

IDEMPOTENTS IN TANGLE CATEGORIES SPLIT

RYAN BLAIR AND JOSHUA SACK

ABSTRACT. In this paper we use 3-manifold techniques to illuminate the structure of the category of tangles. In particular, we show that every idempotent morphism A in such a category naturally splits as $A = B \circ C$ such that $C \circ B$ is an identity morphism.

1. INTRODUCTION

An *idempotent* of a category is a morphism that is idempotent with respect to composition, i.e. a morphism f such that $f = f \circ f$. Idempotents have significance to quantum observations or measurements [8], can reflect self-replication in biology (such as DNA) [6], and can form building blocks for numerous algebraic structures [5]. An idempotent f *splits* if there are morphisms g and h such that $f = g \circ h$, but $h \circ g$ is an identity morphism. By direct inspection, one can see that any morphism f with such a property is idempotent (if $h \circ g$ is an identity, then $(g \circ h) \circ (g \circ h) = g \circ (h \circ g) \circ h = g \circ h$); but in many categories, not all idempotents split. A category where every idempotent splits is called *Karoubi complete*. Idempotent splitting may adopt significance from various interpretations of the categories involved. For example, Selinger studied idempotents of dagger categories, and described in [8, Remark 3.5] how the splitting of idempotents may clarify data types. In [6], Kauffman related idempotents to DNA replication, and saw the idempotents in a Karoubi complete category as appealing models for self-replicators.

We show that the category of unoriented tangles up to isotopy is Karoubi complete. Objects of this category are points in the disc D^2 , morphisms are properly embedded 1-manifolds in $D^2 \times I$ (these are the tangles), and the morphism composition is achieved via a stacking operation. Categories of tangles were studied in [9] to understand the combinatorial structure of tangle composition, and various categories of tangles are classified in [4] as certain types of braided pivotal categories. A related category, called the Temperley-Lieb category, can be described similarly, but with D^2 replaced by I , and hence the category

of tangles we consider is a natural generalization of the Temperley-Lieb category. It was shown in [1] that the Temperley-Lieb category is Karoubi complete.

Although the main result of this paper extends that in [1], the techniques in this paper are different and are rather inspired by the proof of the prime decomposition theorem for string links provided in [2]. The main technical tool in the current paper, as well as in [2], is a bound, established in [3], on the number of non-parallel essential surfaces in a compact 3-manifold. The paper is organized as follows. In Section 3 we precisely define the tangle category. In Section 4 we review incompressible punctured surfaces and their properties. In Section 5 we adapt to tangles the notion of braid-equivalence for string links in [2] and apply this idea to factoring morphisms as the composition of two morphisms. In Section 6 we prove that all idempotents in the category of tangles split.

2. ACKNOWLEDGMENTS

The authors would like to thank Michael Peterson for many useful conversations.

3. IDEMPOTENTS IN THE CATEGORY OF TANGLES

Let \mathcal{T} be the category of smooth tangles. The definition of \mathcal{T} that we give here is essentially equivalent to the definition of the *category of unoriented tangles up to isotopy*, denoted $\mathbb{T}\mathbb{A}\mathbb{N}\mathbb{G}$, in [4]. The objects of \mathcal{T} are the natural numbers. Each natural number n is identified with n distinct fixed points $\{x_1, x_2, \dots, x_n\}$ in the disk¹. The morphisms of \mathcal{T} are *tangles*. A tangle is a pair $(D^2 \times I, A)$ such that A is a properly embedded compact 1-manifold in $D^2 \times I$ with the following conditions: the boundary of each arc (connected component with non-trivial boundary) of A is contained in $(D^2 \times \{0\}) \cup (D^2 \times \{1\})$; the intersection of A with the lower and upper boundaries of $D^2 \times I$ are $A \cap (D^2 \times \{0\}) = \{(x_1, 0), (x_2, 0), \dots, (x_n, 0)\}$ and $A \cap (D^2 \times \{1\}) = \{(x_1, 1), (x_2, 1), \dots, (x_m, 1)\}$; and for each boundary point $(x_i, 0)$ or $(x_i, 1)$ of A and each sufficiently small neighborhood of that point, the derivatives of all orders of the embedding agree with the maps $t \mapsto (x_i, t)$. For simplicity, we will occasionally refer to the tangle $(D^2 \times I, A)$ as the morphism A . We denote $D^2 \times \{1\}$ by $\partial_+(D^2 \times I)$ and $D^2 \times \{0\}$ by $\partial_-(D^2 \times I)$.

¹Without loss of generality, if $n < m$, then x_1, \dots, x_n associated with n is the same as the first n elements of x_1, \dots, x_m associated with m .

Definition 3.1 (Tangle equivalence). *Tangles $(D^2 \times I, A)$ and $(D^2 \times I, B)$ are equivalent if there is an isotopy of $D^2 \times I$ fixing $\partial(D^2 \times I)$ that takes A to B . In this case, we will write $A = B$.*

Let $h : D^2 \times I \rightarrow I$ be the projection map onto the second coordinate. A *braid* is a tangle that is equivalent to a tangle $(D^2 \times I, A)$ with the property that for every component α of A , the restriction of h to α is a smooth, one-to-one and onto function with no critical points in its domain. Given tangle (M, A) from k to l and tangle (N, B) from l to m , with $M = N = D^2 \times I$, denote the *composition* of these morphisms by $(D^2 \times I, A \circ B)$ which is the quotient of $M \cup N$ achieved by gluing $\partial_+(M)$ to $\partial_-(N)$ via the map $(x, 1) \mapsto (x, 0)$, and $A \circ B$ is the properly embedded 1-manifold in the quotient which is the image of $A \cup B$ under this identification. The resulting quotient of $M \cup N$ is again homeomorphic to $D^2 \times I$ and we choose to identify the image of M under the quotient map with $D^2 \times [0, 1/2]$ and the image of N with $D^2 \times [1/2, 1]$ in the obvious ways. We will write the resulting tangle as the morphism $A \circ B$ and consider it the composition of morphisms A and B . See Figure 1.

We illustrate in Figure 2 an *idempotent* in the category of tangles, i.e. a morphism A of \mathcal{T} such that $A \circ A = A$. Note that if A is a braid and an idempotent then A is an identity morphism, since braids are invertible morphisms. Recall that a category is *Karoubi complete* if all of its idempotents split, where an idempotent A *splits* if there exist morphisms C and B such that $A = C \circ B$ and $B \circ C = Id_n$ is an identity morphism. Our main theorem is the following.

Theorem 3.2. *The category \mathcal{T} of tangles is Karoubi complete.*

4. INCOMPRESSIBLE PUNCTURED SURFACES

Our primary tool in the classification of idempotents in \mathcal{T} will be the study of punctured surfaces up to transverse isotopy. Unless otherwise stated all manifolds are compact. Suppose α is a 1-manifold properly embedded in a 3-manifold M . If F is a properly embedded surface in M which meets α transversely in k points, we say F is *k-punctured*. An isotopy ϕ_t of F in M is *proper* if its restriction to $\partial F \times I$ is an isotopy of ∂F in ∂M and $\phi_t(F)$ is transverse to the boundary for all t . Moreover, the isotopy ϕ_t is *transverse* to α if the embedding ϕ_t is transverse to α for all fixed values of t . Isotopies of surfaces in this paper will always be proper isotopies that are transverse to the relevant 1-manifolds.

If α is a 1-manifold properly embedded in $M \cong D^2 \times I$ and F is a properly embedded k -punctured surface in M , F is *boundary-parallel*

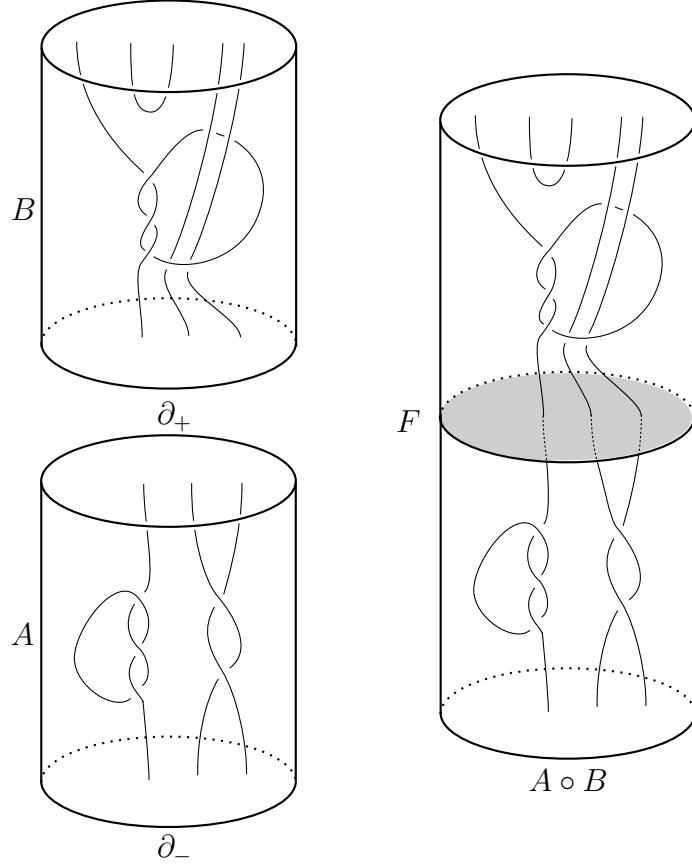


FIGURE 1. The composition of tangles

either if F is a 2-punctured 2-sphere bounding a 3-ball that meets α in an unknotted arc or if there is a transverse isotopy of F in M which fixes ∂F and takes F to a punctured subsurface contained in ∂M . Otherwise, we say F is *non-boundary parallel*. A loop γ embedded in F is *essential* if it does not bound a 0-punctured disk in F . The k -punctured surface F is *compressible* in (M, α) (or just *compressible* when context is understood) if F is a 0-punctured 2-sphere bounding a 3-ball or if there exists a disk D embedded in M such that $D \cap F = \partial D$, ∂D is essential in F and D is disjoint from α . Such a disk is called a *compressing disk*. Otherwise, we say F is *incompressible*. A punctured surface F is *essential* if F is incompressible and non-boundary parallel.

Given a 1-manifold α properly embedded in $M \cong D^2 \times I$ and F a properly embedded k -punctured surface with compressing disk D , we can *compress* F along D to form a new embedded k -punctured surface F^* . See Figure 3. Let $D^2 \times I$ be a fibered submanifold of M containing D such that $D = D^2 \times \{\frac{1}{2}\}$, $D^2 \times I$ is disjoint from α ,

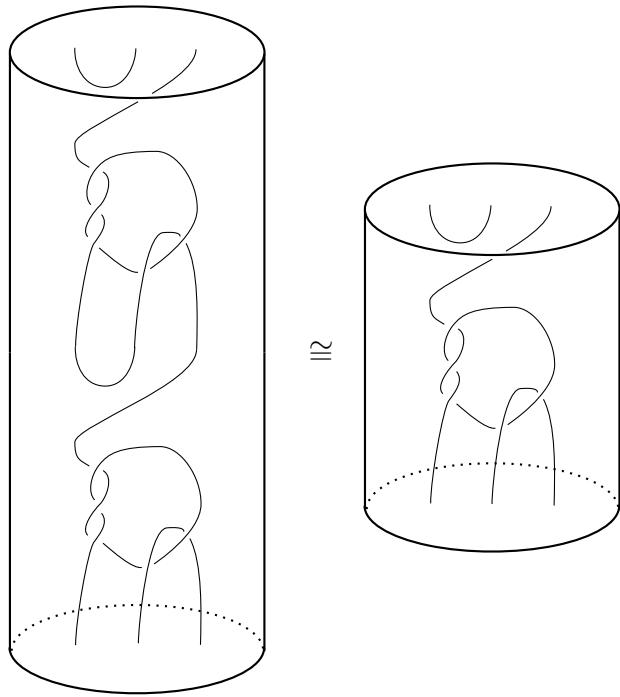


FIGURE 2. An idempotent morphism in the category of tangles

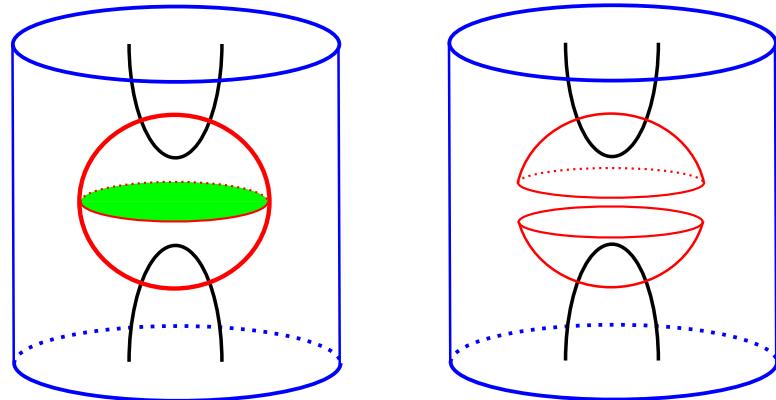


FIGURE 3. An example of compressing a 4-punctured sphere to obtain two boundary-parallel 2-punctured spheres.

and $\partial(D^2) \times I$ is an embedded annulus in F that is disjoint from the punctures of F . Then we define F^* to be a surface transversely isotopic to $(F \setminus (\partial(D^2) \times I)) \cup (D^2 \times \{0, 1\})$.

Although we take the point of view of incompressible and non-boundary parallel punctured surfaces in this paper, we could have equivalently adopted the point of view of studying incompressible and non-boundary parallel surfaces properly embedded in the exterior of α in M . In particular, if F is a properly embedded non-boundary parallel punctured surface in $(D^2 \times I, \alpha)$ and $\eta(\alpha)$ is a small open regular neighborhood of α in $D^2 \times I$, then $F \setminus \eta(\alpha)$ is non-boundary parallel in $(D^2 \times I) \setminus \eta(\alpha)$. Similarly, if F is a properly embedded incompressible punctured surface in $(D^2 \times I, \alpha)$ and $\eta(\alpha)$ is a small open regular neighborhood of α in $D^2 \times I$, then $F \setminus \eta(\alpha)$ is incompressible in $(D^2 \times I) \setminus \eta(\alpha)$. In particular, we will make use of the following Theorem of Freedman and Freedman.

Theorem 4.1. [3] *Let M be a compact 3-manifold with boundary and b an integer greater than zero. There is a constant $c(M, b)$ so that if F_1, \dots, F_k , $k > c$, is a collection of incompressible surfaces such that all the Betti numbers $b_1(F_i) < b$, $1 \leq i \leq k$, and no F_i , $1 \leq i \leq k$, is a boundary parallel annulus or a boundary parallel disk, then at least two members F_i and F_j are parallel.*

Note that Freedman and Freedman define two disjoint properly embedded surfaces F_i and F_j in a compact 3-manifold M to be *parallel* if $F_i \cup F_j$ cobound a product $F \times I$ in M such that $\partial F \times I \subset \partial M$, $F_i = F \times \{0\}$ and $F_j = F \times \{1\}$.

5. DECOMPOSING DISKS AND BRAID EQUIVALENCE

Decomposing a morphism in \mathcal{T} as a composition of two morphisms involves some amount of choice. This choice can be captured via the notion of braid-equivalence.

Definition 5.1. *Two tangles $(D^2 \times I, A)$ and $(D^2 \times I, B)$ are braid-equivalent if there exist braids C_1 and C_2 such that $A = C_1 \circ B \circ C_2$.*

Proposition 5.2. *Tangles $(D^2 \times I, T_1)$ and $(D^2 \times I, T_2)$ are braid-equivalent if and only if there is an isotopy of $D^2 \times I$ which fixes $(\partial D^2) \times I$ and which takes T_1 to T_2 .*

Proof. This follows from a nearly identical adaptation of the proof of Proposition 3.6 of [2]. \square

Definition 5.3. *A decomposing disk for a tangle $(D^2 \times I, A)$ is a punctured disk which is properly embedded in $D^2 \times I$, whose boundary is isotopic in $\partial(D^2 \times I)$ to $\partial(\partial_+(D^2 \times I))$. See the disk F in Figure 1.*

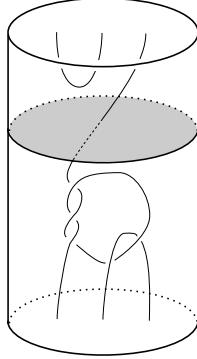


FIGURE 4. A minimal decomposing disk for an idempotent tangle.

A decomposing disk F for a tangle $(D^2 \times I, A)$ separates $D^2 \times I$ into two connected components, one containing $\partial_-(D^2 \times I)$ and the other containing $\partial_+(D^2 \times I)$. The closure of each component is homeomorphic to $D^2 \times I$, so F decomposes $(D^2 \times I, A)$ into two tangles, each of which is well-defined up to composition with braids (cf. *braid-equivalence* in Definition 5.1). If $(D^2 \times I, B)$ is the tangle resulting from restricting A to the side of F in $D^2 \times I$ that contains $\partial_-(D^2 \times I)$ and $(D^2 \times I, C)$ is the tangle resulting from restricting A to the side of F in $D^2 \times I$ that contains $\partial_+(D^2 \times I)$, we say that F *decomposes* $(D^2 \times I, A)$ as $(D^2 \times I, B \circ C)$, or, more simply, $A = B \circ C$. Note that any tangle A can be decomposed as $A \circ I$, where I here is an appropriate identity tangle, thus every tangle contains a decomposing disk.

6. THE PROOF

Definition 6.1. *A decomposing disk F for a tangle $(D^2 \times I, A)$ is minimal if there is no decomposing disk G such that $|F \cap A| > |G \cap A|$. See Figure 4.*

Lemma 6.2. *If $(D^2 \times I, A)$ is an idempotent, then either $(D^2 \times I, A)$ is an identity morphism or any minimal decomposing disk is essential.*

Proof. Assume that $(D^2 \times I, A)$ is an idempotent. If $(D^2 \times I, A)$ is a braid, then, as braids are invertible morphisms, A is an identity morphism. So, we may assume that $(D^2 \times I, A)$ is not a braid. If A contains l distinct closed loops, then, since A is idempotent, A must contain $2l$ distinct closed loops, a contradiction unless $l = 0$. Hence, we can assume that A contains no closed loops.

Since $(D^2 \times I, A)$ is an idempotent, then $(D^2 \times I, A)$ is a morphism from n points to n points for some n . Since A is non-empty, $n \geq 1$. By

Theorem 4.1, there is an integer c such that if F_1, \dots, F_k is a collection of disjoint incompressible decomposing disks in $D^2 \times I$ that each meet A in at most n points (hence the first Betti number of each F_i is bounded above by n) and $k > c$, then at least two members F_i and F_j are parallel or one of the surfaces F_1, \dots, F_k is a boundary parallel 0-punctured disk or a boundary parallel 1-punctured disk.

Claim: $\partial_+(D^2 \times I)$ or $\partial_-(D^2 \times I)$ is compressible in $(D^2 \times I, A)$.²

Proof of claim: Since $(D^2 \times I, A)$ is equivalent to $(D^2 \times I, A \circ A)$, then $(D^2 \times I, A)$ is equivalent to $(D^2 \times I, A^{c+2})$. Hence, we can find $c+1$ pairwise decomposing disks, F_1, \dots, F_{c+1} , for $(D^2 \times I, A)$ that decompose $(D^2 \times I, A)$ into $c+2$ copies of $(D^2 \times I, A)$. If both $\partial_+(D^2 \times I)$ and $\partial_-(D^2 \times I)$ are incompressible in $(D^2 \times I, A)$, then each of F_1, \dots, F_{c+1} are incompressible in $(D^2 \times I, A)$. Since $n \geq 1$, then none of the surfaces F_1, \dots, F_{c+1} is a 0-punctured disk. Moreover, if any of the surfaces was a boundary parallel once punctured disk (i.e. a boundary parallel annulus in the exterior of A), then, by the isotopy extension theorem [7], A would be a trivial braid on one strand. Thus, the collection F_1, \dots, F_{c+1} meets the hypothesis of Theorem 4.1 and there exist two members F_i and F_j that are parallel. The tangle between F_i and F_j in $D^2 \times I$ is braid-equivalent to $(D^2 \times I, A^l)$ for some $l \geq 1$; however, since F_i is parallel to F_j , then A^l and, thus, A is a braid, a contradiction. Hence, one of $\partial_+(D^2 \times I)$ or $\partial_-(D^2 \times I)$ is compressible in $(D^2 \times I, A)$. \square

Without loss of generality, suppose that $\partial_+(D^2 \times I)$ is compressible in $(D^2 \times I, A)$. Compressing $\partial_+(D^2 \times I)$ once results in a surface with two connected components. One component is a decomposing disk that meets A in strictly fewer than n points and the other component is a punctured sphere. Note that any boundary parallel decomposing disk would be properly, transversely isotopic to $\partial_+(D^2 \times I)$ or $\partial_-(D^2 \times I)$ in $(D^2 \times I, A)$, and hence meets A in n points. Since we have found a decomposing disk that meets A in strictly fewer than n points, then a minimal decomposing disk cannot be boundary parallel.

Let F be a minimal decomposing disk for $(D^2 \times I, A)$. By the above argument, F is non-boundary parallel. Next, we show that F is incompressible. If F is compressible, then compressing F once results in a surface with two connected components. One component is a decomposing disk that meets A in fewer points than F does. This is a contradiction to F being a minimal decomposing disk. Hence, F is incompressible. Since F is both incompressible and non-boundary parallel, then F is essential. \square

²Observe that in Figure 2 $\partial_+(D^2 \times I)$ is compressible.

We now restate and prove our main theorem (Theorem 3.2).

Theorem 6.3. *If $(D^2 \times I, A)$ is an idempotent, then there exist B and C , such that $A = B \circ C$ and $C \circ B$ is an identity morphism.*

Proof. Let F be a minimal decomposing disk for $(D^2 \times I, A)$. By Lemma 6.2, F is essential. Denote the tangles that F decomposes $(D^2 \times I, A)$ into by $(D^2 \times I, B)$ and $(D^2 \times I, C)$ so that $A = B \circ C$. Note that since A is an idempotent, then A is a morphism from n points to n points for some n . Moreover, since $\partial_+(D^2 \times I)$ is a decomposing disk for every $(D^2 \times I, A)$, then F meets A in at most n points (in fact, F meets A in strictly fewer than n points by the claim in the proof of the previous theorem).

By Theorem 4.1, there is an integer c such that if F_1, \dots, F_k is a collection of disjoint essential decomposing disks in $D^2 \times I$ that each meet A in at most n points (hence the first Betti number of each F_i is bounded above by n) and $k > c$, then at least two members F_i and F_j are parallel (note that none of the F_i are boundary parallel since each is essential).

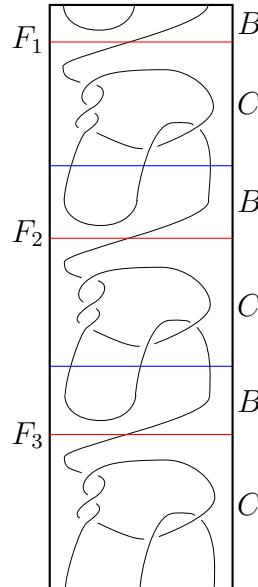


FIGURE 5. An example of how three copies of an idempotent $A = B \circ C$ can be decomposed into one copy of B , two copies of $C \circ B$, and one copy of C .

Since we have established that F is an essential punctured surface in $(D^2 \times I, A)$ and since $(D^2 \times I, A)$ is equivalent to $(D^2 \times I, A^{c+1})$, then we can find $c+1$ disjoint minimal decomposing disks, F_1, \dots, F_{c+1} , for $(D^2 \times I, A)$ each representing the copy of F in each copy of A in A^{c+1} . Each of F_1, \dots, F_{c+1} is essential in $(D^2 \times I, A)$ and together they decompose $(D^2 \times I, A)$ into one copy of $(D^2 \times I, B)$, c copies of $(D^2 \times I, C \circ B)$, and one copy of $(D^2 \times I, C)$. See Figure 5. By Theorem 4.1, there exist two members F_i and F_j that are parallel. The tangle between F_i and F_j in $D^2 \times I$ is equivalent to $(D^2 \times I, (C \circ B)^l)$ for some $l \geq 1$, however, since F_i is parallel to F_j , then $(C \circ B)^l$ and, thus, $C \circ B$ is a braid.

Since $A^2 = A$, then $B \circ C \circ B \circ C = B \circ C$. We can compose on the left by C and the right by B to obtain $(C \circ B)^3 = (C \circ B)^2$. However, since braids on n strands are invertible morphisms, $(C \circ B)^3 = (C \circ B)^2$ implies $C \circ B$ is an identity morphism. \square

7. ACKNOWLEDGEMENTS

The first author was supported by NSF Grant DMS–1821254.

REFERENCES

- [1] Samson Abramsky, *Temperley–Lieb algebra: from knot theory to logic and computation via quantum mechanics*, Mathematics of quantum computation and quantum technology, 2007, pp. 515–558.
- [2] Ryan Blair, John Burke, and Robin Koytcheff, *A prime decomposition theorem for the 2-string link monoid*, J. Knot Theory Ramifications **24** (2015), no. 2, 1550005, 24. MR3334658
- [3] Benedict Freedman and Michael H. Freedman, *Kneser–Haken finiteness for bounded 3-manifolds locally free groups, and cyclic covers*, Topology **37** (1998), no. 1, 133–147. MR1480882 (99h:57036)
- [4] Peter J Freyd and David N Yetter, *Braided compact closed categories with applications to low dimensional topology*, Advances in Mathematics **77** (1989), no. 2, 156–182.
- [5] Rukhsan Ul Haq and Louis H. Kauffman, *Iterants, idempotents and clifford algebra in quantum theory*, CoRR **abs/1705.06600** (2017).
- [6] Louis H. Kauffman, *Biologic. II*, Woods Hole mathematics, 2004, pp. 94–132. MR2123368
- [7] Richard S. Palais, *Local triviality of the restriction map for embeddings*, Comment. Math. Helv. **34** (1960), 305–312. MR0123338
- [8] Peter Selinger, *Idempotents in dagger categories*, Electronic Notes in Theoretical Computer Science **210** (2008), 107–122. Proceedings of the 4th International Workshop on Quantum Programming Languages (QPL 2006).
- [9] David N. Yetter, *Markov algebras*, Contemporary Mathematics **78** (1988).