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A B S T R A C T

The Value of Information (VoI) assesses the impact of data in a decision process. A risk-neutral agent, quantifying
the VoI in monetary terms, prefers to collect data only if their VoI surpasses the cost to collect them. For an agent
acting without external constraints, data have non-negative VoI (as free “information cannot hurt”) and those
with an almost-negligible potential effect on the agent's belief have an almost-negligible VoI. However, these
intuitive properties do not hold true for an agent acting under external constraints related to epistemic quan-
tities, such as those posed by some regulations. For example, a manager forced to repair an asset when its
probability of failure is too high can prefer to avoid collecting free information about the actual condition of the
asset, and even to pay in order to avoid this, or she can assign a high VoI to almost-irrelevant data. Hence, by
enforcing epistemic constraints in the regulations, the policy-maker can induce a range of counter-intuitive, but
rational, behaviors, from information avoidance to over-evaluation of barely relevant information, in the agents
obeying the regulations.
This paper illustrates how the structural properties of VoI change depending on such external epistemic

constraints, and discusses how incentives and penalties can alleviate these induced attitudes toward information.

1. Introduction

Information collected by sensors and inspectors can significantly
reduce the uncertainty in decision-making in many fields of en-
gineering. In the management of urban systems, for example, pervasive
integration of sensing technologies can be the base for a novel quanti-
tative urban science that, in turn, would allow for a better control of
these systems. However, such integration would follow from the deci-
sions of managers and stakeholders of the urban assets (whom we will
hereafter refer to as “agents”), who act under societal regulations which
are often developed neglecting their effects on information collection.

Design, operation and maintenance of these assets can be for-
mulated as a decision making process, under uncertainty on demands,
capacities and long-term evolution. Agents take these “exploitative”
decisions (e.g. repairing or replacing some assets) with the aim of op-
timizing their own utilities, or minimizing their own losses. As the
consequences of these actions can potentially affect safety and eco-
nomic prosperity of communities at a broader level, the society usually
imposes regulations and public policies to affect or even control them.

Specifically, as agents may be prone to accept risks higher than the
society can tolerate, possibly because they do not include all societal
costs in their analysis, society can impose constraints on the available
actions, depending on the circumstances. For example, a building code
can prevent a structure from being open to the public when the prob-
ability of its failure is too high, despite the owner's will to do so.
Through these constraints, society is able to indirectly implement the
decisions that it considers optimal, balancing costs for construction,
maintenance, operation and renovation with risks related to failures
and malfunctioning.

If agents are free to take explorative actions for supporting their
exploitative strategy, e.g. by collecting information using sensors and
inspectors, they can base their behavior on Value of Information (VoI),
an utility-based metric to assesses the impact of data in a decision
process introduced by the seminal work of Raiffa and Schlaifer [16]. A
risk-neutral agent, quantifying the VoI in monetary terms, prefers to
collect data only if their VoI surpasses the cost to collect them. When an
agent acts without external constraints, data have non-negative VoI (as
free “information cannot hurt” [5]) and those with an almost-negligible
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potential effect on the agent's belief have an almost-negligible VoI.
However, these intuitive properties do not hold true for an agent acting
under external constraints related to epistemic quantities, such as those
posed by some regulations. For example, a manager forced to repair an
asset when its probability of failure is too high will prefer to avoid
collecting free information about the actual condition of the asset, and
even to pay in order to avoid this, or she can assign a high VoI to al-
most-irrelevant data, if her economic perspective does not agree with
that enforced by regulations. Hence, by enforcing epistemic constraints
in the regulations, the policy maker can induce a range of counter-in-
tuitive, but rational, behaviors, from information avoidance to over-
evaluation of barely relevant information, in the agents obeying the
regulations.

Information is related to the legal distinction between “negligence”,
i.e. the failure to exercise the care against a risk which might be ex-
pected of a prudent person in the same circumstances, and “reckless-
ness”, i.e. knowing and willful exposure of others to a risk [3]: implicit
in this distinction is whether or not the agent had knowledge of the risk
in question. Between these, recklessness is typically considered to be
the more severe transgression, carrying with it a heavier penalty for the
agent. From a legal standpoint, agents may prefer to avoid information
to be merely responsible for “negligence”, hedging against the heavier
penalties of “recklessness”. This provides a general example of how
well-intentioned regulations can prompt seemingly counter-intuitive
and counter-productive “willful ignorance” in agents acting under these
constraints. A related example in the engineering domain, presented by
Rayner [17], is an environmental remediation project where few field
samples were taken, so as to minimize the possibility of these samples
contradicting a computer model which predicted that the project was
on course for success.

In other contexts such as non-cooperative games, where agents
compete against each other, revealing a piece of information to all
agents may have a negative impact to some of them, as the negative
effect of the competitors being informed and adjusting their policies
surpasses the direct VoI. Being aware of this, some agents prefer to
avoid having certain information collected, when it must be shared
with others, as the overall VoI is negative for them. For example, an
entrepreneur sharing a market with a competitor may find a piece of
information irrelevant for her, but key for her competitor, who can
improve his strategy and reduce her share of the market [2]. In that
case, the impact of information is clearly negative, when assessed by
that agent. These mechanisms are related to the topic of “information
avoidance”, extensively studied by social sciences, including psy-
chology and behavioral economics [7, 10, 21].

Recent interest in VoI analysis for civil infrastructure systems is
testified to by works such as that of Pozzi and Der Kiureghian [13],
Srinivasan and Parlikad [19], Straub [20], Zonta et al. [24], Qin et al.
[15], Goulet et al. [8], Thons [22]. VoI is used as an objective function
to be maximized for optimizing information collection by Malings and
Pozzi [11] and Memarzadeh and Pozzi [12]. A discussion of the effects
of the discrepancies between agents’ preferences in relation to civil
infrastructure management is in Pozzi et al. [14], Tonelli et al. [25] and
Verzobio et al. [26].

In this paper, we illustrate how the structural properties of the VoI,
of observing the state of an engineering system, change depending on
the external epistemic constraints, and discuss how regulatory design
can alleviate undesired attitudes toward information. Our motivating
question for writing this paper was: “why do rational agents sometimes
prefer not to know?” i.e. “how can the VoI be negative, in some con-
ditions?” To clarify our scope, we note that some phenomena that can
also be described as cases of negative VoI are not the core of this paper.
Experience suggests that sometimes it is better to neglect or refuse ir-
relevant information because “too much information can harm”. This
can happen because supposedly free information is not actually free,
when considering all costs related for collecting and processing it, and
so agents should neglect information with nil VoI. Also, it is a common

experience that an agent can take a decision, then revise it based on
noisy measures, while the prior decision was actually correct and the
information has misled her. However, we point out that “information
cannot hurt” is a principle holding in the expected prior prediction
while, in a given single empirical realization, it may not hold true. We
can also argue that if the processing model is incorrect, then the impact
of information can be detrimental. For example, consider an agent over-
confident in the precision of a sensor, or unaware of its systematic bias.
That agent can be misled by the information, so that she would have
done better without it. Again, previous results hold under model con-
sistency: after all, probability models ignorance, and if an agent sus-
pects that a model may be inappropriate, she should extend it until it
captures the complete uncertainty in the relation between the system's
state and measures.

2. Problem formulation

We focus on a simple and paradigmatic case of reliability assessment
and control. Consider a system exposed to the risk of failure, for ex-
ample a structural system prone to deterioration and collapse. If the
failure occurs, the agent controlling the system must sustain a sig-
nificant loss, but the failure also has consequences at the societal level.
The probability of such failure is assessed considering the current
available information on the uncertain system condition, the stochastic
evolution of capacity and demand. Expensive maintenance actions are
available to the agent, to mitigate the risk. Hence, she is facing a de-
cision-making problem under uncertainty: should she repair the system
or not? We assume the agent is rational, so that her behavior is modeled
by the principle of minimizing expected loss, and risk-neutral. To de-
cide the best course of action, the agent compares the expected loss of
doing nothing, accepting the failure risk, with that related to main-
tenance actions. However, the agent must also follow rules defined by a
societal regulation: in practice, these rules may prescribe specific ac-
tions to be undertaken in certain circumstances. We simplify and gen-
eralize such regulations into a constraint to the agent's decision: the
agent must take a maintenance action when the probability of system
failure exceeds a threshold of societally-accepted risk. In the context of
structural systems, for example, such regulation is motivated by the
societal need of reducing the rate of failure events: a building code
prevents owners from opening unsafe buildings to the public.

In this setting, we consider that information can be collected for
reducing the uncertainty on the system condition state, for example by
inspecting it. The agent has to assess whether it is worth inspecting,
trading off the inspection cost with the cost reduction due to a more
appropriate decision based on the information. Fig. 1 depicts the cor-
responding decision graph. Chance node x indicates the uncertain sys-
tem's state, node y the inspection outcome, the two decision nodes are
controlled by the agent: a indicates the maintenance action and I the
execution of the inspection. The maintenance action is subject to the
societal constraint. Diamonds indicated the costs and losses for the
agent and for society, related to the inspection and maintenance action
(the latter including the failure risk): the agent aims at minimizing the
expected sum of L and LI, while society should calibrate the constraint

Fig. 1. Decision graph for the analyzed problem.
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to minimize the expected sum of C and CI.
Analyzing this problem, our goal is twofold: first, we aim at asses-

sing whether inspecting is convenient for the agent, by quantifying the
VoI under societal constraint; second, we aim at evaluating the overall
impact of the constraint, to discuss the pros and cons of such constraint
from the societal perspective. We outline the properties of un-
constrained VoI in the next Section, the effect of epistemic societal
constraints in Section 4, we discuss regulatory design in Section 5 and
draw some conclusions in Section 6.

3. Why “information never hurts” in unconstrained decision-
making

3.1. Unconstrained decision making under uncertainty

We start modeling the problem of information collection when the
agent is not subject to any external constraint (i.e., there is no societal
regulation). In this section we illustrate why, in this case, the expected
prior loss is a concave and thus continuous function in the convex do-
main of possible beliefs; hence, why the VoI is always non-negative in
unconstrained decision-making.

As outlined in Fig. 1, consider the agent controlling a system and
facing a one-shot decision, aiming at minimizing her expected loss. She
has to select action a among a finite set of options = …A A{1, 2, , | |} of
size |A|, while her loss L(x, a) depends on the selected action and on the
state x of the system, defined on finite set = …X X{1, 2, , | |} of size |X|.
Set A includes maintenance actions, as repairing or replacing a com-
ponent, and the do-nothing option. List X can include specific mal-
functions, damages, up to the failure of the system, together with the
system well-functioning. The agent's belief about the state of the system
can be summarized in vector b, of length |X|, with entry i defined as

= =b x i G[ | ]i , and it is evaluated considering all relevant background
information G. Hence stochastic vector b lists non-negative entries and
it has unitary norm-1: == b 1i

X
i1

| | . These belief components include the
probability of damage and failure of the system. If she exactly knows
that the system is in state j, than =b ej, where ej is the j unit vector in
the standard basis (i.e. all entries of b are zeros except for a unitary
entry at position j). The domain ΩB of the possible beliefs is a convex set
of dimension X(| | 1), resulting from the intersection of the hypercube
where all |X| components are between zero and one and the hyperplane
where the norm-1 is unitary.

We define =l L x ab( ) ( , )a b as the expected loss selecting action a
under belief b (where f i j( , )v indicates the expectation of function f
with vector v assigning the distribution of variable i). Introducing, for
each action a, |X|-dimensional vector λa of possible losses depending on
the system state, whose entry x is =x L x a( ) ( , )a , we derive by the
definition of expectation that the expected loss under action a is a scalar
product, a linear function of belief b: =l b b( )a a

T .
The decision problem can be expressed as the minimization on the

set of functions …l l l{ , , , }A1 2 | | . The optimal loss l*, as a function of belief b,
is:

= =l lb b b* ( ) min ( ) min
a A

a
a A

a
T

(1)

And the corresponding optimal policy Π*, mapping the current
belief into the optimal action, is defined by using “argmin” instead of
“min” in the previous equation. As is clear from Eq. (1), the optimal loss
l* is the lower envelope of the set of |A| linear functions defined by
“lambda” vectors …{ , , , }A1 2 | | , and therefore, it is a concave, and
hence continuous function. We can also define the optimality basin for
action a as the subset Ba⊆ΩB of the belief domain where that action is
optimal: =B ab b*( )a . Each basin is a convex set as it is the
subset of a convex set resulting from imposing linear inequalities (of
course, some basins can also be empty). Also, the set of basins are
disjoint (defining, if necessary, an arbitrary criterion to pick one action
among those with equal expected losses) and it completely covers ΩB.

Fig. 2 provides two examples of decision problems. Picture (a)
shows the triangular domain ΩB of possible beliefs when the number of
states |X| is 3, i.e. a convex figure of =X| | 1 2 dimensions: a triangle.
On that domain, partitioned in the set of convex optimality basins,
picture (b) illustrates an example set of expected loss functions related
to 4 actions, and the convex optimal loss function l*. Picture (c) refers
to the binary state, when |X| is 2, and ΩB is the diagonal of a square,
that can be described in =X| | 1 1 dimension: as + =b b 11 2 , any of
these two coordinates can completely define that domain, as indicated
in picture (d). In this case the entire belief can be described by the
probability of the system being in one state, e.g. the probability of
failure. Picture (e) shows the expected losses for 4 actions, and the
function l*. Picture (f) reports the optimal policy and the optimality
basins.

3.2. Belief updating after information processing

In this section we show how the measurement can be related to a
distribution of possible posterior beliefs, and how the expected pos-
terior belief is equal to the prior one. Bayes’ formula is the key for
processing information. We assume a measure or observation y, that
can be a multi-dimensional vector of arbitrary dimension, defined on
domain Y, is related, directly or indirectly, to the system state x. The
relation between the system and the measure is captured by emission
function p(y|x), that defines the probability density of y (or its discrete
probability distribution, if y is a discrete variable), when the system
state is x. We define bπ as the prior belief, before considering the
measure (i.e., when information G mentioned in the previous section is
the empty set ∅).

By combining prior belief and the emission function for a given
realized measure y, we derive the posterior belief bω(y) by Bayes’ for-
mula, whose entry i is:

= =b x i p i by y y( ) [ ] ( | )i i, , (2)

Eq. (2) defines a deterministic map between measure y and

Fig. 2. Convex domain ΩB of possible belief when the number of states |X| is 3
(a). Example of expected loss functions when the number of actions |A| is 4,
with optimal loss function l* and convex domain of optimality for each action
(b). Domain ΩB for the binary state, when |X| is 2 (c). Re-parametrized belief
domain of size =X| | 1 1, as a unit segment (d). Example of expected loss
functions for |A| equal to 4, with optimal loss function l* (e). Optimal policy
and convex domain of optimality for each action (f).
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posterior belief bω. It shows how, under a specific emission function,
the prior belief is moved to the posterior one, following a realized value
of the measure. In the prior condition, measure y is a random variable,
modeled by predictive distribution:

=
=

p p i by y( ) ( | )y
i

X

i
1

,
(3)

which serves as a normalizing constant for Eq. (2). Consequently, in the
prior condition the posterior belief bω is also a random variable, whose
distribution pω derives from the transformation of distribution py via the
map of Eq. (2). Variables y and bω are of the same type: if the set of
possible measures is discrete and finite, so is that of posterior beliefs
while, if the former set is continuous, so is the latter one. Moreover, by
the consistency of probability calculus, as:

= =p x p x p d p xy y y y[ ( | )] ( | ) ( ) ( )yy

we see that the expected posterior belief, evaluated in the prior con-
dition, has to be identical with the prior one: =b b (where
indicates the expectation with respect to distribution pω).

Fig. 3(a–d) shows an example of the inference process, when |X| is 2
and there is a univariate continuous measure y. Emission functions are
Gaussian (a), with mean = =y x i i[ | ] and variance

= = =y x i[ | ] 12 , thus distribution py is the mixture of two Gaussian
components (b), depending on prior belief =b [0.6 0.4]T. The pos-
terior belief, as a function of the observed value y, is as plotted in graph
(c). Graph (d) shows the corresponding distribution of the posterior
belief, in terms of its second component. Collecting the measure can be
seen as trading the prior belief for a random realization of the posterior
belief, generated from a distribution whose expected value is identical
to the prior belief. In this trading, the belief can move toward the ex-
treme regions of the domain, where the state x is perfectly known.
Graph (e) illustrates an example when |X| is 3, and only =Y| | 5 values
of observation y are possible. Hence, the posterior belief can assume
only 5 values, and discrete distribution Pω defines the probability of
each possible outcome.

3.3. Pre-posterior analysis and value of information

The Value of Information (VoI) is the expected loss reduction due to
the availability of a measurement. In the prior condition, an agent
would select action Π*(bπ), obtaining expected loss

= =l l lb b* * ( ) * ( ). Posterior optimal action Π*[bω(y)], using the
same policy identified above, and loss l*[bω(y)] depend on the realized
measure y. The expected posterior loss is =l l b* * ( ). The VoI can be
defined as the difference between prior and posterior expected loss:

= =VoI l l l lb b* * * ( ) * ( ) (4)

We now define a subset of the belief domain, ΩY, as the union of the
prior belief and the set of possible posterior beliefs for any possible
realization of the measure, so that pω is nil outside that subset. Only the
value of function l* on ΩY is relevant for assessing the VoI. Hence, the
VoI can be computed by combining two functions defined on ΩY: the
optimal loss function l* and the predictive distribution pω, whose mean
value is bπ.

As the expected loss function l* is a concave function, we derive
from Eq. (4) and Jensen's inequality [9] that VoI is non-negative for any
prior belief bπ, any loss function L and any emission function p(y|x).
This is the “information never hurts” principle.

Also, consider the case when function l* is linear in ΩY: in that case,
we can commute function l* and the expectation in Eq. (4), the dif-
ference vanishes and the VoI is zero. A trivial limit case is when the
measure does not affect the belief, so bω is identical to bπ for all possible
realized measures, and ΩY contains just one point. This can happen if
variables x and y are independent: clearly, statistically negligible in-
formation has no value in decision making. A more general case is that
when BY a*

, that is, for any possible realized measure the posterior
optimal action is equal to the prior one, so that l* is a linear function in
ΩY. Again, if no possible measure output is able to change the prior
action, then the VoI is zero. Conversely, if there is a positive probability
that the posterior optimal action is different than a*, because the cor-
responding posterior optimal loss is strictly less than la*

, then the VoI is
strictly positive.

In the Appendix, we prove another property of the VoI, related to
the continuity of l*: information with almost-negligible effect on the
belief has almost negligible VoI. Intuitively, if the posterior belief is

Fig. 3. Example of the inference process. Continuous emission functions (a), probability of measure (b) and posterior belief (c), as a function of the measure value y,
for the binary state, when |X| is 2. Corresponding distribution of the posterior belief (d), in terms of the second component. Example with discrete observation, with
|Y| equal to 5, when |X| is 3.
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close to the prior one for all possible realizations of the measures, the
expected posterior loss tends to be similar to the prior loss, and the VoI
tends to be zero.

3.4. Posterior loss and value of perfect information

In this section, we show how posterior loss l *, seen as a function of
prior belief bπ, is also a concave function, never above l *. That is, we
show that the expected loss after taking a measurement is never higher
than the expected loss before measuring. How should a rational agent
react to information? As seen before, she should update her belief using
Bayes’ formula, and then act as if the updated belief was her prior one,
identifying optimal action a* and getting corresponding expected loss
l*. However, the posterior decision can also be described in terms of a
“conditional plan”, describing how to react to any realized observation,
by selecting a specific action [18]. If we now assume a finite set Y of |Y|
observable values, the entire plan is a set of |Y| instructions such as “if
observation is =y j, then take action =a k”. For example, a plan pre-
scribes to execute the first action no matter what the observation is,
another to execute that action only after some observed values, and do
the second otherwise. Plan j, φj: Y→ A, is therefore a map from the set
of observable values Y to the set of actions A. The set M of all possible
conditional plans contains =M A Y| | | | | | members. We can compute the
expected loss li j, , executing plan φj when the state x is equal to i,
combining the emission function and the loss function:

=
=

l p y i L i y( | ) [ , ( )]i j
y

Y

j,
1 (6)

So li j, is a weighted average of the values of function L related to the
system being in state i, and so it is bounded by the minimum and the
maximum of these values. We can define a new loss matrix L′, of size |X|
by |M|, populated following the formula in Eq. (6). Now, the condi-
tional plan plays the role played by the action in the original setting:
depending on her prior belief, the agent selects the conditional plan
that minimizes the expected loss. Following the same approach outlined
above, we define linear function =l b b( )j j

T as the expected loss fol-
lowing conditional plan j, where vector αj, of size |X|, lists the expected
losses for all states, as =i l( )j i j, . Using Eq. (6), we can derive vector αj
from the set of lambda vectors, as = =i p y i i( ) ( | ) ( )j y

Y
y1

| |
( )j . Starting

from a specific belief b, the optimal policy Π* can be translated into the
specific plan related to the minimum loss. So optimal posterior loss l *
can be expressed as the lower envelope of a set of |M| linear functions,
defined by the set of “alpha” vectors …{ , , }M1 | | :

= =l lb b b* ( ) min ( ) minj M j j M j
T (7)

Hence, l * is a concave, continuous function. While we have showed
that this property holds for a discrete set of |Y| observable values, the
same property holds for an infinite number of possible observations,
when |Y| goes to infinity, and even when the set of observable values is
uncountable.

Hence, we can define the VoI as a function on ΩB:
=VoI l lb b b( ) * ( ) * ( ), depending on the loss matrix and emission

probabilities.
Also, among the |M| conditional plans, |A| of them assign the same

action for all possible realized measures: those plans can be executed in
the prior condition, as they do not require access to the information,
and they are equivalent to the prior selection of an action, independent
of the observation. Hence, the set of alpha vectors includes that of
lambda vectors as a subset. By comparing Eqs. (1) and (7), we conclude
that l l* *, and this provides another proof that the function VoI,
defined as the difference between l * and l *, is non-negative everywhere.
In light of this, we can read the VoI as the benefit of adopting a more
flexible reaction plan: while the expected loss l * derives from selecting
a plan among the |A| possible rigid ones, independent of the measure, l *
derives from the selection among the broader set of |M| adaptive ones

that react to the measures.
The VoI is thus the difference of two concave functions: it is con-

tinuous (as the difference between two continuous functions is con-
tinuous), but it is not necessarily concave. Also, at the corners of the
belief domain, where the state is known (vector b lists only zeros except
for one unitary entry), then the posterior belief is surely equal to the
prior one, so functions l * and l* are identical, and the VoI is nil.

In the limit case of perfect information, observable variable y is
equivalent to state variable x, so that the posterior belief collapses on
one unit vector of the standard basis: =ib e( ) i, with probability bπ, i.
For those posterior beliefs, the losses are minima of function L, that we
list in vector λ*:

= =l i L i ae* ( ) * ( ) min ( , )i
a (8)

So that the expected loss with perfect information is linear in the
belief: =l b b* ( ) *

T . As λ*(i) is a lower bound for each possible alpha
vector component αj(i), function l * is a lower bound for each posterior
function l *, for any observation model. In summary, inequality
l l l* * * holds in the belief domain ΩB, and these functions have the
same value at the vertices of the domain. The VoI for perfect in-
formation, usually called Expected Value of Perfect Information (EVPI),
is given by =EVPI l lb b b( ) * ( ) * ( ): being the difference between a
concave function and a linear one, function EVPI is also concave. As l *
dominates l *, the EVPI provides an upper-bound for the VoI:
0 ≤ VoI ≤ EVPI.

In Fig. 4 we illustrate an example where =X| | 2, i.e. for the binary
state, and =A| | 3. The loss matrix is given by the 3 lambda vectors

= [0 6]1
T, = [1 4]2

T and = [4 2]3
T. Emission functions are both

Gaussian, similar to Fig. 2, again with mean = =y x i i[ | ] and variance
= =y x i[ | ] 2 for both states. In graph (a), posterior loss function l * is

reported for σɛ equal to 1, 0.5 and 0 (the latter being the case of perfect
information). Clearly, the posterior loss is lower if σɛ is lower, down to
linear function l *. For a high value of σɛ, the posterior loss is indis-
tinguishable from the prior one, and the VoI is nil. Graph (b) shows how
the VoI is affected by σɛ: function EVPI is concave, while VoI has local
maxima for higher values of σɛ.

3.5. Interpretation and use of the VoI depending on the attitude toward risk

In our definition of the VoI, no cost or loss for the very act of col-
lecting information is explicitly included. Information only has an effect
on the epistemic belief of the agent, and not on the cost she has to pay.
In the previous section, all loss functions and VoI can be intended as
being in “loss units”, corresponding to the utility unit [23]. As such, the

Fig. 4. Example of posterior expected loss, related to continuous observations
(a), corresponding VoI (b).
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VoI represents the expected loss reduction due to free information. We
have seen that this is always non-negative, indicating that free “in-
formation never hurts”. For a version of the same principle from the
standpoint of information theory, see Cover and Thomas [5]. In terms
of decision-making, this shows that the rational agent should always
accept free information. But is the actual numerical VoI of any use? If
the agent had to decide between collecting free information and an
alternative action whose effect can be summarized by an expected loss
reduction, then the agent should opt for the former option only if its VoI
is above the reduction due to the latter. However, we may be more
interested in a different setting, where information is expensive, and the
agent has to decide on buying it before selecting an action. Information
cost may impact the overall agent's loss. On one hand, the agent can
assess the optimal expected loss without information, as we have seen
above; on the other, to predict the overall effect of information, she can
update the original loss function L including the impact of information
cost for any pair of state and action and, using this updated loss func-
tion, she can assess the expected posterior loss. She should buy the
information only if that posterior loss is less than that without in-
formation. This procedure, that we can call “the long route” is affected
by the sensor cost from the beginning and the VoI, as defined before,
plays no role in it. If we now consider a different information cost, we
have to repeat the procedure from scratch. We may be tempted to
follow a different and shorter route, first computing the VoI in terms of
losses, and then converting this quantity in a monetary value, to com-
pare with the sensor cost. However, if the conversion between mone-
tary value is non-linear, as it is for risk-seeking or risk-adverse agents, it
is unclear where this conversation between VoI and monetary cost
should be made: on what interval along the cost to loss conversion? To
find a monetary value VM consistent with the long route, one has to
equate the prior loss with the posterior one as a function of unknown
VM, and solve that non-linear equation to identify VM (this procedure is
illustrated by [4]). However, there is no guarantee that a single solution
does exist. As an extreme case, consider a peculiar agent that loves
monetary costs of even amounts of dollars, and hates costs of odd
amounts. Also, consider that all costs related to each pair of state and
action are even. Clearly, for this agent the VoI (related to free in-
formation) is not of much use for deciding about buying an information
whose cost is an odd amount of dollars, and not a single solution for VM
may exist.

However, for risk neutral agents the VoI, as defined above, is also
directly useful for deciding whether to buy expensive information.
Indeed, for those agents all losses, and so the VoI itself, can be directly
expressed in monetary costs. Moreover, due to the superposition of
effects, the expected posterior loss buying an information for cost LI (as
outlined in Fig. 1) is simply the sum of LI and the expected posterior loss
with free information. So it is worth buying the information when

+l L l* *I , i.e. when LI ≤ VoI. Hence, by invoking the superposition
of effects, we can interpret the VoI as the maximum cost the rational
risk neutral agent should pay for getting that information, as paying
more would induce an overall negative effect. Let us call D⊆ΩB the
subset of the belief domain where information should be collected. If
cost LI is zero then D coincides with ΩB, as the VoI is non-negative.
When LI is positive, then D is a proper subset of ΩB, that does not in-
clude its corners corresponding to perfect knowledge, where the VoI is
zero. As the VoI is not generally concave, set D is generally not convex,
or even connected. However, as function EVPI is concave, set D corre-
sponding to perfect information is convex. If cost LI is above the max-
imum value of the VoI, set D is empty.

Fig. 5 is related to the example in Fig. 4, when = 0.5 and =L 0.5I .
It shows that the set D where +l L* I is above l * is also that where the
VoI is above LI.

We briefly summarize the properties of the VoI in unconstrained
decision making, discussed above. The VoI is a continuous non-negative
function in the belief's domain. Information with almost-negligible ef-
fect on the belief has almost negligible VoI.

4. VoI when acting under external constraints

4.1. External epistemic constraints

We now consider the effects of external constraints, e.g. societal
regulations, in decision-making. Most external constraints can be cap-
tured by appropriate adjustments of loss matrix L: e.g., if one action a is
forbidden when the state is x, this can be modeled by assigning an in-
finite loss to this pair, and similarly if a cost exceeds a budget con-
straint, to claim that those combinations cannot be accepted. Hence,
those constrains can be embedded in the pre-processing that defines
function L and, given that the structural properties that we have listed
above hold for any loss function, they hold under any of these con-
straints.

A more complex setting occurs when the constraint restricts the
available actions depending on the belief, and not depending on the
state. We call these “epistemic constraints”, as the belief is an epistemic
descriptor. As outlined in Section 2, our motivating example is that of
an agent following a set of regulations forbidding some actions when
the risk is too high. These constraints cannot be embedded in any
equivalent loss matrix. The agent's loss is modeled by matrix L but,
following those constraints, the agent cannot generally implement her
optimal policy Π*, as this may violate them. Hence, to investigate the
exploitative and explorative behavior of an agent acting under external
epistemic constraints we assume she has to follow a sub-optimal policy:
the best one compatible with the constraints. In the next section, we
show how the structural properties of VoI are not preserved in this
setting.

We add a clarification about the nature of epistemic constraints. The
decision-making problem under an epistemic constraint can be trans-
lated into an equivalent unconstrained problem where the constraint is
represented by a change occurring in the external world the agent is
interacting with. For example, the activation of the external epistemic
constraint forbidding the agent to open the asset to the public when the
probability of failure is above a threshold can be equivalently intended
as a physical impediment (say a team of policemen), preventing that
opening, which is activated following a mechanism consistent with that
of activating the epistemic constraint. As a result of this exercise in the

Fig. 5. Comparison between prior and posterior loss for information at cost LI
(a), VoI and information cost (b).
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art of the analogy, the agent may think that now she has re-formulated
the problem as one without any epistemic constraint, where the general
properties of the unconstrained VoI hold. Now, while this is formally
correct, we note that, in this setting, collecting information not only
affects the agent's belief, but also triggers reactions of the “external
world”, and the properties described in Section 3 may not hold true. For
example, even if an agent decides to maintain her posterior action
identical to the prior one (and so neglecting the information), her ex-
pected posterior loss is not necessarily identical to the prior one, if
others react to the information. So our analysis of external epistemic
constraints applies to both equivalent settings: when the constraint is
intended as an “internal” rule or when it models an external force
acting on the agent.

4.2. Acting under external epistemic constraints

We consider that an agent adopts the best policy + A: B con-
sistent with the external epistemic constraints, that is generally dif-
ferent with respect to the optimal unconstrained one Π*. The con-
straints, however, are inactive for perfect beliefs, at the corners of
domain ΩB, as constraints acting on those cases can be directly em-
bedded in the loss matrix L. The corresponding expected loss +l is:

=+ +l lb b( ) ( )b( ) (9)

While function l* is concave and continuous, as it results from a
minimization, function +l is not necessarily concave or even continuous.
Clearly, it cannot be below +l l l*: *, as the latter represents the
minimum loss. So the non-negative expected loss increment due to
constraints, Δl, is:

= +l l lb b b( ) ( ) * ( ) 0 (10)

Increment Δl is also not necessarily continuous. We can express the
prior loss as a function of the expected prior increment =l l b( ), as:

= = ++ +l l l lb( ) * (11)

And the expected posterior loss as related to the posterior increment
=l l b( ), as:

= = + = ++ +l l l l l lb b b( ) * ( ) ( ) * (12)

4.3. Value of information acting under an external epistemic constraints

In this section, we show how, when acting under an external con-
straint (e.g. a regulation), the VoI for a piece of information can be
different from the VoI evaluated without considering the constraint.
That is, we show how external constraints can cause an agent to over-
value or under-value information. We define +VoI to be the value of
information if acting following policy +. This quantity is related to the
unconstrained VoI by increment =VoI l l , as:

= = ++ + +VoI l l VoI VoI (13)

Both Δlπ and Δlω are non-negative, and ΔVoI can be either positive
or negative. As functions of the belief, Δlπ is not necessarily continuous,
nor is ΔVoI, while Δlω is continuous under certain assumptions as we
will see in a later example. At the corners of belief domain ΩB, in-
formation has no impact and both ΔVoI and +VoI are zero, as is VoI.

Due to the non-negativity of the increments, we can bound ΔVoI as
l VoI l . However, in general Δlπ and Δlω are arbitrarily

large, and so ΔVoI and +VoI can be positive or negative, and their
modulus arbitrary large. Negativity of the VoI can explain information
avoidance for rational agents: actually, if +VoI is negative they should
be ready to pay up to +VoI to avoid collecting information.

Fig. 6(a) shows a simple example of those limit cases. The first three
actions are related to a low loss while the other two are related to a loss
δ higher. From prior belief bB, the posterior belief can be bA or bC, de-
pending on the realized observation, from prior belief bC, the posterior

belief can be bB or bD. Thus, from prior belief bB, the agent would like to
collect the information, as the corresponding +VoI is δ. From prior belief
bC, instead, the agent prefers to avoid information, as +VoI is . This
shows how +VoI can be positive or negative, as δ can be arbitrarily
large. Fig. 6(b,c) shows the example of Figs. 4 and 5, under an external
epistemic constraint forcing action 2 for belief 15%≤ bπ, 2 ≤ 85%. The
corresponding function +l is discontinuous. We consider the same
emission functions introduced above, with = 1. Function Δlπ is dis-
continuous and it is zero where policies + and Π* agree with each
other. Function +l (and so function Δlω) is continuous, as the continuous
distribution of the posterior belief acts as a smoother of function +l .
Where +l is continuous, a jump of function +l is identical of that of +VoI .
Both functions ΔVoI and +VoI are discontinuous, and they assume po-
sitive and negative values in ΩB. As illustrated above for the general
case, we note that when bπ, 2 is just below 15% the +VoI is indeed
negative. Another interesting belief is at =b 85%,2 , when the expected
loss is maximum: any update increasing belief component bπ, 2, even for
an arbitrary small quantity (i.e., even for almost negligible informa-
tion), will significantly reduce the loss, hence +VoI is not only positive,
but much higher than VoI. Generally, +VoI can be higher, equal or lower
than VoI, depending on the prior belief. In the Appendix, we show how
almost-negligible information can have arbitrarily large value, in the
constrained setting.

We close this Section by focusing on two special cases. If, at the
prior belief bπ, the two policies agree with each over (i.e.,

=+ b b( ) *( )) then Δlπ is zero, so =VoI l cannot be positive,
and +VoI is not higher than VoI. Hence the constrained agent gives less
value (or the same value) to the information with respect to the un-
constrained one, due to the sub-optimality of the posterior action.
Indeed, for such a belief, the constraint is inactive in the prior condi-
tion, and the information exposes her to fall under the constraints: the
non-positive ΔVoI quantifies this effect. Conversely, it can be the case
that, while + and Π* are different at bπ, they are identical for all
reachable posterior beliefs in ΩY: in that case, Δlω is zero and +VoI is not
lower than VoI: the agent is penalized by the constraint only in the prior
setting, and the information has the additional value of letting the agent
escape the constraint. This latter case happens, for example, in the case
of perfect information.

5. Regulatory design to promote well-balanced information
collection

5.1. Reasons for external epistemic constraints and their impact on
information collection

Why are external epistemic constraints imposed on the decision-
maker? We assume they are imposed by society, through regulations,
with the purpose of influencing and controlling private decisions to-
wards a common good ([6] presents a recent analysis in the context of
structural design). The actions taken by the agent have public economic
consequences that society can assess. Once those consequences are
summarized in cost function C, as illustrated in Fig. 1, society can
identify the basins of optimality corresponding to the optimal policy
according to societal evaluation, following the approach outlined
above. If societal cost C differs from agent's cost L, the optimal policy
identified by society will differ from that identified by the decision-
maker. Assessing function L and predicting the agents’ behavior, society
can calibrate a regulation. This regulation can forbid certain actions to
be taken under specific circumstances, namely under certain epistemic
beliefs. By appropriate regulation, society can enforce the adoption of
its optimal policy by the agent. However, what is the effect of this
enforcement on information collection? Society assigns a value to any
possible information, and it wishes information to be collected when
this value is above its cost. For example, society would like relevant
information to be always collected, as, from their perspective, it “never
hurts”. However, the VoI as assessed by the decision-maker acting
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under external epistemic constraints can be different, much higher of
that assessed by society, or even negative, as we have seen above. So,
from the standpoint of society, agents collect information that is too
expensive to be collected, and avoid other relevant information.

5.2. Incentives and penalties for influencing decision making

Policy makers can influence the behavior of agents in many ways,
e.g. by funding an education system promoting respect to other citizens
and to specific societal values. Here we are considering a more direct
enforcement method: a regulation enforcing penalties and incentives to
make loss function L, summarizing the economic cost the agent has to
pay depending on the system condition and the adopted action, con-
sistent with societal function C, modeling the corresponding societal
costs. For example, society could enforce an economic penalty in case of
failure of the asset, or pass laws to increase the liability of the agent,
thereby transferring some costs from C to L. Let Z be the economic
penalty (if positive) or incentives (if negative) society poses to the
agent. Then, the overall loss for the agent is

= +L x a L x a Z x a( , ) ( , ) ( , ). Clearly, if =Z x a C x a L x a( , ) ( , ) ( , ),
agent's and societal losses coincide. After the implementation of these
corrections, epistemic constraints are redundant for the agent, as her
optimal policy is aligned with that preferred by society. We note that in
order to induce an agent's behavior consistent with societal desiderata,
it is not necessary that C and L′ are identical: it is sufficient that they
differ for an arbitrary positive scaling factor γ > 0 and an arbitrary
offset β. If so, the VoI assessed by the agent is just scaled by factor γ
with respect to that assessed by society, and it has the same intuitive
properties of the unconstrained VoI. The same effect can also be
achieved by providing epistemic incentives and penalties, depending on
the belief, instead of the state, e.g. a regulation can impose a penalty
proportional to the probability of failure. Society can provide economic
incentive =z b b( )a a

T , with = Z i a( , ),a i, if action a is taken under
belief b: The adjusted expected loss function la is:

= +l l zb b b( ) ( ) ( )a a a (14)

Society can also provide incentives directly for promoting in-
formation collection (however, it is harder to conceive that society
could put a penalty against buying almost irrelevant information).

Overall, given the results of Section 3, incentives and penalties
should aim at obtaining a concave loss function for the agent, so as not

to trigger undesirable effects related to information avoidance and
over-evaluation.

5.3. A maintenance problem under a single reliability constraint

We consider a simple decision making problem, following [14],
where the agent has the responsibility for an asset whose state is binary:
it can be intact (this is state =x 1), or damaged and doomed to failure
(this is state =x 2), so =X| | 2. Thus, as in the examples shown in
Figs. 4–6, the agent's belief is univocally defined by failure probability
bπ, 2, which we now indicate simply as P, for ease of notation. She has
two alternative options: do-nothing (this is action a1) or repair the asset
(this is action a2), so =A| | 2. If she does nothing and the asset is doomed
to failure, she has to sustain cost of failure LF, but the failure can be
avoided by paying repair cost LR.Thus her unconstrained optimal policy
is to repair the asset only if P is above =P L L/R F , and optimal un-
constrained loss is =l P L P P* ( ) min{ / , 1}R . We assume that society
evaluates the cost of failure and repair as CF and CR respectively, so the
policy imposed by society, consistent with its proper evaluation, is to
repair the asset if =P P C C¯ /R F , and we assume that <P P¯ . So the
constrained loss +l is identical to l* for P below P̄ and above P , but is
different from l* and equal to LR in the interval = P P[ ¯, ]M . The ex-
pected loss increment is:

=l P L P P P
P

( ) (1 / ) if
0 if

R M

M (15)

So the increment is nonzero only in the range of belief between the
threshold imposed by society and that identified by the unconstrained
agent. If we define =P b[ ]M M as the probability that the pos-
terior belief falls in ΩM, and =µ P P[ | ]M M as the expected belief in
interval ΩM, then the expected posterior loss increment due to the
constraint is =l P L µ P(1 / )M R M , because Δl is an affine function in
ΩM, according to Eq. (15). As outlined above, if the prior belief is
outside ΩM, +VoI VoI . Conversely, if the prior belief is inside ΩM and
the posterior belief cannot fall in ΩM (i.e. if PM=0), then +VoI VoI .
Function Δl is discontinuous at P̄ , and the jump's value is L P P(1 ¯/ )R .
The maximum possible value of this quantity, when P̄ is close to zero, is
LR.

In the example of Fig. 7(a,b), =L L3F R so that =P 1/3. The societal
constraint is =P̄ 0.1, so the maximum value of the discontinuous
function +l , occurring at P̄ , is 0.7LR. The available information is the

Fig. 6. Example of loss function for illustrating the lack of sub-optimality bounds when acting under external constraints (a), Example of decision making problem
under external constraints: loss function (b) and VoI (c).

M. Pozzi, et al. Reliability Engineering and System Safety 197 (2020) 106814

8



same at that described in Section 2.2. and plotted in Fig. 2, with = 1,
and the corresponding maximum value of continuous function Δlω is
about 0.2LR. Graph (b) reports the corresponding VoI, expressed in
terms of repair cost LR. Acting under the external constraint, +VoI has a
maximum value of 0.56LR and a minimum value of L0.14 R, their
difference being the discontinuity of +l . As expected, variation ΔVoI is
bounded by l and Δlπ. That graph also reports the unconstrained
VoI, and function VoIC, that will be introduced in the next Section.
While these high values of failure probability are selected for the sake of
readability of the graphs, the reader is referred to Pozzi et al. [14] for a
similar example with smaller probability values, often encountered in
reliability analysis of civil engineering components.

5.4. A corresponding regulation design

In the setting of previous Section, the agent would avoid collecting
information when belief P is below P̄ and, actually, she would be
willing to pay up to the 14% of the repair cost LR, to avoid the in-
formation being collected. In the limit case of almost irrelevant in-
formation (i.e. when σɛ approaches infinity) the agent can pay up to
35% of the repair cost (i.e., half of the discontinuity in Δlπ) to avoid
collecting information or to collect information, depending on the fact
that her belief P is just below or just above P̄ . If P̄ is close to zero, and
under specific scenarios for almost irrelevant information, this VoI can
be as large as the repair cost.

With references to the problem outlined in Section 5.3, we assume
society assesses the cost of failure as CF > LF, while that of repair is
consistent with that assigned by the agent: =C LR R. Thus, the societal
desideratum is to fix =P C C¯ /R F . To align agents’ preferences toward
societal ones, society can enforce a penalty C L( )F F in case of failure.
The same effect can alternatively be obtained by subsidizing the repair,
proposing incentive L P(1 )R , for lowering the repair cost. More
generally, let ΔLF and ΔLR be the penalty and the incentive for failure

and repair, respectively. By imposing that the adjusted policy of the
agent is consistent with that of society (i.e. + =L L L L P( )/( ) ¯R R F F ),
we get one linear equation, to define those quantities. Another equation
can come from the condition that expected penalties should balance
expected incentives, so that the regulation is self-sustainable. To do so,
we need to assume a distribution of prior belief P. Let us define

= <P P P[ ¯]F the probability that the prior belief is below the
threshold, and the optimal action is doing nothing, = <µ P P P[ | ¯]F is
the expected probability of failure below the threshold, and

= =P P P P[ ¯] 1R F is the probability that a repair is needed. If so,
incentives and penalties should be:

=
+

=L L P P
r P

L L r
¯
¯ ;F F

FR
R F FR (16)

where =r µ P P/FR F F R. We note that the penalty can be enforced as an
epistemic one, asking for payment ΔLFP for an asset when the prob-
ability of failure is P. Again, constraints becomes redundant under this
regulation. The adjusted optimal loss function for the agent is con-
tinuous and concave, so the properties of unconstrained VoI hold. The
VoI assessed by the agent, that we can now call VoIv for clarity, is
proportional to that assessed by society, which we call VoIc, and is less
than that for society: =VoI L L VoI(1 / )v

R R c. To achieve perfect con-
sistency in the evaluation, society should also provide to the agent
additional incentive =I VoI L L/v c R R for collecting information. As VoIc
is a function of belief P, so is Iv.

Fig. 7(c,d) shows this correction, starting from the example of
graphs (a-b). Functions c * and c* represent the prior and posterior
optimal expected cost, as evaluated by society, considering =C C10F R,
as =P̄ 0.1. We assume =P 0.65F , =µ 0.04F , =P 0.35R , so =r 7.43%FR ,

=L L4.02F R and =L L0.30R R. In this condition, society imposes a
penalty corresponding to about four times the repair cost, for doing
nothing when P equal to P̄ , and offers 30% of the repair cost if the agent
decides to repair. Adjusted expected loss l v and l v are proportional to

Fig. 7. Losses (a) and VoI (b) acting under external constraints, in the described example; corresponding quantities under the regulation (c-d).
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functions c * and c*, respectively. The lower graph reports VoIc, that is
maximum at P̄ , and =VoI VoI0.7v

c. By providing incentive
=I VoI0.3v c, society can make the adjusted VoI as assessed by the agent

consistent with VoIc. Properly, this regulation is not equilibrated: on
one hand, the incentive for information collection is a cost for society,
on the other hand, society gets a benefit from the better induced atti-
tude towards information. This consideration could be embedded info a
different (equilibrated) selection of incentive and penalty values, after
some assumptions on information availability.

6. Conclusion

We have investigated the effect of societal constraints on agents’
attitudes toward information. While these constraints are effective in
forcing agents to take decisions consistent with society's will, they can
have unwanted “second-order” effects on information collection, if this
activity is controlled by these agents and unconstrained. Risk-neutral
agents will collect information only if its cost is below its value.
However, the VoI assessed by agents whose preferences are not aligned
with society will differ from that assessed by society itself. In the illu-
strated example, two undesirable outcomes can occur. First, an agent
forced by the constraint to repair an asset can be willing to pay too
much for escaping the constraint by collecting information, up to, in the
limit case, the repair cost for receiving almost irrelevant information.
So, paradoxically enough, the very availability of information makes
things worse for society, as its members waste resources. Second, the
economic effect can be of the same magnitude (but much higher in
relative terms) when the constraint is currently inactive, because the
asset is judged to be safe enough. In this latter case, the agent can prefer
to avoid information and, again in the limit case, pay up to the repair
cost to do so.

To overcome these undesirable induced behaviors, society can
provide economic incentives and penalties to agents, to make the loss
function concave for the decision makers. The calibration of such
measures to make constraints redundant, and even economically self-
equilibrated, would depend on specific assumptions about agents’
preferences, and we have provided an analysis of a simple problem.
Society can also provide incentives for information collection, as illu-
strated above. Also, societal codes can require collecting data (e.g.,

[1]), and they could even prescribe to evaluate VoI according to a given
formula, encoding the assessment from the societal standpoint, and
force agents to buy information when its cost is below that threshold,
but the implementation of such a requirement would likely be con-
troversial.

The analysis presented in this paper can be relevant for the legal
distinction between negligence and reckleness, and for the attribution
of liability. Apart from proposing practical solutions for overcoming the
problems of information avoidance and over-evaluation, the first goal
of this paper was to clarify how mathematical properties of VoI are
affected by external epistemic constraints, as this is key for many en-
gineering applications, e.g. for the optimization of information collec-
tion.
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Appendix. Effects of almost-irrelevant information

While, trivially, even under external epistemic constraints, an independent observation with no effect on the agent's belief has no value at all, the
possible value of slightly dependent information strongly depends on those constraints.

By “almost irrelevant information”, we refer to a source of information that leaves the posterior belief almost identical to the prior one.
Quantitatively, we can define a ball or radius ɛ, centered on the prior belief bπ, so that the posterior belief bω is always inside that ball, for any
realized measure. We analyze the case of “almost irrelevant information” by computing the limit for ɛ going to zero. Alternatively, we can define the
trace tω of the covariance matrix Σω of the posterior belief bω, and compute that limit for tω going to zero.

Almost irrelevant information in unconstrained decision making

We formally prove that, without any external epistemic constraint, information that have almost-negligible effects on the agent's belief have also
almost-negligible VoI. Let us consider the case when the optimal expected loss function l* is a quadratic form:

= + +l qb Q v* ( ) T T (A.1)

where = b b , matrix Q is negative definite, as l* is concave, =q l * and vπ is a*
, where a* is the optimal action for belief bπ. As l* has to be

piece-wise linear, function l* can have the form of Eq. (A.1) only for an infinite number of available actions. The posterior expected loss can be
written as a function of the covariance matrix Σω:

= = + + = + + = +l l q l lb Q v Q v Q* [ * ( )] [ ] [ ] * tr( ) *T T T T (A.2)

as = 0 because =b b , and “tr” is the trace operator. So the VoI is:

= =VoI l l Q* * tr( ) (A.3)

Let us suppose we can identify a parameter of standard deviation σω, so that the covariance matrix is proportional to the corresponding variance:
= M2 , and trace tω is proportional to 2. From Eq.A.3, the VoI is proportional to that variance: =VoI 2 with = Q Mtr( ): this shows that
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function VoI(σω) is continuous at σω equal to zero, where it is zero. Hence, for any monetary value, arbitrarily small, we can find a corresponding
value of σω so that the VoI is equal to that small value.

Now, generally the expected loss function l* cannot be expressed by a quadratic form as in Eq. (A.1). However, suppose we can find a quadratic
form that is never above l* in the reachable belief's domain ΩY, and it is equal to l* at prior belief bπ. In this setting, the previous formula is an upper-
bound for the VoI:

=VoI Qtr( ) 2 (A.4)

So we have proven, again, that the VoI cannot be high, when σω is small. Actually, the quadratic bound is ineffective for some points in the belief's
domain: the kinks where the curvature is infinite. For these points, we can define a piece-wise linear lower-bound for l *.

Almost irrelevant information under external epistemic constraints

Under external epistemic constraints, function l+ is not necessarily continuous. We now prove that if there is a discontinuity of value δ> 0 in l+,
then almost irrelevant information can have any value in the [ , ] interval. To do so, we focus on a simple one-dimensional case of the belief
domain, without losing generality as, in a higher dimensional space, the argument can be repeated for a segment passing through the discontinuity.
Let us consider this simple loss function l*:

=
>

+l b b
b

( ) 0 0
0 (A.5)

where b indicates the belief. Let us consider a prior belief =b 0, so that =l * 0, and a posterior one that can assume only two values:

=
=
=

+b
P

w p P
w. p. 1

. . (A.6)

where ɛ is a small positive number. We can easily check that = =b b[ ] 0 . and that

= = =+ +
+l l b Plim lim [ ( )] lim0 0 0 (A.7)

So the VoI can be as large as δ. By slightly changing the condition in A.5, so that l+ is zero at b equal to zero, and reversing the sign of variable bω,
we can also prove that the VoI can be as small as .

References

[1] <number>2008City of Los Angeles Building Code - Volume 1 (Based on the 2007
CBC and the 2006 IBC) first printing ISBN-13: 978-1-58001-644-5 publication da-
te:jan. 2008.

[2] Bertschinger, N., Wolpert, D.H., Olbrich, E. and Jost, J., “Value of information in
non co-operative games,” arXiv preprint arXiv:1401.0001, 2013.

[3] Black HC, Nolan JR, Connolly MJ, Nolan-Haley JM. Black’s law dictionary: defini-
tions of the terms and phrases of American and English jurisprudence, ancient and
modern. St. Paul, MN: West Publishing Company; 1990.

[4] Bratvold RB, Bickel JE, Lohne HP. Value of information in the oil and gas industry:
past, present, and future. SPE Reservoir Eval Eng 2009;12(4):630–8.

[5] Cover TM, Thomas JA. Elements of information theory. John Wiley & Sons; 2006.
[6] Fischer K, Viljoen C, Köhler J, Faber MH. Optimal and acceptable reliabilities for

structural design. Struct Saf 2019;76:149–61. 2019.
[7] Golman R, Hagmann D, Loewenstein G. Information avoidance. J Econ Lit

2017;55(1):96–135. pg.
[8] Goulet JA, Der Kiureghian A, Li B. Pre-posterior optimization of sequence of mea-

surement and intervention actions under structural reliability constraint. Struct Saf
2015;52:1–9.

[9] Jensen JL. Sur les fonctions convexes et les inégalités entre les valeurs moyennes.
Acta Mathematica 1906;30:175–93. https://doi.org/10.1007/BF02418571. 1906.

[10] Karlsson N, Loewenstein G, Seppi D. The ostrich effect: selective attention to in-
formation. J Risk Uncertain 2009;38(2):95–115. 2009.

[11] Malings C, Pozzi M. Value of information for spatially distributed systems: appli-
cation to sensor placement. Rel Eng Sys Safety 2016;154:219–33. 2016.

[12] Memarzadeh M, Pozzi M. Value of information in sequential decision making:
component inspection, permanent monitoring and system-level scheduling. Rel Eng
Sys Safety 2016;154:137–51. 2016.

[13] Pozzi M, Der Kiureghian A. Assessing the value of information for long-term
structural health monitoring. Health Monitor Struct Biol Syst 2011 2011.

[14] Pozzi M, Malings C, Minca AC. "Negative value of information in systems’ main-
tenance," Proc. of the 11th International Conference on Structural Safety and
Reliability (ICOSSAR2017). 2017. 6-10 August 2017.

[15] Qin J, Thöns S, Faber MH. On the value of SHM in the context of service life in-
tegrity management. The 12th International Conference on Applications of
Statistics and Probability in Civil Engineering. 2015. p. 1–8.

[16] Raiffa H, Schlaifer R. Applied statistical decision theory. Cambridge, Massachusetts,
USA: Harvard University Press; 1961. p. 1961.

[17] Rayner S. Uncomfortable knowledge: the social construction of ignorance in science
and environmental policy discourses. Econ Soc 2012;41(1):107–25.

[18] Russell S, Norvig P. Artificial intelligence: a modern approach. Pearson Education;
2010. p. 2010.

[19] Srinivasan R, Parlikad AK. “Value of condition monitoring in infrastructure main-
tenance. Comput Ind Eng 2013;66(2):233–41. 2013.

[20] Straub D. Value of information analysis with structural reliability methods. Struct
Saf 2014;49:75–85.

[21] Sweeny K, Melnyk D, Miller W, Shepperd JA. Information avoidance: who, what,
when, and why. Rev Gen Psychol 2010;14(4):340. 2010.

[22] Thöns S. "On the value of monitoring information for the structural integrity and
risk management. Comp-Aid Civil Infrastruct Eng 2018;33.1(2018):79–94.

[23] Von Neumann J, Morgenstern O. Theory of games and economic behavior.
Princeton University Press; 1944. p. 1944.

[24] Zonta D, Glisic B, Adriaenssens S. “Value of information: impact of monitoring on
decision-making. Struct Control Hlth 2014;21(7):1043–56.

[25] Tonelli D, Verzobio A, Bolognani D, Cappello C, Glisic B, Zonta D, et al. The con-
ditional value of information of SHM: what if the manager is not the owner? Health
Monitor Struct Biol Syst XII 2018;10600:106002. International Society for Optics
and Photonics.

[26] Verzobio A, Bolognani D, Zonta D, Quigley J. Quantifying the Benefit of Structural
Health Monitoring: Can the Value of Information be Negative? Structural Health
Monitoring 2019.

M. Pozzi, et al. Reliability Engineering and System Safety 197 (2020) 106814

11

http://refhub.elsevier.com/S0951-8320(19)30157-7/sbref0001
http://refhub.elsevier.com/S0951-8320(19)30157-7/sbref0001
http://refhub.elsevier.com/S0951-8320(19)30157-7/sbref0001
http://refhub.elsevier.com/S0951-8320(19)30157-7/sbref0002
http://refhub.elsevier.com/S0951-8320(19)30157-7/sbref0002
http://refhub.elsevier.com/S0951-8320(19)30157-7/sbref0003
http://refhub.elsevier.com/S0951-8320(19)30157-7/sbref0004
http://refhub.elsevier.com/S0951-8320(19)30157-7/sbref0004
http://refhub.elsevier.com/S0951-8320(19)30157-7/sbref0005
http://refhub.elsevier.com/S0951-8320(19)30157-7/sbref0005
http://refhub.elsevier.com/S0951-8320(19)30157-7/sbref0006
http://refhub.elsevier.com/S0951-8320(19)30157-7/sbref0006
http://refhub.elsevier.com/S0951-8320(19)30157-7/sbref0006
https://doi.org/10.1007/BF02418571
http://refhub.elsevier.com/S0951-8320(19)30157-7/sbref0008
http://refhub.elsevier.com/S0951-8320(19)30157-7/sbref0008
http://refhub.elsevier.com/S0951-8320(19)30157-7/sbref0009
http://refhub.elsevier.com/S0951-8320(19)30157-7/sbref0009
http://refhub.elsevier.com/S0951-8320(19)30157-7/sbref0010
http://refhub.elsevier.com/S0951-8320(19)30157-7/sbref0010
http://refhub.elsevier.com/S0951-8320(19)30157-7/sbref0010
http://refhub.elsevier.com/S0951-8320(19)30157-7/sbref0011
http://refhub.elsevier.com/S0951-8320(19)30157-7/sbref0011
http://refhub.elsevier.com/S0951-8320(19)30157-7/sbref0012
http://refhub.elsevier.com/S0951-8320(19)30157-7/sbref0012
http://refhub.elsevier.com/S0951-8320(19)30157-7/sbref0012
http://refhub.elsevier.com/S0951-8320(19)30157-7/sbref0013
http://refhub.elsevier.com/S0951-8320(19)30157-7/sbref0013
http://refhub.elsevier.com/S0951-8320(19)30157-7/sbref0013
http://refhub.elsevier.com/S0951-8320(19)30157-7/sbref0014
http://refhub.elsevier.com/S0951-8320(19)30157-7/sbref0014
http://refhub.elsevier.com/S0951-8320(19)30157-7/sbref0015
http://refhub.elsevier.com/S0951-8320(19)30157-7/sbref0015
http://refhub.elsevier.com/S0951-8320(19)30157-7/sbref0016
http://refhub.elsevier.com/S0951-8320(19)30157-7/sbref0016
http://refhub.elsevier.com/S0951-8320(19)30157-7/sbref0017
http://refhub.elsevier.com/S0951-8320(19)30157-7/sbref0017
http://refhub.elsevier.com/S0951-8320(19)30157-7/sbref0018
http://refhub.elsevier.com/S0951-8320(19)30157-7/sbref0018
http://refhub.elsevier.com/S0951-8320(19)30157-7/sbref0019
http://refhub.elsevier.com/S0951-8320(19)30157-7/sbref0019
http://refhub.elsevier.com/S0951-8320(19)30157-7/sbref0020
http://refhub.elsevier.com/S0951-8320(19)30157-7/sbref0020
http://refhub.elsevier.com/S0951-8320(19)30157-7/sbref0021
http://refhub.elsevier.com/S0951-8320(19)30157-7/sbref0021
http://refhub.elsevier.com/S0951-8320(19)30157-7/sbref0022
http://refhub.elsevier.com/S0951-8320(19)30157-7/sbref0022
http://refhub.elsevier.com/S0951-8320(19)30157-7/sbref0023
http://refhub.elsevier.com/S0951-8320(19)30157-7/sbref0023
http://refhub.elsevier.com/S0951-8320(19)30157-7/sbref0023
http://refhub.elsevier.com/S0951-8320(19)30157-7/sbref0023
http://refhub.elsevier.com/S0951-8320(19)30157-7/sbref0002a
http://refhub.elsevier.com/S0951-8320(19)30157-7/sbref0002a
http://refhub.elsevier.com/S0951-8320(19)30157-7/sbref0002a

	Information avoidance and overvaluation under epistemic constraints: Principles and implications for regulatory policies
	Introduction
	Problem formulation
	Why &#x0201C;information never hurts&#x0201D; in unconstrained decision-making
	Unconstrained decision making under uncertainty
	Belief updating after information processing
	Pre-posterior analysis and value of information
	Posterior loss and value of perfect information
	Interpretation and use of the VoI depending on the attitude toward risk

	VoI when acting under external constraints
	External epistemic constraints
	Acting under external epistemic constraints
	Value of information acting under an external epistemic constraints

	Regulatory design to promote well-balanced information collection
	Reasons for external epistemic constraints and their impact on information collection
	Incentives and penalties for influencing decision making
	A maintenance problem under a single reliability constraint
	A corresponding regulation design

	Conclusion
	CReditT author statement
	mk:H1_20
	Acknowledgements
	Appendix. Effects of almost-irrelevant information
	Almost irrelevant information in unconstrained decision making
	Almost irrelevant information under external epistemic constraints

	References




