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ABSTRACT

Model confidence or uncertainty is critical in autonomous sys-
tems as they directly tie to the safety and trustworthiness of
the system. The quantification of uncertainty in the output
decisions of deep neural networks (DNNs) is a challenging
problem. The Bayesian framework enables the estimation of
the predictive uncertainty by introducing probability distri-
butions over the (unknown) network weights; however, the
propagation of these high-dimensional distributions through
multiple layers and non-linear transformations is mathemati-
cally intractable. In this work, we propose an extended vari-
ational inference (eVI) framework for convolutional neural
network (CNN) based on tensor Normal distributions (TNDs)
defined over convolutional kernels. Our proposed eVI frame-
work propagates the first two moments (mean and covariance)
of these TNDs through all layers of the CNN. We employ
first-order Taylor series linearization to approximate the mean
and covariances passing through the non-linear activations.
The uncertainty in the output decision is given by the propa-
gated covariance of the predictive distribution. Furthermore,
we show, through extensive simulations on the MNIST and
CIFAR-10 datasets, that the CNN becomes more robust to
Gaussian noise and adversarial attacks.

1. INTRODUCTION

The estimation of uncertainty or confidence in the output deci-
sions of deep neural networks (DNNs) is pivotal for their de-
ployment in real-world scenarios [1]. In modern applications,
including autonomous driving [2] and medical diagnosis [3],
the reliability of the predicted decision and the robustness of
the model to input noise are crucial. One possible way of esti-
mating uncertainty/confidence in the output of DNNs includes
Bayesian treatment of unknown parameters, i.e., introducing
prior distributions and later estimating the posterior distribu-
tions over the network weights. However, posterior inference
in DNNs is analytically intractable and approximations such
as variational inference (VI) are often used [4]. Recent work
has shown that VI approximation can be scaled to large and
modern DNN architectures [5]. However, the challenge re-
mains, i.e., the propagation of distributions introduced over

the weights through multiple layers (consisting of linear and
nonlinear transformations) of DNNs.

Recently, Roth and Pernkopf proposed a VI framework for
the propagation of moments of the approximate distribution
through layers of fully-connected neural networks [6]. They
presented a closed-form solution for propagating moments
through rectified linear unit (ReLU) activation functions with
Gaussian distributions. Later, Wu et al extended [6] frame-
work for the Heaviside activation function and developed an
empirical Bayes method for tuning prior distributions of the
weights during training [7]. Hernandez-Lobato and Adams
proposed probabilistic back-propagation (PBP) [8] to prop-
agate probabilities through a fully-connected network using
assumed density filtering (ADF) [9]. ADF is known to be sen-
sitive to observation ordering, an undesirable property in the
batch context [10]. PBP is restricted to ReLU activation and
continuous regression problems. Ghosh et al extended PBP
to multi-class classification [11]. Gast and Roth propagated
observations uncertainty (non-Bayesian framework) through
deterministic CNN by using ADF framework and ReLU and
Leaky ReLU activations [12].

Blundell et al introduced Bayes-by Backprop (BBB)
and defined a fully-factorized Gaussian distribution over the
weights of the neural network [13]. In a followup work,
Shridhar et al extended BBB to Bayes-CNN by introducing a
fully-factorized Gaussian distribution over the convolutional
kernels [14]. On the other hand, Gal and Ghahramani ex-
tended Bayesian dropout approximation for CNN (termed
Dropout CNN) by formulating the VI problem with Bernoulli
distributions over the convolutional kernels [15]. In all these
approaches [13–15], the second moment (covariance matrix)
of the weights is not propagated from one layer of the neural
network to the next layer. The uncertainty of the network
output is estimated at the test time using Monte Carlo runs by
sampling from the estimated distribution of weights.

Recent approaches proposed for propagating model uncer-
tainty considered only the fully-connected network and lim-
ited choice of activation function such as (ReLU, leaky ReLU
and/or Heaviside functions). To the best of our knowledge,
none of the recent methods for propagating model uncertainty
considered a CNN with a general choice of activation func-
tion which enables flexibility in extending the framework for
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various network architecture and different datasets.
In this paper, we propose an extended VI (eVI) approach

for propagating model uncertainty in CNN. The convolutional
kernels are considered as random tensors and their first and
second moments are propagated through all layers (convolu-
tion, max-pooling and fully-connected). The covariance of
the predictive distribution, which represents the uncertainty
associated with the prediction, is the covariance of the distri-
bution of the weights propagated through layers of the CNN.
Our contributions include:

1. Introducing tensor Normal distributions (TNDs) over
convolutional kernels. TND captures the correlation and
variance heterogeneity, both within and among dimen-
sions [16].

2. Approximating the means and covariances of the TNDs
after propagating them through nonlinear activation
functions using Taylor series. Propagation of moments
through layers of CNN make it robust to noise (additive,
inherent or adversarial) in the data as well as variations
in the model parameters (kernels).

3. Experimental results showing superior robustness of
eVI-CNN against Gaussian noise and adversarial attacks
on MNIST and CIFAR-10 datasets.

2. PROBABILITY DISTRIBUTIONS OVER THE
WEIGHTS IN DEEP NEURAL NETWORKS

We view a neural network as a probabilistic model p(y|X,Ω):
given an input X ∈ RI1×I2×K , the neural network assigns
a probability distribution to each possible output y, using
the set of weights Ω. The weight parameters define all net-
work layers, Ω = {{{W(kc)}Kckc=1}Cc=1, {W(l)}Ll=1}, where
{{W(kc)}Kckc=1}Cc=1 is the set of C convolutional layers with
Kc kernels in the cth convolutional layer, and {W(l)}Ll=1 is
the set of L fully-connected layers.

In deterministic setting, the optimal weights are obtained
by maximizing the likelihood p(D|Ω) given the training data
D = {X(i),y(i)}Ni=1 or by maximizing the posterior p(Ω|D),
where the prior distribution is considered as a regularization
term. The likelihood distribution p(y|X,Ω), in deterministic
models, is generally, the cross-entropy loss for classification
problems or squared loss for regression problems, and network
parameters are updated through back-propagation.

In our setting, we introduce a prior distribution Ω ∼ p(Ω)
over network parameters. By estimating the posterior distri-
bution of the weights given the data p(Ω|D), we can find the
predictive distribution of any new unseen data point X̃,

p(ỹ|X̃,D) =
∫
p(ỹ|X̃,Ω) p(Ω|D) dΩ. (1)

An illustration of a probabilistic convolutional neural network
with one convolutional layer, one max-pooling and one fully-
connected layer is shown in Fig. 1.

3. EXTENDED VARIATIONAL INFERENCE (EVI)

3.1. Tensor Normal Distribution (TND)

A fully factorized Gaussian distribution defined over the kernel
tensor imposes a restrictive independence assumption between
the kernel elements. Instead, we use TNDs, which are defined
over n-dimensional arrays [16]. Specifically, a TND of order 3
is defined as: W ∼ T Nn1,n2,n3(M,T), where M = E[W],
and T is the covariance tensor of order six. It can be shown
that this covariance tensor is positive semi-definite. In a separa-
ble or Kronecker structured model [16], the covariance matrix
of the vectorized multi-dimensional array is the Kronecker
product of covariance matrices equal to the number of dimen-
sions, i.e., T =

⊗1
j=3 U(j), where {U(j)}3j=1 ∈ Rnj×nj are

positive semi-definite matrices. We note that this factorization
reduces the number of parameters to be estimated. In a separa-
ble model, an equivalent formulation of the TND is essentially
a multivariate Gaussian distribution, i.e.,

vec(W) ∼ N∏3
j=1 nj

(vec(M),
1⊗
j=3

U(j)), (2)

where vec(.) denotes the vectorization operation. We assume
that convolutional kernels are independent of each other within
as well as across layers. The independence assumption allows
convolutional layers to extract independent features within and
across layers in a CNN.

3.2. VI with Tensor Normal Distributions (TNDs)

We use the variational learning approach for estimating the
posterior distribution of the weights given data by minimizing
the Kullback-Leibler (KL) divergence between a proposed
approximate distribution qφ(Ω) (i.e., TNDs over convolutional
kernels) and the true posterior distribution of the weights.

φ∗ = argminKL [qφ(Ω)‖p(Ω|D)] ,
= argminKL [qφ(Ω)‖p(Ω)]− E {log p(D|Ω)} ,

(3)

where E = Eqφ(Ω). Let us denote by L(φ;y|X) the (varia-
tional) or evidence lower bound (ELBO) as:

L(φ;y|X) = E(log p(y|X,Ω))− KL(qφ(Ω)‖p(Ω)). (4)

An optimal approximation to posterior distribution is obtained
by maximizing the ELBO objective function, which consists
of two parts: the expected log-likelihood of the training data
given the weights, and a regularization term. The expected
log-likelihood is defined as a multivariate Gaussian with the
mean and covariance estimated by propagating the mean and
covariances of the approximate distribution qφ(Ω) through the
network.

3.3. Propagation of the First two Moments

Without loss of generality, we demonstrate propagation of
means and covariances of the approximate distribution qφ(Ω)



Fig. 1. Propagation of the mean and covariance of the approximate distribution qφ(Ω) through multiple layers of a CNN. The
network consists of a single convolutional layer followed by a non-linear activation function, a single max-pooling layer and one
fully-connected layer.

through a CNN with one convolutional layer (C = 1) fol-
lowed by the activation function, one max-pooling and one
fully-connected layer (L = 1) in Fig. 1. Our goal is to ob-
tain the mean and covariance of the likelihood distribution,
p(y|X,Ω), which represent the network’s prediction (mean)
and the uncertainty associated with it (variances in the covari-
ance matrix).

Convolutional Layer: The convolution operation be-
tween a set of kernels and the input tensor is formulated as
a matrix-vector multiplication. We first form sub-tensors
Xi:i+r1−1,j:j+r2−1 from the input tensor X, having the same
size as the kernels W(kc) ∈ Rr1×r2×K . These sub-tensors are
subsequently vectorized and arranged as the rows of a matrix
X̃. Thus, we have X ∗W(kc) ⇐⇒ X̃ vec(W(kc)), where ∗
denotes the convolution operation.

We denote the output of the convolution of the kth
c ker-

nel with the input by z(kc) = X̃ vec(W(kc)). We endow
the kernels with TNDs, which are equivalent to multi-
variate Gaussian distribution over the vectorized kernels,
i.e. vec(W(kc)) ∼ N

(
m(kc),Σ(kc)

)
, where m(kc) =

vec(M(kc)) and Σ(kc) = U(1,kc) ⊗ U(2,kc) ⊗ U(3,kc). It
follows that, z(kc) ∼ N

(
X̃m(kc), X̃Σ(kc)X̃T

)
.

Non-linear Activation Function: We approximate mean
and covariance passing through the non-linear activation func-
tion ψ using Taylor series (first-order approximation [17]). Let
g
(kc)
i = ψ[z

(kc)
i ] be the element-wise ith output of ψ. Thus,

elements of µg(kc) and Σg(kc) are derived as:

E[g(kc)
i ] ≈ ψ(E[z(kc)i ]),

Var[g(kc)
i ] ≈ σ2

z
(kc)
i

(
dψ(µ

z
(kc)
i

)

dz
(kc)
i

)2

,

Cov[g(kc)
i ,g

(kc)
j ] ≈ σ

z
(kc)
i z

(kc)
j

(
dψ(µ

z
(kc)
i

)

dz
(kc)
i

)(
dψ(µ

z
(kc)
j

)

dz
(kc)
j

)
,

(5)

where i 6= j.

Max-Pooling Layer: For the max-pooling, µp(kc) =
pool(µg(kc)) and Σp(kc) = co-pool(Σg(kc)), where pool rep-
resents the max-pooling operation on the mean and co-pool
represents down-sampling the covariance, i.e., we keep only
the rows and columns of Σg(kc) corresponding to the pooled
means.

Fully-Connected Layer: The output tensor of the max-
pooling, i.e., P (as shown in Fig. 1) is vectorized to form an
input vector b to the fully-connected layer such that, b =[
p(1)T , · · · ,p(Kc)T

]T
. The mean and covariance matrix of b

are given by:

µb =

 µp(1)

...
µp(Kc)

 ,Σb =

Σp(1) · · · 0
...

. . .
...

0 · · · Σp(Kc)

 (6)

Let wh ∼ N (mh,Σh) be the weight vectors of the fully-
connected layer, where h = 1, · · · , H , and H is the number
of output neurons. We note that fh is the product of two
independent random vectors b and wh. Let f be the output
vector of the fully-connected layer, then we can prove that the
elements of µf and Σf are derived as:

E[fh] = mT
hµb,

Var[fh] = tr
(
ΣhΣb

)
+ mT

hΣbmh + µTbΣhµb,

Cov[fhi , fhj ] = mT
hiΣbmhj , i 6= j.

(7)

Assuming diagonal covariance matrices for the distribu-
tions defined over network weights, i.e., vec (W(kc)) ∼
N (vec(M(kc));σ2

r1,kc
I, σ2

r2,kc
I, σ2

K,kc
I), and wh ∼ N (mh;σ

2
hI),

N independently and identically distributed (iid) data points
and using M Monte Carlo samples to approximate the ex-
pectation by a summation, the ELBO objective function is
re-formulated as:



L(φ;D) ≈ −NH
2

log(2π)− 1

M

M∑
m=1

[N
2
log(|Σf |) +

1

2

N∑
i=1

(y(i) − µf )
T (Σf )

−1(y(i) − µf )
]

− 1

2

Kc∑
kc=1

(
r1r2K σ2

r1,kc σ
2
r2,kc σ

2
K,kc + ‖M

(kc)‖2F − r1r2K − r1r2K
(
log σ2

r1,kc + log σ2
r2,kc + log σ2

K,kc

))

− 1

2

H∑
h=1

(
nf σ

2
h + ‖mh‖2F − nf − nf log σ2

h

)
,

(8)

where nf is length of wh. Last two terms in Eq. (8)
are result of KL-divergence between prior and approximate
distributions [18] and act as regularizations. Equation (8) can
be extended to multiple layers as well as to different network
types, i.e., recurrent neural networks.

4. EXPERIMENTS AND DISCUSSION

The uncertainty propagation in DNNs results in an increased
robustness against noise and adversarial attacks. We assess the
performance of eVI-CNN by adding various levels of synthetic
Gaussian and adversarial noise to the test sets of MNIST [19]
and CIFAR-10 [20] datasets. We compare with Bayes-by-
backprop (BBB) [13], Bayes-CNN [14], Dropout CNN [15]
and with a deterministic CNN (no uncertainty propagation).

For MNIST handwritten digits dataset, we use a small
size network architecture with one convolutional layer fol-
lowed by the ReLU activation [21], one max-pooling, and
one fully-connected layer. There are 32 kernels in the con-
volutional layer, and they are of size (5 × 5). While, for the
CIFAR-10 dataset, we extend the network architecture to six
convolutional layers followed by exponential linear unit (ELU)
activations [22], three max-pooling, and one fully-connected
layer. The convolutional kernels are of size (3× 3), and they
are ordered, from the first to the last convolutional layer, as
(32, 32, 64, 64, 128 and 128) kernels. Figure 2 shows the ar-
chitecture of the proposed eVI-CNN network for MNIST and
CIFAR-10 datasets.

In Table 1, we present test accuracy of eVI-CNN, Bayes-
CNN and Dropout CNN on CIFAR-10 dataset before and
after adding of 0.05 (5%) level of adversarial noise. The
adversarial examples were generated using fast gradient sign
method (FGSM) to fool each network into predicting the class
label as a “cat” [23]. We note that all three networks perform
well on noise-free test data; however, eVI-CNN maintains its
performance under adversarial attacks while other methods
start failing (i.e., 17% decrease in Bayes-CNN test accuracy
and 34% decrease in Dropout CNN). Figure 3 shows three
randomly chosen images from the CIFAR-10 dataset corrupted
by FGSM adversarial noise generated to fool each network
(Dropout CNN, Bayes-CNN and proposed eVI-CNN) into

predicting the class label as a cat [23]. Under each image, we
present the true label and the predicted one.

In Table 2, we present test accuracy of eVI-CNN, BBB
and a deterministic CNN on MNIST dataset before and after
inserting various levels of adversarial and additive Gaussian
noise to the test set. The adversarial examples were generated
using FGSM to fool each network into predicting digit “3” [23].
We note that the performance of all networks decreases when
Gaussian and especially adversarial noise is added; however,
our proposed eVI-CNN is significantly more robust than other
state-of-the-art CNNs.

In Figure 4, we present the variance of the output pre-
dictions (diagonal element corresponding to predicted class
label from the output covariance matrix) of eVI-CNN plotted
against the signal to noise ratio (SNR in dB) of different test
images. The SNR was decreased by adding synthetic Gaussian
noise. We note that the output variance increases with the
decreasing SNR; thus, provide a metric for the confidence (or
uncertainty) in the network’s output. , i.e., the higher the noise
in the input data, the lower the confidence in the prediction
made by eVI-CNN.

We hypothesize that the robustness of the proposed eVI-
CNN against both Gaussian noise and adversarial attacks is
linked with their ability to propagate uncertainty across lay-
ers. In particular, eVI-CNN associates variance with every
convolutional kernel which quantifies confidence in the fea-
tures learned by the kernel. Since these confidence values are
propagated across layers, the eVI-CNN weighs the features
according to their confidence and is able to better resist noise
and adversarial attacks.

Adversarial Noise eVI Bayes-CNN Dropout CNN
5% 80% 68% 52%
Zero (No noise) 86% 85% 86%

Table 1. Test accuracy of eVI-CNN, Bayes-CNN and Dropout
CNN on the CIFAR-10 dataset before and after adding 5%
level of the FGSM adversarial noise to the test set.



Fig. 2. Architecture of the proposed eVI-CNN network for the MNIST and CIFAR-10 datasets.

Adversarial Noise eVI BBB CNN
0.1 95% 91% 58%
0.2 81% 45% 14%
0.3 50% 16% 14%

Gaussian Noise
0.1 94% 86% 79%
0.2 85% 76% 70%
0.3 74% 63% 55%

Zero (No noise) 96% 96% 96%

Table 2. Test accuracy of eVI-CNN, BBB and Deterministic
CNN on the MNIST dataset before and after adding different
levels of FGSM adversarial noise and Gaussian noise.

5. CONCLUSION

We introduced an extended variational inference (eVI) ap-
proach for estimating model uncertainty by propagating the
first two moments of the approximate posterior distributions
defined over the weights through the layers of a CNN. We
defined tensor Normal distributions (TNDs) over the convo-
lutional kernels and propagated the means and covariances
of the TNDs through the network layers and non-linearities
using Taylor series. In particular, the variance of the predic-
tive output was computed as the result of propagating input
and weight (model) covariances across the network layers.
The proposed eVI-CNN showed superior robustness to added
Gaussian noise as well as FGSM adversarial attacks as com-
pared to its deterministic counterpart and other state-of-the-art
Bayesian networks: BBB, Bayes-CNN and Dropout CNN, on
the MNIST and CIFAR-10 datasets.
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Fig. 3. Predictions of the Dropout CNN [15], Bayes-CNN [14]
and the proposed eVI-CNN for three randomly chosen images
from CIFAR-10 test dataset corrupted by FGSM adversarial
noise built at the same level, i.e., 5% for all networks.

Fig. 4. The variance of the output prediction of eVI-CNN vs.
signal-to-noise ratio (SNR). The eVI-CNN was tested on the
MNIST test dataset corrupted with different levels of Gaussian
noise.
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