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Abstract—Bayesian neural networks are powerful inference
methods by accounting for randomness in the data and the
network model. Uncertainty quantification at the output of
neural networks is critical, especially for applications such as au-
tonomous driving and hazardous weather forecasting. However,
approaches for theoretical analysis of Bayesian neural networks
remain limited. This paper makes a step forward towards
mathematical quantification of uncertainty in neural network
models and proposes a cubature-rule-based computationally-
efficient uncertainty quantification approach that captures layer-
wise uncertainties of Bayesian neural networks. The proposed
approach approximates the first two moments of the posterior
distribution of the parameters by propagating cubature points
across the network nonlinearities. Simulation results show that
the proposed approach can achieve more diverse layer-wise
uncertainty quantification results of neural networks with a fast
convergence rate.

Index Terms—Bayesian neural networks, uncertainty quantifi-
cation, cubature rules, machine learning, Bayesian rules

I. INTRODUCTION

During the past decades, Deep Neural Networks (DNNs)
have achieved state-of-the-art results in a broad range of
applications, including visual object recognition [1] and traffic
forecasting [2], [3], [4]. To some extent, DNN methods revo-
lutionised our way of coping with recognition and regression
problems, and are holding the promise of emerging technolo-
gies like autonomous driving and hazardous weather forecast-
ing. In all these applications, safety concerns are as relevant as
accuracy to both researchers/developers and end-users. Most
work in the literature focuses on accuracy improvement and
network architecture adjustment [5], [6], [7], which indeed
have pushed the cutting-edge DNN related research to a
new era. However, we shall also point out that these typical
networks lack the ability to quantify the uncertainty associated
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with the network prediction, which is critical in applications,
such as autonomous driving and artificial intelligent surgery
assistants, where errors could cause severe consequences.
Therefore, endowing networks with the ability to quantify their
uncertainty is crucial to preventing undesirable and potentially
dangerous behaviors in downstream decision making.

The most popular technique on neural network uncertainty
quantification is a Bayesian treatment of the network weights
and biases, which is well known as Bayesian Neural Networks
(BNNs). In the BNN paradigm, network parameters, such
as weights and biases are no longer deterministic; Instead,
they are endowed with prior probabilistic distributions, e.g.,
Gaussian distributions. The random parameters then propagate
forward and the model uncertainty is estimated by Markov
Chain Monte Carlo (MCMC) sampling [8]. Neal introduced
the Hamiltonian Monte Carlo, which falls into the MCMC
paradigm, to learn BNN parameters by using the Hamilto-
nian dynamics-based sampling approach [9]. MCMC-based
sampling methods approximate the posterior with a fairly
high accuracy, but they also suffer from high computational
complexity [10].

Variational Inference (VI) has been proved to be the most
promising replacement of MCMC methods [11]. It explicitly
transforms an inference problem to an optimisation coun-
terpart. The philosophy of using a tractable distribution to
approximate the posterior mitigates the issue of dealing with
complex intractable integrals. Another benefit is that VI-
based methods are much less dependent on computational
resources compared with MCMC methods. Both advantages
contributed to the wide use of VI approaches in BNNs. For
instance, a closed-form solution for propagating moments
through Rectified Linear Unit (ReLU) activation functions
in a fully connected neural network is proposed in [12].
Gal [13] developed a theoretical framework casting dropout
training as approximate Bayesian inference. Recently, Dera
et al. [11] have developed the first statistical moments’ prop-
agation method for Convolutional Neural Networks (CNNs)
with a general choice of activation functions. In [11], after



the nonlinear activation functions, the mean and covariance
of the network parameters are approximated by their first-
order Taylor series. This approach simplifies the complexity of
computing statistical moments through nonlinearities but the
first-order approximation could jeopardize the accuracy.

In this paper, adopting the same framework of approxi-
mating Bayesian posterior of BNNs with VI, we employ the
cubature rule to approximate the first and second moments
of the weights and biases after nonlinear activation functions.
With the cubature rule, instead of approximating the posterior
by sampling using MCMC, or propagating the mean and
covariance as in [11] followed by a linearisation approxi-
mation, we select a set of cubature points, which are then
propagated layer by layer to quantify the statistical moments.
The application of the cubature rule possesses the potential
of achieving third-order Taylor series accuracy [14], which
expands the spectrum of problems that can be dealt with using
the method in [11]. After the cubature points are propagated,
the obtained distribution is optimised by VI to enhance the
(distribution) approximation accuracy. At the last layer, a
regression unit is introduced to further improve the accuracy
of the network outputs. In our approach, layer-wise uncer-
tainty quantification becomes very simple since the first two
moments are identified by a set of cubature points. The main
contributions of this paper include: 1) the proposed approach
for uncertainty quantification in BNNs with the cubature rule.
2) Variational inference and the cubature rule combined lead
to inference with high accuracy and computational efficiency.

The remainder of the paper is organised as follows. Section
II introduces the cubature rule and its application in nonlinear
integral approximation. Section III describes how variational
inference can be used to approximate intractable distributions
in Bayesian inference. The Bayesian neural network uncer-
tainty quantification problem is formulated in Section IV. In
Section V, we elaborate on how the cubature rule is applied
to approximate statistical moments. Section VI presents the
evaluation results and Section VII concludes this work.

II. CUBATURE RULE AND ITS APPLICATION IN
NONLINEAR APPROXIMATIONS

High-dimensional nonlinear integrals frequently emerge in
neural network research due to the complex nature of both the
problem of interest, including data, models, and the structure
of the network. In cases where the system/measurement noises
are subject to Gaussian distributions, we often come across a
Gaussian integral of the form

I (f) =

∫
RD

f (x) exp
(
−xTx

)
dx, (1)

defined in the Cartesian coordination system, where D is the
dimension of the input vector x, and f(·) is an arbitrary func-
tion. The integral in (1) can become intractable as D increases.
To deal with it, a number of numerical approximations of (1)
are proposed, such as particle filtering [15], [16] and Gaussian
regression [17]. Recently, the cubature rule [18] was applied

to numerically approximate the integral, which has achieved
at least third-order Taylor series accuracy [14].

Just like the particle filter, the main idea of using the
cubature rule to approximate the integral lies in transforming
it into a weighted sum. The key step is a spherical-radial
transformation [18] that maps a Cartesian vector x ∈ RD to a
radius r and a direction vector θ, i.e., x = rθ with θTθ = 1,
so that xTx = r2 for r ∈ [0,∞). Thus, the Gaussian integral
can be rewritten as

I(f) =

∞∫
0

∫
UD

f (rθ) rD−1 exp
(
−r2

)
dψ (θ) dr, (2)

where UD is the surface of the sphere defined by UD ={
θ ∈ RD

∣∣θTθ = 1
}

and ψ (·) is the spherical surface mea-
sure or the area element on UD. Therefore, the radial integral
in (2) can be rewritten as

I(S) =

∞∫
0

S (r) rD−1 exp
(
−r2

)
dr, (3)

where S (r), given in (4), is defined by the spherical integral
with the unit weighting function w (θ) = 1,

S (r) =

∫
UD

f (rθ)dψ (θ) . (4)

The spherical-radial integral can be numerically computed by
the spherical cubature rule and the Gaussian quadrature rule.
In brief, the radial integral can be computed numerically by
the mr-point Gaussian quadrature rule

∞∫
0

f (r) rD−1 exp
(
−r2

)
dr ≈

mr∑
i=1

wrif (ri), (5)

where wri is the radial weight. The spherical integral can be
computed numerically by the ms-point spherical rule∫

RD

f (rθ)dψ (θ) ≈
ms∑
j=1

wθjf (rjθj), (6)

where wθj is the spherical weight.
For the third-degree spherical-radial rule, mr = 1 and ms =

2D. It entails a total of 2D cubature points. The standard
Gaussian weighted integral can be numerically computed by

I (f) =

∫
RD

f (x)N (x; 0,ΣI) d (x) ≈
2D∑
i=1

wif (ξi), (7)

where the weight wi = 1
2D and the cubature points ξi =√

D [Ii,−Ii], with I the D-dimensional unit matrix. Note that
when N (·) is not the standard Gaussian distribution, then
the cubature points need to be transformed. We will give the
transformed results in Section V. Please refer to [18] for more
details.

The cubature rule is substantially the unscented trans-
formation when the tune parameter κ is set to zero [14].



Therefore, the cubature rule-based approximation can achieve
the same third-order accuracy as the unscented transformation.
Theoretically, this can obtain better approximation results than
the method given in [11].

III. VARIATIONS INFERENCE

In Bayesian inference, given a set of observed variables
y = {y1:o}, and a set of latent variables z = {z1:k}, we often
need to deal with the following posterior to fulfill inference.

p(z | y) =
p(y | z)p(z)

p(y)
(8)

However, the denominator p(y) =
∫
p(z,y)dz is unavailable

in closed form or requires exponential time to compute [19].
Variational inference has been widely used to approximate
this kind of intractable posterior distributions [20]. A detailed
review of VI can be found in [19].

In VI, we propose a family Ξ of densities over the latent
variables, with each q(z;λ) ∈ Ξ a candidate approximation of
the conditional in (8), and λ is the parameter of the proposed
distribution. The philosophy of VI is turning the approximation
problem into an optimisation counterpart, where the best
approximate q∗(·) is obtained by minimising the Kullback-
Leibler divergence [21] as in

q∗(·) = arg min
λ

KL
(
q(z;λ)‖p(z|y)

)
, (9)

which is substantially a distance measure to evaluate diffusion
between q(z;λ) and p(z | y).

However, the Kullback-Leibler divergence is not com-
putable because it requires computing log p(y) (The same
reason why the posterior in (8) in not computable.). According
to [19], we have

log p(y) = log

∫
z

p(y, z)

≥ Eq [log p(y, z)]− Eq[log q(z;λ)] := ELBO.
(10)

The difference between the left and the right parts is

ELBO = log p(y)−KL
(
q(z;λ)‖p(z|y)

)
. (11)

From which we see that minimising the Kullback-Leibler
divergence is equivalent to maximising the Evidence Lower
BOund (ELBO).

Now the problem is reduced to determine the density family
Ξ to maximise the ELBO. The mean-field variational family
[19] has been among the most popular ones due to the
assumption that the latent variables are mutually independent
and each governed by a distinct factor in the variational density
as shown in

q(z;λ) =
k∏
j=1

q(zj , ;λj). (12)

As long as q(zj , ;λj), j = 1, · · · , k are determined, we can
maximise the ELBO given in (10) to get q∗(·), and fulfill the
inference thereafter.

IV. BAYESIAN NEURAL NETWORKS

It is widely agreed that the nonlinearity and high-
dimensionality in neural network models have made them
computationally demanding. In the BNN paradigm, the nonlin-
earity also makes the propagation of the moments challenging.
Put simply, a neural network can be represented by a nonlinear
function as

Y = f(X,W,b), (13)

where f is the neural network model, X is the input, W and b
are the concatenated weights and biases, and Y is the output.
In this paper, we assume X =

[
x1,x2, · · · ,xN

]
with the

corresponding output Y =
[
y1,y2, · · · ,yN

]
, where xi is of

dimension D × 1 and yi is of dimension D′ × 1, with i ∈
{1, · · · , N}. The dimension of X and Y are, therefore, D×N
and D′ ×N , respectively.

For clarity, we use x to denote an arbitrary input that is
fed into a neural network f(·). It is then passed through
the network layer by layer. In this paper, a layer is defined
by ‘input → linear-combination → nonlinear-activation’. The
output from the nonlinear-activation will be the ‘input’ to the
next layer. Equivalently, the process can be represented as

a
(l+1)
i = b

(l+1)
i 1 +

C(l)∑
j=1

W
(l+1)
i,j x

(l)
j , (14)

and
x
(l)
j = φ

(
a
(l)
j

)
, (15)

where W
(l+1)
i,j indicates the weight that transforms the j-th

element x
(l)
j from layer l to the i-th element in layer l + 1,

resulting in a
(l+1)
i after linear combination. The nonlinear

activation function is denoted by φ(·). The bold 1 is a unit
vector, b(l+1)

i denotes the bias, and C(l) is the length of
the column vector x

(l)
j . Suppose that the l = 1, · · · , L − 1

layers are defined by (14) and (15), then the last layer L is
represented by

a
(L)
i = b

(L)
i 1 +

C(L−1)∑
j=1

W
(L)
i,j x

(L−1)
j , (16)

and
x
(L)
j = ϕ

(
a
(L)
j

)
, (17)

where ϕ(·) represents the activation function for layer L as
it is usually different from previous layers dependent on the
task, e.g., classification or regression.

In traditional neural networks, both W
(l)
i,j and b

(l)
i are

assumed to be deterministic. However, in the BNN paradigm,
both W

(l)
i,j and b

(l)
i are allowed to be random variables,

which enables Bayesian uncertainty quantification for neural
networks. For brevity, we assume that W (l)

i,j is governed by a
Gaussian distribution, which is shown in (18). The same rule
applies to b(l)i as well as given in (19).



W
(l)
i,j ∼ N

(
m
w

(l)
i,j
, σ2

w
(l)
i,j

)
, (18)

b
(l)
i ∼ N

(
m
b
(l)
i
, σ2

b
(l)
i

)
, (19)

where m
w

(l)
i,j

and m
b
(l)
i

are the respective means of W (l)
i,j and

b
(l)
i . The corresponding variances are denoted by σ2

w
(l)
i,j

and

σ2

b
(l)
i

. The random weights and biases are then passed through
the network, propagating uncertainty to the final outputs. The
left side of Fig. 1 shows a general BNN, with a detailed sub-
structure shown in the left side. Those curves are the bias and
weight distributions.

V. CUBATURE APPROXIMATION OF STATISTICAL
MOMENTS

A. Cubature rules for Mean and Variance Approximation

Although we assume both the weights and the biases are
subject to Gaussian distributions, it remains a challenge to
capture the distributions after the nonlinear activation function.
In this paper, we exploit the cubature rule to approximate the
first and second moments of the distribution after nonlinear
activation function [18].

Taking (14, 15, 18, and 19) and the Central Limit Theorem
(CLT) into consideration, we know that a

(l)
i follows a Gaussian

distribution as well when the network is rather wide [22] or
deep [23]. Wu et al. [24] also empirically demonstrate that the
claim is approximately valid even when (weak) correlations
appear between the elements of φ(·) during training. The CLT
could be violated when a network is not wide(deep) enough,
or the sample numbers are limited. VI becomes a powerful
tool to approximation the distributions in such scenarios. In
this paper, given the assumption that all the weights and biases
are independent Gaussian random variables, we have the mean
and covariance of a

(l)
i as

E
(
a
(l)
i

)
= 〈a(l)

i 〉 = m
b
(l)
i

1 +

C(l−1)∑
j=1

m
w

(l)
i,j

x
(l−1)
j , (20)

V
(
a
(l)
i

)
= 〈a(l)

i ,a
(l)
i 〉 = σ2

b
(l)
i

+

C(l−1)∑
j=1

[
x
(l−1)
j σ

w
(l)
i,j

]2
. (21)

E
(
φ(a

(l)
i )
)

=
1√

2π det
(
V
(
a
(l)
i

))
∫
φ(α) exp

[
−

(
α− E

(
a
(l)
i

))2
2V
(
a
(l)
i

) ]
dα

=

∫ √√√√√ V
(
a
(l)
i

)
π det

(
V
(
a
(l)
i

))φ(α) exp(−β2)dβ

=

∫
g(β) exp(−β2)dβ

.

(22)

The linear combination a
(l)
i is then passed to a generic

activation function φ(·) as shown in (15). The mean of φ(a
(l)
i )

can be written as (22), where g(β) =

√√√√ V
(
a
(l)
i

)
π det

(
V
(
a
(l)
i

))φ(α),

and α =

√
2V
(
a
(l)
i

)
β + E

(
a
(l)
i

)
.

The integration shown in (22) can be rather complex or
even intractable when the dimension of α or β increases. In
this paper, the cubature rule is adopted to approximate the
integral. Without loss of generality, a set of cubature points
are chosen and denoted as

ξi =

√
2D

2

[
Ii,−Ii

]
, (23)

where D is the dimension of α or β, I is the D-dimensional
unit matrix. According to [18], the cubature points of α need
to be transformed and the results are denoted as

A
(l)
i =

√
V
(
a
(l)
i

)
ξi + E

(
a
(l)
i

)
, (24)

After propagating the transformed cubature points from (24)
through the nonlinear activation function φ(·), we obtain the
propagated cubature points as

A
∗(l)
i = φ

(
A

(l)
i

)
. (25)

The integral in (22) can therefore be simplified as

E
(
φ(a

(l)
i )
)
≈ 1

2D

2D∑
i=1

A
∗(l)
i := ĥ

(l)
i , (26)

and the covariance after nonlinear activation function approx-
imated as

V
(
φ(a

(l)
i )
)
≈ 1

2D

2D∑
i=1

A∗Ti A∗i − ĥ
(l)T
i ĥ

(l)
i . (27)

Putting (15), (20), and (26) together, we know that x
(l)
i

can be approximated by ĥ
(l)
i for i = 2, · · · , L. Therefore, an

approximation of (21) can also be obtained.
So far, we used the cubature rule to approximate the com-

plex integral emerging in BNNs with summations involving
a set of cubature points. Subsequently, the computational
complexity reduces to O(D). In this paper, the hyperbolic
function

tanhx =
e2x − 1

e2x + 1
(28)

is taken as an example nonlinear activation function to con-
figure the uncertainties on the final results.

VI. EXPERIMENTS AND ANALYSIS

To assess the proposed approach in quantifying uncertainties
in BNNs, a Bayesian neural network, as shown in Fig. 1, is
employed to fulfill the regression task of a cosine function,

y = cos(x) + v, (29)

where x is the input, y is the output, and v ∼ N
(
0, σ).

As a simple two-layer network with nonlinear activation



Fig. 1. The structure of a Bayesian neural network. The curves indicate bias and weight distributions.
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Fig. 2. Approximated mean and standard deviation of layer two of our approach: (a) approximated node 21 mean, (b) approximated node 21 standard
deviation. The results from iteration 1 to iteration 500 are marked by the curves. The densely plotted curves show results when converged.
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Fig. 3. Approximated mean and standard deviation of layer two of typical BNNs: (a) approximated node 21 mean, (b) approximated node 21 standard
deviation. The results from iteration 1 to iteration 500 are marked by the curves. The densely plotted curves show results when converged.

function is considered a universal approximator [25], we use
the network shown in the right side of Fig. 1 as an example.
The experiments are implemented based on the probabilistic
models research toolbox Edward, and q(zj , ;λj) in (12) are
set to be Gaussian.

In our experiment, as the input is one dimensional, cubature
points become I = [−1, 1]. These points are then trans-
formed by (24) and propagated though the network. Mean and
standard deviation of each node in each layer are computed
using (26) and (27), respectively. In our case, two layers and
three nodes are involved, as shown in Fig. 1. Weights and

biases are initialised to follow Gaussian distributions with zero
mean and variance 5.0 for all parameters. VI is employed
to approximate these distributions. In our case, the network
trained for 500 iterations so that observable convergence of our
approach is ensured. Within each iteration, VI is performed
to optimise the network parameters. During training, fifty
input-output pairs from (28) with x in between [−3.0, 3.0]
are taken as observations. After each iteration, fifty mean and
deviation are recorded corresponding to each input-output pair.
In our approach, mean and standard deviation are computed
layer by layer following (23) to (27). We take results from a
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Fig. 4. Approximated mean and standard deviation of layer one with our approach: (a) approximated mean of node 11, (b) approximated variance of node
11, (c) approximated mean of node 12, (d) approximated variance of node 12. The results from iteration 1 to iteration 500 are marked by the curves. The
densely plotted curves show results when converged.

Fig. 5. One example of the approximated mean and the corresponding 2σ
uncertainty of our approach

typical BNN with the same structure for comparison [26]. The
difference is that for the typical BNN, after each iteration, 20
samples of the weights and biases for each node are sampled
to compute the layer-wise mean and standard deviation. In this
paper, we also apply a regression unit (as shown in ellipse in
Fig. 1) at the end of the network to improve the accuracy. In
our case, a linear regression is applied.

Fig. 6. One example of the approximated mean and the corresponding 2σ
uncertainty of typical BNNs

Fig. 2 and Fig. 3 show the mean and standard deviation
approximations of node 21 obtained from the 500 iterations,
using the proposed approach and a typical BNN. We can
see that both were able to approximate the cosine function
by the statistical means in between [−3.0, 3.0]. The standard
deviations that capture the uncertainties decrease as the it-
eration increases. We can see that both the mean and the



standard deviation from our approach, shown in Fig. 2(a) and
2(b), are ‘narrower’ than the results from a typical BNN as
shown in Fig. 3(a) and 3(b) (The densely plotted curves are
actually results from the last iterations after convergence).
In particular, the standard deviation of the cubature-based
approach is much narrower. This feature can be regarded as
a ‘metric’ of convergence rate. As after a certain iteration,
the proposed approach converges to a certain value (standard
deviation), while these from the comparison approach still
scatter in a wider range (The densely plotted curves) than
the proposed method. We have also shown the results of our
approach from node 11 and node 12 in Fig. (4), to demonstrate
that layer-wise uncertainty quantification can be achieved.

To make the results easier to understand, we have chosen the
mean and the standard deviation of the two approaches from
the last iteration. The samples, predictions (mean), and the
2σ uncertainty intervals from the two approaches are shown
in Fig. 5 and 6, respectively. We can see that our approach
shows more ‘diverse’ uncertainty quantification results, while
the typical BNN shows more ‘equally distributed’ uncertainty
quantification on all the predictions. The ‘equally distributed’
case is easy to understand because the mean and standard
deviation are computed from the samples. We think the
‘diverse’ phenomenon is due to the fact that the expectations
and variances used to propagate the cubature points in (24)
and (25) vary, which actually is more informative than ‘equally
distributed’ cases.

To conclude, we have approximated the nonlinear integrals
involved in BNNs by propagating a set of cubature points,
which achieves faster convergence rate and more ‘diverse’
uncertainty quantification.

VII. CONCLUSION

We proposed to quantify uncertainties of Bayesian neural
networks with an approach inspired by the cubature rule. With
which, we can select a set of cubature points to propagate
through the network and propagate the uncertainties of the
network across the layers. As the number of cubature points is
fairly small, it makes the approximation process very efficient
when compared with sampling-based mean and standard de-
viation approximation approaches. A carefully designed sim-
ulation is presented to assess the performance of the proposed
approach. The results show that cubature-based uncertainty
quantification in BNNs converges faster while still achieving
more ‘diverse’ uncertainty quantification results than a typical
Bayesian neural network.
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