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Missing information imputation for disease-dedicated social networks with
heterogeneous auxiliary data

Xu Liua, Jingrui Hea, Wanli Minb, and Hongxia Yangb

aSchool of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA; bAlibaba Group,
Hangzhou, China

ABSTRACT
Many high impact applications suffer from missing information. For example, disease-dedicated
social networks provide additional resources to glimpse into patients’ daily life related to disease
management. However, due to the voluntary nature of such social networks, the information
reported by patients is often incomplete, making the following data analytics tasks particularly
challenging. On the other hand, in addition to the target data that we aim to analyze, we may
also have other related data at our disposal. For example, to analyze disease-dedicated social net-
works, auxiliary clinical data (with potentially non-overlapping patients), as well as the users’
online social relationship might provide additional information for estimating the missing informa-
tion. Therefore, the key question we aim to answer in this paper is how we can leverage the het-
erogeneous auxiliary data for the sake of missing information imputation. To answer this question,
we focus on diabetes-dedicated social networks, and we aim to estimate the missing information
from patients’ self-reported biomarker measurements. In particular, we propose a hypergraph
structure to model the relationship among users and user-generated content (posts). Based on the
hypergraph structure, we further introduce an optimization framework to estimate the missing
biomarker measurements using heterogeneous auxiliary data. To solve the optimization frame-
work, we design iterative algorithms to find the local optimal solution. Experimental results on
both synthetic and real data sets (including a data set collected from a diabetes-dedicated social
network) demonstrate the effectiveness of the proposed algorithms.
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1. Introduction

We are living in as the era of big data, despite a large
amount of data being collected across multiple areas, a com-
monly observed phenomenon is missing information and
missing value. For example, recent years have witnessed the
rapid growth of disease-dedicated social networks. Different
from the generic social networks, the disease-dedicated
social networks are designed for and used by patients with
the same type of disease, such as diabetes mellitus. Their
goal is to enable information sharing and support group for-
mation, which in turn, can help patients maintain a healthy
lifestyle concerning the disease. On the disease-dedicated
social networks, although users often report their biomarker
measurements as their condition progresses, such self-
reported measurements contain a large amount of missing
information, as very few users report their measurements
every time they take the test. However, for monitoring pur-
poses, it is essential to have a reliable estimate of such miss-
ing information, so that reminders or alerts can be
generated in time to help users get back on track.

On the other hand, in order to estimate the missing
information and improve the imputation performance, we
often have access to heterogeneous auxiliary data in addition

to the observed information. For example, to estimate the
missing biomarker measurements from disease-dedicated
social networks, in addition to the self-reported measure-
ments, we can also leverage the rich social relations exist in
a large amount of the frequent visitor, users, such as
friend–friend relationship, follower–followee relationship.
Furthermore, beyond the disease-dedicated social networks,
auxiliary clinical data with potentially non-overlapping users
may reveal an important trend regarding the progression of
the biomarker measurements, and thus it can help improve
the performance of missing value imputation.

In this paper, motivated by missing biomarker measure-
ment estimation on disease-dedicated social networks, we
propose a generic framework for Missing Information
Imputation with Hypergraph structure using Dual matrix
factorization named MI2-HD, or Triple matrix factorization
named MI2-HT. It effectively leverages both the observed
values and additional information from heterogeneous sour-
ces. In particular, we propose to use a hypergraph structure
to model the relationship among users and user-generated
content, or posts; and we design an optimization problem
based on joint matrix factorization (MF), which uses both
the rich social relationship among the users as well as
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auxiliary clinical data to improve the accuracy of the missing
value imputation. The performance of the resulting iterative
algorithms is demonstrated on both synthetic and multiple
real data sets.

The main contributions of this paper can be summarized
as follows:

� Problem setting. We propose a novel problem setting of
missing value imputation for disease-dedicated social net-
works. The missing value of the patients’ medical and
healthcare measurement is estimated in accordance with
the auxiliary data and the disease-specific grouping pat-
tern enforced by the hypergraph structure.

� Optimization framework. The proposed problem setting
is formulated as an optimization framework based on
joint MF. We further introduce efficient multiplicative
update rules to solve this framework.

� Experimental evaluation. Multiple experiments have
been conducted on one synthetic data set, one bench-
mark data set, and one real data set collected from a dis-
ease-dedicated social network. Experimental results
demonstrate the effectiveness of the proposed algorithms.

The rest of the paper is organized as follows. In Section 2,
we review the related work about missing value imputation
and MF. The proposed missing value imputation framework
is introduced in Section 3. Section 4 presents the iterative
optimization algorithms, followed by the analysis of their con-
vergence and time complexity. Section 5 shows the experi-
mental results, and finally, we conclude the paper in
Section 6.

2. Related work

In this section, we briefly review the related works on miss-
ing value imputation and MF.

2.1. Missing value imputation

The missing data is evolving as a critical issue in the field of
medical and healthcare data analysis. The missing data
occurs due to various reasons in the medical study, such as
the lack of collection, and the lack of documentation (Wells,
Chagin, Nowacki, & Kattan, 2013). Lack of collection usually
happens in the datum of the disease-dedicated social net-
work as the consequence of the voluntary nature of the
online user. The lack of documentation, such as the elec-
tronic health record (EHR), which is designed to the benefit
of clinical and billing company, is particularly prevailing
when the clinical measurement shows the negative symp-
tom/comorbidity thus all the record fields are left blank
instead of recording the values. Overall, the issue of missing
value is commonly present in various types of medical and
healthcare data. In general, there are three types of missing
mechanisms, i.e. missing completely at random (MCAR),
missing at random (MAR), and missing not at random
(MNAR), disturb the healthcare data analysis (Pedersen

et al., 2017). Each of the mechanism requires different ana-
lysis methods due to their own characteristics as:

� MCAR: In this case, the missing entries occur at com-
pletely random as the value of the missing entries has no
dependence on the observed knowledge. Any kind of the
data imputation method can be adopted without bringing
in the bias risk as no previous constraint specification
(Janssen et al., 2010).

� MAR: Compared with the MCAR, in which no specific
constraint exists between the missing data and observed
data, MAR means the observed variables can partially
explain the missing data. For example, when the blood
pressure data is MAR, the variables of age and gender
are considered as the dependent variables to the blood
pressure, compared with the variable of estrogen receptor
(ER) or progesterone receptor (PR) that indicate the
breast cancer statue.

� MNAR: In this type of missing mechanism, the unob-
served variables are assumed to be related to the values
of that variable itself, i.e. the missing value is specific-
ally related to what is missing. An example of MNAR
in disease-dedicated social network analysis occurs if
those heavy patients may be less likely to disclose
their weight.

As the amount of medical and healthcare data presence
the missing value issue, the need of missing value imput-
ation is growing in order to provide the comprehensive
research data, instead of ignoring the entire row or column
where missing value happens (Janssen et al., 2010). Previous
missing value imputation methods handle the medical data
by two strategies: (1) Single value imputation (SVI) and (2)
multiple-imputation (MI). Both of these two strategies are
mainly focused on the MCAR and MAR missing mechan-
ism, as the MNAR leads to the most difficult case when
none assumption has been made about what is happening in
the missing data. SVI aims at estimating the unknown
entries by a single value. For example, the most commonly
used method is to replace the missing entries by the overall
mean value of the observed entries (Donders, Van Der
Heijden, Stijnen, & Moons, 2006), or using the most com-
monly observed values to recover the missing entries
(Luengo, Garc�ıa, & Herrera, 2012). Another widely used
method is regression imputation (Raghunathan, Lepkowski,
Van Hoewyk, & Solenberger, 2001) (also known as the pre-
dicted mean imputation). They are straightforward to under-
stand, but tend to underestimate the diversity of the original
data, and also ignoring the correlations between the samples.
The SVI strategy is leading to the biased imputation result
and causes the Type 1 error (i.e. the none existing relation
is identified) (Greenland & Finkle, 1995), which may not be
suitable for many real-world applications (Enders, 2010).
Compared with SVI, the MI strategy aims at predicting the
missing entries value based on the distribution of observed
knowledge, such as the expectation-maximization (EM)
based method (Musil, Warner, Yobas, & Jones, 2002), MF-
based method (Lange & Buhmann, 2006). The MF-based
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method (Koren, Bell, & Volinsky, 2009) has been proven
successful in the Netflix competition. Multivariate imput-
ation by chained equations (MICE) (van Buuren &
Groothuis-Oudshoorn, 2010) is also a popular imputation
method which can preserves the observed knowledge during
the imputation process. However, these methods are not
ideal to handle the missing value imputation, because the
original observed information is destroyed in the imputation
result. Extended by these methods, our work can reserve the
observed information in the imputation result.

2.2. Matrix factorization

Matrix factorization is a widely used method for a large
number of data mining problems. It has been widely used
and adapted for various purposes such as dimensionality
reduction, data clustering, and missing value imputation.
The main goal of the MF is to obtain a set of low-rank
matrices whose production can approximate the original
data with respect to the observed knowledge, as the well-
known methods like principal component analysis (PCA)
(Jolliffe, 2002) and singular value decomposition (SVD)
(Golub & Van Loan, 2012). To be more specific, MF
assumes that the partially observed information, i.e. matrix
M, can be estimated by the product of two low-rank matri-
ces, i.e. matrix U and V, whose product UV shows the min-
imum Euclidean distance with respect to the observed
information in the matrix M. The matrices U and V are
treated as factorization factors, meanwhile, the missing value
in the matrix M is thus estimated in the produce of UV.

In practice, the non-negative property often exists in
many real-world applications, especially for the medical and
healthcare domain like medical imaging analysis (Carr,
Fright, & Beatson, 1997), gene expression (Gao & Church,
2005), healthcare fraud detection (Zhu, Wang, & Wu, 2011),
and medical recommendation system (Zhang, Chen, Huang,
Wu, & Li, 2017). These applications naturally require the
non-negative property for each entry in the data, however,
such non-negative constraint is not satisfied in the MF. To
overcome this issue, Lee and Seung (2001) proposes the
non-negative matrix factorization (NMF), which has incor-
porated the non-negative constraint into the MF framework.
NMF produces two non-negative low-rank matrices (also
known as dual-factors), whose multiplication has the min-
imum Euclidean distance (defined as the square root of the
sum of the absolute squares of the difference between two

matrices) regarding the input data. Each of the non-negative
low-rank matrices is usually considered as the clustering
result for the row-wise and column-wise knowledge of the
original data, which reveals the user’s emotion and prefer-
ence in personalized doctor recommendation system (Zhang
et al., 2017). The work (Wang & Zhang, 2013) comprehen-
sively reviews the existing NMF methods used in various
applications. Meanwhile, a collection of the medical and
healthcare data is commonly presented as a patient-by-med-
ical measurement item’ matrix, in which the missing entries
commonly exist. Several NMF extension methods handle the
missing value issue from various perspectives. Xu, Yin, Wen,
and Zhang (2012) contributes to recovering the missing data
from the partially observed information by taking advantage
of MF. Graph regularized non-negative matrix factorization
(GNMF) (Cai, He, Han, & Huang, 2011) incorporates the
samples’ pairwise similarity by introducing the graph regu-
larizer into the traditional NMF to explore insight into the
intrinsic geometric structure of the data, which reduce the
side effects of the unknown entries. A convex and semi-
NMF (Ding, Li, & Jordan, 2010) method expanded the
application domain by relaxing the non-negative constraint,
and (Wang et al., 2015) incorporates the guidance con-
straints to align with existing medical knowledge. However,
when applying the double orthogonality in dual-factor MF,
it is very restrictive and it gives a rather poor matrix low-
rank approximation. Thus, Ding, Li, Peng, and Park (2006)
proposed the tri-factor factorization method subject to the
double orthogonal constraints on both factorization factors,
which allows the different cluster number of row and col-
umn clustering. Gu, Ding, and Han (2011) proposed to
solve the common scale transfer problem by leveraging nor-
malized cut-like constraints. Recent work incorporates the
deep learning model with MF for the missing value imput-
ation task (Liu, He, Dubby, & O’Sullivan, 2019).

3. Problem formulation

In this section, we introduce our proposed frameworks for
the missing information imputation with heterogeneous aux-
iliary data, named MI2-HD and MI2-HT separately. We first
introduce the hypergraph representation for the disease-
dedicated social networks and then present how to formu-
late our goal as an optimization problem. Table 1 summa-
rizes all the frequently used notation in this paper. The
boldface uppercase letters denote the matrices (e.g. X, M).
The boldface lowercase letters denote the vectors (e.g. u, v).
Xij denotes the ith row jth column entry of matrix X, and
ui denotes the ith entry of vector u. The regular letters and
Greek alphabet are defined as scalars. All vectors are column
vectors unless otherwise specified.

3.1. Hypergraph representation of disease-dedicated
social networks

The social media networks come naturally in the form of
the graph, where the nodes are associated with users, and
the edges connecting a pair of users reflect pairwise

Table 1. Summary of notation.

Notation Definition and description

X,Y0,M, … Matrices (upper-case)
U,V, ~U, … Matrix factorization factors (upper-case)
X> Transpose of matrix X
Xij Element at ith row, jth column of matrix X
m,m0, n Dimension of matrix (lower-case)
k Latent clustering number (lower-case)
�, n Convergence criterions
Rþ Field of non-negative real numbers
Xð�XÞ Observed (missing) data index
XX Copying entries from X up to X
jj � jjF Matrix Frobenius norm
Trð�Þ Matrix trace
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similarity. In the previous studies, the users’ pairwise simi-
larity is typically measured as the follower/followee relation-
ship between two users. Two users are usually considered to
be similarity when the follower/followee connection is
observed. The so-called graph regularized is proposed to
quantify the corresponding users’ similarity when formulat-
ing the objective function in the modeling processing.
However, in the context of the disease-dedicated social net-
works, this pairwise similarity can lead to significant loss of
the user grouping information, which reveals purposeful
knowledge in the healthcare domain. For example, on the
disease-dedicated forum, the graph regularizer is usually
used to formulate the users’ pairwise similarity, i.e. how
these two users similar to each other when concerning their
physical/medial measurement like normal blood sugar levels
or the level of oral glucose tolerance test. However, usually
more than two users reply to the same discussion thread
that they are normally suffered from the same type of dis-
ease. Multiple users (nodes) are connected by the same post
(edge). The patients’ pairwise similarity is not able to cap-
ture such grouping information. We propose to represent
the disease-dedicated social networks by leveraging the
hypergraph structure, which can preserve both the pairwise
and reveal the grouping knowledge simultaneously.

Different from traditional graphs, in the hypergraph
structure, each hyperedge corresponds to one thread (post),
and it connects multiple users who have participated in the
thread, and thus it is able to effectively preserve the afore-
mentioned grouping information. Case in point, for the
online disease-dedicated forum, the first set of users are con-
nected by the thread where they mainly discuss glucose
level, while another set of users are connected by the thread
where they talk about the insulin pump. These two sets of
the users present two different aspects when producing the
analysis on the healthcare forum. The hypergraph structure
enables the preservation of such grouping information, i.e.
the user within the same group (post) are formulated to be
close to each other with respect to the hypergraph regular-
izer, while the user from different group keep relatively far
distance from each other. For the users that can be observed
in both group (overlapped user), i.e. he/she has attended the
discussion in these two threads simultaneously, which can

also be reserved in the hypergraph regularizer, but unfortu-
nately eliminated in the traditional graph regularizer. For
each post (hyperedge), the hyperedge weight represents the
popularity of this post, e.g. how many users’ reply or the
duration of the discussion. Figure 1 shows a simple example
of the hypergraph representation. User ¼ fu1, u2, u3, u4g and
Post ¼ fp1, p2, p3, p4, p5g denote the user set and post set,
respectively. The incident matrix in Fig. 1(a) has the entry
ðpi, ujÞ ¼ 1 if user uj participates in the post pi; the trad-
itional graph model in Fig. 1(b) shows how the pairs of
users are connected when they participate in the same post,
while user grouping information for each thread is lost. The
traditional graph structure cannot reveal whether the same
user left comments under multiple posts, while such kind of
grouping knowledge loss is not expected for data mining
purposes because the posts with the same user are likely to
belong to the same topic, or contain the patients’ daily con-
tinuous biomarker measurements. The hypergraph in Fig.
1(c) fully describes the user-post grouping relationship when
we treat each post as one hyperedge. The connection
between each user and the user grouping knowledge for
each post is completed illustrated. Thus the high-order rela-
tionships among users can be captured by hypergraph struc-
tures without loss of any information.

3.2. Proposed MI2-HD framework

As mentioned before, the traditional pair-wise graph struc-
ture does not fully exploit the grouping information existing
in the disease-dedicated social networks. Motivated by Cai
et al. (2011), which takes the pair-wise similarity into con-
sideration, we further explore the user grouping information
by leveraging the hypergraph structure (Zhou, Huang, &
Sch€olkopf, 2007). For the disease-dedicated social network
with the number of m users and n posts, let V, E denote the
use (vertex) set and forum post (hyperedge) set, respectively,
then the network can be presented as the hypergraph
GðV, E,WÞ with the vertex set V, hyperedge set E, and the
hyperedge weight knowledge W: The weighted hypergraph
contains the hyperedge weight wðeÞ 2 W associated with
each hyperedge e 2 E: For each vertex v 2 V, the vertex

Figure 1. Illustration of the hypergraph representation. In sub-figure (a), for example, the user u1 leaves his/her comment in the post p1, as the corresponding
value equals to 1 in the incident matrix, otherwise 0. In the sub-figure (b), which indicates the users’ grouping information, user u1 and user u2 are connected as
both of them have participated in the post p1, while this graph cannot tell us how many users are involved in the same post. The sub-figure (c) is the user-post
hypergraph which contains the completed user grouping information of each post on the disease-dedicated social network.
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degree d(v) is defined as dðvÞ ¼P
fe2Ejv2eg wðeÞ: The incident

matrix H in the size jVj � jEj indicates whether the user-post
connection, that the entry hðvi, ejÞ ¼ 1 if vi 2 ej (user vi
appears in the post ej), and 0 otherwise. For each hyperedge e,
the hyperedge degree dðeÞ is defined as dðeÞ ¼P

v2V hðv, eÞ,
which indicates how many users leave their commons under
the post e. The diagonal matrix Dv in the size jVj � jVj has its
diagonal elements equal to the degree of each vertex, and the
diagonal matrix De in the size jEj � jEj has its diagonal ele-
ments equal to the degree of each hyperedge.

Analogous to the definition of Laplacian matrix in the
normal graph (Cai, Mei, Han, & Zhai, 2008), the hypergraph
Laplacian matrix Lh 2 Rm�m is defined as Lh ¼ Dv �
HWeD�1e H>: By incorporating the hypergraph structure
with the MF method, we first formulate our goal as the fol-
lowing optimization problem:

min
U,V
jjY0 � UV>jj2F þ kTrðU>LhUÞ
s:t: U � 0,V � 0

(1)

in which Y0 2 Rm�n
þ denotes the original clinical data, U 2

Rm�k
þ and V 2 Rn�k

þ denote the low-rank factorization factor.
The original clinical data naturally comes with the missing value.
The tradeoff parameter k � 0 controls the effectiveness of the
hypergraph structure. To be more specific, in the Eq. (1) the
Trð�Þ term incorporates the hypergraph knowledge of the dis-
ease-dedicated social network into our model. Following the
matrix linear algebra manipulations (Cai et al., 2008; Gao,
Tsang, & Chia, 2013), the norm TrðU>LhUÞ can be rewritten as:

TrðU>LhUÞ ¼ TrðU>DvUÞ � TrðU>HWeD
�1
e H>UÞ

¼
X
e2E

X
ðvi, vjÞ2e

wðeÞ
dðeÞ jjvi � vjjj2 (2)

where the distance between the nodes vi and vj within each
hyperedge, weighted by the wðeÞ

dðeÞ , is inclined to short. Thus,
when minimizing the Eq. (2) as the optimization goal of the
Eq. (1), the similarity of the vertices associated with the same
hyperedge keeps constant. In other words, considering the
practical disease-dedicated forum, the users who share their
experience at the same post are expected to be relevant to

each other, that this kind of grouping relation is encoded in
the Eq. (2) as the similarity among these nodes keeping the
same within each hyperedge. Users may discuss different
topics in different posts, then the node (user) grouping infor-
mation is altered regarding the hyperedge (post). For struc-
tural convenience, in this paper, we set hyperedge weight to
be equal, and the weight effect will be explored in our future.

Secondly, our goal is to impute the missing value in Y0 (e.g.
patient biomarker data) by exploiting the heterogeneous auxiliary
information (e.g. clinical trial data, disease-dedicated social net-
work), as shown in Fig. 2, together with strict constraint on the
observation information. The goal is motivated by two aspects:

Latent coherence: The latent coherence spreads among
the similar users from diverse sample source M (e.g. diabetic
patients), while the samples in M do not necessarily overlap
with the samples in Y0:

Observation consistency: The dense matrix Y ¼ UV> in Eq.
(1) is usually treated as the learning result in the previous studies,
while the fact is YX 6¼ ðY0ÞX, where ð�ÞX index to the observed
data in Y0: The imputation result Ymesses the original observed
value in Y0 due to the inherent divergence of the heterogeneous
data. Ideally, we expect the missing entries in Y0 to be filled up
by incorporating the auxiliary information, and meanwhile,
keeping Y consistent with the observed information in Y0:

Thus, motivated by these ideas, we move forward to
extend Eq. (1) by adding the strict constraint on the
observed information together with leveraging the heteroge-
neous auxiliary data. The objective of MI2-HD is to solve
the following optimization problem:

min
Y,U, ~U,V

jjY� UV>jj2F þ ajjM� ~UV>jj2F þ bTrðU>LhUÞ

s:t: U � 0, ~U � 0,V � 0,YX � ðY0ÞX (3)

Y 2 Rm�n
þ ,U 2 Rm�k

þ , V 2 Rn�k
þ ,M 2 Rm0�n

þ , ~U 2 Rm0�k
þ ,

and Lh 2 Rm�m, where m and m0 denote the number of user in
original data and auxiliary data, respectively, and n denotes the
number of feature. The tradeoff parameters a, b � 0: Matrices
U and ~U indicate the row clustering (sample grouping), and
matrix V indicates the column clustering (measurement group-
ing). The latent coherence among the heterogeneous data M

Figure 2. Missing information imputation with auxiliary data. Disease-dedicated social network data provides the patients’ self-report information, meanwhile, the
high-order user-post relationships can be digged out from it.
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and original data Y0 is required by sharing the same measure-
ment matrix V, and simultaneously the missing entries Y�X

are
updated iterative. Y and (U, V, ~U) are updated separately.

3.3. Extension to matrix tri-factorization

Closely related to MI2-HD, we propose MI2-HT by leveraging
the tri-factor MF model, with non-negativity and orthogonal-
ity constraints on each factorization matrix. Compared with
the two-factor MF mentioned above, which may provide a
relatively weak low-rank approximation (Ding et al., 2006;
Wang, Nie, Huang, & Makedon, 2011) introduced one more
factorization factor S into consideration. In this model, the
observed data matrix Y0 is approximated by three factors U, S
and V, that factor S is designed to absorb the different scales
of U and V. In the meanwhile, the auxiliary data M is also tri-
factorized by sharing the same measurement matrix V. The
objective function of MI2-HT is formulated as:

min
U,V, ~U,S,~S

jjðY0�USV>ÞXjj2FþajjM� ~U~SV>jj2FþbTrðU>LhUÞ

s:t: U, ~U,V,S,~S�0,UU>¼ I, ~U ~U
>¼ I,VV>¼ I

(4)

where a,b�0, the matrixM denotes the auxiliary data, collected
from the diabetes-dedicated social networks. To avoid ambigu-
ity, the orthogonal constraint on factorization matrices U, ~U and
V require only one non-zero entry in each row, which forces
each user/biomarker to only belong to a single clustering class.

4. Updating rules

The proposed optimization problem is solved by the joint
MF. A set of multiplicative updating rules are proposed to
solve the optimization problem.

4.1. MI2-HD updating rules

There are two iterative updating steps in MI2-HD, as shown in
Algorithm 1. Since Eq. (3) is convex for the variables Y, U, ~U,

V separately (See Section 4.4), we propose to update Y and U,
~U, V separately. In the Algorithm 1, the convergence criteria is
defined as the average changing rate of the imputation result.
When the average changing of the imputation value is less than
1E-2, the updating process is considered as converged.

Fix Y, update U, ~U , V: We first introduce how to update
U, ~U, V with fixing Y by minimizing the Eq. (3). The Eq.
(3) is then extended into the following form:

O ¼ Tr ðY� UV>ÞðY� UV>Þ>
h i

þ bTr U>LhU½ �

þ aTr ðM� ~UV>ÞðM> � V~U
>Þ

h i

¼ Tr ðY0 � UV>ÞXðY>0 � VU>Þ� �þ bTrðU>LhUÞ
þ aTrðMM>Þ

we introduce the Lagrangian function L and Lagrange mul-
tipliers Wij,Phiij, and Cij: Each multiplier Wij, Uij, and Cij

corresponds to the constraints Uij � 0,Vij � 0 and ~Uij � 0,
respectively. The Lagrange function L can be written as:

L ¼ OðY,U,V, ~UÞ þ TrðWU>Þ þ TrðUV>Þ þ TrðC~U
>Þ

The partial derivatives of L with respect to U, V and ~U
are:

@L

@U
¼ �2TrðYVÞ þ @TrðUV>VU>Þ

@U
þ bLUþ bL>UþW

@L

@V
¼ �2TrðYUÞ þ @TrðUV>VU>Þ

@V

� aM> ~U þ aV~U
> ~U þU

@L

@ ~U
¼ �2aMVþ 2a~UV>Vþ C

by setting each partial derivative to 0, based on the
Karush–Kuhn–Tucker (KKT) optimality conditions (Boyd &
Vandenberghe, 2004) WijUij ¼ 0, UijVij ¼ 0 and Cij ~Uij ¼ 0,
we can get:

Algorithm 1 Updating Rules for MI2-HD

Input:
Y0, M, Lh,X,We ,De ,Dv , H
initial Y, U, V, and ~U as Y0,U0,V0, ~U

0

t ¼ t0 ¼ 0, � ¼ 1, n ¼ 1
Output:

Y, U, ~U , V
1: while n >1E-2 do
2: t ¼ 0, � ¼ 1
3: while � >1E-2 do
4: Utþ1

ik  Ut
ik update in Eq. (5)

5: Vtþ1
jk  Vt

jk update in Eq. (5)
6: ~U

tþ1
ij  ~U

t
ij update in Eq. (5)

7: ObjValuetþ1 ¼ OðUtþ1,Vtþ1, ~U
tþ1Þ

8: � ¼ ObjValuetþ1�ObjValuet
ObjValuet

9: t ¼ t þ 1
10: end while
11: set Yt0

X ¼ ðY0ÞX
12: set n equals to the mean of ðYt0þ1 � Yt0Þ:=Yt0
13: t0 ¼ t0 þ 1
14: end while

Algorithm 2 Updating Rules for MI2-HT

Input:
Y0, M, Lh

initial U, V, ~U , S as U0,V0, ~U
0
, S0

t¼ 0, �¼ 1, Convergence Criterion ¼ 10�4

Output:
U, V, ~U, S, ~S

1: while � > Convergence Criterion do

2: Utþ1
ik  Ut

ik
ðYVS>Þij

ðbLhUþbðLhÞ>UÞij

3: Vtþ1
jk  Vt

jk
ðY>USÞij

ðaVS>U>USÞij

4: ~U
tþ1
ij  ~U

t
ij
ðMV~S

>Þij
ð ~U~SV>V~S

>Þij
5: Stþ1ik  Stik

ðU>YVÞij
ðV>VS>U>UÞij

6: ~Stþ1ik  ~S
t
ik

ð ~U>MVÞij
ðV>V~S

> ~U> ~UÞij
7: ObjValuetþ1 ¼ OðUtþ1,Vtþ1, ~Utþ1 , Stþ1, ~Stþ1 Þ
8: � ¼ ObjValuetþ1 � ObjValuet

9: t ¼ t þ 1
10: end while
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ð�2YVþ 2UV>Vþ bLUþ bL>UÞij � Uij ¼ 0

ð�Y>Uþ VU>U� aM> ~U þ aV~U
> ~UÞij � Vij ¼ 0

ð�2aMVþ 2a~UV>VÞij � ~Uij ¼ 0

Equation (5) leads to the following updating rules for
MI2-HD:

Uik ¼ Uik
ð2YVþ bHWeD�1e H>UÞik
ð2UV>Vþ bDvUþ bD>v UÞik

Vkj ¼ Vkj

ð2Y>Uþ aM> ~UÞkj
2ðVU>Uþ aV~U

> ~UÞkj
~Uij ¼ ~Uij

ðMVÞij
ð~UV>VÞij

(5)

Fix U, ~U, V, update Y: After the convergence of U, ~U,
V, we set YX ¼ ðY0ÞX to restore the observed information.
Then repeating update U, ~U, V until Y converge.

4.2. MI2-HT updating rule

Derivation of Eq. (4) follows the same procedure as the der-
ivation of Eq. (3). Omitted for brevity, the updating rules
for MI2-HT are directly given in Algorithm 2.

4.3. Time complexity

The main computational cost is due to matrix multiplica-
tion. Therefore, omitted for space, the time complexity for
MI2-HD is Oðm2n2p2kÞ, and MI2-HT is Oðm2n2kÞ, where
m and n denotes the number of user and feature, respect-
ively. The scalar p denotes the number of the post on the
disease-dedicated forum. The number k is the latent factor-
ization dimension. The time complexity is empirically veri-
fied in the experiment section.

4.4. Convergence analysis

The Algorithm 1 is not jointly convex for all the variables
Y, U, ~U, V, but convex in each of them separately. As
shown in Eq. (3), when Y is fixed, the proof regarding the
convexity of Eq. (3) with respect to variables U, ~U, V is
analogous to (Cai et al., 2008); when U, ~U, V are fixed, the
optimization problem is equivalent to minY jjY� Cjj2F , s.t.

YX ¼ ðY0ÞX, with respect to Y only. C is given as constant.
To be more specific, the equality constraint can be rewritten
as jjKYC � Cjj2F , where YC denotes the column-wise concat-
enation of Y, and K is a constant diagonal matrix with the
diagonal elements equal to the column-wise concatenation
of X: Thus, the local optima are feasible when Algorithm 1
is proved to be convex with respect to variables Y, U, ~U,
and V individually. The same proof procedure can be easily
adapted to proof that Algorithm 2 also achieves the local
optimal solution.

5. Experimental results and discussion

In this section, we evaluate the performance of our missing
value imputation method and demonstrate its effectiveness
by leveraging the hypergraph structure together with hetero-
geneous auxiliary data. The computation environment con-
tains Intel(R) CORE 3.50GHz CPU, 32GB RAM in
MATLAB R2017b.

The experiments are conducted on the one synthetic data
and two real-world data sets. For each data set, the proposed
method is compared with four baseline methods: NMF (Lee
& Seung, 1999), GNMF (Cai et al., 2011), MF-NMF (Xu
et al., 2012) and the traditional regularized expectation-
maximization based method RegEm (Schneider, 2001). We
use F-norm in NMF, measure the pairwise similarity based
on Euclidean distance for GNMF, and follow the parameter
setting in (Xu et al., 2012) for MF-NMF.

5.1. Synthetic data

As mentioned in the reference (Hofmann, 2003), the
Gaussian distribution is adopted to estimate the users’ rating
for the item when studying the user preferences, in which
each community can be identified by a Gaussian distribution
generated from the normalized user ratings. In our case,
when we generate the synthetic data, we assume that each
user can also be identified by a Gaussian distribution, which
is generated according to the user’s attendance to each post
(topic). For example, a certain group of the users has the
frequent participant in the post aiming at discussing the
daily diabetes measurements, e.g. blood sugar level and glu-
cose level, while seldom attend the discussion about diabetes

Figure 3. Convergence analysis with respect to the tradeoff parameters. The x and y axes denote the iteration number and the objective function value,
respectively.
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pathogenesis (which may attract another set of certain users
like the physician, medical practitioner or doctor). Thus, the
different group of the user can be distinguished by the
Gaussian distribution, which is used to formulate their
online activities pattern.

Base on this observation, the factorization factors U, V,
and ~U are generated based on the multivariate Gaussian dis-
tribution. Each of them contains 200, 450 and 150 examples,
respectively. The convergence performance is presented in
Fig. 3. The tradeoff parameter is selected in grid
½0:3, 3, 30, 300� to balance the effectiveness of each regulariza-
tion term and avoid single term monopolizing the objective
function. The multiplicative updating rule shows the robust
performance with respect to various parameters settings.

We also consider the scenario when the data sparsity
spreads over different sparse ratio. The data sparsity ratio
alters the imputation accuracy of our methods. In Fig. 4, the
imputation value accuracy is compared with three other
algorithms on synthetic data. The x-axis represents the miss-
ing ratio, and the y-axis shows the accuracy of the imput-
ation value. It can be observed that the imputation
performance is much more stable when the ratio of missing
fraction getting increasing. We take cosine similarity
Nguyen and Bai (2010) to measure the imputation accuracy
between the imputation result and original value. To be
more precise, cosine similarity is a measurement that meas-
ures the similarity between two non-zero vectors by calculat-
ing their cosine value of the angle in their inner product
space. Each result is the average over 30-run results. For
each running, U, V, and ~U are randomly initialized from
multivariate Gaussian distribution. Compared with the other
three methods, whose accuracies decline quickly along with
the increasing ratio of missing entries, MI2-HD algorithm
decreases relatively slow and shows the highest imput-
ation accuracy.

We evaluated the efficiency of the proposed techniques.
The results are based on the synthetic data set with varying
data volume m and n, respectively. As shown in Fig. 5(a,b),
the running time of MI2-HD and MI2-HT are quadratic

with respect to parameter m, MI2-HD is quadratic with
respect to parameter n, and MI2-HT is quartic with respect
to parameter n, which is consistent with the time complexity
analysis in Section 4.

5.2. Real data

In this subsection, we present the experimental results on
two real data sets, including one collected from a diabetes-
dedicated social network.

5.2.1. Data set description
There are two real-world data sets used in our experiments:

TuDiabetes data set: The TuDiabetes online forum con-
sists of a community of people touched by diabetes and the
disease-specific discussion about their diabetes condition.
The set of discussions usually include type I diabetes, type II
diabetes, gestational diabetes, diet, exercise, etc. As the
screenshot of the TuDiabetes forum shown in Fig. 6, the
users tend to form the same groups with interest in a certain
topic. In general, the Tudiabetes data set is a collection of
21,286 discussion posts with 294,272 users. The features for
each user consist of the TF-IDF (Salton & Yang, 1973) fea-
ture of his/her posts after the pre-processing steps (verb
tense uniform, stop word removal).

OneID: The OneID data set (Zhongqi, 2015) contains the
encrypted user online shopping activities, including the
device-cookie pair, searching keywords, auction ID, shop ID
and so on. The users’ feature is extracted by the Geohash
method (Geohashes, 2008) from the raw encrypted informa-
tion that each feature is converted into a vector of the same
length. For detailed information, readers are recommended
to see the reference.

To be more specific, the posts with less than two users
are screened out for the purpose of the high-quality hyper-
graph construction. Each data set is randomly partitioned
into two subsets consisting of 80% and 20% of the whole
data set, respectively. The 80% subset is treated as Y0, and

Figure 4. Comparison analysis on synthetic data. The first two bar of each bar-group represent the imputation accuracy of MI2-HD and MI2-HT.
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the other subset, with added noise, is used to simulate the
heterogeneous auxiliary information source M.

5.2.2. Experimental results
In this subsection, we present the experimental results on
the real work data sets and the effectiveness of our methods.

To evaluate the effectiveness of the proposed algorithm
on missing value imputation with the heterogeneous auxil-
iary information, we use a range of missing ratios (mRatio)
to partition Y0 into the observed portion and the missing
portion. The missing entries are randomly selected based on
the value of mRatio in the grid ½0:3, 0:4, 0:5, 0:6, 0:7, 0:8�, e.g.
mRatio¼ 0.4 means 40% entries in Y0 are manually removed
as missing, and replaced with value 0. The removed portion
is used as ground truth to evaluate the imputation accuracy.

The 30-run average results on both the TuDiabetes data
set and the OneID data set are shown in Fig. 7. The first
two bars of each bar-group represent the imputation accur-
acy for our MI2-HD and MI2-HT. Overall, with the
increasing of missing value fraction, our method shows sta-
ble high accuracy with the help of hypergraph structure
and the heterogeneous auxiliary information. To be explicit,
the experiment results verify the two main advantages of
our method:

1. As shown in Fig. 8(a), by leveraging the hypergraph
structure, the proposed MI2-HD can improve the miss-
ing value imputation performance when compared with
the traditional graph-based methods GNMF. Compared
with the model MI2-HT, the model MI2-HD shows
higher missing value imputation accuracy on both data
sets. The reason is that in model MI2-HT, the strict
orthogonality constraints have been adopted on the fac-
torization factors, i.e. U, ~U, and V. The model MI2-HT
benefits from the mathematical property of the orthog-
onality constraint, which reduces the computational
complexity dramatically. However, such an orthogonal-
ity constraint presents the one-to-one mapping relation-
ship among the users and posts, which ignoring the
user-grouping knowledge of the disease-dedicated social
networks, even though we have addressed the user-
grouping knowledge in the Eq. (4) by leveraging the
hypergraph structure. The proper constraints give rise
to better imputation accuracy, which we will attach
great importance in our future works.

2. As shown in Fig. 8(b), the superiority of our methods is
increasing along with the data sparsity growing up. The
imputation accuracy and robustness are benefited from
utilizing the heterogeneous data by sharing the

Figure 5. Experimental analysis: (a) imputation improvement by leveraging hypergraph structure; (b) imputation improvement by utilizing heterogeneous data; (c,
d) running time analysis.

Figure 6. The screen shot of the TuDiabetes forum.
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measurement matrix V between the original and hetero-
geneous information.

5.3. Discussion

One experimental setting that needs to be addressed is that
each hyperedge is considered of equal importance with the
others, as all the hyperedges are given equal weight. In prac-
tice, that means each post is considered of the same import-
ance, however, regardless of the fact that the posts’

popularity is altered regarding the users and topics. For
example, the post titled ‘Insulin not bringing my blood sugar
DOWN?’, which has been viewed over 56.3k times, is more
popular than the post about ‘Can’t log into Dexcom Clarity’,
which has been viewed about 257 times. Conspicuously,
users who attended the former discussion are more likely to
provide diabetes-related information, rather than the users
who discussed the online system login issue. As each hyper-
edge represents one post, the equal weight setting may cause
bias regarding this observation. There are two ways we have

Figure 7. Upper: experimental results on the OneID dataset; lower: experimental results on the TuDiabetes dataset. Each numerical value is averaged over 30-run
repeated test, then the 30-run variance is shown in the error bar.

Figure 8. Experimental analysis: (a) imputation improvement by leveraging hypergraph structure. (b) Imputation improvement by utilizing heterogeneous data.
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thinking about to bring in the posts’ popularity and distin-
guish the user grouping information:

� The most native way is to weight each post (hyperedge)
according to its activities, e.g. the numbers of reply, or
how many times it has been viewed. The more it has
been discussed/viewed represents the potential import-
ance of this topic among the diabetes patients, that the
users (nodes) within the corresponding post (hyperedge)
should be high-valued relatively.

� A more reasonable way to weight the post (hyperedge) is
to conduct the linguistic analysis for the topic of each
post. The previous native way is applicable in the most
cases, however, both the posts ‘Convenia: A Dangerous
Veterinary Drug: Please don’t ever use this drug for your
cats and dogs!’ and ‘High blood sugar causing chest pain?’
have been viewed around 29k times and show the similar
popularity on the disease-dedicated forum. The basic nat-
ural language processing methods like TF-IDF, Latent
Dirichlet Allocation (LDA) would be helpful to make a
distinguished judgment for the topic of each post and set
the proper weight for each post.

To be more specific, the equal weight of the hyperedge
does not affect the grouping information. The grouping
information is presented at the node (user) level, which
means the nodes (users) associated with the same hyperedge
(post) are expected to be relevant to each.

6. Conclusion

In this paper, we propose a novel framework for missing
value imputation with heterogeneous auxiliary information
named MI2-HD. It is based on the hypergraph representa-
tion of disease-dedicated social networks and leverages add-
itional information such as users’ social relationships and
clinical data to improve the accuracy of missing value
imputation. Furthermore, we propose iterative algorithms to
solve the resulting optimization problems and analyze their
performance from multiple perspectives. Experimental
results show that the proposed techniques are able to out-
perform state-of-the-art approaches on both synthetic and
real data sets collected from diabetes-dedicated
social networks.
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