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INSECT POPULATIONS

Meta-analysis reveals declines in terrestrial but
increases in freshwater insect abundances

Roel van Klink“?>3*, Diana E. Bowler**®, Konstantin B. Gongalsky®”, Ann B. Swengel?,

Alessandro Gentile!, Jonathan M. Chase®®

Recent case studies showing substantial declines of insect abundances have raised alarm, but

how widespread such patterns are remains unclear. We compiled data from 166 long-term surveys of
insect assemblages across 1676 sites to investigate trends in insect abundances over time. Overall, we
found considerable variation in trends even among adjacent sites but an average decline of terrestrial
insect abundance by ~9% per decade and an increase of freshwater insect abundance by ~11% per
decade. Both patterns were largely driven by strong trends in North America and some European
regions. We found some associations with potential drivers (e.g., land-use drivers), and trends in
protected areas tended to be weaker. Our findings provide a more nuanced view of spatiotemporal
patterns of insect abundance trends than previously suggested.

nsects are the most ubiquitous and diverse

animals on the planet (7-3), providing mul-

tiple critical ecosystem services (e.g., polli-

nation and decomposition) and disservices

(e.g., damaging crops and spreading dis-
ease) (). Although population declines of many
species have been previously documented (5-7),
recent case studies showing drastic declines
in the total biomass or abundance of entire
insect assemblages (8-1I) have caused a surge
of interest in the plight of insects (72, 13). De-
spite the attention from the media, policy-makers,
and scientists, it remains unclear whether such
declines are widespread across realms and
among geographic regions. Here, we compiled
as many openly available long-term (10+ years)
standardized monitoring surveys of assem-
blages of insects and arachnids (for brevity,
hereafter collectively referred to as “insects”) as
we could find (74). We used the amassed data to
evaluate changes in total insect abundance and
biomass, as well as the geographic distribution
of such changes. Our dataset included 1676
sites from 166 studies spread over 41 countries
(Fig. 1; see table S1 for a list of studies). Among
these, 130 datasets reported only changes in
insect abundances (i.e., number of individuals)
in an assemblage, 13 datasets reported only the
biomass of all insects in an assemblage, and 23
datasets reported both metrics. The data
spanned from 1925 to 2018, with a median
start year of 1986 and a median time span of
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20 years. Because our main focus was on the
temporal trend of changes within assemblages
(i.e., time series of total biomass or abundance),
we could combine data with different sampling
methods, spatial scales, and metrics into one
analysis.

Across all studies, there was great variation
in trends even among geographically adjacent
sites (Fig. 1). We analyzed the data using a
hierarchical Bayesian model accounting for
variation at the study, study area, and site level
(14). From this, we inferred strong evidence for
a mean trend when the posterior probability
of the estimate was larger or smaller than
zero with at least 95% certainty. Likewise, we
inferred moderate or weak evidence for a mean
trend when the posterior probability differed
from zero with 90 or 80% certainty, respectively,
and interpreted no evidence for a directional
trend for probabilities <80%. Overall, we found
strong evidence for a decline of terrestrial
insects, which we estimated to be 0.92% per year
(Fig. 2A and table S2), amounting to -8.81% per
decade. By contrast, we found a 1.08% annual
increase for freshwater insects, equaling +11.33%
per decade (Fig. 2A). The mean trend estimates
of insect abundance and biomass were similar
(Fig. 2A) but differed in strength of evidence
because of the lower data availability for bio-
mass (table S2). The positive trends in the fresh-
water realm may partially counter the negative
terrestrial trends, because a model combining
both realms showed no evidence for a direc-
tional trend (Fig. 2A). However, because fresh
water represents only 2.4% of the earth’s ter-
restrial surface (15, 16), such a combined model
is likely to be a poor representation of trends
in total insect numbers at any spatial scale.

The strongest evidence for declines in ter-
restrial insect assemblages was found in North
America (Fig. 2B), but also in some European
regions (fig. S1). The exclusion of all North
American data thus tempered the overall de-
cline (mean trend without North America:
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-0.49% per year), but there was still weak
evidence for a negative mean trend. When
estimating the trends in different climatic zones,
we found strong evidence for directional trends
in both realms in the temperate zone, as well as
in Mediterranean and desert climates (drylands;
Fig. 2C and table S2). We found no evidence for
directional trends in other continents or climatic
zones, where the data were much sparser (Fig.
2, B and C, and table S2). The increasing trend
for the freshwater insects, particularly in the
temperate zone, is consistent with recent analy-
ses from these regions (17-19) and may at least
partially reflect recovery from past degradation
[e.g., the Clean Water Act and similar legis-
lation (20-23)]. Other causes of this increase
may have been climatic warming (24) and an
enhanced productivity caused by nutrient in-
puts (25, 26).

We tested whether these temporal trends
changed over time by running the same model
for progressively shorter timespans: since 1960,
1970, 1980, 1990, 2000, and 2005 (Fig. 3). No
consistent temporal changes in trends were
visible at the global level. However, in Europe,
the mean slope estimate for the terrestrial in-
sects became more negative over time and was
steepest since 2005. By contrast, the overall
negative trends for terrestrial insects in North
America have tempered and were no longer
negative since 2000. For freshwater insects,
the trends became more positive in Europe
and North America, as well as in Asia, where
the overall increase was steepest since 1990,
coinciding with the collapse of the Soviet Union
and its heavy industries (27, 28). Trends in the
other continents seem relatively unchanged
over time.

We evaluated associations of the observed
trends in insect abundances with commonly
hypothesized anthropogenic drivers, including
land-use change and climate change (10, 11, 29).
First, we found that the trends in protected
areas were weaker than those in unprotected
areas (Fig. 4, although there was still a moderate
negative trend in terrestrial protected areas.
This difference suggests a possible association
between insect trends and land-use change.
To evaluate this further, we used Geographic
Information System (GIS) layers to extract urban
and cropland cover surrounding the sampling
sites at local (only available since 1992) and
landscape (full period) scales (14). We found
moderate evidence for a negative relationship
between terrestrial insect abundance trends
and landscape-scale urbanization (figs. S3 and
S4a), potentially explained by habitat loss and
light and/or chemical pollution associated with
urbanization (30). By contrast, insect abun-
dance trends were positively associated with
crop cover at the local (but not landscape)
scale in both realms (fig. S3). Specifically, in
the terrestrial realm, temporal trends became
less negative with increasing crop cover (fig. S41),
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consistent with a high-profile case study (70).
One explanation for this could be that areas with
high crop cover tended to remain relatively
stable over the study period (only 0.5% of the
sites were converted into cropland) relative to
land cover change in noncrop areas (3.8% of
sites experienced other land-use change). In
the freshwater realm, the trends became more
positive with increasing crop cover (fig. S4),
which could be because agricultural practices
have become less detrimental to water quality
than they were in the past. Finally, we calcu-
lated the relative change in temperature and
precipitation over the sampling period at local
and regional scales for each site (14) to test for
a potential role of climate change, but found
no evidence for any associations at either scale
(figs. S3 and S5).

Although our data compilation has a large
geographic and taxonomic scope, there are
clear limitations to our analysis, so we remain
cautious about generalizing these patterns. First,
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the trends were highly variable locally but also
varied across regions, climatic zones, and time
periods. Second, the strong trends in North
America had a strong influence on the mean
trend estimates. Finally, the manual exclusion
of 14 datasets qualified as outliers [for more
details, see (14)] provided strongly tempered
trend estimates (terrestrial: -0.66%; fresh-
water: +0.34% per year), although there was
still strong evidence for a decline for the ter-
restrial fauna. As with most data compila-
tions of this kind, our data sources were not
representatively spread across the world.
Most data originated from temperate North
America and Europe, but even here there
was an underrepresentation of intensively
modified sites (high urban or crop cover)
compared with their global distribution (fig.
S6). Likewise, protected areas were overrep-
resented in our dataset (34% of the sites)
relative to the percentage of the terrestrial
surface currently under protection (15%) (31).
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Fig. 1. Trend estimates of long-term changes in insect assemblage size, measured as insect abun-
dance or biomass, of the 166 studies. Shown are trend estimates for terrestrial (A) and freshwater (B)
fauna. The trend estimates of the individual studies were derived from the random effects of the hierarchical
Bayesian model with only year as an explanatory variable. The insets show histograms of the number of

datasets with at least one data point for each year.
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This means that locations where human
land use is most intensive, and thus where
the strongest effects on insect trends might
be expected, were underrepresented. To in-
fer broader patterns across the ecosystems
of the world and for more comprehensive
tests of human pressures, more data are
needed from these underrepresented regions
experiencing both low and high environmen-
tal change.

Our estimate of a 0.92% decline per year for
terrestrial insects is 6-fold smaller than those
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Fig. 2. Trend estimates (+80, 90, and 95%
credible intervals). Shown are the trend estimates
in insect abundance and biomass (A) at different
continents (B) and climatic zones (C). Mean
estimates are represented by symbols, with the
error bars representing the three levels of credible
intervals. The percentages below the x-axis
indicate the annual change in insect abundance
corresponding with the estimated slope. The
bracketed numbers indicate the number of
studies and the number of sites underlying each
estimate, respectively. The continents are ordered
by data availability, but Africa was omitted
because of the wide credible intervals of its two
studies (terrestrial: -8.93 to +18.34%); freshwater:
-16.56 to +10.12% per year). Ecoregions are
ordered from north to south from the Northern
Hemisphere perspective.
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Fig. 3. Trend estimates (+80 and 95% credible intervals) for progressively shorter time periods
since 1960. Each time slice included data until the last sampling date but excluded any sites spanning
<9 years within the time slice. Only estimates with at least four datasets or 20 sites are shown. The
continents are ordered by data availability. Annotation is as in Fig. 2.
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Fig. 4. Trend estimates (+80, 90, and 95% credible intervals) for terrestrial and freshwater
insects inside and outside of protected areas. Bracketed numbers indicate the number of studies
and number of sites underlying each estimate. Annotation is as in Fig. 2.
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Local drivers of decline matter

Recent studies have reported alarming declines in insect populations, but questions persist about the breadth and
pattern of such declines. van Klink et al. compiled data from 166 long-term surveys across 1676 globally distributed sites
and confirmed declines in terrestrial insects, albeit at lower rates than some other studies have reported (see the
Perspective by Dornelas and Daskalova). However, they found that freshwater insect populations have increased overall,
perhaps owing to clean water efforts and climate change. Patterns of variation suggest that local-scale drivers are likely
responsible for many changes in population trends, providing hope for directed conservation actions.
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