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Abstract

An important factor to guarantee a fair use of data-driven recommendation systems is that we should be
able to communicate their uncertainty to decision makers. This can be accomplished by constructing pre-
diction intervals, which provide an intuitive measure of the limits of predictive performance. To support
equitable treatment, we force the construction of such intervals to be unbiased in the sense that their coverage
must be equal across all protected groups of interest. We present an operational methodology that achieves
this goal by offering rigorous distribution-free coverage guarantees holding in finite samples. Our methodol-
ogy, equalized coverage, is flexible as it can be viewed as a wrapper around any predictive algorithm. We test
the applicability of the proposed framework on real data, demonstrating that equalized coverage constructs
unbiased prediction intervals, unlike competitive methods.

Keywords: conformal prediction, calibration, uncertainty quantification, fairness, quantile regression, unbi-
ased predictions.

Media Summary

Machine learning algorithms are increasingly deployed in sensitive applications to inform the selection of job
candidates, to inform bail and parole decisions, and to filter loan application, among many others. Such prac-
tices have become the subject of intense scrutiny, as society must be concerned about whether these algorithms
reinforce discrimination and make the status quo normative. A major area of study has therefore been to pro-
pose mathematical definitions of appropriate notions of fairness or algorithmic models of fairness, and to make
sure that learned models comply with such prescriptions. Because fairness is rather ill defined, it has been
reported that such notions can be incompatible and/or hurt the groups they intend to protect.

In this work, we follow the prescription of Corbett-Davies and Goel, 2018 and decouple the statistical
problem of risk assessment from the policy problem of taking actions or designing interventions. Rather than
dictating policy, our aim will solely be the design of statistical algorithms providing the decision maker with
information summarizing the knowledge that can be extracted from state-of-the-art machine learning systems
in a way that is mathematically guaranteed to be unbiased regardless of a person’s protected attributes, provid-
ing an operational definition of fairness. This is accomplished by constructing prediction sets, which provide
an intuitive measure of the limits of predictive performance. To support equitable treatment, we force the
construction of such intervals to be unbiased in the sense that their coverage must be equal across all pro-
tected groups of interest. We present an operational methodology that achieves this goal by offering rigorous
distribution-free coverage guarantees holding in finite samples. Our methodology is flexible in the sense that
it can be wrapped around any predictive algorithm. For instance, in a stylized application where a recommen-
dation system for college admission predicts the GPA of candidate students after two years of undergraduate
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education, our methodology would modify this system to produce, for each student, a range of values obeying
two properties. First, the range contains the true outcome 90% of the time (or any other percentage). Second,
this property holds regardless of the group to which the student belongs.

1 Introduction

1.1 The problem of equitable treatment

We are increasingly turning to machine learning systems to support human decisions. While decision makers
may be subject to many forms of prejudice and bias, the promise and hope is that machines would be able
to make more equitable decisions. Unfortunately, whether because they are fitted on already biased data or
otherwise, there are concerns that some of these data driven recommendation systems treat members of different
classes differently, perpetrating biases, providing different degrees of utilities, and inducing disparities. The
examples that have emerged are quite varied:

1. Criminal justice: courts in the United States may use COMPAS—a commercially available algorithm
to assess a criminal defendant’s likelihood of becoming a recidivist—to help them decide who should
receive parole, based on records collected through the criminal justice system. In 2016 ProPublica an-
alyzed COMPAS and “found that black defendants were far more likely than white defendants to be
incorrectly judged to be at a higher risk of recidivism, while white defendants were more likely than
black defendants to be incorrectly flagged as low risk” Dieterich, Mendoza, and Brennan, 2016.!-2

2. Recognition system: a department of motor vehicles (DMV) may use facial recognition tools to detect
people with false identities, by comparing driver’s license or ID photos with other DMV images on file.
In a related context, Buolamwini and Gebru, 2018 evaluated the performance of three commercial clas-
sification systems that employ facial images to predict individuals’ gender, and reported that the overall
classification accuracy on male individuals was higher than female individuals. They also found that the
predictive performance on lighter-skinned individuals was higher than darker-skinned individuals.

3. College admissions: a college admission office may be interested in a new algorithm for predicting the
college GPA of a candidate student at the end of their sophomore year, by using features such as high-
school GPA, SAT scores, AP courses taken and scores, intended major, levels of physical activity, and
so on. On a similar matter, the work reported in Gardner, Brooks, and Baker, 2019 studied various data-
driven algorithms that aim to predict whether a student will drop out from a massive open online course
(MOOC). Using a large data set available from Gardner, Brooks, Andres, and Baker, 2018, the authors
found that in some cases there are noticeable differences between the models’ predictive performance on
male students compared to female students.

4. Disease risk: healthcare providers may be interested in predicting the chance that an individual develops
certain disorders. Diseases with a genetic component have different frequencies in different human pop-
ulations, reflecting the fact that disease—causing mutations arose at different times and in individuals
residing in different areas: for example, Tay-Sachs disease is approximately 100 times more common
in infants of Ashkenazi Jewish ancestry (central-eastern Europe) than in non-Jewish infants Kaback,
O’Brien, and Rimoin, 1977. The genotyping of DNA polymorphisms can lead to more precise individ-
ual risk assessment than that derived from simply knowing to which ethnic group the individual belongs.
However, given our still partial knowledge of the disease causing mutations and their prevalence in differ-
ent populations, the precision of these estimates varies substantially across ethnic groups. For instance,
the study reported in Kessler, Yerges-Armstrong, Taub, Shetty, Maloney, et al., 2016 found a preference
for European genetic variants over non-European variants in two genomic databases that are widely used

Thttps://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
2For a recent analysis of COMPAS findings, see Rudin, Wang, and Coker, 2020.
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by clinical geneticists (this reflects the fact that most studies have been conducted on European popula-
tions). Relying on this information only would result in predictions that are more accurate for individuals
of European descent than for others.

The breadth of these examples underscores how data must be interpreted with care; the method that is
advocated in this paper is useful regardless of whether the disparity is due to factors of inequality/bias, or
instead due to genetic risk. Indeed, policymakers have issued a call that Executive Office of the President, 2014

“we must uphold our fundamental values so these systems are neither destructive nor opportunity
limiting. [...] In order to ensure that growth in the use of data analytics is matched with equal
innovation to protect the rights of Americans, it will be important to support research into miti-
gating algorithmic discrimination, building systems that support fairness and accountability, and
developing strong data ethics frameworks.”

This is a broad call that covers multiple aspects of data collection, mining and interpretation; clearly, a response
requires a multi-faced approach. Encouragingly, the machine learning community is beginning to respond to
this challenge. A major area of study has been to propose mathematical definitions of appropriate notions of
fairness Dieterich et al., 2016; Dwork, Hardt, Pitassi, Reingold, and Zemel, 2012; Hardt, Price, and Srebro,
2016; Hebert-Johnson, Kim, Reingold, and Rothblum, 2018; Kim, Ghorbani, and Zou, 2019; Zafar, Valera,
Gomez Rodriguez, and Gummadi, 2017 or algorithmic models of fairness Kusner, Loftus, Russell, and Silva,
2017. In many cases, these definitions are an attempt to articulate in mathematical terms what it means not to
discriminate on the basis of “protected characteristics”; U. S. law identifies these as sex, race, age, disability,
color, creed, national origin, religion, and genetic information. Now, discrimination can take many forms, and
it is not surprising that it might be difficult to identify one analytical property that detects it in every context.
Moreover, the call above is broader than the specific domains where discrimination is forbidden by law and
invites us to develop analytical frameworks that guarantee an ethical use of data.

1.2 Responses from the machine learning community

To begin to formalize the problem, it is useful to consider the task of predicting the value of Y, a binary {0, 1}
variable, with a guess Y. We assume that Y = 1 represents a more “favorable” state, and that the value of
Y will influence the decider, so that predicting Y = 1 for some individuals gives them an advantage. In this
context, P(Y = 0 | Y = 1), the false negative rate, represents the probability with which an opportunity is
denied to a “well deserving” individual. It is obvious that this is a critical error rate to control in scenarios
such as deciding parole (see Example 1): freedom is a fundamental right, and nobody should be deprived
of it needlessly. We then wish to require that P(Y = 0 | Y = 1,A = a) is equal across values of the
protected attribute A Hardt et al., 2016. In the case of distributions of goods (as when giving a loan), one
might argue for parity of other measures such as IP’(EA/ = 1| A = a) which would guarantee that resources are
distributed equally across the different population categories Dwork et al., 2012; Feldman, Friedler, Moeller,
Scheidegger, and Venkatasubramanian, 2015; Zafar, Valera, Gomez-Rodriguez, and Gummadi, 2019. Indeed,
these observations are at the basis of two notions of fairness considered in the literature.

Researchers have noted several problems with fairness measures that, as the above, ask for (approximate)
parity of some statistical measure across all of these groups. Without providing a complete discussion, we
list some of these problems here. (a) To begin with, it is usually unclear how to design algorithms that would
actually obey these notions of fairness from finite samples, especially in situations where the outcome of interest
or protected attribute is continuous. (b) Even if we could somehow “operationalize” the fairness program,
these measures are usually incompatible: it is provably impossible to design an algorithm that obeys all notions
of fairness simultaneously Chouldechova, 2017; Kleinberg, Mullainathan, and Raghavan, 2017. (c) This is
particularly troublesome, as the appropriate measure appears to be context dependent. Consider Example 4
and suppose that Y = 1 corresponds to having Tay-Sachs, whose rate differs across populations. Due to the
unbalanced nature of the disease, one would expect the predictive model to have a lower true positive rate for
non-Jewish infants than that of Ashkenazi Jewish infants (for which the disease is much more common). Here,

forcing parity of true positive rates Hardt et al., 2016 would conflict with accurate predictions for each group



Hebert-Johnson et al., 2018. (d) Finally, and perhaps more importantly, researchers have argued that enforcing
frequently discussed fairness criteria “can often harm the very groups that these measures were designed to
protect” Corbett-Davies and Goel, 2018.

In light of this, it has been suggested to decouple the statistical problem of risk assessment from the policy
problem of taking actions and designing interventions. Quoting from Corbett-Davies and Goel, 2018, “an
algorithm might (correctly) infer that a defendant has a 20% chance of committing a violent crime if released,
but that fact does not, in and of itself, determine a course of action.” Keeping away from policy then, how can
we respond to the call in Executive Office of the President, 2014 and provide a policymaker the best information
gleaned from data while supporting equitable treatment? Our belief is that multiple approaches will be needed,
and with this short paper our aim is to introduce an additional tool to evaluate the performance of algorithms
across different population groups.

1.3 This paper: equalized coverage

One fundamental way to support data ethics is not to overstate the power of algorithms and data-based pre-
dictions, but rather always accompany these with measures of uncertainty that are easily understandable by
the user. This can be done, for example, by providing a plausible range of predicted values for the outcome
of interest. For instance, consider a recommendation system for college admission (Example 3), not knowing
about the accuracy of the prediction algorithm, we would like to produce for, each student, a predicted GPA
interval [Ylo, th] obeying the following two properties: the interval should be faithful in the sense that the true
unknown outcome Y lies within the predicted range 90% of the time, say; second, this should be unbiased in
that the average coverage should be the same within each group.

Such a predictive interval has the virtue of informing the decision maker about the evidence machine learn-
ing can provide while being explicit about the limits of predictive performance. If the interval is long, it just
means that the predictive model can say little. Each group enjoys identical treatment, receiving equal coverage
(e.g., 90%, or any level the decision maker wishes to achieve). Hence, the results of data analysis are unbi-
ased to all. In particular, if the larger sample size available for one group overly influences the fit, leading
to poor performance in the other groups, the prediction interval will make this immediately apparent through
much wider confidence bands for the groups with fewer samples. Prediction intervals with equalized coverage,
then, naturally assess and communicate the fact that an algorithm has varied levels of performance on different
subgroups.

It seems impossible a priori to present information to the policymaker in such a compelling fashion without
a strong model for dependence of the response Y on the features X or protected attributes A. In our college
admission example, one may have trained a wide array of complicated predictive algorithms such as random
forests or deep neural networks, each with its own suite of parameters; for all practical purposes, the fitting
procedure may just as well be a black box. The surprise is that such a feat is possible under no assumption other
than that of having samples that are drawn exchangeably—e.g., they may be drawn i.i.d.—from a population
of interest. We propose a concrete procedure, which acts as a wrapper around the predictive model, to produce
valid prediction intervals that provably satisfy the equalized coverage constraint for any black box algorithm,
sample size and distribution. Such a procedure can be formulated by refining tools from conformal inference,
a general methodology for constructing prediction intervals Lei, G’Sell, Rinaldo, Tibshirani, and Wasserman,
2018; Lei, Robins, and Wasserman, 2013; Papadopoulos, Proedrou, Vovk, and Gammerman, 2002; Romano,
Patterson, and Candes, 2019; Vovk, Gammerman, and Shafer, 2005; Vovk, Gammerman, and Saunders, 1999;
Vovk, Nouretdinov, and Gammerman, 2009. Our contribution extends classical conformal inference as we seek
a form of conditional rather than marginal coverage guarantee Barber, Candes, Ramdas, and Tibshirani, 2019;
Lei and Wasserman, 2014; Vovk, 2012.

The specific procedure we suggest to construct predictive intervals with equal coverage, then, supports
equitable treatment in an additional dimension. Specifically, we use the same learning algorithm for all in-
dividuals, borrowing strength from the entire population, and leveraging the entire dataset, while adjusting
“global” predictions to make “local” confidence statements valid for each group. Such a training strategy may
also improve the statistical efficiency of the predictive model, as illustrated by our experiments in Section 3.
Of course, our approach comes with limitations as well: we discuss these and possible extensions in Section 4.



2 Equalized coverage

Let {(X;, A;,Y;)}, i = 1,...,n, be some training data where the vector X; € R? may contain the sensitive
attribute 4; € {0,1,2,...} as one of the features. Consider a test point with known X,,; and A4,,1 and aim
to construct a prediction interval C(X,,11, A,+1) C R which contains the unknown response Y, 11 € R with
probability at least 1 — a on average within each group; here, 0 < 1 — av < 1 is a desired coverage level. Our
ideas extend to categorical responses in a fairly straightforward fashion; for brevity, we do not consider these
extensions in this paper. Interested readers will find details on how to build valid conformal prediction sets
in classification problems in Shafer and Vovk, 2008. Formally, we assume that the training and test samples
{(X;, AL Y)) ;L:+11 are drawn exchangeably from some arbitrary and unknown distribution Py 4y, and we wish
that our prediction interval obeys the following property:

]P){}/n-‘rl S C(XTL+17A7L+1) | An+1 - a} Z l1-a (1)

for all a, where the probability is taken over the n training samples and the test case. Once more, (1) must
hold for any distribution Px 4y, sample size n, and regardless of the group identifier A, ;1. (While this only
ensures that coverage is at least 1 — « for each group—and, therefore, the groups may have unequal coverage
level—we will see that under mild conditions the coverage can also be upper bounded to lie very close to the
target level 1 — «.)

In this section we present a methodology to achieve (1). Our solution builds on classical conformal pre-
diction Lei et al., 2018; Vovk et al., 2005 and the recent conformalized quantile regression (CQR) approach
Romano et al., 2019 originally designed to construct marginal distribution-free prediction intervals (see also
Kivaranovic, Johnson, and Leeb, 2019). CQR combines the rigorous coverage guarantee of conformal predic-
tion with the statistical efficiency of quantile regression Koenker and Bassett, 1978 and has been shown to be
adaptive to the local variability of the data distribution under study. Below, we present a modification of CQR
obeying (1). Then in Section 2.2, we draw connections to conformal prediction Lei et al., 2018; Papadopoulos
et al., 2002 and explain how classical conformal inference can also be used to construct prediction intervals
with equal coverage across protected groups.’

Before describing the proposed method we introduce a key result in conformal prediction, adapted to our
conditional setting. Variants of the following lemma appear in the literature Lei et al., 2018; Romano et al.,
2019; Tibshirani, Foygel Barber, Candes, and Ramdas, 2019; Vovk, 2012; Vovk et al., 2005.

Lemma 1. Suppose the random variables 7, . .., Z,,+1 are exchangeable conditional on A,,11 = a, and
define Q1—q to be the (1 — a)(1 + 1/m)-th empirical quantile of {Z; : 1 < i < m}. Forany a € (0, 1),

]P{Zerl < Qlfa | Am+1 = a} > a.
Moreover, if the random variables Z1, . . . , Z,+1 are almost surely distinct, then it also holds that

P{Zmy1 <Qi-a | Amy1 =a} <a+1/(m+1).

2.1 Group-conditional conformalized quantile regression (CQR)

Our method starts by randomly splitting the n training points into two disjoint subsets; a proper training
set {(X;,A;,Y;) 1 i € Iy} and a calibration set {(X;, A;,Y;) : i € Iy}. Then, consider any algorithm A for
quantile regression that estimates conditional quantile functions from observational data, such as quantile neural
networks Taylor, 2000 (described in Appendix 4.3). To construct a prediction interval with 1 — « coverage, fit
two conditional quantile functions on the proper training set,

{dalov(j&hi} A A({(thl) NS Il})? 2

3We build on the split conformal methodology Lei et al., 2018; Papadopoulos et al., 2002 rather than its transductive (or full) version
Vovk et al., 2005 due to the high computational cost of the latter. We refer the reader to Lei et al., 2018; Vovk et al., 2005 for more details
about transductive conformal prediction, its advantages and limitations.




Algorithm 1: Group-conditional CQR.
Input:
Data (X;, 4;,Y;) e RP x Nx R, 1 <i<n.
Nominal coverage level 1 — a € (0, 1).
Quantile regression algorithm A.
Training mode: joint/groupwise.
Test point X,,11 = z with sensitive attribute 4,11 = a.

Process:
Randomly split {1, ...,n} into two disjoint sets Z; and Z5.
If joint training:
Fit quantile functions on the whole proper training set: {Ga,, ; Goy; } < A{(X;,Y:) 1 i € I }).
Else use groupwise training:
Fit quantile functions on the proper training examples from group 4,11 = a:
{qAakﬁ qAahi} — .A({(Xl, Y;) :i€Tyand A; = a})
Compute E; for each i € Zy(a), as in (3).
Compute Q1 (F,Z2(a)), the (1 — a)(1 + 1/|Z2(a)|)-th empirical quantile of {E; : i € Z3(a)}.
Output:
Prediction interval C(z, @) = [Ga,, () — Q1—a(E,Z2(a)), Gay, (€) + Q1—a(E, Tz(a))] for the unknown
response Y, ;1.

at levels oy = /2 and ay; = 1 — /2, say, and form a first estimate of the prediction interval C’init(x) =
G (), Goyy ()] at X = 2. Cinie(z) is constructed with the goal that a new case with covariates = should
have probability 1 — « of its response lying in the interval é'init(x), but the interval C’init(:r) was empirically
shown to under- or over-cover the test target variable Romano et al., 2019. (Quantile regression algorithms
are not supported by finite sample coverage guarantees Meinshausen, 2006; Steinwart and Christmann, 2011;
Takeuchi, Le, Sears, and Smola, 2006; Zhou and Portnoy, 1996, 1998.)

This motivates the next step that borrows ideas from split conformal prediction Lei et al., 2018; Papadopou-
los et al., 2002 and CQR Romano et al., 2019. Consider a group A = a, and compute the empirical errors (often
called conformity scores) achieved by the first guess C’init(x). This is done by extracting the calibration points
that belong to that group,

Iy(a) ={i:i €Iyand A; = a},
and evaluating
E; i=max{§a, (X;) — Y3, Yi — o, (Xi)}, i € Ia(a). 3)

This step provides a family of conformity scores {E; : ¢ € Zo(a)} that are restricted to the group A = a. Each
score measures the signed distance of the target variable Y; to the boundary of the interval C’init(x); if Y; is
located outside the initial interval, then F; > 0 is equal to the distance to the closest interval endpoint. If Y; lies
inside the interval, then F; < 0 and its magnitude also equals the distance to the closest endpoint. As we shall
see immediately below, these scores may serve to measure the quality of the initial guess C’ini[(~) and used to
calibrate it as to obtain the desired distribution-free coverage. Crucially, our approach makes no assumptions
on the form or the properties of C‘init(-)—it may come from any model class, and is not required to meet any
particular level of accuracy or coverage. Its role is to provide a “base algorithm” that effectively estimates the
underlying uncertainty, around which we will build our predictive intervals.

Finally, the following crucial step builds a prediction interval for the unknown Y,,;; given X,,;; = = and
A,+1 = a. This is done by computing

Q1-0(E,Z3(a)) := (1 — a)(1 + 1/|Z3(a)|)-th empirical quantile of { F; : i € Zs(a)},



which is then used to calibrate the first interval estimate as follows:

C(ZE, a) = [qmo(x) - Ql—a(E712(a))7 (jam (l‘) + Ql—a(E712(a))] . (4)

Before proving the validity of the interval in (4), we pause to present two possible training strategies for
the initial quantile regression interval C’init(m). We refer to the first as joint training as it uses the whole proper
training set to learn a predictive model, see (2). The second approach, which we call groupwise training,
constructs a prediction interval for Y, separately for each group; that is, for each value ¢ = 0,1,2,...,
we fit a regression model to all training examples with A, 1 = a. These two variants of the CQR procedure
are summarized in Algorithm 1. While the statistical efficiency of the two approaches can differ (as we will
see in Section 3), both are guaranteed to attain valid group-conditional coverage for any data distribution and
regardless of the choice or accuracy of the quantile regression estimate.

Theorem 1. [f (X;, A;,Y;), ¢ = 1,...,n + 1 are exchangeable, then the prediction interval C’(Xn+1, Ant1)
constructed by Algorithm I obeys

P{Ypi1 € C(Xns1, Any1) | Apsr =a} >1—a

for each group a = 0,1,2,.... Moreover, if the conformity scores {E; : i € To(a) U{n+ 1}} for Apn11 =a
are almost surely distinct, then the group-conditional prediction interval is nearly perfectly calibrated:

1

P{Y,, C(Xpin, Ay, Apig=al<1-— S
{ +1 € ( +1 +1) | +1 a’} = a+ |1-2(a)| +1

for each group a = 0,1,2,....

Proof. Fix any group a. Since our calibration samples are exchangeable, the conformity scores (3) {F; :
i € Zy(a)} are also exchangeable. Exchangeability also holds when we add the test score E,, 1 to this list.
Consequently, by Lemma 1,

l1—a<PEr1 £Qi-a(E,Iz(a)) | Apg1=0a) <1 )

— Jr _—,
|Z2(a)| + 1
where the upper bound holds under the additional assumption that {F; : i € Zo(a) U {n + 1}} are almost
surely distinct, while the lower bound holds without this assumption.
To prove the validity of C'(X,,41, Ap+1) conditional on A, 1 = a, observe that, by definition,

Y1 € C(Xpi1, Any1) ifandonlyif E,y i < Qi o(E,Ta(a)).

Hence, the result follows from (5).
O

Variant: asymmetric group-conditional CQR When the distribution of the conformity scores is highly
skewed, the coverage error may spread asymmetrically over the left and right tails. In some applications it may
be better to consider a variant of Algorithm 1 that controls the coverage of the two tails separately, leading to
a stronger conditional coverage guarantee. To achieve this goal, we follow the approach from Romano et al.,
2019 and evaluate two separate empirical quantile functions: one for the left tail,

Q1-o, (Bro,L2(a)) =
(1 - alo)(l + 1/|12(a)

)-th empirical quantile of {Gq, (X;) — Yi : ¢ € Za(a)};
and the second for the right tail

Qi—ay (EhiaI2(a)) =
(1 — ani)(1 + 1/|Z2(a)|)-th empirical quantile of {Y; — Go,, (X;) : 7 € Zo(a)} .



Next, we set @ = qy, + ap; and construct the interval for Y;, 11 given X,,;1 =z and A,, 11 = a:

C(I‘, a) = [(jalo (1’) - Ql—alo (E107 Iy (CL)), qam (x) + Ql—ahi (Ehi7 Iy (CL))] (6)
The validity of this procedure is stated below.

Theorem 2. Suppose the samples (X;, A;,Y;), i = 1,...,n+1 are exchangeable. With the notation above, put

10W€I‘(Xn+1) = qAah,(Xn+1)_Q17ah,(EloaIQ(An+1)) andupper(XnJrl) = qAahi(XnJrl)"i-Qlfozhi (Ehivz2(An+1))
for short. Then

1
1—a, <P{Y, >1 Xn An = <1-ap T N 9
Ao > { +1 = Ower( +1) | +1 a’} Qo + ‘1-2(a)‘ +1

and 1
1 —ap <P{Y,41 <upper(Xpi1) | App1 =a} <1 —ap + W;

where the lower bounds above always hold while the upper bounds hold under the additional assumption that
the residuals are almost surely distinct. Under these circumstances, the interval (6) obeys

A 2
1 — (a0 +ani) S P{Ypp1 € C(Xng1, Any1) | Anr = af <1 — (aio + ami) + ADIESS

Proof. As in the proof of Theorem 1, the validity of the lower and upper bounds is obtained by applying
Lemma 1 twice. O

2.2 Group-conditional conformal prediction

The difference between CQR Romano et al., 2019 and split conformal prediction Papadopoulos et al., 2002 is
that the former calibrates an estimated quantile regression interval C’init(X ), while the latter builds a prediction
interval around an estimate of the conditional mean ¥ = [(X). For instance, ji can be formulated as a
classical regression function estimate, obtained by minimizing the mean-squared-error loss over the proper
training examples. To construct predictive intervals for the group A = a, then simply replace both §,, and
Goy; With fi in Algorithm 1 (or in its two-tailed variant). The theorems go through, and this procedure gives
predictive intervals with exactly the same guarantees as before. As we will see in our empirical results, a benefit
of explicitly modeling quantiles is superior statistical efficiency.

3 Case study: predicting utilization of medical services

The Medical Expenditure Panel Survey (MEPS) 2016 data set,* provided by the Agency for Healthcare Re-
search and Quality, contains information on individuals and their utilization of medical services. The features
used for modeling include age, marital status, race, poverty status, functional limitations, health status, health
insurance type, and more. We split these features into dummy variables to encode each category separately.
The goal is to predict the health care system utilization of each individual; a score that reflects the number
of visits to a doctor’s office, hospital visits, etc. After removing observations with missing entries, there are
n = 15656 observations on p = 139 features. We set the sensitive attribute A to race, with A = 0 for non-
white and A = 1 for white individuals, resulting in ng = 9640 samples for the first group and n; = 6016 for
the second. In all experiments we transform the response variable by Y = log(1 + (utilization score)) as the
raw score is highly skewed.

Below, we illustrate that empirical quantiles can be used to detect prediction bias. Next, we show that
usual (marginal) conformal methods do not attain equal coverage across the two groups. Finally, we compare
the performance of joint vs. groupwise model fitting and show that, in this example, the former yields shorter
predictive intervals.

“https://meps.ahrq.gov/mepsweb/data_stats/download_data_files_detail.jsp?cboPufNumber=HC- 181
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Figure 1: Empirical cumulative distribution function of the signed residuals R =Y — Y for both values of the
sensitive attribute, computed on test samples. The blue dashed horizontal line is the value of P{Y" < Y|A =0}
equal to 0.51. Similarly, the red dashed horizontal line is P{Y < Y|A = 1} = 0.45. The dashed vertical
colored lines present the 0.05th and 0.95th quantiles of each group, defined in (7) and (8), respectively. Left
side: 7% = —1.04 (blue), 7° = —1.25 (red). Right side: 7l = 1.59 (blue) and 7 = 1.83 (red).

3.1 Bias detection

We randomly split the data into training (80%) and test (20%) sets and standardize the features to have zero
mean and unit variance; the means and variances are computed using the training examples. Then we fit a neural
network regression function /i on the training set, where the network architecture, optimization, and hyper-
parameters are similar to those described and implemented in Romano et al., 2019. The code for reproducing all
the experiments is available online at https://github.com/yromano/cqr. Next, we compute the signed residuals
of the test samples,

Ry =Y - Y,

where Y; = ji(X;), and plot the resulting empirical cumulative distribution functions P{R < 7|A = 0} and
P{R < r|A = 1} in Figure 1. Observe that P{R < r|A = 0} # P{R < r|A = 1}. In particular, when
comparing the two functions at » = 0, we see that /i overestimates the response of the non-white group and
underestimates the response of the white group, as

P{Y <Y|A=0} =051 >045=P{Y <YV|A=1}.

Recall that the lower and upper quantiles of the signed residuals are used to construct valid group-conditional
prediction intervals. While these must be evaluated on calibration examples (see next section), for illustrative
purposes we present below the 0.05th and 0.95th quantiles of each group using the two cumulative distribution
functions of test residuals. To this end, we denote by i and r'° the lower empirical quantiles of the non-white
and white groups, defined to be the smallest numbers obeying the relationship

P{R<rP|A=0}>005 and P{R<7PA=1}>0.05. (7)
Following Figure 1, this pair is equal to
re = —1.04 > —1.25 =,

implying that for at least 5% of the test samples of each group, the fitted regression function /i overestimates
the utilization of medical services with larger errors for white individuals than for non-white individuals.


https://github.com/yromano/cqr

As for the upper empirical quantiles, we compute the smallest 7 and ' obeying
P{R<rd|A=0}>095 and P{R<r}|A=1}>0.95, )

and obtain . '
i =1.59 < 1.83 = 7.

Here, in order to cover the target variable for white individuals at least 95% of the time we should inflate the
regression estimate by an additive factor equal to 1.83. For non-white individuals, the additive factor is smaller
and equal to 1.59. This shows that [ systematically predicts higher utilization of non-white individuals relative
to white individuals.

3.2 Achieving equalized coverage

We now verify that our proposal constructs intervals with equal coverage across groups. Below, we set o = 0.1.
To avoid the coverage errors to be spread arbitrarily over the left and right tails, we choose to control the two
tails independently by setting aj, = an; = /2 = 0.05 in (6). We arbitrarily set the size of the proper training
and calibration sets to be identical. (The features are standardized as discussed earlier.)

For our experiments, we test six different methods for producing conformal predictive intervals. We com-
pare two types of constructions for the predictive interval:

e Conformal prediction (CP), where the predictive interval is built around an estimated mean [ (as de-
scribed in Section 2.2);

e Conformalized quantile regression (CQR), where the predictive interval is constructed around initial
estimates §,,, and g, of the lower and upper quantiles.

In both cases, we use a neural network to construct the models; we train the models using the software provided
by Romano et al., 2019, using the same neural network design and learning strategy. For both the CP and CQR
constructions, we then implement three versions:

e Marginal coverage, where the intervals C (X)) are constructed by pooling all the data together rather than
splitting into subgroups according to the value of A;

e Conditional coverage with groupwise models, where the initial model for the mean /i or for the quantiles
Gy » dou; 1s constructed separately for each group A = 0and A = 1;

e Conditional coverage with a joint model, where the initial model for the mean i or for the quantiles
Gy » dou; 1 constructed pooling data across both groups A = 0 and A = 1.

The results are summarized in Table 1, displaying the average length and coverage of the marginal and
group-conditional conformal methods. These are evaluated on unseen test data and averaged over 40 train-test
splits, where 80% of the samples are used for training (the calibration examples are a subset of the training
data) and 20% for testing. All the conditional methods perfectly achieve 90% coverage per group (this is a
theorem after all). On the other hand, the marginal CP method under-covers in the white group and over-covers
in the non-white group (interestingly, though, the marginal CQR method almost attains equalized coverage
even though it is not designed to give such a guarantee).

Turning to the statistical efficiency of the conditional conformal methods, we see that conditional CQR
outperforms conditional CP in that it constructs shorter and, hence, more informative intervals, especially for
the non-white group. The table also shows that the intervals for the white group are wider than those for the
non-white group across all four conditional methods, and that joint model fitting is here more effective than
groupwise model fitting as the former achieves shorter prediction intervals.
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Method Group Avg. Coverage Avg. Length

*Marginal CP VNV(;E;ZV hite 833(1) ggg;
Conditional CP (groupwise) ?V(;E;Vhite 838? izgg
Conditional CP (joint) VNV(LI};:/hite 838; gzgg
*Marginal CQR VNV(;E;V e 82(9)451 ggg(l)
Conditional CQR (groupwise) a,‘;ﬁt:/ hite 83% ﬁji?);
Conditional CQR (joint) Qonewhite 000 Tlon

Table 1: Length and coverage of both marginal and group-conditional prediction intervals (¢ = 0.1) con-
structed by conformal prediction (CP) and conformalized quantile regression (CQR) for MEPS dataset. The
results are averaged across 40 random train-test (80%/20%) splits. Groupwise — two independent predictive
models are used, one for non-white and another for white individuals; joint — the same predictive model is
used for all individuals. In all cases, the model is formulated as a neural network. The methods marked by an
asterisk are not supported by a group-conditional coverage guarantee.

4 Discussion

4.1 Larger intervals for a subpopulation

It is possible that the intervals constructed with our procedure have different lengths across groups. For ex-
ample, our experiments show that, on average, the white group has wider intervals than the non-white group.
Although one might argue that the different length distribution is in itself a type of unfairness, we want to cau-
tion the reader against assuming that a “fair” statistical procedure must necessarily produce intervals of equal
length.

There are multiple aspects to consider. First, we believe that when there is a difference in performance
across the protected groups, one needs to make this evident to the user and to understand the reasons behind it
(we discuss below the issue with artificially forcing the two intervals to be of the same length). In some cases
this difference might be reduced by improving the predictive algorithm, collecting more data for the population
associated with poorer performance, introducing new features with higher predictive power, and so on. For
example, in the context of studies that aim to predict disease risk on the basis of genetic features, it has become
apparent that existing risk assessment tools suffer bias due to being constructed based on samples coming
primarily from European populations; these tools will be much more effective if based on a larger sample that
better reflects the diversity in the general population. It may also be the case that higher predictive precision
in one group versus another may arise from bias, whether intentional or not, in the type of model we use, the
choice of features we measure, or other aspects of our regression process—e.g., if historically more emphasis
was placed on finding accurate models for a particular group a, then we may be measuring features that are
highly informative for prediction within group a while another group a’ would be better served by measuring
a different set of variables. Crucially, we do not want to mask this differential in information, but rather make
it explicit—thereby possibly motivating the decision makers to take action.

We also note that in some cases, reducing the difference in performance might not be possible while in-
creasing information. For example, the collection of a large enough sample for a minority population might
be impossible due to privacy considerations and financial burden. Or the outcome in question might have
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structurally different variability across the groups. In such cases, equal length prediction intervals might be
constructed only artificially, reducing the precision of the statements one can make for a given group—a choice
that should be made with the participation of users and policy makers, rather than by data analysts alone.

4.2 The use of protected attribute

The debate around fairness in general, and our proposal in particular, requires the definition of “classes” of
individuals across which we would like an unbiased treatment. In some cases these coincide with “protected
attributes” where discrimination on their basis is prohibited by the law. The legislation sometimes does not
allow the decision maker to know/use the protected attribute in reaching a conclusion, as a measure to caution
against discrimination. While “no discrimination” is a goal everyone should embrace regardless whether the
law mandates it or not, we shall consider the opportunity of using “protected attributes” in data-driven rec-
ommendation systems. On the one hand, ignoring protected attributes is certainly not sufficient to guarantee
absence of discrimination (see, e.g., Buolamwini and Gebru, 2018; Chouldechova, 2017; Corbett-Davies and
Goel, 2018; Dieterich et al., 2016; Dwork et al., 2012; Gardner et al., 2019; Hardt et al., 2016; Zafar et al.,
2017). On the other hand, information on protected attributes might be necessary to guarantee equitable treat-
ment. Our procedure relies on the knowledge of protected attributes, so we want to expand on this last point a
little. In absence of knowledge of what are the causal determinants of an outcome, “protected attributes” can
be an important component of a predictor. To quote from Corbett-Davies and Goel, 2018: “in the criminal
justice system, for example, women are typically less likely to commit a future violent crime than men with
similar criminal histories. As a result, gender-neutral risk scores can systematically overestimate a woman’s
recidivism risk, and can in turn encourage unnecessarily harsh judicial decisions. Recognizing this problem,
some jurisdictions, like Wisconsin, have turned to gender-specific risk assessment tools to ensure that esti-
mates are not biased against women.” For disease risk assessment (Example 4 earlier) or related tasks such as
diagnosis and drug prescription, race often provides relevant information and is routinely used. Presumably,
once we understand the molecular basis of diseases and drug responses, and once sufficiently accurate mea-
surements on patients are available, race may cease to be useful. Given present circumstances, however, Risch,
Burchard, Ziv, and Tang, 2002 argue that “identical treatment is not equal treatment” and that “a race-neutral
or color-blind approach to biomedical research is neither equitable nor advantageous, and would not lead to
a reduction of disparities in disease risk or treatment efficacies between groups.” In our context, the use of
protected attributes allows a rigorous evaluation of the potentially biased performance for different groups.

Clearly, our current proposal can be adopted only when data on protected attributes has been collected;
generalizations of the proposed methodology to situations where the group identifier is unknown are topics for
further research.

4.3 Conclusion and future work

We add to the tools that support fairness in data-driven recommendation systems by developing a highly op-
erational method that can augment any prediction rule with the best available unbiased uncertainty estimates
across groups. This is achieved by constructing prediction intervals that attain valid coverage regardless of the
value of the sensitive attribute. The method is supported by rigorous coverage guarantees, as demonstrated on
real data examples. Although the focus of this paper is on continuous response variables, one can adapt tools
from conformal inference Vovk et al., 2005 to construct prediction sets with equalized coverage for categorical
target variables as well.

In this paper, we have not discussed other measures of fairness: we believe an appropriate comparison
would require much larger space, and would benefit from the inclusion of multiple voices. In evaluating
the different proposals of the growing literature on algorithmic fairness, it might be useful to keep in mind
a distinction between properties that should be required versus properties that are merely desirable. As an
analogy, in statistical hypothesis testing, most commonly we require a bound on the false positive rate (Type I
error); under this constraint, high power (low Type II error) is then desirable.

One century of statistical reasoning has taught us the importance of quantifying uncertainty and error. No
algorithm should be ever deployed without a precise and intelligible description of the errors it makes and the
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statistical guarantees it offers. As practitioners know too well, it is most often not possible to guarantee that all
errors are below a certain threshold. It becomes then crucial to select which statistical guarantee is most relevant
for a problem, and fairness requires it to hold across different population groups. So, in the case of parole, we
might think that the most crucial error to avoid is that of denying freedom to a deserving individual, and we
should then enforce the probability of this error to be below the desired threshold in each population group. Or,
as in the case of this paper, we might want to provide the user with a 90% predictive interval for the GPA of
a student, and we then need to require that its coverage is as advertised in each population. Equality in other
measures of performance which have not been identified as primary (as the length of the predictive intervals)
might then be “desirable,” but should not be “prescribed” and automatically pursued, without a conscious
evaluation of the associated costs.

The knowledgeable reader will recognize that our approach is therefore different from the principle of
equalized odds advocated in Hardt et al., 2016, which enforces that the two types of errors one can make in a
binary classification problem must both be the same across the groups under study. (The cost is here that the
algorithm would then need to change the predictions in at least one group to achieve the desired objective; this
may be far from desirable and would not treat individuals equitably.) Returning to the distinction between a
prescription and a wishlist, we make equalized coverage prescriptive. This does not mean that the data analyst
cannot pay attention to other measures of fairness. For instance, she has the freedom to select predictive
algorithms which score high on other metrics, e.g., by adding empirical constraints to the construction of
prediction sets (or intervals). We hope to report on progress in this direction in a future publication.

Appendix: quantile neural networks

We follow Koenker and Bassett, 1978 and cast the estimation problem of the conditional quantiles of Y| X=x
as an optimization problem. Given training examples {(X;,Y;) : i € Z; }, we fit a parametric model using the
pinball loss Koenker and Bassett, 1978; Steinwart and Christmann, 2011, defined by

o Jaly—19), ify —g>0,
paly —9) = X .
( —1)(y — ), otherwise

where g is the output of a regression function g, () formulated as a deep neural network. The network design
and training algorithm are identical to those described in Romano et al., 2019 (once again, the source code is
available online at https://github.com/yromano/cqr). Specifically, we use a two-hidden-layer neural network,
with ReLU nonlinearities. The hidden dimension of both layers is set to 64. We use Adam optimizer Kingma
and Ba, 2014, with minibatches of size 64 and a fixed learning rate of 5 x 10~*. We employ weight decay
regularization with parameter equal to 10~¢ and also use dropout Srivastava, Hinton, Krizhevsky, Sutskever,
and Salakhutdinov, 2014 with a dropping rate of 0.1. We tune the number of epochs using cross validation
(early stopping), with an upper limit of 1000 epochs.
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