
single maximum critical point in its interior, h|γ has a minimum at a−j , and p(γ) is
preserved pointwise. See Figure 4.

U ′

Figure 4. Isotopy for a strand of Type III.

If si is an edge of Type IV, let Mi be the maximum of h|γ in ŝi and let m1
i and

m2
i be the two minima of h|γ in ŝi. Let vj and vk be the endpoints of si and suppose

a−j is closer to m1
i than it is to m2

i , along ŝi. Let U
∗ be the portion of U below the

plane {z = h−1(h(a−j ))}. Note that h(Mi) > max{h(a−j ), h(a
−
k )}, since otherwise

there would exists an ambient isotopy of γ which eliminates a minimum and a
maximum while preserving p(γ), a contradiction to the minimality assumption for
γ. Hence, the portion of U below the plane {z = h−1(h(a−j ))} contains a disk

component U ′ that is incident to a−j . Similarly, the portion of U below the plane

{z = h−1(h(a−k ))} contains a disk component U ′′ that is incident to a−k . There is
an ambient isotopy of γ supported in an arbitrarily small open neighborhood of
U ′ ∪ U ′′ in R3 after which ŝi is replaced by an arc with a single maximum critical
point in its interior, h|γ has a minimum at a−j and at a−k , and p(γ) is preserved
pointwise. See Figure 5.

Since each of the ambient isotopies described above are supported in pairwise
disjoint regions in R3, we can simultaneously apply the above isotopies to produce
an ambient isotopy of γ that fixes p(γ) pointwise, results in an embedding of γ that
minimizes b⊥(D), and results in all critical points of h|γ corresponding to minima
being contained in {a−1 , a

−
2 , ..., a

−
n }. □

Proof of Theorem 1.2. Given a diagram D of a knot K, let µ := ω(D). As in the
proof of main result in [3], we can construct an embedding γ that presents D such
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U ′

U ′′

Figure 5. Isotopy for a strand of Type IV.

that h|γ has µ maxima. Roughly speaking, we can specify the height function of γ
so that its only maximal points occur on the interiors of the strands sj (j = 1, . . . , µ)
and there is exactly one maximum per strand sj . This is achieved by first assigning
the initial strands to a level plane; the strands subsequently colored via coloring
moves are assigned to successively lower level planes whose height is determined
by the order in which the coloring moves are performed. The complete collection
of strands are then connected via monotone arcs. After a small perturbation, the
result is an embedding of the knot with exactly µ maxima with respect to h. Hence,
b⊥(D) ≤ w(D). It remains to show that b⊥(D) ≥ w(D).

Let D be a diagram of K and let γ be an embedding of K that presents D
and realizes b⊥(D). Assume that we have isotoped γ so that the conclusions of
Lemma 3.1 hold. That is, all critical points corresponding to minima of h|γ are
contained in {a−1 , a

−
2 , ..., a

−
n }, all critical points corresponding to maxima of h|γ are

contained in the interior of the arcs ŝi for i ∈ {1, ..., n}, and each arc ŝi contains
at most one critical point corresponding to a maximum of h|γ . Moreover, after a
further isotopy of γ, fixing p(γ) pointwise as always, we can additionally assume
that all critical points of h|γ and all points in (p|γ)−1(v(D)) take distinct values
under h and that all critical points corresponding to maxima of h|γ lie above all of
the points (p|γ)−1(v(D)).

Define g : s(D) → R by g(si) = max({h(t)|t ∈ ŝi}). Note that this value is well-
defined since ŝi is compact and that g is one-to-one since all critical points of h|γ
and all points in (p|γ)−1(v(D)) take distinct values under h. Order the elements
of s(D) in order of decreasing value under the map g, and denote the resulting
sequence by si1 , ..., sin . Let b⊥(D) = m and observe that the above assumptions
guarantee that si1 , ..., sim are exactly the strands which contain maxima of h|γ .
Set Ak := {si1 , ..., sim+k

} for 0 ≤ k ≤ n − m and define f0 : A0 → {1, ...,m} by
f0(sij ) := j for 1 ≤ j ≤ m.

Let M = {d1, ..., dm} ⊂ {a−1 , a
−
2 , ..., a

−
n } be the collection of critical points cor-

responding to minima for h|γ . The closure of each component of γ \M is then a
union of (consecutive) arcs ŝj and contains a unique critical point corresponding to
a maximum of h|γ . Therefore, each component of γ \M contains the interior of a
unique arc in the set {ŝi1 , ..., ŝim}. Extend f0 to a function f : s(D) → {1, ...,m}
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by assigning f(sj) := f(sik) = k where ŝik ∈ {ŝi1 , ..., ŝim} is the unique element
of this set with the property that int(ŝj) and int(ŝik) are contained in the same
component of γ \M . Define fk = f |Ak

for all 1 ≤ k ≤ n−m.
To show that D is m-colorable, it remains to be shown that (Ak, fk) →

(Ak+1, fk+1) is a valid coloring move for all 0 ≤ k ≤ n − m − 1. Note that
Ak+1 \ Ak = {sim+k+1

} and let p := f(sim+k+1
), p ∈ {1, ...,m}. By the definition

of f , we have that ŝim+k+1
is in the same component of γ \M as ŝip . But ŝim+k+1

does not contain a maximum of h|γ , since m + k + 1 > m. Therefore, sim+k+1

is adjacent to a strand sir such that f(sir ) = p and g(sir ) > g(sim+k+1
). Since

g(sir ) > g(sim+k+1
), we have that sir ∈ Ak. Let sil be the strand which passes

over the crossing vr at which sim+k+1
and sir are adjacent. Since ŝim+k+1

does not
contain a maximum of h|γ and g(sir ) > g(sim+k+1

), then g(sim+k+1
) = h(a−r ). Since

h(a+r ) > h(a−r ) and a+r ∈ ŝil , then g(sil) > g(sim+k+1
) and, thus, sil ∈ Ak. Hence,

conditions (1)-(5) of Definition 2.3 are satisfied and (Ak, fk) → (Ak+1, fk+1) is a
valid coloring move for all 0 ≤ k ≤ n −m − 1. Therefore, D is m-colorable. This
implies that w(D) ≤ b⊥(D) and the theorem follows. □

In [3] the authors computed the Wirtinger number for crossing number minimiz-
ing diagrams of all knots of eleven or fewer crossings and verified that the Wirtinger
number for these diagrams realized bridge number. By the same method, the au-
thors calculated the bridge number of all knots with crossing number 12. Since
then, the authors have also calculated the bridge number of more that 450,000
knots with 16 or fewer crossings. Moreover, all of these knots where found to have
a minimal crossing diagram D such that ω(D) = β(K). These results motivate the
search for the class of knots such that Wirtinger number is realized in a minimal
crossing number diagram. We give some negative results in the next section as well
as some ensuing conjectures regarding the compatibility of crossing number and
Wirtinger number.

4. Incompatibility of the bridge number and the crossing number for
a fixed diagram

We prove that the Wirtinger number of a knot diagram is super-additive with
respect to the connected sum operation on knot diagrams, and we use this fact to
construct minimal diagrams whose diagrammatic bridge number is arbitrarily large
compared to the bridge number of the knot.

A diagram D of a knot K is prime if every simple closed curve in the plane of
projection that is disjoint from the crossings of D and meets the edges of p(K)
transversally in two points bounds a disk in the plane of projection that is disjoint
from the crossings of D. Otherwise, we say D is composite.

If D is composite, α is the simple closed curve in the plane of projection that
illustrates that D is composite and s ∈ α \ D, then the triple (D,α, s) induces a
pair of diagrams D1 and D2 by surgering D along the arc of α \ D that contains
D. See Figure 6. In this case, we write D = D1#D2 and say D is the connected
sum of D1 and D2.

Proposition 4.1. Given a composite diagram D := D1#D2, the inequality
b⊥(D) ≥ b⊥(D1) + b⊥(D2)− 1 holds.

Proof. Let (D,α, s) be the triple that gives rise to the decomposition D = D1#D2.
Let γ ∈ K such that γ presents D and h|γ has b⊥(D) maxima. After a small
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(D,α, s) D1 ∪D2

Figure 6. An example of the triple (D,α, s) inducing a pair of
diagrams D1 and D2. The red dot specifies the arc along which
the diagram is surgered.

perturbation of α that is transverse to p(K), we can assume that A = p−1(α) is
disjoint from the critical points of h|γ and A∩γ = {x, y} such that h(x) < h(y). Let
α̂ be a monotone increasing (wrt the z coordinate) arc embedded in A connecting x
to y that is mapped by p homeomorphically onto a sub arc of α. Surgering γ along
α̂ with framing parallel to the plane of projection results in two knot embeddings
γ1 and γ2 such that γ1 presents D1 and γ2 presents D2. Independent of the sign
of the derivative of h|γ at x and y, h|γ1∪γ2

has exactly one more maxima than h|γ .
See Figure 7.

Figure 7. Surgering γ along α̂

Since the number of maxima of h|γ1∪γ2
is bounded below by b⊥(D1) + b⊥(D2),

then b⊥(D) ≥ b⊥(D1) + b⊥(D2)− 1. □
Corollary 4.2. Given a composite diagram D := D1#D2, the inequality ω(D) ≥
ω(D1) + ω(D2)− 1 holds.

Proof. By Theorem 1.2, for any knot diagram D, ω(D) = b⊥(D). □
Corollary 4.3. Given any integer n, there exists a diagram Dn of the unknot such
that b⊥(D) = ω(D) > n.

Proof. LetD denote the Thistlethwaite diagram of the unknot, pictured in Figure 8.
By direct computation, we find that ω(D) = 3. (This can be done by hand. We
show ω(D) > 2 by verifying that, if we begin by coloring the over-strand and one
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under-strand at any crossing, the coloring process terminates before all strands are
colored, regardless of the choice of crossing. By contrast, it is not hard to find
three strands which, when colored, allow us to extend the coloring to the entire
diagram, by iterating the coloring move.) Let D0 = D1 = D and let Dn be a
connected sum of n copies of D. By repeated application of Proposition 4.1, we
have ω(Dn) = b⊥(Dn) ≥ 3 + 2(n− 1) = 2n+ 1 > n. □

Figure 8. The Thistlethwaite unknot, whose Wirtinger number is 3.

This allows us to construct knot diagrams for which the gap between the
Wirtinger number and the bridge number of the knot is arbitrarily large.

Corollary 4.4. For every positive integer m and every knot K, there exists a
diagram D of K such that b⊥(D) = ω(D) > β(K) +m.

Proof. Let D1 be any diagram of K, and Dn a diagram of the unknot satisfying the
conclusion of Corollary 4.3 for n = m+ 1. Let D := D1#Dn. By Proposition 4.1,
D is a diagram of K such that

ω(D) ≥ ω(D1) + ω(Dn)− 1 ≥ ω(K) + ω(Dn)− 1 > ω(K) + n− 1

= ω(K) +m = β(K) +m.

□

Note, however, that the diagram constructed in the proof of Corollary 4.4 has a
very large number of crossings, exceeding the crossing number of K by at least 15n.
A more subtle question is how big the gap between ω(D) and ω(K) can be for D a
minimal diagram of the knot K. We demonstrate that this gap can be arbitrarily
large as well.

Proof of Theorem 1.3. In Figure 9 we give an example of a knot K with reduced
alternating diagram D such that ω(K) = β(K) = 5 and ω(D) = 6. The fact that
ω(D) = 6 was established by computer computation using the algorithm introduced
in [3]. By Schubert’s equality for bridge number, ω(#n

i=1K) = 5n− (n− 1). Simi-
larly, by Proposition 4.1, ω(#n

i=1D) ≥ 6n−(n−1). Hence, ω(#n
i=1D)−ω(#n

i=1K) ≥
n. □
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Figure 9. A minimal crossing diagram D of a composite knot K
such that ω(D) = 6 and β(K) = 5.

Having seen that the gap between the bridge number of a knot K and dia-
grammatic bridge number in a minimal diagram of K can be arbitrarily large for
composite knots, we naturally ask whether minimal diagrams of prime knots always
realize bridge number. We answer this question in the negative.

Theorem 4.5. There exist a prime knot K and a minimal crossing diagram D of
K such that b⊥(D) > β(K).

Proof. Let K0 be the knot in Figure 10, and denote the diagram depicted by D0.
Using the algorithm described in [3], we calculated the Wirtinger number of this
diagram and found that ω(D0) = 6. Moreover, it is straight-forward to verify that
the diagram D0 is adequate and thus crossing number minimizing by [10]. Such a
knot is known to be prime, see for example Lemma 6.0.29 of [1]. We note that K0 is
a satellite knot with a pattern consisting of a Montesinos knot (a knot constructed
by a series of rational tangles). Such a knot is known to be prime, see for example
Lemma 6.0.29 of [1]. It is similarly straight-forward to show that K0 is an index two
cable of the trefoil knot. Hence, by [9], β(K0) ≥ 4. However, Figure 11, illustrates
that β(K0) ≤ 4. □

We believe the method used to construct the knot K0 can be generalized to find
other minimal diagrams Di of prime non-alternating knots Ki, such that b(Di) >
β(Ki) and the gap between b(Di) and β(Ki) grows with the crossing number of Di.
It is interesting to note that there exists a minimal crossing diagram for K0, given
in Figure 11, that realizes bridge number.

By the Thurston’s geometrization theorem, all knots are classified into mutually
exclusive four classes; the trivial knot, torus knots, satellite knots and hyperbolic
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Figure 10. A minimal crossing diagram D of a prime knot K
such that ω(D) = 6 and β(K) = 4.

Figure 11. Another minimal crossing diagram D′ of the prime
knot K pictured in Figure 10. This time, ω(D′) = β(K) = 4.
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knots. A knot is said to be hyperbolic if its complement has a complete hyperbolic
structure of finite volume, or equivalently, its exterior does not contain essential
surfaces of non-negative Euler characteristic. This implies that hyperbolic knots
are “generic” among all knots. Our knots given in Figures 9 and 10 are classified
into satellite knots. Then, the next question naturally arises.

Question 4.6. Does there exist a hyperbolic knot K and a minimal crossing dia-
gram D of K such that b⊥(D) > β(K)?

5. Incompatibility of the overpass bridge number and the crossing
number

A classical notion of diagrammatic bridge number is that of “overpass” bridge
number. Call an arc in knot diagram a bridge if it includes at least one overcrossing.
The overpass bridge number of the diagram is the number of bridges in the diagram.
It is well-known that this definition of diagrammatic bridge number is not well
behaved with respect to minimal crossing number diagrams. For instance, the
trefoil knot has bridge number two and crossing number three. However, it is a
straight-forward exercise to show that every diagram of the trefoil with overpass
bridge number two contains at least four crossings. More generally, we show that
the minimal overpass bridge number and the minimal crossing number are wholly
incompatible.

Theorem 5.1. Let K be a non-trivial knot. K does not admit a diagram which
realizes both the minimal overpass bridge number and the minimal crossing number
of K.

Theorem 5.1 follows from the next two lemmas. We recall from [9] the definition
of an overpass (resp. underpass) in a knot diagram. For a diagram D = p(γ) of a
knot type K, an overpass (resp. underpass) is a subarc p(α), where α is a subarc of
γ and p|α is an injection, which contains only over-crossings (resp. under-crossings).
Any knot diagram D can be decomposed into an alternative sequence of over- and
under-passes α+

1 , α
−
1 , . . . , α

+
n , α

−
n . Let us rephrase the definition of overpass bridge

number, which we recalled in the introduction, in this language.

Definition 5.2. The overpass bridge number of a knot diagram D as the minimal
number of n over all alternative sequences of over/underpasses α+

1 , α
−
1 , . . . , α

+
n , α

−
n .

It is well-known that the overpass bridge number of a knot type K, namely,
the minimal overpass bridge number over all diagrams of K, is simply the bridge
number of K.

Lemma 5.3. If a knot diagram has the minimal overpass bridge number, then any
pair of consecutive over/underpasses intersect in at least one crossing.

Proof. Suppose that there exists a pair of consecutive over/underpasses which has
no crossing. Then we can obtain a knot diagram with a smaller overpass bridge
number, by applying a move as shown in Figure 12. □
Lemma 5.4. Let D be a crossing number minimizing knot diagram. Any pair of
consecutive over/underpasses in D do not intersect at a crossing.

Proof. Consider a knot diagram which contains a pair of consecutive
over/underpasses intersecting at at least one crossings. Apply a move as shown
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Figure 12. Reducing the overpass bridge number.

in Figure 13. This results in a knot diagram for the same knot whose crossing
number is smaller. □

Figure 13. Reducing the crossing number.

Appendix: A note on Wirtinger number and flypes
by Ryan Blair and Nathaniel Morrison

We provide an example demonstrating that the Wirtinger number of a prime,
reduced, alternating diagram is not necessarily invariant under flype operations.
This example also implies that a minimal diagram of a prime alternating knot does
not necessarily admit a minimal Wirtinger number. This work resolves questions
posed by the first author, Kjuchukova and Ozawa.

Introduction. A diagrammatic bridge number is an integer complexity associated
to a knot diagram with the property that the minimum of this integer over all
diagrams D of a given knot K is equal to the bridge number of K. The Wirtinger
number of a knot diagram D, denoted w(D), is an integer complexity of D defined
in terms of “coloring moves” performed on D. It has previously been shown that
the Wirtinger number is a diagrammatic bridge number [3]. The authors of [2]
originally thought that Wirtinger number is invariant under flype operations and
furthermore, that for any minimal diagram Dof a prime alternating knot K, it
holds that w(D) = β(K), where β(K) is the bridge number of the knot K with
diagram D. However, this is not the case. In this note we present a prime, reduced,
alternating diagram of a Montesinos knot with the property that the Wirtinger
number of this diagram is distinct from the Wirtinger number of this diagram after
a flype.

Counterexample. Consider the knot diagram D pictured in Figure 14. This
diagram is given by the Gauss code

[1, -2, 3, -4, 5, -6, 7, -8, 9, -10, 11, -12, 13, -14, 15, -16, 17, -7, 2, -3, 6, -5, 4, -1,
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8, -9, 18, -19, 26, -23, 22, -21, 24, -25, 20, -11, 16, -15, 12, -13, 14, -17, 10, -18, 19,
-20, 21, -22, 23, -24, 25, -26].

Note that this diagram is prime, reduced and alternating. Hence, D has minimal
crossing number [6] [8] [11]. Moreover, since D is a diagram for a Motesinos knot
on three rational tanlges, then β(K) = 3 where K is the knot with diagram D [4].

Using the strands labeled α, β, γ, and δ as initial or “seed” strands, perform a
sequence of coloring moves as in the definition of the Wirtinger number described
in [3] until no further operations of this kind can be performed. Note that this
process terminates with the diagram D being fully colored, and so w(D) ≤ 4 by
definition of the Wirtinger number.

Next we use a computer-aided calculation to perform this same process for all
possible combinations of three strands as seed strands, and note that for no set of
three seed strands is the diagram completely colorable. Note that this computation
was performed using a version of code by P. Villanueva[12] modified by the second
author. Thus, 3 < w(D) ≤ 4, and so w(D) = 4.

Figure 14. Diagram D of the counterexample knot. The seed
strands α, β, γ, and δ are the overstrands at crossings 5, 4, 15 and
19, respectively. Region R, the region that will be flyped, is shaded.

Perform a flype on region R, defined by the set of crossings {10, 11, 12, 13, 14,
15, 16, 17}, by uncrossing crossing 10 and defining the new crossing to be crossing
10. The flyped diagram D′ can be see in Figure 15, and is given by the Gauss code

[1, -2, 3, -4, 5, -6, 7, -8, 9, -11, 12, -13, 14, -15, 16, -17, 10, -7, 2, -3, 6, -5, 4, -1,
8, -9, 18, -19, 26, -23, 22, -21, 24, -25, 20, -10, 11, -16, 15, -12, 13, -14, 17, -18, 19,
-20, 21, -22, 23, -24, 25, -26].

Using the strands labeled E, F , and G in D′ as seed strands, perform a sequence
of coloring moves until no further operations of this kind can be performed. Note
that this process results in D′ being fully colored, and so w(D′) ≤ 3 by definition of
the Wirtinger number. Thus, the Wirtinger number is not preserved under flypes,
and since β(K) = 3 < 4 = w(D), it follows that the minimal, prime, alternating
diagram D has a Wirtinger number strictly greater than the bridge number of the
knot.
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Figure 15. Diagram D′ of the counterexample knot after a flype
has been performed on region R. The seed strands E, F , and G of
this new diagram are the overstrands at crossings 16, 21 and 24,
respectively. Region R, the region that was flyped, is shaded.
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de Montesinos, Comment. Math. Helv., 60 (1985), no. 2, 270–279.
5. Bridge Numbers, https://sites.google.com/a/wisc.edu/alexandra-a-kjuchukova/bridge-

numbers, Accessed: 2017-10-31.
6. Louis H. Kauffman, State models and the Jones polynomial, Topology 26 (1987), no. 3, 395–

407.

7. Markus Rost and Heiner Zieschang, Meridional generators and plat presentations of torus
links, J. London Math. Soc. (2), 35(3):551–562, 1987.

8. Kunio Murasugi, Jones polynomials and classical conjectures in knot theory, Topology 26

(1987), no. 2, 187–194.
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