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ABSTRACT. It was previously shown by the first author that every knot in $3 is
ambient isotopic to one component of a two-component, alternating, hyperbolic
link. In this paper, we define the alternating volume of a knot K to be the mini-
mum volume of any link L in a natural class of alternating, hyperbolic links such
that K is ambient isotopic to a component of L. Our main result shows that the
alternating volume of a knot is coarsely equivalent to the twist number of a knot.

1. INTRODUCTION

A core idea in the study of low-dimensional topology and geometry is to de-
velop a dictionary of translation between combinatorial information and geometric
information. This approach has been particularly successful in the study of hyper-
bolic links in $3. In particular, significant progress has been made in relating the
hyperbolic volume of links to the combinatorics of link diagrams.

The combinatorial invariant of twist number has been shown to have deep con-
nections to the hyperbolic volume of an alternating, hyperbolic link. In the sphere
of projection for a link diagram D, a twist region is a maximal collection of bigons
in the link diagram stacked end to end or a neighborhood of a crossing not incident
to any bigon. The integer ¢(D) denotes the number of twist regions of D. Lack-
enby showed that if a hyperbolic link has a prime alternating diagram D, then the
hyperbolic volume of that link is coarsely equivalent to #(D) (i.e. the hyperbolic
volume is bounded both above and below by a linear function of 7(D)) [3]. Hence,
for such links, hyperbolic volume is roughly equated to #(D). The twist number of
a link L is denoted #(L) and is the minimal value of 7(D) over all diagrams D of L.

In [2], the first author produced an algorithm that can be applied to any diagram
of any knot K to produce a diagram of an alternating link L such that the projec-
tion of K is contained in the projection of L. This algorithm together with results
of Menasco [4] were combined to show that given any knot K in S3, there exists
an unknot in the complement of K, denoted U, such that KU U is an alternating,
hyperbolic link. Roughly speaking, we define the alternating volume of a knot K,
denoted AltVol(K), to be the minimum volume of any such hyperbolic alternat-
ing link KUU. The precise definition of alternating volume will be given in the
next section. Our main result demonstrates that the alternating volume of a knot
is coarsely equivalent to the twist number of a knot. In particular, we show the
following:

Theorem 1.1 (Main). Let V3 be the volume of a regular ideal hyperbolic tetrahe-
dron. Given any non-alternating knot K,
1
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V3(t(K) —2) < AltVol(K) < 10V3(5¢(K) — 1).

The above theorem demonstrates that alternating volume is a topologically mean-
ingful method of assigning a hyperbolic structure to a non-hyperbolic knot. Since
alternating knot complements have played a special role in the study of hyperbolic
3-manifolds, we hope that further study of the algorithm in [2] and alternating vol-
ume will result in additional interesting connections between hyperbolic structures
and non-hyperbolic knots.

Our main result is inspired by recent work of Rieck and Yamashita [5] in which
they define the link volume of any closed orientable 3-manifold. However, our
techniques are similar to those used in [2] and differ significantly from those used
by Rieck and Yamashita. The link volume is a weighted hyperbolic volume as-
signed to a closed orientable 3-manifold M by viewing M as a cover of S branched
over a hyperbolic link. Hence, Rieck and Yamashita are able to assign weighted
hyperbolic volumes to 3-manifolds in a topologically meaningful way by relating
these 3-manifolds to hyperbolic links.

2. DEFINITIONS AND PRELIMINARIES

In this paper, we will use the term /ink to mean a smooth embedding of a dis-
joint collection of circles into S°. A link projection D is the image of the link
under a regular projection into a 2-sphere S C S3. We refer to S as the sphere of
projection. The link projection D is a finite 4-valent graph in S. A link diagram
is a link projection together with two edge labels assigned to every edge which
encode crossing information. See figure 1. Although this is the convention we use
in our proofs, when illustrating link projections we use the standard convention in
an effort to improved readability. Notice that every edge of D receives two labels.
An alternating edge is labeled with both a plus and a minus and a non-alternating
edge is labeled with two plus signs or two minus signs. A diagram D is alternating
if all edges of D are alternating. Moreover, we say a diagram is non-alternating if
it has at least one non-alternating edge. Note that this convention implies that the
standard diagram of the unknot is not non-alternating.

FIGURE 1. Our labeling convention for link diagrams.

Recall that a link is prime if it cannot be decomposed into a connected sum of
non-trivial links. A link is split if there exists a 2-sphere embedded in the exterior
of the link which separates components of the link. A link that is not split is called
non-split. A link diagram is connected if it is a connected subset of the sphere
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of projection. We say a link diagram is prime if, for every simple closed curve C
in the sphere of projection S which intersects D transversely in exactly two points
neither of which is a vertex of D, C bounds a disk F in S such that £ N D contains
no vertices of D. If a link diagram D has no cut vertex, we say D is reduced.
A link diagram is R2-reduced if there is no configuration of the form depicted in
Figure 2. Note that every link diagram can be converted to a reduced diagram via a
finite sequence of flypes and every link diagram can be converted to a R2-reduced
diagram by a finite sequence of type II Reidermeister moves.

FIGURE 2. An R2-reduced diagram does not contain this configuration.

Given a link diagram D contained in the sphere of projection S, a region of D is
the closure of a component of S\ D in S. A bigon region is a disk region such that
this disk meets D in exactly two edges. Given a link diagram D, let T be an open
regular neighborhood of all bigon regions of D in the sphere of projection. Each
connected component of 7 is called a twist region. Additionally, neighborhoods of
single crossings of D which are not incident to any bigon are also considered twist
regions. Hence, every crossing of D is contained in some twist region of D. The
total number of twist regions in D is the twist number of D and is denoted 7(D).
The twist number of a link L is the minimum value of 7(D) over all diagrams of L
and is denoted 7(L).

Define a sub twist region of a diagram D to be either an open regular neighbor-
hood of exactly one crossing of D or a connected open regular neighborhood of
some collection of bigons for D. See Figure 3.

FIGURE 3. An example of three disjoint sub twist regions con-
tained in a common twist region.
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A link K in §? is hyperbolic if §> — K has a complete Riemannian metric of
constant sectional curvature equal to —1. Due to Thurston’s foundational work on
hyperbolic 3-manifolds, it is known that every non-split link in S* fits into exactly
one of three mutually disjoint categories:

(1) hyperbolic links
(2) satellite links
(3) torus links

The complement of every hyperbolic link K in S* has a well-defined hyperbolic
volume, denoted vol(S° \ K). Significant effort has been made to develop combi-
natorial criteria for a link to be hyperbolic. The following result of Menasco shows
that most alternating links are hyperbolic.

Theorem 2.1. [4] If L is a non-split, prime, alternating link which is not a (2,q)
torus link, then L is hyperbolic.

The following theorem shows that every knot can be converted to an alternating
link by adding an unknotted component.

Theorem 2.2. [2] Given any connected diagram of a non-alternating link, we can
augment the diagram by adding a single unknotted component so that the resulting
link diagram is alternating.

In [2], Theorem 2.1 and Theorem 2.2 were combined to show the following
corollary.

Corollary 2.1. [2] Every link complement S° \ K contains an unknot U such that
KUU is a hyperbolic link.

Moreover, the proof of Corollary 2.1 demonstrates the slightly stronger result
that for every link K in S° there is a diagram D of K and an unknot U in S* such
that U projects to a simple closed curve in the sphere of projection for D, K UU
is hyperbolic and K U U has an alternating diagram in the sphere of projection
for D. The link KUU is called an alternating augmentation of D. The unknot
U is called the augmenting component of K UU. The diagram of an alternating
augmentation will be denoted G and will always denote the diagram of K U U
achieved by projecting K UU onto the sphere of projection for D. Hence, D is a
subset of G and the closure of G\ D is a simple closed curve A in the sphere of
projection. Note that A is the projection of U. See Figure 4.

We are now able to define the alternating volume of aknot K, denoted AltVol(K).
Given a knot K, the alternating volume of K is the infimum of the hyperbolic vol-
umes of all hyperbolic alternating augmentations of K. By Jgrgensen and Thurston,
we know that every non-empty set of hyperbolic volumes attains its infimum.
Hence, the infimum in the definition of alternating volume can be replaced with
a minimum. Thus,

AltVol(K) = l71Ci§13{vol(S3 \(KUU))}.

where the above minimum is taken over all augmenting components U such that
the alternating augmentation K U U is hyperbolic.
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FIGURE 4. Making a non-alternating knot into an alternating link

Given a hyperbolic knot K and any hyperbolic alternating augmentation of K,
K UU, then Thurston’s hyperbolic Dehn surgery theorem implies that vol(S®\
(KUU)) > vol(S?\ K). Hence, if K is a hyperbolic knot, it is always true that
AltVol(K) > vol (S*\ K).

Agol showed that the Whitehead link complement and the (—2,3,8) pretzel
link complement are the minimal volume orientable hyperbolic 3-manifolds with
two cusps [1]. Each of these manifolds has hyperbolic volume 4G where G is
Catalan’s constant. Moreover, the standard diagram of the Whitehead link is an
alternating augmentation of an unknot diagram. Similarly, the standard diagram
of the (—2,3,8) pretzel link is an alternating augmentation of a trefoil diagram.
Thus, the alternating volume of both the unknot the trefoil is 4G. Computing the
alternating volume for other knot types will likely be a challenging problem.

The main goal of this article is to relate the alternating volume of a knot to
the twist number of a knot in a manner similar to the following theorem due to
Lackenby[3] with improvements on the theorem due to Agol and D. Thurston.

Theorem 2.3. [3] Let V3 be the volume of a regular ideal hyperbolic tetrahedron.
Let D be a prime, alternating diagram for a hyperbolic link L. Then,

V3(1(D) —2) < vol(S*\ L) < 10V3(¢(D) — 1)

A portion of the proof of the main theorem will be devoted to proving gen-
eralizations of the results in [2] by carefully controlling how the diagram of an
augmenting component intersects the diagram of the original knot. We use the
remainder of this section to record results from that paper that we will use to con-
trol the projection of the augmenting component. Although we make an effort to
keep this paper self-contained, there are two instances where we use results from
[2] which follow from the proofs but not the statement of the theorems presented
there. These instances include the definition of alternating augmentation and Re-
mark 1. In both these cases, we provide references so that the interested reader can
verify our claims.
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In [2] the first author defines Type I and Type Il moves which are local moves
preformed on link diagrams. These moves have the potential to change the link
type, but will always preserve the fact that a link diagram is alternating. The Type
I move is depicted in Figure 5 and the Type II move is depicted in Figure 6.

Lemma 2.1. [2] Given an alternating connected diagram of a link, a Type I move
results in an alternating link diagram.

________________
—————
,,,,,,,
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FIGURE 5. A Type [ move.

Lemma 2.2. [2] Given an alternating connected diagram of a link, a Type 1l move
(after choosing the signs of the new crossings) results in an alternating link dia-

gram.

.....

FIGURE 6. A Type Il move.

Lemma 2.3. [2] Any non-alternating connected link diagram can be augmented
via an unlink such that it becomes alternating.

Remark 1. The proof of Lemma 2.3 appears on page 68 of [2] and some of the
details of that proof will become relevant later in this paper. In particular, the proof
of Lemma 2.3 implies that given any connected, non-alternating link diagram D for
a link K, it is possible to find an unlink U in S3 such that U projects to a collection of
disjoint simple closed curves in the sphere of projection for D and the projection of
U intersects every non-alternating edge of D exactly once, but is otherwise disjoint
from D. Moreover, the resulting diagram of KU U is alternating.

3. INITIAL INEQUALITIES

Lemma 3.1. Let D be any diagram of a knot and let G be the diagram of an
alternating augmentation of D, then t(D) <t(G).
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Proof. Since D is a subset of G, every crossing of D is a crossing of G. Let 7p be
the set of twist regions of G that contain at least one crossing of D. Suppose that
T € tp. The portion of G in T is the projection of two sub arcs of K UA. Moreover,
both of these arcs must be contained in K since T contains a crossing of D. Hence,
T is a sub twist region of D. Thus, all elements of 7p are sub twist regions of D.

Let P be the partition of the set of crossings of D corresponding to the twist
regions of D. Let P’ be the partition of the set of crossings of D corresponding to
Tp. To show P’ is a refinement of P, we will show that each of the following must
hold:

(1) Distinct elements of P intersect trivially.
(2) For all x € P’ there exists y € P such that x C y.
(3) Uyep x is the set of all crossings of D.

By definition, all of the twist regions of G are pairwise disjoint. Thus, distinct
elements of P’ intersect trivially.

As argued above, all twist regions in Tp are sub twist regions of D. Thus, for all
x € P there exists a y € P such that x C y.

Since every crossing of D is contained in some twist region in Tp, then (J,cp x
is the set of all crossings of D.

Therefore, P’ is a refinement of P.

Since P’ is a refinement of P, then |P| < |P'|. Since t(D) = |P| and |1p| = |P'|,
then

t(D) <|tp| < t(G).

The following results will be need in the proof of Lemma 3.3.

Lemma 3.2. If D is a connected, R2-reduced diagram of a link K and D contains
a twist region that is not a disk, then D is equivalent, via a planar isotopy, to the
standard diagram of the (2,n) torus link.

Proof. Let D be a connected diagram of a link K. Recall that a twist region of D
is either the neighborhood of a crossing of D that is not incident to a bigon region
or it is a connected component of T where 7 is an open regular neighborhood of all
bigon regions of D in the sphere of projection.

Suppose D contains a twist region 7 that is not a disk. Since a neighborhood of
a crossing of D is a disk, then T is a connected component of 7. Suppose that D has
the property that there are at most two bigon regions incident to every crossing of
D and that no two bigon regions share a common edge. In this case, T deformation
retracts onto a connected, compact 1-manifold o and T is homeomorphic to an
open neighborhood of or. The 1-manifold a7 can be constructed by choosing a
point in the interior of each bigon region an connecting pairs of points in adjacent
bigon regions via an arc that is contained in the union of the two bigon regions.
See Figure 7. If o is an arc, then 7' is homeomorphic to a disk, a contradiction to
how we chose T. Hence, o is a circle and T is homeomorphic to an open annulus.
However, if T is an open annulus, then D is the union of the boundaries of the
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bigon regions contained in 7. Since D is R2-reduced, then D is alternating and is
the standard diagram of the (2,n) torus link.

O et ] )

FIGURE 7. In the left figure, ar is an arc and T is a disk. In
the right figure, o is a circle, T is an open annulus and D is the
standard diagram of the (2,3) torus link.

We now consider the case when there is a crossing of D which is incident to
at least three distinct bigon regions. However, this can only occur when D is a
diagram with two vertices, four edges and four bigon regions. In this case T is
the entire sphere of projection. Since D is R2-reduced, D is alternating and is the
standard diagram of the Hopf link. See Figure 8.

FIGURE 8. The standard diagram of the Hopf Link.

Suppose that D has the property that there are at most two bigon regions incident
to every crossing of D and that there exist two bigon regions A and B which share
a common edge. See Figure 9. If T is a twist region which is disjoint from all
pairs of bigon regions that share a common edge, then the result follows from the
previous arguments. With out loss of generality, suppose T is not disjoint from
AUB. Since A and B share an edge, then T contains AUB. If T contains a third
bigon region, then one of the crossings contained in the boundary of A and B would
be incident to three bigon regions, a contradiction to how we chose D. Thus, T is
an open neighborhood of AU B which is a disk, a contradiction to how we chose
T. ]
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FIGURE 9. A twist region containing two bigon regions, A and B,
that share an edge.

Theorem 3.1. [4] If K is a link with reduced, alternating diagram D, then K is
non-split if and only if D is connected and K is prime if and only if D is connected
and prime.

The proof of Lemma 3.3 follows the general outline of the proofs of Theorem
4 and Corollary 5 in [2]. However, significant modification and additional work
must be done to control the number of twist regions in G.

Lemma 3.3. Given any connected, R2-reduced, prime, non-alternating diagram,
D, of a link K, we can augment the diagram by adding a single unknotted compo-
nent, U, so that K UU is a hyperbolic alternating augmentation of D and t(G) <

5t(D).

Proof. Let D be an R2-reduced, non-alternating diagram of a non-split, prime link.
By the proof of Lemma 2.3 and Remark 1, we can create the link K UU such
that U is an unlink, U projects to a disjoint collection of simple closed curves
in the sphere of projection for D and the corresponding diagram, G, of K UU is
alternating. Moreover, G is connected and the projection of U intersects each non-
alternating edge of D exactly once, but is otherwise disjoint from D. Hence, we
can assume that the projection of U is disjoint from the twist regions of D.

Let ¢/(G\ D) = U, <<, Ci = Ay where each C; is a simple closed curve in the
sphere of projection. If n = 1, then U consists of a single component, as desired,
and we can procede to showing ¢#(G) < 5¢(D) and K UU is hyperbolic. Assume
n > 1. Let i be an arc properly embedded in the closure of a path component of
S2\ A, which has end points in distinct boundary components, meets the edges of
D transversely and is disjoint from the vertices of D. Let ¢ (1) be the number of
intersections between u and D. Choose u in such a way that it minimizes ¢ (1)
over all possible choices of [ over all path components of S*\ A,,.

Claim 1. The arc [ can be chosen so that it does not pass through twist regions of
D.

Proof. Since u was chosen to be disjoint from the vertices of D, if u intersects a
twist region of D, then it intersects a bigon region of D. If u intersects a bigon
region of D in an arc that has both endpoints on the same edge of the bigon region,
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then, after choosing an outermost such arc of intersection between u and the bigon
region, there is a planar isotopy of u which eliminates an arc of intersection be-
tween U and the bigon region. After this isotopy, u intersects D in fewer points, a
contradiction to our choice of u. See Figure 10.

S- -

FIGURE 10. An isotopy that eliminates intersections between
and D.

Hence, if u intersects a bigon region of D in a non-empty collection of arcs, then
each of these arcs has one endpoint in each of the two distinct boundary edges of
the bigon region. Choose an outermost such arc and perform a planar isotopy of
which removes this arc of intersection with the bigon region, but preserves ¢ (u).
Repeat this process for each consecutive bigon region, always pushing arcs in the
same direction. See Figure 11. Note that, by Lemma 3.2, all twist regions of D are
disks, since otherwise D would be alternating. Hence, this sequence of isotopies
terminates when U is isotoped to be disjoint from all twist regions.

FIGURE 11. An isotopy that eliminates intersections between U
and a bigon region.

Since all of the planar isotopies of pt described in this claim are supported in a
neighborhood of the twist regions of D and A, is disjoint from the twist regions of
D, then the interior of y remains disjoint from A, during these isotopies. Hence,
after these isotopies, [ remains a properly embedded arc in a closure of a path-
component of $2\ A, and ¢(u) has not increased. Therefore, we can always as-

sume that u is disjoint from the twist regions of D.
]



TWIST NUMBER AND THE ALTERNATING VOLUME OF KNOTS 11

By the previous claim, we can choose p such that u is disjoint from all twist
regions and ¢ () is minimal. Let H be the closure of the path component of $?\ A,
such that u is properly embedded in H. Let C; and C; be the distinct boundary
components of H which have non-trivial intersection with .

In the arguments that follow, we wish to understand how u intersects D. Our
immediate goal is to use induction and u to create G, the projection of an alternat-
ing augmentation of D, with augmenting component U which projects to a simple
closed curve A such that A is disjoint from the twist regions of D and A meets each
edge of D at most twice.

Suppose, by way of contraction, that A, and u intersect a common edge of D
denoted e. Since U is properly embedded in H, then there must be a pointa € eN
and a point b € e N Cy, where C; is some boundary component of H such that a
and b cobound a sub arc 3 of e such that the interior of f is disjoint from u UA,,.
Perform surgery on u along the arc 3 to create two new arcs W, and L. See Figure
12.

Cr K C 0
-r - [~ ~ - .r -~ ™~ -
Ve S -, ~
P umm AN ’ [ N
/ \ /7 \
! \ / \
)
i —> l
\ / \ /
\ / \ p:
S 7 N
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~ ~ L - - =~ ~ - -
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FIGURE 12. A surgery on U resulting in the arcs y; and .

Without loss of generality, assume ; has an endpoint on C; and U, has an end-
point on C;.

Since C; and u are disjoint from all twist regions of D, then u; and u, are
disjoint from all twist regions of D. Note that ¢ (1) = ¢ (1) + ¢ (1) — 1

If C; = Cy, then Uy connects distinct components of A, and intersects D in fewer
points than Q.

If C; = Ci, then p; connects distinct components of A, and intersects D in fewer
points than u.

If Cy # C; and Cy # Cj, then, since ¢ (i) = ¢(u1) + ¢(u2) — 1, py has strictly
fewer points of intersection with D than y and y; connects 2 distinct components
of A,.

In each case, we have constructed a properly embedded arc in H which con-
nects distinct boundary components of H and meets D in fewer points than u, a
contradiction. Thus, u is disjoint from any edge of D that meets A,,.

We proceed by showing that u cannot intersect a single edge of D more than
once.

Suppose u intersects an edge, e, of D transversely in two or more points. Per-
form surgery on u along a sub arc of e (see Figure 13) joining two consecutive
points of £ Ne. Let u* be the 1-manifold produced by this surgery. If the resulting
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I-manifold pu* has 2 components, then one component of u* connects C; to C;.
Call this component y’. The other component of p* is a simple closed curve. If
the resulting 1-manifold u* is a single arc connecting C; to Cj, then let p’ = u*.

H u*
- - -
- - - -
- ~ - [~ ~

- ~ - ~

FIGURE 13. A surgery on it which decreases DN U.

In each case, there exists an arc u’ that connects C; to C ; and intersects D in
at least 2 fewer points than u, thus, providing a contradiction to our choice of u.
Hence, we can assume 1 will not intersect an edge of D more than once.

To summarize, we have just shown that we can pick t so that it is disjoint from
the twist regions of D, is disjoint from any edge of D that meets A, non-trivially
and intersects every edge of D in at most one point.

We can propagate C; along u using a sequence of Type II moves, as depicted
in Figure 14, until C;, which is the image of C; under Type II moves, and C; are
incident to a common region of the resulting diagram. Call this resulting diagram
G*.

G Gt

1

S ] O S

\ %

G* G**
FIGURE 14. Connecting components of A,

By Lemma 2.2, G* is alternating. Since U is disjoint from the twist regions of D,
then ¢/(G* \ D) is disjoint from the twist regions of D. Since u meets every edge
of D at most once and u is disjoint from every edge of D that meets A, then every
component of ¢/(G*\ D) meets an edge of D at most twice.
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Next, we use the Type I move to connect sum the disjoint simple closed curves
C; and C; into a single simple closed curve. Call the resulting projection G**.
Since G* is alternating, so is G**, by Lemma 2.1. Additionally, every component
of cI(G™ \ D) is disjoint from the twist regions of D since u was chosen to be
disjoint from the twist regions of D. Finally, each component of ¢/(G**\ D) crosses
every edge of D at most twice, since [t was chosen to intersect each edge of D at
most once and since i was chosen to be disjoint from any edge of D that meets A,,.
Hence, G** is an alternating link diagram containing D and cl/(G**\ D) consists of
one fewer loop then c/(G \ D). Repeat this process to create G the projection of an
alternating augmentation of D with exactly one augmenting component U which
projects to a simple closed curve A in the sphere of projection. It follows from the
above arguments that A will be disjoint from the twist regions of D and A will meet
each edge of D at most twice.

Since A is disjoint from all twist regions of D and A never intersects itself, then
t(G) <t(D)+i(A,D) where i(A,D) is the number of intersections between A and
D. Since A is disjoint from twist regions of D and crosses each edge of D not
contained in a twist region of D at most twice, then i(A, D) is less than or equal to
twice the number of edges of D not contained in twist regions of D. However, the
number of edges of D not contained in twist regions of D is less than or equal to
2¢(D) since the union of the edges of D not contained in twist regions of D together
with the twist regions of D form a finite 4-valent graph in the sphere with each twist
region corresponding to a single vertex. Thus,

t(G) <t(D)+2(2t(D)) = 5t(D).

It remains to be shown that G is the diagram of a hyperbolic link. By Theorem
2.1, it is sufficient to show that the link KU U is non-split, prime and not a (2,q)
torus link. Note that since we have assumed that D is reduced and A projects to
a simple closed curve in the sphere of projection, then G is reduced. Since G is
a reduced, alternating diagram, by Theorem 3.1, G is the diagram of a hyperbolic
link if G is prime, connected and not a diagram of a (2,q) torus link.

Since we have assumed that D is connected and A is a simple closed curve in the
sphere of projection with a non-trivial intersection with D, then G is connected.

In search of a contradiction, suppose that G is not prime. Hence, there exists a
simple closed curve B in the sphere of projection such that 8 intersects G trans-
versely in exactly two points neither of which is a vertex of G and both disks that f3
bounds in the sphere of projection contain vertices of G. Let E| and E; denote the
disks that § bounds. Since both D and A are closed curves in the sphere of projec-
tion, then NG C D or NG C A. If BNG C A, then, since A is a simple closed
curve and D is connected, it is impossible for both £} and E; to contain a vertex
of G. Hence, we can assume that § NG C D. Since A is a connected subset of the
sphere of projection which is disjoint from f3, then A C E| or A C E,. Without loss
of generality, assume that A C Ej. Since both Ej and E> must contain a crossing of
G, then E; must contain a crossing of D. If E; also contains a crossing of D, then
D is not prime, a contradiction to our choice of D. Thus, the only crossings of G
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contained in E| are points of intersection between A and D. Since E| contains no
crossings of D and B = JE| meets D in exactly two points, then E1 N D consists of
exactly one subarc of exactly one edge of D. Hence, A meets at most one edge of
D.

Since G is alternating and A meets at most one edge of D, then all but at most one
edge of D is non-alternating. Since every link diagram has an even number of non-
alternating edges, then D must be an alternating diagram. This is a contradiction to
the fact that we choose D to be non-alternating. Thus, G is prime.

In search of a contradiction, suppose that G is the diagram of a (2,g) torus link.
Recall that we have already established that G is a prime, connected, reduced,
alternating diagram. However, the only prime, connected, reduced, alternating
diagram of a link which is not hyperbolic is the standard diagram of the (2, ¢) torus
link with g crossings. This implies G is the standard diagram of the (2,q) torus
link with g crossings. Hence, both D and A are simple closed curves in the sphere
of projection. However, this is a contradiction to D being non-alternating.

Thus, KUU is hyperbolic, completing the proof.

(]

Theorem 3.2. Given any prime, non-alternating knot K

Va(t(K) —2) <AltVol(K) < 10V3(5¢(K) — 1)

Proof. Let K be a prime, non-alternating knot and let G be a reduced diagram of an
alternating augmentation of K whose volume is equal to AlrVol(K) and let D be the
diagram of K that results from considering G and ignoring the augmenting compo-
nent. By Lemma 3.1, #(D) < #(G). Since G is the reduced alternating diagram of
a hyperbolic link, then, by Theorem 3.1, G must be a prime diagram. Since G is
a reduced, prime, alternating diagram of a hyperbolic link, then, By Theorem 2.3,
V3(t(G) —2) < AltVol(K). Hence,

V3(t(K) —2) < V3(1(D) — 2) < V3(1(G) —2) < AltVol(K).

Let D* be a diagram of K such that 7(D*) = ¢#(K). Since K is a knot, every
diagram of K is connected. Since flypes and the type II Reidermeister move that
decreases crossing number can only decrease the number of twist regions in a link
diagram, then we can assume that D* is reduced and R2-reduced. Since a twist
number minimizing diagram of a prime knot is always a prime diagram, then D*
is prime. Since K is non-alternating, then D* is non-alternating. Let U be the
augmenting component and let G be the diagram corresponding to the alternating
augmentation of D* constructed in the proof of Lemma 3.3. By Lemma 3.3, we
know that G is alternating, t(G) < 5¢(D*) = 5¢(K) and K UU is a hyperbolic link.
By Theorem 2.3, vol(S* \ (KUU)) < 10V3(t(G) — 1). Since AltVol(K) < vol(S*\
(KUU)), then AltVol(K) < 10V3(¢(G) — 1). Hence,

AltVol(K) < 10V53(5¢(K) — 1)
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