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Abstract. In this paper we use 3-manifold techniques to illumi-
nate the structure of the category of tangles. In particular, we show
that every idempotent morphism A in such a category naturally
splits as A = B ◦ C such that C ◦B is an identity morphism.

1. Introduction

An idempotent of a category is a morphism that is idempotent with
respect to composition, i.e. a morphism f such that f = f ◦f . Idempo-
tents have significance to quantum observations or measurements [8],
can reflect self-replication in biology (such as DNA) [6], and can form
building blocks for numerous algebraic structures [5]. An idempotent
f splits if there are morphisms g and h such that f = g ◦ h, but h ◦ g
is an identity morphism. By direct inspection, one can see that any
morphism f with such a property is idempotent (if h ◦ g is an identity,
then (g ◦ h) ◦ (g ◦ h) = g ◦ (h ◦ g) ◦ h = g ◦ h); but in many cate-
gories, not all idempotents split. A category where every idempotent
splits is called Karoubi complete. Idempotent splitting may adopt sig-
nificance from various interpretations of the categories involved. For
example, Selinger studied idempotents of dagger categories, and de-
scribed in [8, Remark 3.5] how the splitting of idempotents may clarify
data types. In [6], Kauffman related idempotents to DNA replication,
and saw the idempotents in a Karoubi complete category as appealing
models for self-replicators.

We show that the category of unoriented tangles up to isotopy is
Karoubi complete. Objects of this category are points in the disc D2,
morphisms are properly embedded 1-manifolds in D2 × I (these are
the tangles), and the morphism composition is achieved via a stacking
operation. Categories of tangles were studied in [9] to understand the
combinatorial structure of tangle composition, and various categories
of tangles are classified in [4] as certain types of braided pivotal cate-
gories. A related category, called the Temperley-Lieb category, can be
described similarly, but with D2 replaced by I, and hence the category
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of tangles we consider is a natural generalization of the Temperley-
Lieb category. It was shown in [1] that the Temperley-Lieb category is
Karoubi complete.

Although the main result of this paper extends that in [1], the tech-
niques in this paper are different and are rather inspired by the proof of
the prime decomposition theorem for string links provided in [2]. The
main technical tool in the current paper, as well as in [2], is a bound,
established in [3], on the number of non-parallel essential surfaces in
a compact 3-manifold. The paper is organized as follows. In Section
3 we precisely define the tangle category. In Section 4 we review in-
compressible punctured surfaces and their properties. In Section 5 we
adapt to tangles the notion of braid-equivalence for string links in [2]
and apply this idea to factoring morphisms as the composition of two
morphisms. In Section 6 we prove that all idempotents in the category
of tangles split.
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3. Idempotents in the Category of Tangles

Let T be the category of smooth tangles. The definition of T that
we give here is essentially equivalent to the definition of the category
of unoriented tangles up to isotopy, denoted TANG, in [4]. The ob-
jects of T are the natural numbers. Each natural number n is iden-
tified with n distinct fixed points {x1, x2, ..., xn} in the disk1. The
morphisms of T are tangles. A tangle is a pair (D2 × I, A) such
that A is a properly embedded compact 1-manifold in D2 × I with
the following conditions: the boundary of each arc (connected com-
ponent with non-trivial boundary) of A is contained in (D2 × {0}) ∪
(D2 × {1}); the intersection of A with the lower and upper bound-
aries of D2 × I are A ∩ (D2 × {0}) = {(x1, 0), (x2, 0), ..., (xn, 0)} and
A ∩ (D2 × {1}) = {(x1, 1), (x2, 1), ..., (xm, 1)}; and for each boundary
point (xi, 0) or (xi, 1) of A and each sufficiently small neighborhood of
that point, the derivatives of all orders of the embedding agree with the
maps t 7→ (xi, t). For simplicity, we will occasionally refer to the tangle
(D2 × I, A) as the morphism A. We denote D2 × {1} by ∂+(D2 × I)
and D2 × {0} by ∂−(D2 × I).

1Without loss of generality, if n < m, then x1, ..., xn associated with n is the
same as the first n elements of x1, ..., xm associated with m.
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Definition 3.1 (Tangle equivalence). Tangles (D2 × I, A) and (D2 ×
I, B) are equivalent if there is an isotopy of D2 × I fixing ∂(D2 × I)
that takes A to B. In this case, we will write A = B.

Let h : D2×I → I be the projection map onto the second coordinate.
A braid is a tangle that is equivalent to a tangle (D2 × I, A) with the
property that for every component α of A, the restriction of h to α
is a smooth, one-to-one and onto function with no critical points in
its domain. Given tangle (M,A) from k to l and tangle (N,B) from
l to m, with M = N = D2 × I, denote the composition of these
morphisms by (D2× I, A ◦B) which is the quotient of M ∪N achieved
by gluing ∂+(M) to ∂−(N) via the map (x, 1) 7→ (x, 0), and A ◦ B is
the properly embedded 1-manifold in the quotient which is the image
of A ∪B under this identification. The resulting quotient of M ∪N is
again homeomorphic to D2 × I and we choose to identify the image of
M under the quotient map with D2× [0, 1/2] and the image of N with
D2× [1/2, 1] in the obvious ways. We will write the resulting tangle as
the morphism A ◦ B and consider it the composition of morphisms A
and B. See Figure 1.

We illustrate in Figure 2 an idempotent in the category of tangles,
i.e. a morphism A of T such that A ◦ A = A. Note that if A is a
braid and an idempotent then A is an identity morphism, since braids
are invertible morphisms. Recall that a category is Karoubi complete
if all of its idempotents split, where an idempotent A splits if there
exist morphisms C and B such that A = C ◦B and B ◦C = Idn is an
identity morphism. Our main theorem is the following.

Theorem 3.2. The category T of tangles is Karoubi complete.

4. Incompressible punctured surfaces

Our primary tool in the classification of idempotents in T will be the
study of punctured surfaces up to transverse isotopy. Unless otherwise
stated all manifolds are compact. Suppose α is a 1-manifold properly
embedded in a 3-manifold M . If F is a properly embedded surface in
M which meets α transversely in k points, we say F is k-punctured. An
isotopy φt of F in M is proper if its restriction to ∂F×I is an isotopy of
∂F in ∂M and φt(F ) is transverse to the boundary for all t. Moreover,
the isotopy φt is transverse to α if the embedding φt is transverse to α
for all fixed values of t. Isotopies of surfaces in this paper will always
be proper isotopies that are transverse to the relevant 1-manifolds.

If α is a 1-manifold properly embedded in M ∼= D2 × I and F is a
properly embedded k-punctured surface in M , F is boundary-parallel
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Figure 1. The composition of tangles

either if F is a 2-punctured 2-sphere bounding a 3-ball that meets α in
an unknotted arc or if there is a transverse isotopy of F in M which
fixes ∂F and takes F to a punctured subsurface contained in ∂M .
Otherwise, we say F is non-boundary parallel. A loop γ embedded
in F is essential if it does not bound a 0-punctured disk in F . The
k-punctured surface F is compressible in (M,α) (or just compressible
when context is understood) if F is a 0-punctured 2-sphere bounding a
3-ball or if there exists a disk D embedded in M such that D∩F = ∂D,
∂D is essential in F and D is disjoint from α. Such a disk is called a
compressing disk. Otherwise, we say F is incompressible. A punctured
surface F is essential if F is incompressible and non-boundary parallel.

Given a 1-manifold α properly embedded in M ∼= D2 × I and F
a properly embedded k-punctured surface with compressing disk D,
we can compress F along D to form a new embedded k-punctured
surface F ∗. See Figure 3. Let D2 × I be a fibered submanifold of
M containing D such that D = D2 × {1

2
}, D2 × I is disjoint from α,
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∼=

Figure 2. An idempotent morphism in the category of tangles

Figure 3. An example of compressing a 4-punctured
sphere to obtain two boundary-parallel 2-punctured
spheres.

and ∂(D2) × I is an embedded annulus in F that is disjoint from the
punctures of F . Then we define F ∗ to be a surface transversely isotopic
to (F \ (∂(D2)× I)) ∪ (D2 × {0, 1}).
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Although we take the point of view of incompressible and non-
boundary parallel punctured surfaces in this paper, we could have
equivalently adopted the point of view of studying incompressible and
non-boundary parallel surfaces properly embedded in the exterior of α
in M . In particular, if F is a properly embedded non-boundary paral-
lel punctured surface in (D2 × I, α) and η(α) is a small open regular
neighborhood of α in D2× I, then F \η(α) is non-boundary parallel in
(D2 × I) \ η(α). Similarly, if F is a properly embedded incompressible
punctured surface in (D2×I, α) and η(α) is a small open regular neigh-
borhood of α in D2×I, then F \η(α) is incompressible in (D2×I)\η(α).
In particular, we will make use of the following Theorem of Freedman
and Freedman.

Theorem 4.1. [3] Let M be a compact 3-manifold with boundary and
b an integer greater than zero. There is a constant c(M, b) so that if
F1, ..., Fk, k > c, is a collection of incompressible surfaces such that all
the Betti numbers b1(Fi) < b, 1 ≤ i ≤ k, and no Fi, 1 ≤ i ≤ k, is a
boundary parallel annulus or a boundary parallel disk, then at least two
members Fi and Fj are parallel.

Note that Freedman and Freedman define two disjoint properly em-
bedded surfaces Fi and Fj in a compact 3-manifold M to be parallel
if Fi ∪ Fj cobound a product F × I in M such that ∂F × I ⊂ ∂M ,
Fi = F × {0} and Fj = F × {1}.

5. Decomposing Disks and Braid Equivalence

Decomposing a morphism in T as a composition of two morphisms
involves some amount of choice. This choice can be captured via the
notion of braid-equivalence.

Definition 5.1. Two tangles (D2 × I, A) and (D2 × I, B) are braid-
equivalent if there exist braids C1 and C2 such that A = C1 ◦B ◦ C2.

Proposition 5.2. Tangles (D2 × I, T1) and (D2 × I, T2) are braid-
equivalent if and only if there is an isotopy of D2×I which fixes (∂D2)×
I and which takes T1 to T2.

Proof. This follows from a nearly identical adaptation of the proof of
Proposition 3.6 of [2]. �

Definition 5.3. A decomposing disk for a tangle (D2 × I, A) is a
punctured disk which is properly embedded in D2 × I, whose boundary
is isotopic in ∂(D2 × I) to ∂(∂+(D2 × I)). See the disk F in Figure 1.
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Figure 4. A minimal decomposing disk for an idempo-
tent tangle.

A decomposing disk F for a tangle (D2× I, A) separates D2× I into
two connected components, one containing ∂−(D2 × I) and the other
containing ∂+(D2×I). The closure of each component is homeomorphic
to D2× I, so F decomposes (D2× I, A) into two tangles, each of which
is well-defined up to composition with braids (cf. braid-equivalence in
Definition 5.1). If (D2 × I, B) is the tangle resulting from restricting
A to the side of F in D2× I that contains ∂−(D2× I) and (D2× I, C)
is the tangle resulting from restricting A to the side of F in D2 × I
that contains ∂+(D2 × I), we say that F decomposes (D2 × I, A) as
(D2 × I, B ◦ C), or, more simply, A = B ◦ C. Note that any tangle A
can be decomposed as A ◦ I, where I here is an appropriate identity
tangle, thus every tangle contains a decomposing disk.

6. The Proof

Definition 6.1. A decomposing disk F for a tangle (D2 × I, A) is
minimal if there is no decomposing disk G such that |F ∩A| > |G∩A|.
See Figure 4.

Lemma 6.2. If (D2 × I, A) is an idempotent, then either (D2 × I, A)
is an identity morphism or any minimal decomposing disk is essential.

Proof. Assume that (D2 × I, A) is an idempotent. If (D2 × I, A) is
a braid, then, as braids are invertible morphisms, A is an identity
morphism. So, we may assume that (D2 × I, A) is not a braid. If A
contains l distinct closed loops, then, since A is idempotent, A must
contain 2l distinct closed loops, a contradiction unless l = 0. Hence,
we can assume that A contains no closed loops.

Since (D2 × I, A) is an idempotent, then (D2 × I, A) is a morphism
from n points to n points for some n. Since A is non-empty, n ≥ 1. By
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Theorem 4.1, there is an integer c such that if F1, ..., Fk is a collection of
disjoint incompressible decomposing disks in D2 × I that each meet A
in at most n points (hence the first Betti number of each Fi is bounded
above by n) and k > c, then at least two members Fi and Fj are parallel
or one of the surfaces F1, ..., Fk is a boundary parallel 0-punctured disk
or a boundary parallel 1-punctured disk.

Claim: ∂+(D2 × I) or ∂−(D2 × I) is compressible in (D2 × I, A).2

Proof of claim: Since (D2×I, A) is equivalent to (D2×I, A◦A), then
(D2 × I, A) is equivalent to (D2 × I, Ac+2). Hence, we can find c + 1
pairwise decomposing disks, F1, ..., Fc+1, for (D2×I, A) that decompose
(D2 × I, A) into c + 2 copies of (D2 × I, A). If both ∂+(D2 × I) and
∂−(D2×I) are incompressible in (D2×I, A), then each of F1, ..., Fc+1 are
incompressible in (D2 × I, A). Since n ≥ 1, then none of the surfaces
F1, ..., Fc+1 is a 0-punctured disk. Moreover, if any of the surfaces
was a boundary parallel once punctured disk (i.e. a boundary parallel
annulus in the exterior of A), then, by the isotopy extension theorem
[7], A would be a trivial braid on one strand. Thus, the collection
F1, ..., Fc+1 meets the hypothesis of Theorem 4.1 and there exist two
members Fi and Fj that are parallel. The tangle between Fi and Fj in
D2×I is braid-equivalent to (D2×I, Al) for some l ≥ 1; however, since
Fi is parallel to Fj, then Al and, thus, A is a braid, a contradiction.
Hence, one of ∂+(D2× I) or ∂−(D2× I) is compressible in (D2× I, A).
�

Without loss of generality, suppose that ∂+(D2 × I) is compressible
in (D2 × I, A). Compressing ∂+(D2 × I) once results in a surface with
two connected components. One component is a decomposing disk that
meets A in strictly fewer than n points and the other component is a
punctured sphere. Note that any boundary parallel decomposing disk
would be properly, transversely isotopic to ∂+(D2 × I) or ∂−(D2 × I)
in (D2 × I, A), and hence meets A in n points. Since we have found a
decomposing disk that meets A in strictly fewer than n points, then a
minimal decomposing disk cannot be boundary parallel.

Let F be a minimal decomposing disk for (D2× I, A). By the above
argument, F is non-boundary parallel. Next, we show that F is in-
compressible. If F is compressible, then compressing F once results
in a surface with two connected components. One component is a de-
composing disk that meets A in fewer points than F does. This is
a contradiction to F being a minimal decomposing disk. Hence, F
is incompressible. Since F is both incompressible and non-boundary
parallel, then F is essential. �

2Observe that in Figure 2 ∂+(D2 × I) is compresible.
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We now restate and prove our main theorem (Theorem 3.2).

Theorem 6.3. If (D2× I, A) is an idempotent, then there exist B and
C, such that A = B ◦ C and C ◦B is an identity morphism.

Proof. Let F be a minimal decomposing disk for (D2×I, A). By Lemma
6.2, F is essential. Denote the tangles that F decomposes (D2 × I, A)
into by (D2× I, B) and (D2× I, C) so that A = B ◦C. Note that since
A is an idempotent, then A is a morphism from n points to n points
for some n. Moreover, since ∂+(D2×I) is a decomposing disk for every
(D2 × I, A), then F meets A in at most n points (in fact, F meets A
in strictly fewer that n points by the claim in the proof of the previous
theorem).

By Theorem 4.1, there is an integer c such that if F1, ..., Fk is a
collection of disjoint essential decomposing disks in D2 × I that each
meet A in at most n points (hence the first Betti number of each Fi is
bounded above by n) and k > c, then at least two members Fi and Fj

are parallel (note that none of the Fi are boundary parallel since each
is essential).

F1

F2

F3

B

B

B

C

C

C

Figure 5. An example of how three copies of an idem-
potent A = B ◦ C can be decomposed into one copy of
B, two copies of C ◦B, and one copy of C.
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Since we have established that F is an essential punctured surface
in (D2 × I, A) and since (D2 × I, A) is equivalent to (D2 × I, Ac+1),
then we can find c+1 disjoint minimal decomposing disks, F1, ..., Fc+1,
for (D2 × I, A) each representing the copy of F in each copy of A
in Ac+1. Each of F1, ..., Fc+1 is essential in (D2 × I, A) and together
they decompose (D2 × I, A) into one copy of (D2 × I, B), c copies of
(D2×I, C ◦B), and one copy of (D2×I, C). See Figure 5. By Theorem
4.1, there exist two members Fi and Fj that are parallel. The tangle
between Fi and Fj in D2×I is equivalent to (D2×I, (C ◦B)l) for some
l ≥ 1, however, since Fi is parallel to Fj, then (C ◦B)l and, thus, C ◦B
is a braid.

Since A2 = A, then B ◦C ◦B ◦C = B ◦C. We can compose on the
left by C and the right by B to obtain (C ◦B)3 = (C ◦B)2. However,
since braids on n strands are invertible morphisms, (C ◦B)3 = (C ◦B)2

implies C ◦B is an identity morphism. �
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