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Abstract

We prove that the knots 13n592 and 15n41,127 both have stick number 10. These are the first non-torus
prime knots with more than 9 crossings for which the exact stick number is known.

The stick number stick(K) of a knot K is the minimum number of segments needed to construct a
polygonal version of K. The stick number was first defined by Randell [20] more than two decades ago
and is a prototypical geometric knot invariant: it shares important qualitative features with other geometric
invariants like crossing number, rope length, and minimum Möbius energy. Since polygonal knots provide
a simple model for ring polymers like bacterial DNA (see the survey [19]), stick number gives an indication
of the minimum size of a polymer knot.

As with many elementary invariants, the stick number is quite difficult to compute. It is known for only
35 of the 249 nontrivial knots up to 10 crossings and, prior to our work, the only knots with more than
9 crossings for which it was known are certain torus and composite knots [1, 2, 5, 14, 15]. See [13] for a
summary of the key results in this area, as well as a table giving the best known bounds on stick number for
all knots up to 10 crossings.

The primary goal of this paper is to determine the exact stick numbers of two knots:

Theorem 1. The knots 13n592 and 15n41,127 have bridge index 4, superbridge index 5, and stick number 10.

The basic strategy is to show that 10 is both an upper and a lower bound on stick number for these knots.
To see that 10 is an upper bound, it suffices to find 10-stick representatives of each knot, which are pictured
in Figure 1. Two of us (Eddy and Shonkwiler) discovered these examples while generating very large ensem-
bles of 10-stick random knots in tight confinement for our paper [13], in which we searched for new bounds
on stick number by generating random polygonal knots confined to small spheres. The point of sampling
random knots in confinement is to boost the probability of generating complicated knots. Using symplectic
geometry, it turns out that sampling polygonal knots in confinement is equivalent to sampling points in cer-
tain convex polytopes according to Lebesgue measure [9]; see [13, Section 3] for a self-contained description
of this approach, and see the stick-knot-gen project [12] for code and supporting data.

On the other hand, as suggested by the inclusion of statements about these other invariants in Theorem 1,
we will show that 10 is a lower bound on stick number using inequalities relating stick number with bridge
index and superbridge index, whose definitions we now recall. Given a knot type K, let γ : S1 → R3 be
a smooth embedding in the ambient isotopy class of K. Given a linear function z : R3 → R of norm one
so that z ◦ γ is Morse, let bz(γ) be the number of local maxima of z ◦ γ . Then the bridge number of γ is
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13n592 15n41,127

Figure 1: Equilateral 10-stick examples of 13n592 and 15n41,127 shown in orthographic perspective. The
13n592 is viewed from the direction (−24,22,3) and 15n41,127 is viewed from the direction (−10,1,1).

b(γ) := minzbz(γ) where the minimum is taken over all z such that z◦ γ is Morse. Similarly, the superbridge
number of γ is sb(γ) := maxzbz(γ).

We elevate these quantities to knot invariants by minimizing over all γ in the ambient isotopy class
of K. More precisely, the bridge index of a knot K is b(K) := minγ b(γ) and the superbridge index of K
is sb(K) := minγ sb(γ). The following two propositions relate bridge index, superbridge index, and stick
number.

Proposition 2 (Kuiper [16]). For any nontrivial knot K, b(K)< sb(K).

Proposition 3 (Randell [21]). For any knot K, sb(K)≤ 1
2 stick(K).

Since b(K) < sb(K) ≤ 1
2 stick(K) and all three of these invariants are integers, to show a knot has stick

number at least 2n it suffices to show that the knot has bridge index at least n− 1.1 Finding lower bounds
on bridge index can often be challenging. Classically, Fox colorings provide lower bounds on bridge index;
recall that a knot is Fox 3-colorable if and only if there exists a surjective homomorphisms from the knot
group to S3, the symmetric group on three elements, that sends meridians of the knot to transpositions. A
generalization of this method is to find a surjective homomorphism from the knot group to a group with nice
properties. Recently, surjective homomorphisms from knot groups to symmetric groups [4] and Coxeter
groups [3] that send meridians to elements of order two have been used to give lower bounds on bridge
index. An example of this approach is the following well-known result.

Proposition 4. Let K be a knot and Sn the symmetric group on n elements. If the knot group π1
(
S3 \K

)
admits

a surjective homomorphism to Sn such that every meridian is sent to a transposition, then b(K)≥ n−1.

In ongoing work [6], two of us (Blair and Morrison) together with Alexandra Kjuchukova are building on
earlier algorithms giving upper bounds on bridge index [7] to develop code that gives matching lower bounds

1In general this lower bound on stick number is far from sharp: for example, there are infinitely many 2-bridge knots, but only
finitely many knots with stick number ≤ n for any n [8, 18], so the gap between bridge index and stick number can be arbitrarily large.
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13n592
0 0 0

10,000,000 0 0
1,442,849 5,174,472 0
8,382,194 −1,845,927 1,599,839
2,602,230 3,136,071 −4,863,265
3,168,808 5,301,213 4,883,076
3,990,825 284,477 −3,728,350
4,424,114 7,009,518 3,659,890
1,311,109 −1,250,555 −1,039,088
7,812,682 6,236,842 252,592

15n41,127
0 0 0

10,000,000 0 0
388,857 2,761,507 0

5,630,173 −3,679,476 −5,571,566
5,516,344 2,658,376 2,162,688
1,049,311 −120,662 −6,341,579
6,132,824 510,618 2,246,749
1,408,716 1,799,173 −6,472,335
1,932,613 −2,026,605 2,752,032
9,330,316 3,365,085 −1,273,345

Table 1: Coordinates of the vertices of the 10-stick 13n592 and 15n41,127 given as integers. To get the vertices
of a stick knot with unit-length edges, multiply each coordinate by 10−7. The coordinates can be downloaded
from the stick-knot-gen project [12] either as tab-separated text files or in a SQLite database.

by searching for all homomorphisms to finite Coxeter groups for knots with 16 or fewer crossings. An
incomplete version of this code found the homomorphism from the knot group of 15n41,127 to the symmetric
group S5 given below.

More broadly, the stick knot data [12] and the forthcoming Coxeter group homomorphism data are each
substantial but mostly unexplored, and we believe they will yield further interesting results, both separately
and in combination.

Proof of Theorem 1. We give the coordinates of the vertices of 10-stick representatives of both knots in
Table 1 and show pictures in Figure 1, proving that stick(K)≤ 10 for both of these knots.2 Combining this
with Propositions 2 and 3, we see that

b(K)< sb(K)≤ 1
2

stick(K)≤ 5,

for both knots, so the result follows if we can show that b(K)≥ 4.
To do so, we use the strategy outlined above and seek a surjective homomorphism from each knot

group to the symmetric group S5. Figure 2 shows a diagram of 15n41,127 with strand labels defining a
homomorphism to S5. Specifically, we started by labeling the strand (−10,4,−11) with the transposition
(12), the strand (−15,14,10,1,−2) with (13), the strand (−2,3,−1) with (14), and (−7,11,5,−14) with
(25), then propogated this to a complete labeling of strands via the Wirtinger relations. This labeling satisfies
the Wirtinger relations and the transpositions {(12),(13),(14),(25)} generate S5, so this defines a surjective
homomorphism π1

(
S3 \15n41,127

)
� S5. Therefore, Proposition 4 implies that b(15n41,127)≥ 4.

Figure 3 shows a non-minimal diagram of 15n41,127 on the left. This diagram is produced by apply-
ing a Reidemeister II move to the diagram in Figure 2. Changing a single crossing yields a diagram of
13n592, the mirror of 13n592. Extending the labeling from Figure 2 to this diagram – which is possible since
the transpositions (34) and (25) commute – defines a surjective homomorphism π1

(
S3 \13n592

)
� S5, so

b(13n592)= b
(
13n592

)
≥ 4 as well.

2In fact, the edges of these representatives are all (numerically) the same length and it is straightforward to prove the existence of a
true equilateral stick knot of the same type using a result of Millett and Rawdon [17, Corollary 2], so it will follow that the equilateral
stick number of these knots is also equal to 10.
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Figure 2: The SnapPy [11] diagram of 15n41,127 with crossings labeled 1,2, . . . ,15 and with strand labels
defining a homomorphism π1

(
S3 \15n41,127

)
� S5. The generating labels are bolded.

15n41,127 13n592

Figure 3: A non-minimal diagram of 15n41,127, and a diagram of 13n592 produced by changing a crossing.
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15n41,127 13n592

Figure 4: Moving the ninth vertex of 15n41,127 produces a non-equilateral 10-stick 13n592.

Somewhat surprisingly, changing 15n41,127 into 13n592 by switching a single crossing can actually be
realized at the level of stick knots as seen in Figure 4. The non-equilateral 10-stick representation of 13n592
comes from moving the ninth vertex of the 15n41,127 given in Table 1 to (3,708,061,−732,600,1,785,942)
and leaving all other vertices unchanged.

Since some of the labels in Figure 2 don’t change at undercrossings, we can switch the signs of any or all
of these crossings and produce surjective homomorphisms to S5 from other knot groups. There exist 11-stick
representatives of some of these knots, which allows us to compute their bridge index and superbridge index.

Proposition 5. The knots 13n285, 13n293, 13n587, 13n607, 13n611, 13n835, 13n1177, 13n1192, and 15n41,126 all
have bridge index 4 and superbridge index 5. In each case the stick number is either 10 or 11.

Proof. We give coordinates of the vertices of equilateral 11-stick realizations of each of these knots in
Appendix A, so we have b(K)< sb(K)≤ 1

2 stick(K)≤ 11
2 and the result follows if we can show b(K)≥ 4.

To see this, observe that we can change the sign of crossing 4 in Figure 2 to get a diagram for 13n835 and
associated surjective homomorphism π1

(
S3 \13n835

)
� S5, so b(13n835)≥ 4 by Proposition 4. As summa-

rized in Table 2, other crossing changes produce diagrams and homomorphisms for the rest of the knots in
the Proposition (or their mirrors) and the result follows.
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Knot Change crossing(s). . .

13n285 5, 14, and 15
13n293 4, 6, 7, 14, and 15
13n587 4, 5, and 6
13n607 4, 5, and 7
13n611 4, 14, and 15
13n835 4
13n1177 14
13n1192 5, 7, and 14
15n41,126 14 and 15

Table 2: Crossing changes in Figure 2 produce several other knots, each of which must have bridge index at
least 4.

A Coordinates of the vertices of 11-stick knots

We give coordinates of equilateral 11-stick representations of each of the knots mentioned in Proposition 5.
These coordinates can be downloaded from the stick-knot-gen project [12] either as tab-separated text
files or in a SQLite database.

13n285
0 0 0

10,000,000 0 0
859,828 4,056,755 0

3,341,572 −4,982,897 3,482,189
6,315,660 167,473 −4,556,996
1,071,184 2,581,206 3,608,135
3,078,763 −4,845,959 −2,779,888
5,080,293 3,832,695 1,767,071
−1,760,951 −3,454,009 2,085,376

5,721,544 2,372,114 −1,087,723
6,595,292 −4,997,566 5,614,843

13n293
0 0 0

10,000,000 0 0
702,140 3,681,005 0

5,902,391 −4,422,027 2,701,530
4,828,936 5,481,886 1,829,635
2,515,302 −3,074,450 −2,800,289
6,012,626 −299,876 6,147,920
7,106,044 −248,388 −3,791,988

666,709 2,731,194 3,254,788
5,345,394 −2,852,898 −3,595,600
8,348,109 5,360,542 1,254,462

13n587
0 0 0

10,000,000 0 0
1,117,558 4,593,716 0
8,904,479 −1,236,400 2,318,106
5,218,343 3,791,336 −5,500,735
5,234,842 3,507,047 4,495,209
7,948,983 −4,586,685 −712,951
5,383,084 5,067,290 −1,178,693
4,212,386 −3,577,785 3,709,265
2,513,093 100,976 −5,432,897
8,316,823 5,514,226 650,970

13n607
0 0 0

10,000,000 0 0
986,011 4,329,896 0

8,208,034 −2,392,018 1,630,418
2,621,993 5,354,852 −1,333,051
−1,613,778 841,929 6,521,360
−781,841 2,012,324 −3,375,006
6,224,891 1,973,665 3,759,713
−3,034,534 5,688,727 3,080,474

3,594,430 −618,875 −953,258
3,590,235 9,333,254 24,042

6



13n611
0 0 0

10,000,000 0 0
1,499,082 5,266,345 0
2,621,286 −4,670,135 83,746
9,409,241 2,634,889 −664,786

187,148 −871,197 966,280
8,269,950 4,801,218 −612,336
2,642,458 −3,367,232 655,639
4,915,758 6,263,837 2,095,993

806,026 −2,079,111 −1,578,968
8,522,161 −2,123,012 4,781,798

13n835
0 0 0

10,000,000 0 0
897,936 4,141,549 0

6,400,763 −2,074,978 5,574,377
6,030,097 512,087 −4,078,068

257,946 5,028,434 2,725,231
501,111 −3,773,276 −2,015,104

3,966,743 5,006,086 1,288,257
2,987,114 −4,685,303 3,550,403
1,478,845 3,843,801 −1,447,548
8,865,166 785,407 4,559,821

13n1177
0 0 0

10,000,000 0 0
4,452,828 8,320,390 0
−263,502 −219,251 2,197,901
6,301,576 2,832,197 −4,700,535

685,003 5,395,073 3,166,216
5,870,985 −2,081,859 −981,201
4,018,052 7,077,471 −4,541,159
3,945,828 −441,769 2,050,944
2,482,141 5,602,190 −5,780,288
8,891,711 4,219,576 1,769,930

13n1192
0 0 0

10,000,000 0 0
2,894,741 7,036,710 0
5,839,468 −999,634 −5,171,631
3,390,487 −2,857,690 4,344,152
6,766,649 3,572,004 −2,530,479
3,148,686 −5,725,554 −1,848,025
7,784,297 2,619,976 1,129,091
2,939,835 1,169,775 −7,498,081
7,317,510 −555,513 1,325,713
4,748,190 8,652,618 −1,608,380

15n41,126
0 0 0

10,000,000 0 0
2,780,458 6,919,409 0
7,526,255 −1,676,113 1,895,896
−912,130 3,222,643 −294,044
8,983,359 1,841,657 −708,974

956,597 −660,225 4,705,052
5,336,611 295,308 −4,233,764
6,738,903 3,591,613 5,102,613
4,279,082 −2,033,573 −2,790,837
8,155,809 4,032,625 4,149,784
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