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Abstract—The application of multiple target tracking algo-
rithms has exponentially increased during the last two decades.
Recently, model-free approaches, such as Gaussian process regres-
sion and convolutional neural networks, have been developed for
target tracking. This paper presents a simulation-based study on
the practical aspects of a very promising and recently proposed
Gaussian process method, namely the Gaussian process motion
tracker [1]. The paper also provides design guidelines on the
various aspects of the above-mentioned tracking method.

Index Terms—Target Tracking, Gaussian Process, Gaussian
Process Motion Tracking, Nonlinear Estimation, Data Driven
Methods

I. INTRODUCTION

Target tracking deals with state estimation of the targets
of interest using sensor data. These methods have been
applied in various automation systems belonging to various
fields such as air traffic control [2], sea surveillance [3],
oceanography [4], autonomous vehicles [5] and many more.
Historically, model-based approaches have been applied for
solving target tracking problems. Recently, machine-learning
based model-free methods have been proposed either as a
complete solution [6] or in a hybrid setup [7], [8]. Hybrid
methods combine model-based and model-free methods for
target tracking.

Machine learning methods rely on the available data to
learn an unknown input to output mapping. Various machine
learning methods have been proposed in literature for different
artificially intelligent systems. In the field of target tracking,
deep learning and Gaussian process based methods have
become popular recently. However, providing a level of trust
in the developed solutions, in the presence of uncertainties, is
still a problem that has not been widely studied. The tracking
results are often an input to a human or computer based decision
making system which cannot perform satisfactorily without
uncertainty measures. Gaussian process methods, have been
recently proposed as an efficient solution to different target
tracking problems [6], [7], [9].

Target tracking methods can be classified as point, extended
and group target tracking [10], [11] methods. Point target
tracking requires target kinematics estimation, i.e. the estima-
tion of positions, velocities and accelerations of the objects

of interest. In tracking of extended and groups of objects, in
addition to the kinematics, we are interested in the estimation
of the target shape, orientation and size. Gaussian process based
methods have been proposed for point, extended and group
target tracking. In this paper, various aspects of the Gaussian
process motion tracker (GPMT) [1] are studied. The GPMT
provides point target state estimation in presence of unknown
target dynamics and measurement noise. The measurement to
target assignment (measurement origin) is assumed known.

A Gaussian process is a flexible stochastic process. It is
a learning based method which relies on a given data for
learning the unknown model. Some example tasks performed
using a Gaussian process are classification, regression and
pattern recognition. A Gaussian process has also been applied
for the target shape estimation [9], [12], [13]. The GPMT
employs the Gaussian process in a regression setting for the
target kinematics estimation. The paper [1] does not discuss
some important aspects of the approach. These include the
choice of the covariance kernel, robustness of the approach to
the measurement noise model and effect of the training data
on the proposed method. This paper focuses on the above-
mentioned aspects of the GPMT in an attempt to highlight the
strength of the proposed method.

The rest of the paper is structured as follows. The background
knowledge for a Gaussian process and the GPMT are given
in Sections II and III, respectively. The kernel choice, the
impact of the training data and the robustness of the GPMT to
the measurement noise is studied in Sections V, VI and VII,
respectively. The studies are followed by conclusions.

II. GAUSSIAN PROCESS

A Gaussian process (GP) is a distribution over functions
and is defined by a mean and covariance kernel [14]. It is a
powerful non-parametric method which has been applied to
solve various problems in the domain of artificial intelligence
such as heart rate analysis [15], classification [16] and pattern
recognition [17]. The Gaussian process regression is briefly
described next since the Gaussian process motion tracker is
based upon it.

Consider a one-dimensional input u which relates non-
linearly to an output f(u) and is modelled using a Gaussian



process. The measurement model is assumed with an additive
Gaussian noise and given below:

z = f(u) + ε, ε ∼ N (0, σ2), (1)
f(u) ∼ GP (m(u), k(u, u′)), (2)

where z is the measured output, ε denotes the zero-mean
independent identically distributed (i.i.d.) Gaussian noise with
variance σ2 and GP (m(u), k(u, u′)) specifies the GP model
with mean m(u) and covariance kernel k(u, u′). A GP is a
learning based method and requires data to learn the unknown
function. Suppose u = [u1, · · · , un]T and z = [z1, · · · , zn]T

denote, respectively, the input and output vectors, also called
training data. A GP regression on the testing input vector
u? can be applied by using the property of GP models. This
means that the realisations of the GP have a joint Gaussian
distributed. This is mathematically expressed below:[

z
z?

]
∼ N

([
m(u)
m(u?)

]
,

[
Kuu + σ2In Kuu?

Ku?u Ku?u?

])
, (3)

Kuu =

k(u1, u1) · · · k(u1, un)
...

. . .
...

k(un, u1) · · · k(un, un)

 , (4)

where m(·) denotes the mean vector, Kuu? is the covariance
matrix between the input training and test vectors and In is an
n-dimensional identity matrix. The GP prediction at the test
vector is given below:

E[z?] = m(u?) +Ku?u

(
Kuu + σ2In

)−1
(z −m(u)), (5)

C[z?] = Ku?u? −Ku?u

(
Kuu + σ2In

)−1
Kuu? , (6)

where E[z?] and C[z?] represent, respectively, the mean and
the covariance of the output test vector and (.)−1 is the matrix
inverse. The above GP regression be easily extended to the
multiple-input and multiple-output case.

The flexibility of the GP regression is linked with the mean
and the covariance kernel, which encapsulate the prior. The
average behaviour of most stochastic processes is unknown.
Similar is the case of the GPMT [1], where the target trajectory
is assumed unknown. In such cases, the mean of the GP is set
to zero. It is important to understand that this does not restrict
the GP regression, except for cases when GP predictions away
from the training data would converge to different results. The
covariance kernel, captures the correlations among the input
space and it is an important design parameter of GP models.

Various covariance kernels have been proposed for the GP
regression, some of which are described briefly below. The two
common parameters of the covariance kernels, also called
hyperparameters, are the magnitude variance σ2

m and the
lengthscale l hyperparameters. The magnitude of the variance
controls the average distance between the mean function and
the mean of the GP regression. The lengthscale controls the
correlation width of the input domain.

1) Squared Exponential Kernel:

kse(u, u
′) = σ2

m exp

(
− (u− u′)2

2l2

)
(7)

is the most commonly used kernel [14]. It is a very
smooth kernel and is infinitely differentiable.

2) Rational Quadratic Kernel: is in the form

krq(u, u
′) = σ2

m

(
1 +

(u− u′)2

2αl2

)−α
, (8)

where α is a scaling factor. The rational quadratic kernel
behaves as sum of squared exponential kernels with
different lengthscales. The lengthscales are varied using
the α hyperparameter. The rational quadratic kernel meets
the squared exponential kernel as α→∞.

3) Matérn Kernel.

kν(u, u′) =
21−ν

Γ(ν)

(√2ν(u− u′)
l

)ν
Kν

(√2ν(u− u′)
l

)
,

where ν > 0 and Kν is a modified Bessel function.
Unlike other kernels, this function gives a class of kernels.
Various kernels belonging to the Matérn class can be
built for different values of ν. As ν → ∞, the kernel
approaches a squared exponential kernel. As ν → 0, the
kernel approaches an exponential kernel. A well known
kernel from this class is obtained by setting ν = 3

2 [14]
and is given below:

k 3
2
(u, u′)=

(
1 +

√
3(u− u′)

l

)
exp

(
−
√

3(u− u′)
l

)
, (9)

Although, the GP models are quite flexible for constant
hyperparameters. The model adaptation can be improved by
determining the hyperparameters based on the training data.
This process is also called learning. The learning is performed
through optimisation of the marginal likelihood with respect to
the hyperparameters. The logarithm of the marginal likelihood
function is given below:

log p(z|u,η) = −1

2
zT (Kuu + σ2In)−1z

− 1

2
log |Kuu + σ2In| −

n

2
log 2n, (10)

where p(·) denotes the marginal likelihood, η denotes the
hyperparameters vector and | · | is the matrix determinant.

III. GAUSSIAN PROCESS MOTION TRACKER

The Gaussian process motion tracker (GPMT), proposed
in [1], estimates the two-dimensional kinematics of the point
targets using noisy measurements. The tracker is based upon
the following assumptions:

1) The kinematics in x and y are mutually uncorrelated.
2) The coordinates are temporally correlated.
3) The temporal correlation with points in the distant past

is weak and these points can be ignored while training
of the GP model.

4) The measurement noise is an i.i.d. process.



One of the most commonly observed target manoeuvre model
is coordinated turn. The x and y coordinates are correlated
during a coordinated turn. In GPMT, the coordinates are
assumed mutually uncorrelated. The coordinate coupling can
be introduced in GPMT using coupled GPs [18]. The GPMT
in x-coordinate is given in this section. A similar tracker can
be built for the y-coordinate. It can be extended to any number
of dimensions. Suppose, fx represents the nonlinear target
dynamics function in x coordinate.

The GPMT system model is given below:

x = fx(t), fx(t) ∼ GP x(0, kx(t, t′)), (11)
zx = x+ εx, εx ∼ N (0, σ2

x), (12)

where GP x denotes the GP model of the x-coordinate with
covariance kernel kx, zx is the measurement and εx represents
the i.i.d. zero-mean measurement noise with variance σ2

x.
A typical radar and sonar reports measurements in polar
coordinates. In such scenarios, the process and measurement
models, (11) and (12), are modelled in the polar coordinates.
An alternate approach can be to calculate the measurement pdf
in Cartesian coordinates [19], [20]. The performance may be
degraded in the latter case as the cross-correlation among the
x and y coordinates is ignored according to 11.

The GP regression is a batch processing method. The GPMT
is an online method where it requires a subset of measurements
for the purposes of prediction and estimation. It requires
the d most recent measurements, the position prediction and
estimation, as given below:

µ̃x = Ktt[Ktt + σ2
xId]

−1zxt , (13)
φ̃2x = Ktt −Ktt[Ktt + σ2

xId]
−1KT

tt, (14)
µ̂x = Ktt′ [Kt′t′ + σ2

xId]
−1zxt′ , (15)

φ̂2x = Ktt −Ktt′ [Kt′t′ + σ2
xId]

−1KT
tt′ , (16)

where t = k, t = [k − d, k − d + 1, · · · , k − 1]T , t′ = [k −
d+ 1, k− d+ 2, · · · , k]T , µx and φ2x denote, respectively, the
positional mean and variance, ·̃ and ·̂ represent, respectively, the
predicted and the estimated values, K is the covariance matrix
and is determined using (4) and zxa represents the measurement
vector consisting of samples corresponding to time vector a.
The GPMT proposes to determine d using an offline trial and
error method. The method can be improved through online
determination of d as proposed in [21].

In [1], a squared exponential covariance kernel has been
proposed. The learning is done using the maximum likelihood
approach. It has been shown in [1], that the proposed GPMT
performs better than the model based approaches including
fixed grid interacting multiple model in challenging scenarios.
Tracking by using the position derivatives has also been
proposed in [1]. However, here we restrict the study the position
estimates only.

IV. TESTING SCENARIOS AND PERFORMANCE EVALUATION

The simulation-based studies are based upon the target sce-
narios and the evaluation methods described in this section. The

root mean square error (RMSE) of the target predicted position
is chosen as the main performance measure. A comprehensive
database of the point target trajectories is not publicly available.
Hence, the target trajectories are generated using the three most
commonly used point target dynamics models. These are the
nearly constant velocity (NCV) [22], the nearly coordinated
turn (NCT) [22] and the Singer acceleration model [23]. The
state transition and the process noise covariances of the three
models are given below:

FNCV =

[
1 T
0 1

]
,QNCV = qNCV

[
T 4

4
T 3

2
T 3

2 T 2

]
, (17)

FNCT =

[
1 sinωT

ω
0 cosωT

]
,QNCT = qNCT

[
T 4

4
T 3

2
T 3

2 T 2

]
, (18)

F s=

1 T β−1+γ
α2

0 1 1−γ
α

0 0 γ

,Qs=
2σ2

m

α

q11 q12 q13
q21 q22 q23
q31 q32 q33

 . (19)

q11 =
1− γ2 + 2β + 2β3

3 − 2β2 − 4βγ

2α5
, (20)

q12 = q21 =
γ2 + 1− 2γ + 2βγ − 2β + β2

2α4
, (21)

q13 = q31 =
1− γ2 − 2βγ

2α3
, (22)

q22 =
4γ − 3− γ2 + 2β

2α3
, (23)

q23 = q32 =
γ2 + 1− 2γ

2α2
, (24)

q33 =
1− γ2

2α
, (25)

where F · and Q· represent, respectively, the state transition
and the process noise covariance with variance q·, T denotes
the sampling time, ω is the turn rate, σ2

m is the manoeuvre
variance, α = 1

τm
is the reciprocal of the manoeuvre sojourn

time τm, β = αT and γ = exp(−β). The above three models
can represent real target trajectories.

The sampling time is set to T = 1s, the total samples are
K = 100, the measurement noise standard deviation is set
to σ = 25m, the probability of detection is set to pd = 1,
the initial target velocity is randomly chosen in the limits
150m/s ≤ v0 ≤ 250m/s, the process noise variances of the
NCV and the NCT models are set to qNCV = qNCT = 1e−12,
the turn rate is set to ω = 15 deg /s, the manoeuvre variance
is set to σ2

m = 168.75m2/s4 and the manoeuvre sojourn time
is set to τm = 8s. The coordinated turn model based scenario
switches between the NCV and the NCT models. The sojourn
time of the NCT based manoeuvre is 8s. The results are
computed over 1000 Monte Carlo runs.

V. CHOICE OF COVARIANCE KERNELS

The GPMT is proposed using a squared exponential (SE)
covariance kernel in [1]. This kernel is infinitely differentiable
and it helps in tracking all the higher derivatives of the position
coordinates. The kernel is, however, too smooth as compared



to the real target dynamics. In this section, a simulation-based
study is performed to compare the performance of the different
covariance kernels. The two new kernels chosen in this study
are the rational quadratic (RQ) and the Matérn (with ν = 3

2 )
kernels. The results are given in Fig. 1.

It can be observed that the SE and the RQ perform better than
the Matérn for the NCV and Singer target dynamics models
based trajectories. However, the Matérn kernel outperforms
them for the NCT model based trajectory. The RQ based GPMT
performs slightly worse as compared to the Matérn kernel. The
performance of the SE based GPMT is significantly poor and
could be a bad choice for this type of trajectory. Based on the
above study, the following recommendations are made:

1) For the NCV and Singer based scenarios, the SE based
GPMT should be chosen.

2) For applications involving target trajectories based on
all three models, the RQ based GPMT is the preferred
choice.

VI. EFFECT OF THE TRAINING DATA

The parameter d of the GPMT controls the size of the
training data set. The evaluation of the GPMT in paper [1]
is done by setting it as d = 10, that is, the 10 most recent
measurements are considered for the training of the model. In
this section, the performance of the GPMT for the different
values of d is studied for the three kernels. The results are
given in the Figs. 2, 3 and 4.

It can be observed, in Fig. 2, that the accuracy of the SE
based GPMT increases with the increase in the training data
for the NCV model based trajectories. For the remaining two
scenarios, the accuracy decreases. It can be observed, in Fig. 3,
that the accuracy of the RQ based GPMT increases with the
increase in the training data for the NCV and the NCT model
based trajectories. The performance degrades with the increase
in the training data for the Singer model. In Fig, 4, it can
be observed that the accuracy of the Matérn based GPMT
increases with the increasing training data. Based on the above
results, it is recommended to use a Matérn kernel based GPMT
when the training data size is important for the application.

VII. ROBUSTNESS TO MEASUREMENT NOISE MODEL

The measurement noise variance can be set as a hyperpa-
rameter of the GPMT [1] and learned recursively from the
training data. In this way, the GPMT model is robust to the
measurement noise variance. This section provides a simulation
based study on the performance degradation of the GPMT with
the increasing noise variance. The noise standard deviation
is chosen as σ = 25, 50, 75, 100. The percentage increase in
the standard deviation of the noise with respect to σ = 25
is 100%, 200% and 300%. The percentage degradation of the
three kernels for the assumed scenarios is given in Table I. It
can be observed that although the accuracy decreases with the
increase in the noise, the filter does not diverge.
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Fig. 1. Comparison of covariance kernels. This figure show results of
the positional prediction using three different variants of the GPMT based
on different covariance kernels. These are the squared exponential (SE), the
Matérn with ν = 3

2
(M3) and the rational quadratic (RQ) kernels. The three

plots correspond to three different target models which are the NCV (top), the
NCT (middle) and the Singer (bottom).

TABLE I
PERFORMANCE DEGRADATION WITH INCREASED NOISE VARIANCE

NCV NCT Singer
100 200 300 100 200 300 100 200 300

SE 92 181 270 34 64 88 64 127 187
RQ 93 183 273 41 80 112 65 127 187
M3 78 150 217 49 94 132 70 131 187

VIII. CONCLUSIONS

This paper presents a simulation based study of different
aspects of the Gaussian process approach proposed in [1]
for the point target tracking. The study demonstrates that the
rational quadratic kernel is a better choice, as compared to
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Fig. 2. Effect of the training data on the SE kernel. This figure shows
the results for the three scenarios, as explained in Fig.1. The three different
values of the parameter are d = 10, 15, 20.

the originally proposed squared exponential kernel for the
commonly observed point target tracking dynamics. Unlike
the squared exponential and the rational quadratic kernels,
the accuracy of the Matérn kernel improves consistently with
the increase in the training data. Lastly, the robustness of
the approach is demonstrated by assuming unknown noise
variances. Current work is focused on theoretical studies of
the impact of uncertainties on Gaussian process methods.
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