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ABSTRACT

Ensembles of climate model simulations are commonly used to separate externally forced climate change
from internal climate variability. However, much of the information gained from running large ensembles is
lost in traditional methods of data reduction such as linear trend analysis or large-scale spatial averaging. This
paper demonstrates a pattern recognition method (forced pattern filtering) that extracts patterns of externally
forced climate change from large ensembles and identifies the forced climate response with up to 10 times
fewer ensemble members than simple ensemble averaging. It is particularly effective at filtering out spatially
coherent modes of internal variability (e.g., El Niño, North Atlantic Oscillation), which would otherwise alias
into estimates of regional responses to forcing. This method is used to identify forced climate responses within
the 40-member Community Earth System Model (CESM) large ensemble, including an El-Niño-like response
to volcanic eruptions and forced trends in the North Atlantic Oscillation. The ensemble-based estimate of the
forced response is used to test statistical methods for isolating the forced response from a single realization
(i.e., individual ensemble members). Low-frequency pattern filtering is found to effectively identify the forced
response within individual ensemble members and is applied to the HadCRUT4 reconstruction of observed
temperatures, whereby it identifies slow components of observed temperature changes that are consistent with
the expected effects of anthropogenic greenhouse gas and aerosol forcing.

1. Introduction

The observed increase in global temperatures over the
past century has not been uniform in space or time. Vari-
ability in the rate and pattern of global warming arises
from a combination of anthropogenic influences, natural
external forcing (e.g., from volcanic sulfur emissions),
and internal climate variability arising from processes
within (and interactions between) the atmosphere, oceans,
cryosphere, and land surface. A primary goal of climate
science is to separate the influences of external forcing and
internal variability on the global temperature record, as is
needed to attribute observed climate changes, to estimate
the climate response to future changes in radiative forc-
ing, and to characterize and understand internal climate
variability.
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Internal climate variability gives rise to uncertainty in
climate projections (Hawkins and Sutton 2009; Deser et al.
2012a,b, 2014; Thompson et al. 2015), especially at the
regional scale. The separation of externally forced cli-
mate change and internal variability has typically been
addressed by computing the climate response that is ro-
bust across an ensemble of simulations (Harzallah and
Sadourny 1995; Hawkins and Sutton 2009; Ting et al.
2009; Solomon et al. 2011; Deser et al. 2014; Frankcombe
et al. 2015). Averaging over multiple ensemble mem-
bers removes internal variability that varies in phase be-
tween realizations. Externally forced climate change can
be estimated by the ensemble mean, and internal vari-
ability can be estimated by deviations from the ensem-
ble mean. However, multi-model ensembles such as the
Coupled Model Intercomparison Project (CMIP) conflate
model biases with internal variability. This has motivated
the use of single-model large ensembles (e.g., Kay et al.
2015), where the same model is run multiple times with
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the same forcing but small differences in the initial condi-
tion.

Estimating the climate response to forcing from large
ensembles is subject to any model biases in the forced
response. This has led to a wide range of conclusions
on, for example, the extent to which multi-decadal vari-
ability in Atlantic sea-surface temperatures (SSTs) rep-
resents true internal variability or is modified by anthro-
pogenic forcing (Ting et al. 2009; Booth et al. 2012; Zhang
et al. 2013; Tandon and Kushner 2015; Bellucci et al.
2017; Bellomo et al. 2018; Watanabe and Tatebe 2019)
and the extent to which the observed strengthening of the
Pacific trade winds and east-west SST gradient since the
late 1970s is forced or unforced (McPhaden et al. 2011;
England et al. 2014; Takahashi and Watanabe 2016; Coats
and Karnauskas 2017; Kohyama et al. 2017; Seager et al.
2019). Comparing across multiple climate models can
give insights into which aspects of the forced response
are robust and which are not, but this approach becomes
computationally intensive as large ensembles are needed
for multiple climate models. It is therefore important to
identify how many ensemble members are needed to iden-
tify forced climate responses and what if anything can be
gleaned from individual simulations or from observations.

Seminal work by Deser et al. (2012b, 2014) empha-
sized that as many as 10-40 ensemble members or more
may be needed to identify regional climate responses on
timescales up to a few decades, particularly for fields with
large internal variability such as precipitation and sea-level
pressure (SLP). This has motivated modeling centers to
run large ensembles with between 20 and 100 ensemble
members (Jeffrey et al. 2013; Kay et al. 2015; Rodgers
et al. 2015; Kirchmeier-Young et al. 2017; Sun et al. 2018;
Maher et al. 2019; Deser et al. 2020). Now that these large
ensembles are available as a testbed, it is possible to revisit
the question of how many ensemble members are needed,
in order to inform future modeling efforts.

Many studies diagnose the forced response based on
the ensemble average of a linear trend or large-scale spa-
tial average. However, this ignores spatiotemporal covari-
ance information that can be valuable in separating forced
climate responses from internal variability. A number of
studies have demonstrated spatiotemporal analysis meth-
ods for isolating the forced climate response from a sin-
gle realization (Schneider and Held 2001; Wallace et al.
2012; Smoliak et al. 2015; Deser et al. 2016; Frankig-
noul et al. 2017; Wills et al. 2018; Sippel et al. 2019),
with the ultimate goal of isolating the forced component
of observed climate changes. However, there has been
less focus on the best way to extract forced climate re-
sponses from small ensembles (2-10 ensemble members).
In this study, we use large ensembles to test statistical
methods for isolating forced climate responses, with the
goal of identifying the forced response from small ensem-
bles and/or from a single realization. We demonstrate

a pattern recognition method that identifies patterns that
provide the optimal representation of the forced response
(with maximum signal-to-noise ratio) when multiple en-
semble members are available and filters out patterns that
are temporally incoherent across different ensemble mem-
bers (i.e., patterns with low signal-to-noise ratio).

Spatiotemporal analysis methods to ascertain the forced
response within individual realizations fall into two cat-
egories: (i) time-scale separation and (ii) dynamical ad-
justment. Taking advantage of the fact that forced cli-
mate change operates on a longer timescale than most in-
ternal variability, time-scale separation methods seek to
identify the slowest evolving anomaly patterns and use
them to estimate the forced response (Schneider and Held
2001; Frankignoul et al. 2017; Wills et al. 2018). For ex-
ample, low-frequency component analysis (LFCA, Wills
et al. 2018) filters out patterns of anomalies that exhibit
primarily high-frequency variability (i.e., that have a small
ratio of lowpass filtered variance to total variance). Dy-
namical adjustment instead estimates the influence of at-
mospheric internal variability on a target variable by re-
gression against a variable that is representative of the at-
mospheric circulation (e.g., SLP). This approach has been
successful, especially for removing the influence of inter-
nal variability on temperature and precipitation changes
at midlatitudes (Wallace et al. 2012; Smoliak et al. 2015;
Deser et al. 2016; Saffioti et al. 2016; Merrifield et al.
2017; Lehner et al. 2017; Sippel et al. 2019; Guo et al.
2019) and on snowpack or glacier mass balance changes
(Christian et al. 2016; Siler et al. 2019; Bonan et al. 2019).
However, in cases where atmospheric circulation changes
are important to the forced response (see, e.g., Palmer
1999), dynamical adjustment requires a separate method
to estimate forced circulation changes (e.g., the mean over
a large ensemble). We are interested in a more general
method that could, for example, be applied directly to es-
timate forced changes in atmospheric circulations. There-
fore, we do not focus on dynamical adjustment in this pa-
per. We refer the reader to Sippel et al. (2019) for a thor-
ough discussion of how to approach this problem using
dynamical adjustment.

This paper is organized as follows. In Section 2, we
introduce the pattern recognition methods considered in
this study and describe the climate model simulations and
observational data analyzed. In Section 3, we demon-
strate how identifying forced patterns (FPs) improves esti-
mates of the forced climate response within climate model
ensembles compared to a simple ensemble average. We
show that it isolates forced responses in quantities with
low signal-to-noise ratios such as the east-west SST gra-
dient across the equatorial Pacific, SLP over the North Pa-
cific, and precipitation over the Southwest United States.
In Section 4, we show that this method can identify many
aspects of the forced response with less than 10 ensemble
members. In Section 5, we demonstrate how identifying
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low-frequency patterns (LFPs) can be used to estimate the
forced climate response from a single ensemble member
and apply this method to characterize long-term changes
in observed temperatures that are consistent with the ex-
pected responses to external forcing. In Section 6, we
summarize our conclusions and discuss the generalizabil-
ity and applications of the statistical methods presented
herein.

2. Methods and data

In this paper, we describe statistical methods that
identify patterns of externally forced or low-frequency
changes. These methods rely on a pattern recognition
method called linear discriminant analysis (a type of su-
pervised machine learning) to find spatial patterns, or
linear combinations of empirical orthogonal functions
(EOFs), that maximize a particular type of variance repre-
senting a “signal” compared to “noise” that exists within
internal variability or amongst realizations (Déqué 1988;
Allen and Smith 1997; Schneider and Griffies 1999; Ven-
zke et al. 1999; Schneider and Held 2001; Ting et al. 2009;
DelSole et al. 2011; Wills et al. 2018). This broad category
of analyses has variously been referred to as optimal fil-
tering, predictable component analysis, or signal-to-noise-
maximizing EOF analysis.

We introduce two types of optimal filtering, which dif-
fer in their definition of what type of variance constitutes
a signal and what type of variance constitutes noise. In
forced pattern (FP) filtering, signal is defined by the mean
over an ensemble of simulations; therefore, at least two
ensemble members are required. Noise is defined as dif-
ferences between ensemble members and includes all in-
ternal variability, regardless of timescale. It is based on
earlier work by Schneider and Griffies (1999; hereafter
SG99) and Ting et al. (2009; hereafter T09). Similar
to mulitvariate analysis of variance (MANOVA) methods
(e.g,. Harzallah and Sadourny 1995; Stern and Miyakoda
1995; Zwiers 1996), it tests whether anomaly patterns
within an ensemble are distinct in periods with different
external forcing (i.e., predictability of the second kind;
Lorenz 1975). In low-frequency pattern (LFP) filtering,
signal is defined as variance that makes it through a low-
pass filter. Noise is defined as all variability at timescales
shorter than the lowpass cutoff. It has also been called
low-frequency component analysis (LFCA) and is based
on earlier work by Wills et al. (2018; hereafter W18); see
also Schneider and Held (2001; hereafter SH01).

In both cases, ‘filtering’ refers to the retention of only
the leading order patterns (i.e., FPs/LFPs), such that pat-
terns of (high-frequency) internal variability are removed
from the data set. These methods thus use the spatial struc-
ture of covariance in climate noise to optimally filter it out.

a. Forced pattern filtering

The goal of FP filtering is to find anomaly patterns
(FPs), for which different ensemble members agree on
the temporal evolution [i.e., patterns with a high signal-
to-noise ratio (SNR); SG99; T09]. The variability not
described by these patterns can then be truncated, such
that patterns of ensemble member disagreement (i.e., noise
from internal variability) do not alias into the ensemble av-
erage.

We seek anomaly patterns associated with timeseries tk
that maximize the ratio of (ensemble mean) signal to total
variance:

sk =
〈tk〉T 〈tk〉

tT
k tk

. (1)

Here, angle brackets denote an ensemble average. These
timeseries are determined by the projection of a fingerprint
pattern uk onto the ensemble data matrix X:

tk = Xuk. (2)

The n · ne× p ensemble data matrix X is constructed by
concatenating the n× p data matrices Xi from each ensem-
ble member in the time dimension, where n is the length
of timeseries, ne is the number of ensemble members, and
p is the spatial dimension. Each ensemble member data
matrix Xi is weighted by the square root of grid cell area,
such that the covariance matrix is area weighted.

To ensure that the identified patterns correspond to vari-
ability that actually occurs within the ensemble, the finger-
print patterns uk are required to be linear combinations of
the N leading ensemble EOFs ak, with normalized weight
vectors ek:

uk =

[
a1

σ1

a2

σ2
...

aN

σN

]
ek. (3)

The ensemble EOFs ak are eigenvectors of the ensemble-
mean covariance matrix 〈C〉,

〈C〉ak = σ
2
k ak, (4)

where σ2
k is the variance associated with the kth EOF. The

ensemble-mean covariance matrix 〈C〉 (i.e., the pooled co-
variance matrix) can be computed as:

〈C〉= n−1
E Σ

nE
i=1Ci, (5)

where Ci = (n− 1)−1XT
i Xi are the individual ensemble

member climatological covariance matrices. The ensem-
ble EOFs are normalized such that ||ak||= 1 and the prin-
cipal components ck = σ

−1
k Xak have unit variance over

the entire ensemble.
We can solve for the linear-combination coefficients ek

that give uk and tk that maximize sk by plugging (2) and
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(3) into (1) and using the definition of a principal compo-
nent ck = σ

−1
k Xak to turn this into an eigenvalue problem,

Sek = skek, where

Smn = 〈cm〉T 〈cn〉 m,n ∈ [0 N]. (6)

The matrix S has N eigenvectors ek, with eigenvalues that
give the ratio sk of signal to total variance. Finally, the FPs
vk are determined by the regression of the ensemble data
matrix X onto each tk:

vk = XT tk = XT Xuk = [σ1a1 σ2a2 ... σNaN ]ek. (7)

In this analysis, the timeseries tk retain their orthogonality
(like principal components), but the FPs vk do not.

The FPs are sorted by sk such that the leading FPs are
patterns of forced response within the ensemble. This is
equivalent to sorting by SNR, which is uniquely deter-
mined by the eigenvalue sk:

SNR = sk(1− sk)
−1. (8)

The 1st FP is the linear combination of the leading N EOFs
with the maximum possible SNR.

Note the difference between the fingerprint patterns uk
(Eq. 3) and the forced patterns vk (Eq. 7); the finger-
print patterns are a unitless weight vector that is used to
detect the signal but has no physical meaning, whereas
the forced patterns characterize the signal itself. Finger-
print patterns are used in detection and attribution to de-
tect a model-based signal within observational data (see,
e.g., Hasselmann 1993; Santer et al. 1995). Here, in con-
trast, the signal (as characterized by the FPs) is determined
empirically within a single model-based dataset.

Once the FPs have been calculated, the forced response
is isolated by constructing a truncated dataset from the M
leading FPs:

XFP = Σ
M
k=1tkvT

k . (9)

We will show that the ensemble average of the truncated
dataset 〈XFP〉 (i.e., FP filtering) gives a better estimate of
the forced response than a simple ensemble average 〈X〉.
The inclusion of M FPs to construct an estimate of the
forced response 〈XFP〉 is what distinguishes FP filtering
from the method of T09, which focuses on the leading
pattern in order to estimate the contribution of forcing to
Atlantic multi-decadal variability.

FP filtering has two hyperparameters: N, the number
of EOFs retained, and M, the number of FPs used in con-
structing the truncated dataset. The number of EOFs N
should generally not exceed the degrees of freedom in the
signal of interest, which in the case of the ensemble mean
used here is approximately n−1. We pick N to retain 75-
95% of the total variance. We choose M empirically to
maximize agreement between subsets of the large ensem-
ble (i.e., by comparison to a validation set; see Section 3),

but we also compare with methods to choose M based on
the eigenvalue spectrum sk (cf. North et al. 1982). Our
results are generally insensitive to these hyperparameter
choices for 50 < N < 400 and 2 < M < 20 (see Section 3).

A similar method was presented by DelSole et al.
(2011) that looks for patterns that maximize the variance
in a simulation of forced climate change relative to a pre-
industrial control run. This has the advantage of requiring
only one forced simulation and one pre-industrial control
run (rather than at least two forced simulations). However,
it could miss forced responses where forcing only modifies
the timing (i.e., phase) of a mode of internal variability. In
most other respects these methods would identify similar
patterns of forced response.

b. Low-frequency pattern filtering

FP filtering relies on the computation of an ensem-
ble mean to diagnose the variance that is forced within
a dataset. In the case that only a single realization is
available, it is necessary to come up with a new vari-
ance criterion to distinguish forced from unforced vari-
ance. Responses to anthropogenic forcing generally dif-
fer from most internal variability in terms of their long
timescale. We can therefore look for the slowest evolv-
ing patterns within a dataset, which will predominantly
include the forced response. One method to find the slow-
est evolving patterns is low-frequency component analysis
(LFCA; W18; see also SH01), which solves for patterns
with the maximum ratio of low-frequency to total variance
(i.e., LFPs).

LFCA uses the same linear algebra machinery as FP fil-
tering, but instead seeks anomaly patterns associated with
timeseries tk that maximize the ratio of low-frequency sig-
nal to total variance:

rk =
t̃k

T t̃k

tT
k tk

. (10)

Low-frequency signal is defined as any variations that
makes it through a lowpass filter (denoted by a tilde).
Here, we use a linear Lanczos filter with a 10-year low-
pass cutoff to focus on variability at decadal and longer
timescales (i.e., multi-decadal variability). In lowpass fil-
tering, we do not filter over discontinuities between en-
semble members; the data from each ensemble member is
filtered separately then concatenated into a single t̃k.

The LFPs vk and their timeseries tk are determined by
Eqs. (7) and (2), respectively, but with weight vectors ek
that are normalized eigenvectors of the covariance matrix
R of the first N lowpass filtered principal components ‹ck:

Rmn = c̃m
T‹cn m,n ∈ [0 N]. (11)

The matrix R has N eigenvectors, Rek = rkek, with eigen-
values that give the ratio rk of low-frequency to total vari-
ance. The LFPs are sorted by rk such that the leading LFPs
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are the anomaly patterns that maximize the ratio of low-
frequency to total variance over the entire ensemble.

Just as in FP filtering, a truncated dataset is created
that contains just the variability captured by the leading
M LFPs:

XLFP = Σ
M
k=1tkvT

k . (12)

In addition to the hyperparameters of FP filtering (N and
M), LFP filtering depends in general on the properties of
the filter used, though we will not explore this particu-
lar sensitivity here. A detailed discussion of the robust-
ness of LFPs to the choice of parameters and filter can be
found in W18. Unlike principal component analysis of
lowpass filtered data, LFCA uses information about spa-
tiotemporal covariance at all timescales (e.g., in comput-
ing the EOFs ak). LFCA thus provides a method to isolate
the regions and physical mechanisms important at long
timescales while avoiding the issues with attributing lead-
lag relationships based on filtered data (Cane et al. 2017;
Wills et al. 2019a,b).

c. Model output and observational datasets

We focus primarily on surface temperature anomalies in
the 40-member CESM1 large ensemble (CESM-LE, Kay
et al. 2015), analyzing years 1920-2005 from the historical
simulations and years 2006-2019 from the RCP8.5 sim-
ulations. Each ensemble member experiences the same
historical and RCP8.5 forcing from greenhouse gases,
anthropogenic aerosols, volcanic sulfur emissions, solar
variability, and ozone. They differ by machine-precision
atmospheric perturbations on 1 January 1920 (so-called
micro initialization). Seasonal (3-monthly) anomalies are
computed with respect to the each ensemble member’s cli-
matological seasonal cycle over 1920-2019. Results are
unchanged if the anomalies are computed instead with re-
spect to the ensemble-mean climatology. In Section 3b,
we also include analysis of seasonal precipitation and SLP
anomalies.

For comparison, we also analyze a 30-member ensem-
ble of the CSIRO-Mk3.6 climate model (CSIRO-LE, Jef-
frey et al. 2013), a 20-member ensemble of the GFDL-
CM3 climate model (GFDL-LE, Sun et al. 2018), and
a 100-member ensemble of the MPI-ESM climate model
(MPI-LE, Maher et al. 2019), including years 1920-2005
from the historical simulations and years 2006-2019 from
the RCP8.5 simulations. As in the CESM-LE, the GFDL-
CM3-LE uses micro initialization in 1920. The ensem-
ble members of the CSIRO-LE and MPI-LE, however,
are all started from different ocean states in 1850 (so-
called macro initialization). For computational efficiency,
all analysis is done on grids that are half the atmospheric
models’ resolution (∼1◦ in CESM-LE; ∼1.8◦ in CSIRO-
LE and MPI-LE,∼2◦ in GFDL-LE) such that 4 model grid
points are averaged into one analysis grid point. For the
observational analysis in Section 5c, we use the infilled

surface temperature reconstruction of Cowtan and Way
(2014), based on HadCRUT4 data, for the period 1920-
2019.

3. Improved identification of forced climate responses

a. Forced surface temperature responses

We begin by identifying the FPs of seasonal (3-
monthly) surface temperature anomalies in the 40-member
CESM-LE over the time period 1920-2019. FP-1 shows
the predominant pattern of long-term global warming (Fig.
1a) and can be detected based on changes in temperature
throughout the subtropical oceans (Fig. 2a). All ensemble
members show approximately the same timing of its evo-
lution (grey lines in Fig. 1a) and are tightly clustered about
the ensemble-mean timeseries (black line in Fig. 1a). FP-
1 captures centennial global warming punctuated by vol-
canically induced global cooling due to the eruptions of
Agung in 1963, El Chichón in 1982, and Pinatubo in 1991.
However, it is not the only pattern of forced response: FP-
2, which shows hemispherically asymmetric temperature
anomalies, also has a common temporal evolution in all
ensemble members (Fig. 1b). The signal fraction (i.e., the
eigenvalue sk) is only slightly lower for FP-2 than for FP-1
(0.75 vs. 0.95, Fig. 3a) and both have a SNR well above 1.
The timing of FP-2 corresponds to Northern Hemisphere
cooling between 1940 and 1970, and warming since, con-
sistent with anthropogenic aerosol forcing (Shindell et al.
2013). FP-2 also shows large negative anomalies (cold
Northern Hemisphere) following volcanic eruptions. FP-
2 can be detected based on the asymmetry in subtropical
ocean warming between the Northern and Southern Hemi-
sphere (Fig. 2b).

The next four FPs have 0.2 < sk < 0.4 (Fig. 3a), cor-
responding to a SNR between 0.25 and 0.67. They cap-
ture centennial changes in the seasonal cycle of temper-
ature, which manifest themselves in annual cycles in the
corresponding ensemble-mean timeseries (black lines in
Fig. 1c-f), with opposite phasing in the early and later
parts of the simulations (insets in Fig. 1 show ensemble-
mean trends separately for each season). These FPs have
the largest anomalies in regions of sea-ice cover (Fig. 1c-
f), indicating that they are capturing changes in the sea-
sonal extent of sea ice (as discussed in Zhang and Walsh
2006; Eisenman et al. 2011). FP-3 and FP-4 also show
non-monotonic long-term changes, with decreasing trends
between 1920 and 1960, increasing trends from 1960 to
1980, and weakly decreasing and more seasonal depen-
dent trends since 1980. FP-5 and FP-6 both show some
evidence of an El-Niño-like response to volcanic eruptions
as well as evolution from a common La-Niña-like initial
ocean state in January 1920 (a result of micro initializa-
tion). While FP-1 and FP-2 are robust to the choice of
N (the number of EOFs retained), the next four FPs show
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FIG. 1. Forced patterns (FPs) of seasonal-mean surface temperature anomalies in the CESM-LE historical and RCP8.5 simulations over the
time period 1920-2019, with N = 150 EOFs retained. The time evolution of the FPs in all ensemble members are shown as standard deviation
anomalies with grey lines. The black line shows the ensemble-mean time evolution of each pattern (i.e., 〈tk〉). Note that seasonal cycle in the
ensemble-mean time evolution indicates forced changes in the seasonality of surface temperature. 100-year ensemble-mean trends in each pattern
are shown separately for JFM, AMJ, JAS, and OND (left to right) in bar-chart insets. The y-scale for the bar-chart insets is half that for the
timeseries in panel (a).

some rearrangement as N is varied (i.e., they capture the

same responses, but partition them in different ways).

In order to construct an estimate of the forced response,

we must choose the number of patterns M to retain. Three

possible methods for choosing M are: (1) choosing eigen-
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FIG. 2. Unitless fingerprint patterns uk of seasonal-mean surface
temperature anomalies in the CESM-LE historical and RCP8.5 simula-
tions over the time period 1920-2019, with N = 150 EOFs retained (cf.
forced patterns vk in Figs. 1a and 1b).

values sk that are well separated from the continuum of
eigenvalues, (2) finding a significance level for sk with
block bootstrapping, or (3) using the large ensemble to
empirically determine the number of patterns that works
best. The first method is based on the North et al. (1982)
test, which is employed in EOF analysis. It looks for a
scale break in the eigenvalue spectrum (Fig. 3a). Using
this test, we could choose to either retain the first 2 well
separated FPs (sk > 0.75), or to include all FPs up to the
point where the separation between neighboring eigenval-
ues becomes small compared to the uncertainty in those
eigenvalues, which is estimated in terms of the degrees of
freedom (DOF) as sk · (2/DOF)1/2. The DOF of the 40-
member ensemble mean (where autocorrelation primarily
comes from the forcing itself) is approximately the num-
ber of seasonal time steps minus one (i.e. 399). This gives
a 7% fractional uncertainty in the eigenvalues, which leads
us to conclude that the first 10 eigenvalues are well sepa-
rated.

We have also tested a block bootstrapping approach,
taking random 10-year samples from the 40-member en-
semble (with replacement) to construct randomized en-
sembles where the members should not agree on the tim-
ing of climate responses. We then rerun the FP filtering
on these randomized ensembles and compute the statistics
of the resulting s1. We find that sk > 0.12 are significant
at the 5% significance level. FPs with sk below this level
could occur due to random chance and are not significant.
According to this bootstrapping test, 8 FPs are statistically
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FIG. 3. (a) Signal fraction (sk) and amplitude of the leading FPs. The
dashed line gives the minimum value of sk that is significant at the 5%
significance level computed by block bootstrapping. Note that while the
amplitude is expressed as a percentage of the total variance, these per-
centages do not add to exactly 100% because of the non-orthogonality
of the FPs. (b) Global mean of the grid-point squared correlation be-
tween the pattern filtered estimate of the forced response 〈XFP〉 from
one 20-member half-ensemble and the simple ensemble mean 〈X〉 of
the opposite 20-member half-ensemble, as a function of the number
of FPs included M and the number of EOFs retained N. The dashed
line gives the global-mean grid-point squared correlation between 20-
member half-ensembles when no pattern filtering is applied.

significant (Fig. 3a), roughly in agreement with the sim-
pler but less rigorous North et al. (1982) test. This boot-
strapping approach may generalize better to smaller en-
sembles.

Within a large ensemble, we can also empirically test
which value of M best estimates the forced response
(which should be the same in all subsets of the large en-
semble). To do so, we split the ensemble in half, apply
FP filtering to one 20-member half-ensemble (the train-
ing set), and test how well the resulting 〈XFP〉 agrees with
the ensemble mean 〈X〉 of the opposite 20-member half-
ensemble (the validation set). We test agreement based
on the global average of the squared correlation between
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the two estimates of the forced response at a grid point
(Fig. 3b). As long as two or more FPs are included, FP
filtering improves the agreement with the ensemble mean
of the validation set (the agreement between the ensem-
ble means of the opposite half-ensembles is shown with a
dashed line in Fig. 3b). The large jump in agreement be-
tween M = 1 and M = 2 means that it is critical to include
at least two degrees of freedom (2 patterns) in an estimate
of the forced response.

For the case where 150 EOFs (88.9% of the total vari-
ance) are included in the analysis, including M = 7 FPs
maximizes the agreement with the ensemble mean of the
validation set.1 Including further EOFs increases the num-
ber M of FPs required to maximize this agreement without
substantially improving the maximum value of the global-

1In determining the value of M to use, one must compare to the sim-
ple ensemble mean of the validation set rather than the pattern filtered
validation set, because truncating to a single pattern (i.e. M = 1) max-
imizes the agreement between two pattern filtered sub-ensembles (by
construction).
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FIG. 5. Forced responses of large-scale temperature indices in the CESM-LE, computed from (left) a simple ensemble mean 〈X〉 and (right)
the pattern filtered ensemble mean 〈XFP〉, from FP filtering of seasonal surface temperature anomalies with M = 7 and N = 150. Blue and orange
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mean squared correlation. The reduction in agreement be-
yond M = 7-9 is a sign of overfitting to the evolution of
anomalies in the particular ensemble members used. We
choose representative hyperparameter values of N = 150
EOFs and M = 7 FPs for most of the analysis that follows.

Spatial maps of the squared grid-point correlation be-
tween 20-member half-ensembles, before (Fig. 4a) and
after (Fig. 4b) applying FP filtering, show that FP fil-

tering substantially increases the agreement between sub-
ensembles. The largest improvements are over the North-
ern Hemisphere continents, North Pacific, Tropical Pa-
cific, Australia, and Antarctica. We find qualitatively sim-
ilar results if we instead use the root mean square er-
ror (RMSE) between two half-ensembles to measure their
agreement (Fig. 4d-f). Note that the FP filtering of each
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sub-ensemble is independent and no information (e.g.,
EOFs) is shared between analyses.

Detecting climate signals in grid-point temperature is
significantly harder than detecting climate signals in a
large-scale spatial average because of the larger amplitude
of internal variability at small scales (e.g., Deser et al.
2012a). We would therefore like to test whether the im-
proved identification of the forced response by FP filtering
extends to large-scale averages. Again, we will compare
agreement between the two 20-member half-ensembles
before and after applying pattern filtering.

The time evolution of global-mean surface temperature
is in good agreement between the two half-ensembles,
even before applying pattern filtering (squared correlation
of 0.98, Fig. 5a). FP filtering improves this agreement
(squared correlation of 0.99, Fig. 5b), but only marginally
so. The global average already averages out most inter-
nal variability, so pattern filtering does not substantially
improve the estimate of the forced response in global-
mean surface temperature. Note, however, that it does im-
prove the global-mean surface temperature response es-
timate when fewer ensemble members are available (see
Section 4).

The improved identification of climate responses by FP
filtering is again apparent if we examine regional temper-
ature anomalies such as the North Atlantic (NA) SST (40-
60◦N, including the NA warming hole), the SST differ-
ence between the eastern and western equatorial Pacific, or
the United States land surface temperature averaged over
30-45◦N (Fig. 5c-h). Particularly noteworthy is that the
20-member and even 40-member ensemble means of the
equatorial Pacific east-west SST difference show substan-
tial noise from the El Niño-Southern Oscillation (ENSO)
(Fig. 5e), which is removed in the FP-filtered estimate
of the forced response (Fig. 5f). The squared correlation
between the two half-ensembles is only 0.16 before FP fil-
tering, but increases to 0.57 after. This reveals an El-Niño-
like response to volcanic forcing that was not apparent in
the 20- or 40-member ensemble means. This response has
been studied elsewhere (Maher et al. 2015; Khodri et al.
2017; Pausata et al. 2020), but has only been identifiable
by compositing over hundreds of modeled eruption re-
sponses. Pattern filtering also reveals ensemble agreement
on evolution from a common La-Niña-like initial state in
January 1920 (a result of micro initialization) and a weak
El-Niño-like trend since ∼1970 (particularly in the winter
half year). In the US-average land temperature, a simple
ensemble average shows a long-term warming trend punc-
tuated by cooling in response to volcanic eruptions, but it
also has considerable seasonal-to-interannual noise super-
imposed (Fig. 5g). FP filtering identifies the same forced
climate signal, but with almost all of this noise removed
(Fig. 5h).

b. Forced precipitation and SLP responses

Identifying climate signals in surface temperature is
generally easier than in other variables, because the pattern
of global warming differs from dominant modes of tem-
perature variability (see, e.g., Santer et al. 1994). To test
whether the improved identification of climate responses
by FP filtering extends to other variables, we consider sea-
sonal precipitation and sea-level pressure (SLP) anomalies
in the 40-member CESM-LE. For both variables, FP filter-
ing considerably improves the agreement between halves
of the CESM-LE on their estimates of the forced response,
compared to a simple ensemble mean. Using the metric in
Fig. 3b, FP filtering (with 9 patterns retained) improves
the skill in identifying the spatiotemporal evolution of the
forced response from 0.08 to 0.15 for precipitation and
from 0.14 to 0.19 for SLP (cf. from 0.62 to 0.71 for surface
temperature, Fig. 3b). While more noise remains in these
variables after FP filtering, the fractional improvement is
actually greater than for temperature.

Further improvement can be made by performing a
combined analysis on all three variables. We will show the
results from this three-variable analysis before returning to
discuss how it differs from the single-variable analyses at
the end of this section. For the multi-variable analysis,
seasonal precipitation and SLP anomaly matrices are con-
catenated with the surface temperature anomaly matrix X
in the spatial dimension (i.e. creating a new data matrix X
with 3 times the spatial dimension). This is analogous to
the generalization of EOF analysis to multiple field vari-
ables (Bretherton et al. 1992; Deser and Blackmon 1993).
Each variable is normalized by the trace of its covariance
matrix such that all variables are unitless and weighted
equally. The rest of the multi-variable analysis proceeds
exactly as in the single-variable case. By using a com-
bined analysis of all three variables, we hope to take ad-
vantage of the relatively high SNR in surface temperature
anomalies to identify contemporaneous forced responses
in precipitation and SLP.

The first two multi-variable FPs show similar tempera-
ture anomaly patterns to those found in the single-variable
analysis (Fig. 6, cf. Fig. 1). However, the multi-variable
analysis additionally identifies contemporaneous precip-
itation and SLP anomaly patterns. Multi-variable FP-1
shows increasing SLP in the subtropics and midlatitudes
and decreasing SLP in the Arctic and Antarctic (Fig. 6a),
trends associated with the poleward shift of the storm
tracks and jet streams in both hemispheres (Kushner et al.
2001; Yin 2005). The associated precipitation anomaly
pattern shows on average that the dry subtropical regions
get drier and the wet extratropical regions get wetter (Held
and Soden 2006; Seager et al. 2010), but there is also con-
siderable variability with longitude. Multi-variable FP-2
shows positive SLP anomalies in the Pacific and Indian
oceans and negative SLP anomalies over SE Asia, North



J O U R N A L O F C L I M A T E 11

-0.8

-0.4

0

0.4

0.8

1920 1940 1960 1980 2000 2020
-2

0

2

4

St
an

da
rd

 D
ev

ia
tio

ns

-0.4

-0.2

0

0.2

0.4 mm da

-80

-40

0

40

80 Pa

day -1

Multi-variable Forced Pattern 1

-0.8

-0.4

0

0.4

0.8

1920 1940 1960 1980 2000 2020
-4

-2

0

2

St
an

da
rd

 D
ev

ia
tio

ns

-0.4

-0.2

0

0.2

0.4 mm da

-80

-40

0

40

80 Pa

day -1

-0.8

-0.4

0

0.4

0.8

1920 1940 1960 1980 2000 2020
-4
-2
0
2
4
6

St
an

da
rd

 D
ev

ia
tio

ns

-0.4

-0.2

0

0.2

0.4 mm da

-80

-40

0

40

80 Pa

day -1

TS

SLP

PR

TS

SLP

PR

TS

SLP

PR

1 2 3 4

-2

0

2

1 2 3 4

-2

0

2

1 2 3 4

-2

0

2

a

Multi-variable Forced Pattern 2

b

Multi-variable Forced Pattern 3

c
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FIG. 7. Forced responses of large-scale precipitation and SLP indices in the CESM-LE, computed from (left) a simple ensemble mean 〈X〉 and
(right) the pattern filtered ensemble mean 〈XFP〉, from multi-variable FP filtering of seasonal surface temperature, precipitation, and SLP anomalies
with M = 8 and N = 200. Blue and orange lines show the first and second 20-member half-ensembles of the CESM-LE, respectively. The black
line shows the full 40-member CESM-LE. The squared correlation between the 20-member half-ensembles is shown in the bottom right of each
panel. China precipitation is averaged over land in 100-120◦E and 20-40◦N, which includes small parts of Southeast Asia. US Southwest (US-SW)
precipitation is averaged over land in 105-125◦W and 30-40◦N, which includes small parts of northwest Mexico. An approximate North Atlantic
Oscillation (NAO) index is computed from the unnormalized SLP anomaly difference between Lisbon and Reykjavik, such that it is in units of Pa.
The North Pacific Index is the average SLP anomaly over 160◦E-140◦W and 30-65◦N, as in Trenberth and Hurrell (1994).
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America, and the midlatitude Southern Ocean (Fig. 6b). It
also shows a shift of the South Pacific Convergence Zone
(SPCZ) towards the southwest and positive precipitation
anomalies over China, Southeast Asia, and tropical South
America. On average it shows a northward shift in precip-
itation, consistent with hemispherically asymmetric heat-
ing due to anthropogenic Northern Hemisphere aerosol
loading (Broccoli et al. 2006; Kang et al. 2008).

The third multi-variable FP also has a somewhat similar
temperature anomaly pattern to FP-3 in the single-variable
analysis (Fig. 6c, cf. Fig. 1c), but is sufficiently different
that its timeseries does not show the non-monotonic long-
term trends that were present in the single-variable analy-
sis. It instead shows only changes in seasonality (as evi-
dent by the annual cycle in the ensemble mean timeseries),
a positive trend in the winter half-year in particular. It is
associated with positive SLP anomalies over the Aleutian
Low region and negative SLP anomalies over the Pacific
sector of the Southern Ocean. Precipitation anomalies are
weaker and of smaller spatial scale than those in multi-
variable FP-1 and -2.

As with surface temperature, FP filtering improves
the identification of forced responses in large-scale pre-
cipitation anomalies and SLP indices including global-
mean precipitation, precipitation averaged over China
(land within 100-120◦E and 20-40◦N), precipitation av-
eraged over the United States Southwest (US-SW; land
within 105-125◦W and 30-40◦N), the SLP difference be-
tween Lisbon and Reykjavik [an unnormalized variant of
the North Atlantic Oscillation (NAO) index of Hurrell
(1995)], and the North Pacific Index [NPI; SLP averaged
over 160◦E-140◦W and 30-65◦N, as in Trenberth and Hur-
rell (1994)]. Most of these forced responses have a low
SNR and are therefore difficult to detect with simple en-
semble averaging of 20-member of even 40-member en-
sembles (left side of Fig. 7). However, by FP filtering with
the leading 8 multi-variable FP patterns (which maximizes
the agreement with the ensemble mean of a 20-ensemble-
member validation set for N = 200 EOFs / 79.9% of the
total variance retained), both 20-member half-ensembles
find the same forced responses in these precipitation and
SLP indices (right side of Fig. 7).

With the exception of changes in global-mean precipita-
tion (Fig. 7a,b), the forced responses uncovered by multi-
variable FP filtering would be difficult to detect using
more traditional methods. For example, while the long-
term decreasing trend in China precipitation would be easy
enough to detect in 20-member or even smaller ensembles
using standard ensemble averaging or linear trend analysis
(Fig. 7c), the reduction in precipitation following volcanic
eruptions and the long-term trend in seasonality (towards
wetter winters and drier summers) are not apparent until
after the FP filtering is applied (Fig. 7d). In US-SW pre-
cipitation, the signal is small compared to internal variabil-
ity such that it is completely swamped by noise, even when

averaging over a 40-member ensemble (Fig. 7e). How-
ever, a weak but robust signal is found in both 20-member
half-ensembles using FP filtering (Fig. 7f): increased pre-
cipitation following volcanic eruptions and a very small
long-term positive trend (∼ 0.1 mm day−1 century−1). Re-
cent work by Coats et al. (2015) has investigated whether
external forcing, such as from volcanoes, has influenced
long-term droughts in this region and concluded that they
are dominated by internal variability. While we also find
that internal variability is a bigger influence than external
forcing on precipitation in this region, we find that vol-
canic eruptions lead to a detectable shift towards wetter
conditions over the subsequent several years (in CESM),
likely linked to the El-Niño-like response to eruptions.

SLP anomalies have very high amplitude internal vari-
ability, which is aliased into even the 40-member ensem-
ble average (Figs. 7g and 7i). Long-term forced shifts
in the NAO or NPI are therefore hard to detect, though
there is much interest in knowing the relative contribution
of forcing to observed trends (Hurrell 1995; Ulbrich and
Christoph 1999; Semenov et al. 2008; Greatbatch et al.
2012; Scaife et al. 2014; Deser et al. 2017). FP filtering
provides a means to characterize forced responses in these
indices within large ensembles. The CESM-LE shows a
forced positive trend in the NAO between 1950 and 1990
(Fig. 7h), corresponding roughly to the timing and magni-
tude of the observed trend over that period (Hurrell 1995;
Ulbrich and Christoph 1999; Semenov et al. 2008), and a
forced negative trend in the NAO between 1990 and 2019.
In the Pacific, the CESM-LE shows a weak forced positive
trend in the NPI over the entire century that is punctuated
by negative anomalies following volcanic eruptions (Fig.
7j). Another interesting feature isolated by the FP filtering
is a 200 Pa anomaly in the first three months of 1920, a
symptom of the micro-initialization.

Multi-variable FP filtering uncovers a rich spatiotempo-
ral complexity within the forced responses of precipitation
and SLP in CESM-LE that would be lost on other meth-
ods. This does benefit from the use of surface temperature
in the analysis, as single-variable analyses of precipitation
or SLP alone do not give as good an agreement between
the 20-member half-ensembles (reducing the squared cor-
relations given on the right hand side of Fig. 7 to 0.61,
0.89, 0.21, 0.29, and 0.22, from top to bottom, compared
to the multi-variable analysis values given in the figure).
Single-variable FP filtering is still considerably better than
a simple ensemble mean (cf. values on the left side of
Fig. 7), with the notable exception of global-mean pre-
cipitation, forced changes in which are underestimated
by single-variable FP filtering. The forced response of
global-mean precipitation is retained in the multi-variable
analysis (Fig. 7b), presumably because of its correlation
with aspects of the surface temperature response. Overall,
multi-variable FP filtering isolates the forced responses of
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precipitation and SLP better than single-variable FP filter-
ing, especially for global-mean precipitation.

4. How many ensemble members are needed?

Now that we have shown how FP filtering improves
estimates of the forced response (for the specific case
of 20-member half-ensembles), we will investigate how
many ensemble members are needed to identify this forced
response within the CESM-LE. To do so, we reserve
one FP-filtered 20-member half-ensemble for comparison
(CESM-LE members 21-40), which we will refer to as the
reference estimate, and test how well this forced response
can be identified within subsets of the remaining ensemble
members. Sampling of the remaining 20 ensemble mem-
bers is kept simple, with each nE member ensemble con-
structed from members 1 to nE of the CESM-LE. We find
similar results with randomized ensemble member sam-
pling (without replacement). For simplicity, we use M = 7
FPs for all ensemble sizes, though it would be an easy
generalization to identify the optimal value of M for each
ensemble size.

For the case of identifying the forced evolution of tem-
perature at a grid point, FP filtering gives a dramatic im-
provement in squared correlation with the reference esti-
mate compared to simple ensemble averaging (Figs. 8a
and 8b). This is true for all ensemble sizes between 2 and
20 members. The FP-filtered estimate of the forced re-
sponse based on 3 ensemble members is better than the
simple ensemble average of 20 members, both in terms of
squared correlation and root mean square error with the
reference estimate. The FP-filtered estimate based on 2
ensemble members is only slightly worse. This means
that FP filtering reduces the number of ensemble mem-
bers needed to estimate the forced response by a factor of
∼7-10 compared to simple ensemble averaging.

We can characterize the number of ensemble members
needed to estimate the forced response based on where
the variance shared with the reference estimate exceeds
a threshold (e.g., 80%). Based on the 80% threshold,
5 ensemble members are needed with FP filtering, while
significantly greater than 20 ensemble members would be
needed with simple ensemble averaging (Fig. 8a). We can
map how many ensemble members are needed to detect
the forced response in different local temperature anoma-
lies by computing the number of ensemble members at
which the sub-ensemble forced response estimate first ex-
ceeds an 80% squared correlation with the reference es-
timate (Fig. 9). Using a simple ensemble mean, more
than 20 ensemble members are needed for about two thirds
of grid points globally (Fig. 9a), whereas 2-3 ensemble
members are generally enough to detect local forced re-
sponses with FP filtering (Fig. 9b). Only a few loca-
tions, such as the North Pacific, the Pacific sector of the

Southern Ocean, the equatorial Pacific between 150◦E-
180◦, India, and some regions of the North Atlantic (re-
gions of small-scale and/or low-frequency variability) re-
quire greater than 10 ensemble members when using FP
filtering.

Similar results hold for detecting forced responses in
large-scale average temperature anomalies. For NA SST
anomalies, 3 ensemble members are needed with FP fil-
tering versus 10 with a simple ensemble mean (Fig. 8d);
for US average land-surface temperature, 2 members are
needed versus 14 (Fig. 8f). Fewer ensemble members are
needed to capture the forced response in global-mean sur-
face temperature: 2 ensemble members with FP filtering
vs. 3 with simple ensemble averaging (here based on a
stricter 95% variance criterion, Fig. 8c). The forced re-
sponse in the Pacific SST gradient does not satisfy the 80%
squared correlation criterion for any choice of ensemble
size, but the squared correlation is not increasing further
after about 7 ensemble members, suggesting that includ-
ing more than 7-10 ensemble members in an estimate of
the forced response (based on FP filtering) has marginal
returns.

Similar results are found for the three other large en-
sembles (CSIRO-LE, GFDL-LE, and MPI-LE): using FP
filtering, these ensembles require 10, 4, and 6 ensem-
ble members, respectively, to meet the 80% threshold in
global-mean squared correlation (cf. 8a). They need 2-
4 ensemble members to meet the 95% squared correla-
tion threshold for global-mean surface temperature, 2-4
ensemble members to meet the 95% squared correlation
threshold for US temperature, and 2-12 ensemble mem-
bers to meet the 95% squared correlation threshold for
North Atlantic SST. None of the other ensembles reaches
the 50% squared correlation for the east-west Pacific SST
difference found with CESM-LE, not even the two 50-
member sub-ensembles of MPI-LE. However, this could
simply be a result of these models not having a strong re-
sponse of the Pacific SST gradient to forcing over the past
100 years.

For all temperature indices except the Pacific SST gra-
dient, FP filtering with 2-3 ensemble members already
gives a reasonable estimate of the forced response, which
raises the question of what can be done with a single en-
semble member. We will answer this question in the next
section.

5. Estimating the forced response from a single realiza-
tion

a. Testing LFP filtering within the CESM-LE

For the case of a single ensemble member, or equiva-
lently, observations, agreement on the timing of evolution
of large-scale temperature anomaly patterns can no longer
be used as a metric for whether they are forced or un-
forced. Another major difference between forced changes
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FIG. 8. (a) The global-mean grid-point squared correlation and (b) the root-mean square error (RMSE) between estimates of the forced surface
temperature response in nE -member subensembles and a reference estimate of the forced response, computed from FP filtering of 20 CESM-LE
ensemble members that are withheld from the subensembles. Within the subensembles, the forced response is estimated by a simple ensemble
mean (blue), FP filtering (black), and LFP filtering (orange). (c)-(f) Same as (a), except with spatial averaging computed before computing the
squared correlation between forced response estimates. Spatial averages are computed as in Fig. 5, such that the values shown here for nE = 20
match with those in Fig. 5.

and (most) internal variability is their longer timescale.
We can take advantage of this longer timescale to iden-
tify patterns that are representative of the forced response.
This was first proposed by SH01, who solved for patterns
of global surface temperature anomalies that maximize the
variance between decadal means relative to the total vari-
ance. This was further explored by W18, who solved for
patterns of Pacific SST anomalies that maximized the ratio
of low-frequency (lowpass filtered) to total variance and
found that this can cleanly separate long-term warming
from variability associated with the Pacific Decadal Oscil-

lation (PDO) and ENSO. Here, we use the CESM-LE to
test how well the method used in W18 (and described in
Section 2b) can isolate the forced climate response within
a single realization.

First, we show the low-frequency patterns (LFPs) of the
full 40-member CESM-LE (Fig. 10). We retain only 50
EOFs in the analysis (vs. 150 in FP filtering), amount-
ing to 76.7% of the total variance, because there are fewer
degrees of freedom in a lowpass filtered 100-year time-
series than there are in the full 100-year timeseries. The
leading LFP shows a global warming pattern, with am-
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the opposite 20-member half-ensemble, i.e., no ensemble members are
shared between the estimate and the reference).

plified warming over land and at high latitudes, similar
to the leading FP (Fig. 10a, cf. Fig. 1a; pattern cor-
relation = 0.9995). The second LFP shows cooling of
the North Atlantic, Arctic, and Northern Hemisphere land
through the 1950s and 60s and a subsequent recovery, as
well as opposite signed changes in the Southern Ocean
(Fig. 10b), similar to FP-2 (Fig. 1b; pattern correla-
tion = 0.95). The variance amongst ensemble members is
somewhat greater for LFP-2 than for FP-2, likely because
of the greater projection onto the region of Atlantic multi-
decadal variability (Enfield et al. 2001; Wills et al. 2019a;
Zhang et al. 2019). The third LFP shows low-frequency
internal variability associated with the PDO (Fig. 10c)
(Mantua et al. 1997; Newman et al. 2016; Wills et al.
2019b). There is only a small excursion in the ensem-
ble mean timeseries, before 1930, resulting from memory
of common ocean initial conditions in January 1920. The
fourth LFP also shows somewhat PDO-like low-frequency
internal variability, but with opposite signed anomalies in
the Greenland, Norwegian, Barents, and Kara Seas (Fig.
10d). It shows little agreement on the timing of its evolu-
tion amongst ensemble members, except for a small re-
sponse to the 20th-century volcanic eruptions. The re-
maining LFPs show internal variability with increasingly
shorter timescales.

As with FP filtering, we need to choose how many pat-
terns to include in estimating the forced response. Using
the CESM-LE, we can determine the ratio of forced sig-

nal to total variance sk for each LFP. The only LFPs that
exceed the sk ≈ 0.15 cutoff used in the FP filtering analy-
sis are LFP-1 (sk = 0.95), LFP-2 (sk = 0.62), and LFP-48
(sk = 0.27). LFP-48 is not low-frequency (i.e., it has low
rk); it shows primarily changes in the seasonal cycle and
will be excluded here. However, this suggests that a more
careful treatment of seasonality (e.g., filtering each season
separately) could further improve the isolation of forced
responses in the leading LFPs. LFP-3, for comparison,
has sk = 0.09. We therefore include the leading 2 LFPs
in an estimate of the forced response. Applying LFP fil-
tering to individual ensemble members, we also find that
M = 2 patterns maximizes the agreement with a reference
estimate (the ensemble mean of 20 ensemble members not
included in the LFP filtering).

We find that LFP filtering of a single-ensemble mem-
ber provides a better estimate of the forced response than
a 20-member ensemble mean (Fig. 8), capturing more
than 80% of the spatiotemporal variations in the forced
response as diagnosed by the reference estimate. It re-
mains the best method to estimate the forced response for
up to about 3-5 ensemble members (depending on the met-
ric used), beyond which FP filtering is the best method.
For global-mean surface temperature (Fig. 8c) and US
land surface temperature (Fig. 8f), LFP filtering remains
as good an estimate of the forced response as FP filtering
for up to 20 ensemble members. The benefits of LFP filter-
ing are not as clear for ocean regions with substantial low-
frequency internal variability, such as for the Pacific SST
gradient and NA SST anomaly (in terms of squared cor-
relation), but the RMSE is substantially reduced. The re-
duction in RMSE can be seen in Fig. 11, which shows the
distribution of individual ensemble member timeseries be-
fore and after applying LFP filtering. LFP filtering reduces
the spread in the responses by a factor of 2 for global-
mean surface temperature and by as much as a factor of
10 in other metrics (note the different y-axes). LFP fil-
tering does remove some signals, such as the El-Niño-like
response to volcanic eruptions and some of the changes in
seasonality. The latter would likely be improved by low-
pass filtering each season separately within the LFCA.

b. Filtering with Linear Inverse Models

With similar goals in mind, Frankignoul et al. (2017)
described an optimal perturbation filter (LIMopt) based on
linear inverse models (LIMs), and showed that it is among
the best available methods for determining the forced cli-
mate response from a single realization. Specifically, they
considered methods that do not require multiple ensem-
ble members and compared the LIMopt method to a lin-
ear trend, quadratic trend, regression against global-mean
SST, and multi-variate ensemble empirical mode decom-
position. We have also tested the LIMopt method for
the isolation of the forced response from subsets of the
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FIG. 10. Low-frequency patterns (LFPs) of seasonal-mean surface temperature anomalies in the CESM-LE historical and RCP8.5 simulations
over the time period 1920-2019, with N = 50 EOFs retained. The time evolution of the LFPs in all ensemble members are shown as standard
deviation anomalies with grey lines. The orange (blue) lines show show the ensemble member with the most (least) change in LFP-1 over 2000-
2019. The black line shows the ensemble-mean time evolution of each pattern. Modified from Wills et al. (2017).

CESM-LE (see Supplementary Material). We find that
LFP filtering performs better for global-mean surface tem-
perature and for grid-point temperatures, and that it has
skill equal to or greater than LIMopt for most large-scale
temperature metrics. Furthermore, LFP filtering scales
better with the addition of further ensemble members.
Comparing with the work of Frankignoul et al. (2017),
this also means that LFP filtering isolates the forced re-
sponse within individual ensemble members better than
a linear trend, quadratic trend, regression against global-
mean SST, or multi-variate ensemble empirical mode de-
composition.

c. Application to HadCRUT4 Observations

Given the success of LFP filtering in estimating the
forced response from individual ensemble members (Figs.
8 and 11), we would like to see what this method can tell
us about the forced response in observations. We examine
the HadCRUT4 infilled observational surface temperature

product (Cowtan and Way 2014). We compute the LFPs of
seasonal (3-monthly) surface temperature anomalies over
the period 1920-2019, retaining 50 EOFs (78.1% of the
total variance). While the infilling of missing data can in
general lead to biases in the estimated covariance matrix
and thus in the LFPs, we find similar results when using
HadCRUT3 data imputed with a regularized expectation
maximization algorithm (Schneider 2001) (not shown).

LFP-1 and LFP-2 of observed temperature anomalies
are similar to LFP-1 and LFP-2 of the CESM-LE (pattern
correlations of 0.92 and 0.59, respectively). This suggests
that LFP filtering with M = 2 LFPs would help to remove
variability not associated with the forced response, as in
the large ensemble. LFP-3 and LFP-4 are both somewhat
PDO-like (cf. W18), giving additional motivation to ex-
clude them from the LFP filtering.

Most long-term trends in observations can be attributed
to the first two LFPs (Fig. 13). Over the full century, the
influence of the residual is small, and most temperature
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FIG. 11. (left) Spread in time evolutions of large-scale temperature indices in individual members of the CESM-LE and (right) spread in time
evolutions of the same large-scale temperature indices after the application of LFP filtering in individual members of the CESM-LE. Averaging
regions for the large-scale temperature indices are defined in the caption of Fig. 5. Note the different y-axis scales for the Pacific east-west SST
difference and the US land surface temperature. For reference, the forced response estimate from FP filtering of the full 40-member CESM-LE (as
in the right-hand side of Fig. 5) is shown in green (same on left and right).

changes are captured by the LFP-filtered data. Over 1939-
1978, Northern Hemisphere cooling, which is thought to
result in part from aerosol forcing, is retained in the LFP-
filtered data. Over this period, there is additionally a neg-
ative PDO-like trend in the Pacific and a weak cooling
trend in the Atlantic (captured by the residual). The re-
cent trend over 1979-2019 is largely captured by the LFP-
filtered data, except for a negative PDO-like trend in the
Pacific and a weak cooling trend in the Atlantic.

We also use LFP filtering to examine the slow compo-
nent of observed changes in key large-scale temperature
indices (Fig. 14). Almost all of the observed global-mean
surface temperature changes and much of the observed At-
lantic multi-decadal variability remain in the LFP-filtered
data. The Pacific east-west SST gradient is dominated by
high-frequency internal variability (i.e., ENSO), but it also
exhibits a slow La-Niña-like trend since 1980. Note, how-
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FIG. 12. Low-frequency patterns (LFPs) of seasonal surface temperature anomalies, and their time evolution in standard deviation anomalies, from
the infilled HadCRUT4 (Cowtan and Way 2014) observational product over the time period 1920-2019, with N = 50 EOFs retained.

ever, that the LFP-filtered trend in the east-west SST gra-
dient is smaller than the trend in the raw data (Fig. 13).

Interpreting this observational analysis in the context of
the results from our LFP-filtering analysis of the CESM-
LE (Figs. 8, 10, and 11) may give insight into the
forced and unforced components of observed tempera-
ture changes. In particular, Fig. 8 suggests that the LFP
filtering gives a good estimate of the forced component
of changes in large-scale temperature indices from a sin-
gle realization, roughly equivalent to an estimation of the
forced response from a 5-member ensemble mean. This
means that the LFP-filtered timeseries in Fig. 14 approxi-
mate the forced responses in these indices. However, it is
important to keep in mind that the analysis is only guaran-
teed to isolate the slow component, which happens to be
a better approximation of the forced response than the full
unfiltered dataset in most cases. The LFP-filtered time-
series can still contain some amount of low-frequency in-
ternal variability, and should be interpreted with the spread
in Figs. 11b, 11d, and 11f in mind.

The LFP-filtered observations are broadly consistent
with the forced component (based on FP filtering) of tem-
perature changes in four different large ensembles (Fig.
15): CESM-LE (Kay et al. 2015), CSIRO-LE (Jeffrey
et al. 2013), GFDL-LE (Sun et al. 2018), and MPI-LE
(Maher et al. 2019). One model (GFDL-CM3) has too
much mid-century cooling of both global-mean tempera-
tures and subpolar North Atlantic SSTs, suggesting that its
aerosol forcing may be too strong. It also seems to over-
estimate warming in the past two decades, suggesting that
its climate sensitivity may be too high. Another model
(MPI-ESM) has too little mid-century cooling of subpolar
North Atlantic SSTs, suggesting that its aerosol forcing
may be too weak. This is consistent with a diagnosis of
aerosol radiative forcing based on simulations with fixed
SST (Booth et al. 2018), where these two models span
the range of diagnosed aerosol forcing strength in CMIP5
models. In general, the models show mid-century cool-
ing of the subpolar North Atlantic that occurs earlier than
in observations (Fig. 15b), though the timing in observa-
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tions could also be influenced by Atlantic multi-decadal
variability. The response of the Pacific east-west SST dif-
ference varies across models from positive (El-Niño-like)
to weakly negative (La-Niña-like) (Fig. 15c). None of the
other models show as strong of an El-Niño-like response
to volcanic eruptions as CESM. Observations show a La-
Niña-like trend between the 1970s and present that is out-
side of the range of model forced responses (Fig. 15c), as
has been found in several studies looking at the full 20th
century (Cane et al. 1997; Solomon and Newman 2012;
Coats and Karnauskas 2017). A response to volcanic erup-
tions is not apparent in the LFP-filtered observations, but
this could be a result of the LFP-filtering itself (cf. Fig.
11). The best agreement between LFP-filtered observa-
tions and ensemble-based estimates of the forced response
is found with M = 1 observational LFP, but the estimate
with M = 2 observational LFPs remains in good agree-
ment with the ensemble-based forced response estimates
(Fig. 16). The reason including LFP-2 reduces agreement
with the models might be because the observational LFP-
2 reaches its minimum somewhat later than the CESM-LE
LFP-2, in the mid 1980s instead of around 1970 (Figs. 10
and 12). Overall, the forced responses in the CESM-LE
and the MPI-LE have the highest correlation with the ob-
servational record (Fig. 16).

The observed trend in temperature asymmetry between
the Northern and Southern Hemispheres during the period

1939-1978 shows up in the LFP-filtered component in our
analysis (Fig. 13), but only if 2 LFPs are included. This
trend in hemispheric asymmetry could have been caused
by anthropogenic aerosols (Booth et al. 2012; Tandon and
Kushner 2015; Bellucci et al. 2017; Bellomo et al. 2018;
Watanabe and Tatebe 2019), stratospheric ozone changes
(Thompson et al. 2011), unforced AMOC variability (Se-
menov et al. 2010; DelSole et al. 2011; Chen et al. 2017),
or a transient response of ocean circulations to climate
change (Armour et al. 2016; Stolpe et al. 2018). The key to
disentangling the forced and unforced components of ob-
served global temperature changes lies in distinguishing
between these hypotheses. LFP filtering provides a poten-
tial path forward by identifying the main slowly changing
temperature pattern (LFP-2) in need of attribution. Cli-
mate model ensembles with individual forcing from green-
house gasses, aerosols, and ozone may provide utility in
attributing these hemispherically asymmetric temperature
changes.

Overall, estimates of the forced and unforced compo-
nents of observed temperature trends based on LFP fil-
tering largely agree with other estimates in the literature
(Frankcombe et al. 2015; Frankignoul et al. 2017; Bel-
lucci et al. 2017; Stolpe et al. 2017, 2018; Haustein et al.
2019), with the exception of T09, DelSole et al. (2011),
and Chen et al. (2017), who use related statistical analyses
but suggest that only the first pattern is forced and there-
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FIG. 14. Time evolution of (a) global-mean surface temperature,
(b) North Atlantic SST averaged over 40-60◦N (i.e., the North Atlantic
warming hole), and (c) the SST difference between the eastern and west-
ern equatorial Pacific (averaging regions as in Fig. 5) in HadCRUT4
(Cowtan and Way 2014), before and after applying LFP filtering.

fore conclude that a large portion of recent warming can
be attributed to internal climate variability. In the case of
T09 and DelSole et al. (2011), this comes from requiring
that forced responses show up in a multi-model average,
which could average out aerosol-forced climate responses
that differ in pattern, strength, or timing between models.

6. Discussion and conclusions

a. Summary and conclusions

Here, we have demonstrated how FP filtering reduces
the ensemble size needed to identify forced responses.
Within the CESM-LE, this uncovers forced responses that
were not otherwise apparent, such as an El-Niño-like re-
sponse to volcanic eruptions, increased (decreased) pre-
cipitation in the US-Southwest (China) following volcanic
eruptions, forced trends in the NAO, and regional changes
in the seasonality of temperature, precipitation, and SLP.
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FIG. 15. Comparison across four single-model large ensembles and
HadCRUT4 observations of the time evolution of (a) global-mean sur-
face temperature, (b) North Atlantic SST averaged over 40-60◦N (i.e.,
the North Atlantic warming hole), and (c) the SST difference between
the eastern and western equatorial Pacific (averaging regions as in Fig.
5). In models, the timeseries shown are averaged over the full ensemble
after application of FP filtering. In the analysis of CESM-LE, CSIRO-
LE, GFDL-LE, and MPI-LE, we choose a number of EOFs to retain
between 89% and 90% of the total variance (150, 200, 135, and 200, re-
spectively); we choose the number of FPs based on a criterion that SNR
> 0.15 (7, 6, 7, and 5, respectively). The observations are LFP filtered,
as shown in Fig. 14.

While all of these signals have a small SNR in a partic-
ular year or season, this method uncovers the time pro-
gression of local climate change signals that, when aver-
aged over 30 or so years (or sufficient volcanic eruptions),
would be statistically significant. The details of the diag-
nosed forced responses differ across models, but in all four
large ensembles tested, FP filtering identifies the forced
response with fewer ensemble members than a simple en-
semble average. The inclusion of at least two degrees of
freedom (patterns of change) in the forced response is crit-
ical in all cases, suggesting that methods that include only
one pattern of forced response will generally underesti-
mate the contribution of external forcing to observed tem-
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FIG. 16. Global mean of grid-point squared correlation between
〈XLFP〉, computed entirely from the HadCRUT4 observational product,
and 〈XFP〉, computed from 4 difference large ensembles, over the time
period 1930-2019 (excluding micro-initialization spin-up period), as a
function of the number M of LFPs included and the number N of EOFs
retained in the observational LFP filtering. The values of M and N used
in the FP filtering are given in the caption of Fig. 15.

perature changes. Dynamical adjustment (Wallace et al.
2012; Smoliak et al. 2015; Deser et al. 2016; Sippel et al.
2019) may perform similarly for some applications, but
does not allow for the detection of forced atmospheric cir-
culation responses, as were identified in the CESM-LE.

Using this pattern-recognition-based method for esti-
mating the forced response within climate model ensem-
bles, we revisited the question of how many ensemble
members are needed to isolate the forced climate response
from internal variability. We tested the number of en-
semble members needed (from one half of the CESM-LE)
to converge on the same forced response estimate as was
obtained from the other half of the CESM-LE. The an-
swer depends on the particular climate response of interest
and on the error tolerance level. For global-mean surface
temperature, even a simple ensemble mean is able to iso-
late the forced response with about 3 ensemble members.
However, FP filtering is able to isolate the forced global-
mean surface temperature response with 2 ensemble mem-
bers and LFP filtering with a single ensemble member. In
order to capture 80% of the full spatiotemporally variable
climate response globally, more ensemble members are
required (5 when using FP filtering). This is a large im-
provement over simple ensemble averaging, which would
need well over 20 ensemble members to reach this thresh-
old. Even in noisy climate metrics such as the tropical
Pacific SST gradient, US-Southwest precipitation, or the
NAO, the addition of ensemble members beyond an en-
semble size of about 10 has marginal returns for the iden-
tification of the forced response. For future modeling ef-

forts, increasing the number and quality (e.g., resolution)
of, e.g., 5-member or 10-member ensembles would pro-
vide greater benefit than increasing the ensemble size.

Using the CESM-LE as a testbed, we showed that LFP
filtering can give an estimate of the forced response from
a single realization (ensemble member), although it can
miss rapid forced signals such as the response to volcanic
eruptions. LFP filtering differs from simple lowpass filter-
ing because it includes information about the spatiotempo-
ral structure of the high-frequency noise in order to opti-
mally filter it out. LFP filtering of a single ensemble mem-
ber captures more than 80% of the spatiotemporal variance
in the ensemble’s forced climate response. With these re-
sults as motivation, we used LFP filtering to approximate
the forced and unforced components of observed temper-
ature trends, without using any model-based information.
Our results support the conjecture that most of the multi-
decadal changes in global-mean surface temperature and
North Atlantic SST are forced and that there has been an
externally forced strengthening of the tropical Pacific SST
gradient over the past four decades. This approach to esti-
mating the forced response from observations provides an
alternative to approaches that use both observational and
model-based information (e.g., detection and attribution),
which are subject to model-biases in the forced response.

b. Generalizability

The number of ensemble members needed to isolate
forced climate signals will depend in general on the am-
plitude of the signal of interest and the characteristics
of the noise in the model used. We have focused on
simulations of global climate change over 1920-2019,
where the forced response is comparable in amplitude to
modes of internal variability. Fewer ensemble members
would be needed to isolate the forced climate response
in simulations with stronger forcing, such as simulations
of 21st century climate change or of a quadrupling of
CO2. Properties of the internal variability within climate
model ensembles and observations also influence the abil-
ity to isolate the forced response. Higher amplitude noise
from internal variability does not necessarily make climate
responses harder to detect, because this high-amplitude
noise could all be contained in a few spatial patterns (e.g.,
ENSO). The climate variability that is most difficult to re-
move from estimates of the forced response is that which
is on small spatial scales (such that it doesn’t show up in
the leading EOFs) and/or on long timescales (such that it
has fewer temporal DOF).

A number of studies have pointed out that observations
are more predictable than expected from comparison to
individual members of climate model ensembles despite
similar amplitudes of climate variability in models and ob-
servations, especially on seasonal-to-decadal timescales in
the North Atlantic (Scaife et al. 2014; Eade et al. 2014;
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Scaife and Smith 2018). One potential explanation for
this so-called ‘signal-to-noise paradox’ is that the fraction
of atmospheric variability driven by variations in SST is
larger in observations than in models, such that a model
that is able to correctly predict the evolution of SSTs may
correctly predict the timing (but not the amplitude) of ob-
served atmospheric variability once the unpredictable at-
mospheric noise is averaged out (see, e.g., Simpson et al.
2018). The implications of the ‘signal-to-noise paradox’
for the skill of pattern filtering in isolating the forced cli-
mate response are not clear cut; more unpredictable atmo-
spheric noise in models would make it harder to isolate the
forced response in models (and therefore overestimate the
difficulty in observations), but more multi-decadal cou-
pled atmosphere-ocean variability in observations would
pose a challenge for isolating the forced response in ob-
servations. Based on this literature, we have no reason to
believe that our analysis in Section 5 systematically over-
estimates or underestimates what can be learned about the
forced climate response from a single realization.

One limitation of the pattern filtering methods presented
here is that they only consider linear combinations of state
variables. This may lead to underestimates of nonlinear
climate responses (e.g., in cases where positive and nega-
tive anomalies have different patterns or amplitudes). This
may be apparent in the estimated El-Niño-like response to
volcanic eruptions (Fig. 5f, cf. Fig. 5e). Looking forward,
future work should investigate whether nonlinear machine
learning methods can be constructed that take advantage of
patterns with high signal-to-noise ratio, in a similar spirit
to the analyses shown here (e.g., Barnes et al. 2019).

c. Further applications

Estimates of forced responses from pattern filtering are
complimentary to estimates of the uncertainty in long-
term trends, as can be computed from unforced variabil-
ity in control runs or observations (Thompson et al. 2015;
McKinnon et al. 2017). In order to characterize the un-
forced variability in observations, these studies rely on
removing the forced response, either through detrending
or the subtraction of a model-based forced response esti-
mate. However, some of the variability about the long-
term trend likely comes from aerosol forcing and other
non-monotonic forcing, as encompassed in LFC-2 of ob-
served temperatures (Fig. 12). If these non-monotonic
forced responses are not fully removed (e.g., if there are
biases in the modeled forced response), then this may bias
the estimates of unforced variability in observations. By
first removing non-monotonic forced responses using LFP
filtering, the uncertainty in long-term trends that results
from internal variability could be better estimated from
observations.

Separating the forced response from the internal vari-
ability also helps to understand internal decadal variabil-
ity, which may lead to better decadal climate predictions
(Meehl et al. 2009). Current methods of removing the
forced component from indices of internal variability, such
as removing the linear trend (Enfield et al. 2001) or global-
mean SST (Trenberth and Shea 2006), will become less ef-
fective as the forced climate change pattern changes over
time (Andrews et al. 2015). LFP filtering provides a way
to identify and remove the forced response from indices of
climate variability.

Pattern filtering methods can also provide utility for the
analysis of multi-model ensembles (e.g., CMIP), as shown
in Ting et al. (2009) and DelSole et al. (2011). However,
if the timing of a particular forced response pattern differs
across models, application of FP filtering to a multi-model
ensemble would filter this response out. Therefore, it is
generally preferable to apply pattern filtering analyses to
each climate model separately in order to analyze inter-
model differences in the forced climate response.

Overall, the common framework of FP and LFP filter-
ing provide a powerful tool for separating forced and un-
forced components of climate change, thereby identifying
the full spatiotemporal complexity of the climate system’s
response to radiative forcing.
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