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Key Points 

1. ET and NEE were more sensitive to VPD and deep soil moisture in a ponderosa pine 

forest than a pinyon-juniper site but otherwise responded similarly to drivers. 

 

2. Net sensitivity of ET and NEE to drivers varied temporally, reflecting seasonal 

changes in prevailing conditions, interactions between drivers, and timing of 

precipitation  

 

3. Antecedent deep soil moisture and precipitation were important drivers of ET and 

NEE, especially at the drier pinyon-juniper site 
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Abstract 

Water and CO2 flux responses (e.g., evapotranspiration [ET] and net ecosystem exchange 

[NEE]) to environmental conditions can provide insights into how climate change will affect 

the terrestrial water and carbon budgets, especially in sensitive semiarid ecosystems. Here, 

we evaluated sensitivity of daily ET and NEE to current and antecedent (past) environment 

conditions, including atmospheric (vapor pressure deficit [VPD] and air temperature [Tair]) 

and moisture (precipitation and soil water) drivers. We focused on two common southwestern 

U.S. (“Southwest”) biomes: pinyon-juniper woodland (Pinus edulis, Juniperus monosperma) 

and ponderosa pine forest (Pinus ponderosa). Due to differences in aridity, rooting patterns, 

and plant physiological strategies (stomatal and hydraulic traits), we expected ET and NEE in 

these ecosystems to respond differently to atmospheric and moisture drivers, with longer 

response timescales in the drier pinyon-juniper woodland. Net sensitivity to drivers varied 

temporally in both ecosystems, reflecting the integrated influence of interacting drivers and 

antecedent precipitation patterns. NEE sensitivity to VPD and soil moisture (and ET 

sensitivity to deep soil moisture [Sdeep]) was higher in the ponderosa forest. ET and NEE in 

both ecosystems responded almost instantaneously to Tair, VPD, and shallow soil moisture 

(Sshall), and increases in any of these drivers weakened the carbon sink and enhanced water 

loss. Conversely, Sdeep and precipitation influenced ET and NEE over longer timescales (days 

to months, respectively), and higher Sdeep enhanced the carbon sink. As climate changes, 

these results suggest hotter and drier conditions will weaken the carbon sink and exacerbate 

water loss from Southwest pinyon-juniper and ponderosa ecosystems. 

 

Plain Language Summary 

Water and CO2 move between ecosystems and the atmosphere. As climate changes, 

understanding what controls water loss and CO2 exchange becomes more important. In dry 
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areas like the southwestern U.S. (“Southwest”) the amount of water ecosystems lose to the 

atmosphere is a significant part of the water balance. CO2 that moves between the atmosphere 

and ecosystems in dry regions is an important source of variability in carbon stored in 

vegetation globally. We used six years of measurements from two important ecosystems in 

the Southwest to understand how, and over what timescales, environmental conditions 

(temperature, atmospheric dryness, precipitation, and soil moisture) control the movement of 

water and CO2 between the land and atmosphere. We focused on ponderosa pine and pinyon-

juniper ecosystems because they comprise most woodlands in the Southwest. We found that 

both ecosystems responded to similar drivers. However, the ponderosa pine forest was more 

sensitive to atmospheric dryness and soil moisture. The pinyon-juniper woodland responded 

more to past precipitation and deep soil moisture. Sensitivity to each environmental condition 

varied during growing seasons with changes associated with precipitation. In general, hotter 

and drier conditions increased the amount of carbon and water each ecosystem lost to the 

atmosphere.   
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Introduction 

Drylands cover nearly 47% of Earth’s land surface (Reynolds, 2001), support ~20% of 

the world’s population (Reynolds & Stafford-Smith, 2002), and are expanding as climate 

changes (e.g., Huang et al., 2016; Mankin et al., 2017; Schlaepfer et al., 2017; Trenberth et 

al., 2014; Xia et al., 2016; Zhang et al., 2015). Semiarid and arid ecosystems within these 

regions have been identified as major modulators of CO2 exchange between the land and 

atmosphere globally, but models remain under-constrained across these regions (Ahlström et 

al., 2015; Biederman, et al., 2017; Vargas et al., 2010). While the combinations of drivers 

most important for ET and NEE vary across dryland biomes (Law et al. 2002; Richardson et 

al. 2007),  previous studies on CO2 and H2O fluxes suggest the importance of climatic drivers 

(e.g., Baldocchi et al., 2018; Ellison et al., 2017; Morillas et al., 2017; Sandvig & Phillips, 

2006; Y. Zhang et al., 2016). Additionally, antecedent (past) ecosystem states, disturbances, 

and environmental conditions can influence future ecosystem responses in drylands, often 

with considerable delays between the timing of a significant environmental event (e.g., 

drought, rain inputs, frost events) and the full ecosystem response (e.g., Anderegg et al., 

2015; Ogle et al., 2015; Peltier et al., 2016; Ryan et al., 2015; Liu et al., 2019).  Quantifying 

biome-specific sensitivity of ET and NEE to environmental drivers, and the timescales over 

which these drivers govern ET and NEE (Williams et al., 2009) provides important 

constraints on water (Bradford et al., 2006, 2014; Lauenroth & Bradford, 2006; Parton, 1978; 

Sala et al., 1992) and carbon (Wang & Dickinson, 2012; Zhang et al., 2017) budgets across 

multiple scales (e.g., local, regional, to global), especially in the context of climate change.  

Here, we evaluate and compare the climatic controls on NEE and ET in two important 

tree-dominated semiarid biomes in the southwestern U.S. (hereafter, the “Southwest”): a 

ponderosa pine (Pinus ponderosa) forest (US-Vcp) and a pinyon-juniper woodland (US-Mpj) 

co-dominated by Pinus edulis and Juniperus monosperma. These two biome types are 
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ubiquitous across the region and have experienced increased mortality since the start of the 

21st century (McDowell et al., 2016). The southwestern U.S. (hereafter, the “Southwest”) is 

an ideal region to quantify the sensitivity of NEE and ET to combinations of drivers and their 

timescales of influence across arid and semiarid ecosystems. The Southwest’s rugged 

topography juxtaposes ecosystems with different dominant vegetation over short geographic 

distances. Further, the Southwest generally experiences a bimodal distribution of annual 

precipitation, with relatively wet winters and summers (via Pacific storms and the North 

American Monsoon, respectively), and generally dry spring and fall (Chorover et al., 2011; 

Szejner et al., 2016). This precipitation pattern establishes a mechanism for lags between 

water inputs and fluxes (Biederman et al., 2017)  and divides the growing season into distinct 

periods: the dry early growing season (pre-monsoon drought) and a relatively wet mid- to 

late-growing season that occurs after the onset of the North American Monsoon (typically 

July; Grantz et al., 2007). 

Like many regions across the globe, climate in the Southwest has been changing, and is 

projected to continue changing over the next century, due to rising atmospheric CO2 
 (e.g., 

Gonzalez et al., 2018; IPCC, 2013). Temperatures and drought frequency have already 

increased across the region (Gonzalez et al., 2018; Prein et al., 2016), triggering large-scale 

tree mortality events with the potential to alter the distribution and function of key 

ecosystems (Allen et al., 2010; Allen & Breshears, 1998; Mueller et al., 2005; Williams et al., 

2012; McDowell et al., 2016, Adams et al., 2009; Anderegg et al., 2013; Breshears et al., 

2013).  Mean annual temperature and VPD are projected to increase across the region over 

the 21st century (Gonzalez et al., 2018; Jones & Gutzler, 2016; Seager et al., 2007; Seager & 

Ting, 2017). Although winter precipitation is expected to decrease, average annual 

precipitation may remain relatively unchanged (Garcia-Forner et al., 2016; Gonzalez et al., 

2018; Grantz et al., 2007; Jones & Gutzler, 2016; Mankin et al., 2017; Schwalm et al., 2012; 
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Seager et al., 2007; Ting et al., 2018; Williams et al., 2012). Trees in many Southwest 

ecosystems rely on winter precipitation to recharge soil moisture (Baek et al., 2017; 

Kerhoulas et al., 2017), thus projected decreases in winter precipitation (Jones & Gutzler, 

2016) will likely suppress ecosystem productivity and carbon sequestration (Knowles et al., 

2018). It is becoming increasingly important to understand how these climate factors interact 

to drive ecosystem fluxes and the timescales over which these conditions are significant. 

Specifically, our study is motivated by the following questions: (1) Do ET and NEE in 

two distinct dryland biomes respond similarly to atmospheric (e.g., VPD and Tair) and 

moisture-related (e.g., soil moisture or precipitation) drivers? While we expect fluxes in the 

pinyon-juniper woodland and ponderosa pine forest to respond similarly to the same key 

environmental drivers we predict that fluxes at the ponderosa pine site are more sensitive to 

soil moisture recharge during the monsoon and to VPD (regardless of season) due to the 

predominantly isohydric response of P. ponderosa in contrast to the more drought-tolerant 

behavior of J. monosperma (Anthoni et al., 1999; Dore et al., 2010; Manrique-Alba et al., 

2018; Martínez-Vilalta & Garcia-Forner, 2017; McDowell et al., 2008; Voelker et al., 2018) 

(2) In each biome, how does the overall (or net) sensitivity of ET and NEE to each 

environmental driver, and interaction between environmental drivers, vary over time? In both 

ecosystems, we expect the net response of both fluxes to each driver to be temporally variable 

due to interactions with other drivers. In particular, we expect the magnitude and temporal 

variability in the net sensitivities of both fluxes to soil moisture and VPD to be greater at the 

ponderosa pine site (more sensitive) due to the different hydraulic characteristics of the 

dominant tree species. Finally, (3) how important are antecedent (past) environmental 

conditions for driving NEE and ET at each site? We expect NEE and ET fluxes at both sites 

to respond to antecedent drivers, but the importance of antecedent conditions is likely to be 

greater at the drier pinyon-juniper site (Liu et al., 2019). 
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We addressed our research questions by synthesizing six years of daily NEE and ET flux 

observations and associated climate and environmental data at each site using a Bayesian 

framework. The approach we employed enables quantification of time-varying environmental 

sensitivities and inference about the timescales over which the environmental drivers 

influence ET and NEE. Our results will advance our understanding of how water and carbon 

fluxes in these two tree-dominated biomes respond to climate drivers that are likely to change 

as global climate changes. 

2. Methods 

2.1. Field Sites 

This study uses multi-year data from two sites in the New Mexico Elevation Gradient 

(NMEG) (Anderson-Teixeira et al., 2011), an array of eddy covariance towers in the 

AmeriFlux network (Baldocchi et al., 2001; Law, 2005). The sites and instrumentation used 

to obtain data for this study and methods used for quality control and gap-filling across the 

NMEG have been described in detail elsewhere (Anderson-Teixeira et al., 2011; Morillas et 

al., 2017), but we provide a summary here. The flux towers span an elevation gradient of 

~1200 m in central to northern New Mexico, U.S., with ecosystems that range from desert 

grasslands to subalpine mixed conifer forests. This study compares two sites within the 

NMEG network, a pinyon-juniper woodland (US-Mpj) and a ponderosa pine forest (US-

Vcp). We focus on these two sites for three primary reasons. First, these two sites represent 

major tree-dominated ecosystems common to the Southwest that are particularly sensitive to 

drought and climate change (Allen et al., 2010; Allen & Breshears, 1998; Breshears et al., 

2013; Huang et al., 2015; Mueller et al., 2005; Petrie et al., 2015; Shaw et al., 2005). Second, 

the number of co-occurring species at these sites is small, so it is likely that the dominant tree 
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species primarily control ecosystem fluxes. Third, relatively long (2008-2014), continuous 

records of ecosystem fluxes and environmental driver data are available for these sites.  

The lower elevation, pinyon-juniper woodland site (US-Mpj) is located in central New 

Mexico just south of Mountainair, NM (elevation = 2196 m). The site is dominated by two 

tree species, pinyon (P. edulis) and one-seed juniper (J. monosperma), with an open canopy 

and an herbaceous understory comprised mainly of blue grama (Bouteloua gracilis), a C4 

grass common to the region. The higher-elevation (2500 m) site (US-Vcp) is located 

approximately 150 miles northwest of US-Mpj on the flanks of a resurgent volcanic dome in 

the Jemez Mountains of northern New Mexico, and is dominated by P. ponderosa 

(ponderosa) with an oak (Quercus gambelii) understory and minimal herbaceous species 

cover in the footprint of the flux tower. At the US-Vcp site, average canopy height is 18-20 m 

within the footprint of the 25 m high tower. At the US-Mpj site, average canopy height is 2.8 

m, and the flux tower is 9 m tall (Morillas et al., 2017). Both sites are relatively flat with 

slopes of less than 5% in the footprint of the towers. Soils at US-Mpj are Turkey Springs 

stony loam soils and alluvially deposited limestone that generates a shallow, discontinuous 

petrocalcic horizon or “caliche” layer between 30 and 80 cm depth. Soils at US-Vcp are 

Jaramillo loam soils that are well-drained.   

Although mean annual temperature (MAT) at the US-Mpj site is only 0.7°C warmer than 

the US-Vcp site (10.5 °C vs 9.8 °C, respectively), US-Mpj receives 30% less precipitation 

(385 vs 550 mm) per year and has a lower aridity index (0.34 vs 0.53), indicative of drier 

average conditions (aridity index extracted from CGIAR-CSI Global-PET Dataset 

[http://www.cgiar-csi.org/data/global-aridity-and-pet-database], downloaded on 20 April 

2017 (Zomer et al., 2007, 2008)). Both sites receive ~47% of their total annual precipitation 

during the North American Monsoon period (summer). Partitioned gross primary production 

(GPP) fluxes indicate that trees at both sites are active in spring and summer, so we focus 

http://www.cgiar-csi.org/data/global-aridity-and-pet-database
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here on NEE and ET measured during this growing season. The growing season varies 

interannually with increased GPP starting between March and April at both sites and ending 

by October. In order to be consistent between sites, we chose to model fluxes from April to 

October (“growing season”).  

Ecosystem-atmosphere exchange of carbon and water was measured at both sites using 

open-path eddy covariance. Eddy covariance instrumentation was identical at both sites (LI-

7500 open-path infrared gas analyzer (LI-COR, Lincoln, NE, USA), a CSAT-3 sonic 

anemometer (Campbell Scientific Logan, UT, USA). 10Hz data were logged with a Campbell 

Scientific CR5000 at both sites, and thirty-minute covariances were corrected for air density 

fluctuations due to temperature (Webb et al., 1980), and frequency response (Massman, 

2000) using Matlab scripts (Anderson-Texiera et al. 2011; Morillas et al. 2017). 

Measurements from both sites were filtered for conditions that could compromise data 

quality, including low-turbulence conditions (u* < 0.16 ms-1), during precipitation pulses, 

non-optimal wind directions (+30° behind the tower), and instrument malfunctions (Morillas 

et al., 2017). We used directly measured net CO2 and water fluxes (i.e., NEE and ET) for data 

analysis and modeling, rather than partitioned fluxes (i.e., GPP, Reco, or transpiration derived 

from tree-level sap-flow), to minimize additional sources of error or uncertainty associated 

with partitioning the measured fluxes. We did, however, partition NEE into the main 

components GPP and Reco by estimating respiration from night-time NEE measurements and 

extrapolation to daytime (Reichstein et al. 2005), and calculated GPP as (NEE + Reco), to help 

interpret model results (Fig. S1). 

Air temperature (Tair) and relative humidity ([used to calculate VPD] (HMP45C Vaisala, 

Helsinki, Finland), photosynthetically active radiation [PAR]( (LI-190SB, Licor Bioscience), 

were recorded as 30-minute averages and precipitation (TE525MM-L50 tipping bucket rain 

gauge, Texas Electronic) was recorded as 30-minute sums at both sites.  Soil moisture 
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measurements were made in four to six profiles per site at depths of 0-5 cm (“shallow,” Sshall) 

and 25-30 cm (“deep,” Sdeep) using Campbell Scientific CS 616 probes (Anderson-Teixeira et 

al., 2011). Gaps in the PAR data at US-Vcp were filled using linear interpolation; only 13% 

of the daily PAR observations were missing across all growing seasons. No data were 

missing in 2009 and 2011, and the mean gap length in the 2010, 2012, 2013, and 2014 

growing season was 11 days. Figure 1 shows growing season fluxes along with continuous 

micrometeorological and soil moisture data from the two sites. 

We used daily sums of daytime, 30-minute NEE and ET measurements in our analyses. 

Gaps in 30-minute flux measurements were filled using Reddyproc (http://www.bgc-

jena.mpg.de/~MDIwork/eddyproc/method.php), a freely available, web-based eddy 

covariance gap-filling and flux-partitioning tool based on methods described in Falge et al. 

(2001) and Reichstein et al. (2005). These methods primarily rely on spatial variability in 

radiation parameters to fill in missing flux values. At both sites, 65% to 75% of the daily, 

daytime ET and NEE values used in this study were based on mostly complete data (missing 

zero to six 30-minute daytime measurements). Prior to using these methods to fill gaps in 

NEE and ET, any missing meteorological data were filled using data from nearby 

meteorological stations. The meteorological station used to gap-fill Tair and VPD at the US-

Mpj site is located approximately 5 km away in a similar pinyon-juniper woodland (Morillas 

et al., 2017). Meteorological data used to fill in data gaps at the US-Vcp site were obtained 

from a weather station maintained by the Western Regional Climate Center 

(https://wrcc.dri.edu/weather/vjem.html) approximately 13 km away in a similar ponderosa 

pine ecosystem.  

2.2. Data Analysis and Modeling 

We implemented a stochastic antecedent model (SAM) in a Bayesian framework (Ogle et 

al. 2015) to evaluate the sensitivity of ET and NEE to environmental drivers, their 

http://www.bgc-jena.mpg.de/~MDIwork/eddyproc/method.php
http://www.bgc-jena.mpg.de/~MDIwork/eddyproc/method.php
https://wrcc.dri.edu/weather/vjem.html
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interactions, and the timescales over which each driver influences NEE and ET. The model 

specification includes a regression submodel for the flux of interest (ET or NEE) with linear, 

quadratic, and interactive effects of each driver (covariate). Additionally, we define a 

submodel to define antecedent covariates, which makes the SAM framework a non-linear 

regression approach. The SAM model enables evaluation of the significance of different 

environmental drivers and their timescales of influence. By implementing the model in a 

Bayesian framework, we were able to obtain full posterior distributions for quantities of 

interest and were able to incorporate priors that obey mass-balance-type constraints (e.g., 

antecedent importance weights must sum to 1; see below). The SAM approach has been 

successfully applied to a variety of ecological time-series data (Guo & Ogle, 2018; Ibáñez et 

al., 2017; Kropp et al., 2017; Ogle et al., 2015; Peltier et al., 2017), including ecosystem CO2 

fluxes (Barron-Gafford et al., 2014; Liu et al., 2019; Ryan et al., 2015, 2017). To explicitly 

evaluate the importance of antecedent environmental conditions and interactions among 

environmental drivers, we compared results from the “full SAM” model to simpler models 

that (1) considered concurrent environmental conditions only (“current only” model) or (2) 

removed all non-linear effects (i.e., quadratic terms and all two-way interactions; “main 

effects SAM” model). 

For the three model variants, we assumed that the observed flux (Y = ET or NEE) 

measured on day i follows a normal distribution such that Yi ~ Normal(µi, 
2), where µi is the 

mean or predicted flux and 2 describes the residual variance about this mean. We modeled 

µi as a linear regression on potentially important antecedent environmental variables 

(covariates; see Table 1). To capture potential non-linear responses, we included quadratic 

terms for atmospheric drivers, and two-way interactions among most drivers (see Table 1). 

For observation i and covariate j or k, the mean model is defined as: 
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The main effects of each covariate are depicted by 1, 2, …, 7, the quadratic effects of VPD 

and Tair are described by 8 and 9, respectively, and the two-way interactions among the first 

five covariates are described by 1,2, 1,3, …, 4,5 (see Table 1). For covariate j and day i, Xj,i 

is based on standardized values, Zj,i, of each measured covariate (see equation (2)) such that 

, ,( ) /j i j i j jZ x x sd  , where xj,i is the original observation of covariate j on day i, and jx  and 

sdj are the sample mean and standard deviation computed across all observations of covariate 

j (equation 2, below, describes the relationship between X and Z). All standardized covariates 

are, therefore, unitless and on the same scale, facilitating direct comparison of the magnitude 

of the main effects. Further, 0 (intercept) describes the predicted flux at average 

environmental conditions. For the main effects SAM model, we excluded all quadratic terms 

and two-way interactions. 

For both the full and main effects SAM models, covariates (X’s) in equation (1) represent 

the antecedent values of the observed environmental drivers. The SAM approach specifies a 

stochastic model that calculates each antecedent covariate as a weighted average of past 

values: 

 , , ,

0

Tlag

j i j t j i t

t

X w Z 



       (2) 

We interpret the antecedent importance weights (wj,t) as the relative importance of covariate j 

at varying time periods t into the past for driving the response of interest (i.e., NEE or ET). 

Each wj,t is constrained between 0 and 1 and sums to 1 across all past time steps (t = 0, …, 

Tlag). The magnitude of the w’s, therefore, reveal timescales of influence for each individual 

driver or covariate (Ogle et al., 2015). For all covariates except precipitation, we used a daily 

time step for t, with Tlag = 6 days; that is, t = 0 is concurrent with (same day as) the flux 
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measurement, t = 1 is the previous time step (i.e., yesterday), t = 2 represents two days prior, 

and t = Tlag represents conditions 6-days prior.  

Precipitation (X5) is integrated over a 6-month period at varying time steps, ranging from 

weeks (t = 0, 1, 2, or 3 weeks, covering the month leading up to the flux measurement) to 

months (t = 4, 5, …, 8, representing 2, 3, …, 6 months prior). See supplemental information 

for details. We set w5,0 = 0 such that precipitation received during the week leading up to the 

flux measurement is not considered since antecedent soil moisture over the past week is 

already included in the model, and NEE and ET are expected to respond directly to soil 

moisture at this timescale.  

For the current only model, we simply set Xj,t = Zj,t, which is equivalent to setting wj,t = 1 

for the current time step (t = 0) and wj,t = 0 for all past time steps (t = 1, 2, …). We excluded 

precipitation from the current model variant because we accounted for current soil moisture 

conditions, and current precipitation (defined as precipitation received the week leading up to 

the flux measurement) is not included in any of the models. Shallow soil moisture 

measurements integrate moisture from the surface to 5-cm depth, which should capture the 

moisture source involved in rapid ET responses to small precipitation events. Similarly, 

concurrent precipitation is not used in the SAM model variants. 

We completed the model specification by assigning priors to all unknown, stochastic 

parameters. We chose relatively non-informative conjugate priors for the regression 

coefficients such that each β term was assigned a Normal(0,105) prior, where 105 is the prior 

variance. We specified a wide, uniform prior for the standard deviation describing the 

distribution of Yi such that  ~ Uniform(0,1000). Finally, we specified a relatively non-

informative Dirichlet prior for each vector of antecedent weights, wj = (wj,0, wj,1, …, wj,Tlag), 

such that wj ~ Dirichlet(1), where 1 is a vector of 1’s of length Tlag+1. The model was fit 
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separately to the NEE and ET data for each site, producing four sets of parameter estimates (2 

flux variables × 2 sites) for each of the three model variants. 

2.3. Evaluating the Net Effect of Each Driver 

We evaluated the net sensitivity of each flux variable to each antecedent driving variable 

(covariate) by computing the partial derivative of µ (equation (1)) with respect to the 

covariate of interest, X. For example, the net sensitivity of predicted NEE or ET to antecedent 

Tair (X1) is given by: 

 
5

2

1 8 1, 1, ,

21

2i
i k k i

k

X X
X


  




  


      (3) 

Computation of /X, as illustrated by /X1, accounts for uncertainty in the antecedent 

weights and regression coefficients, producing posterior distributions for the sensitivity 

indices. In general, when ET/X is positive, ET increases (decreases) in response to an 

increase (decrease) in the driver, X. When NEE/X is positive, an increase in the driver leads 

to less negative (or more positive) NEE, indicating an increased contribution of Reco relative 

to GPP (e.g., increased carbon loss to the atmosphere), while a decrease in the driver leads to 

more negative (or less positive) NEE (relatively high GPP component or carbon gain). In 

contrast, when NEE/X is negative, a decrease (increase) in the driver leads to increasingly 

positive (increasingly negative) NEE. 

2.4. Model Implementation and Fit 

We coded the models in JAGS 4.0.0 (Plummer, 2003) and implemented each through R 

(Core Team, 2015), using the rjags package. For each model variant (i.e., current only, main 

effects SAM, and full SAM), we sampled the posterior parameter space and assessed 

convergence using three parallel MCMC chains run for 40,000 iterations. We subsequently 

thinned the chains to produce > 3,000 approximately independent posterior samples for each 
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quantity of interest. We assessed convergence using the Gelman and Rubin (1992) diagnostic. 

Parameter estimates are reported as the posterior means and 95% credible intervals (CIs), 

defined by the 2.5th and 97.5th percentiles. 

We evaluated model fit for each model variant by computing the coefficient of 

determination (R2) from a regression of the observed fluxes (Y = NEE or ET) on the predicted 

fluxes given the fitted values for µi and  (i.e., using replicated data, as per Gelman et al. 

2013). We compared R2 values among models, in addition to coverage (i.e., percent of 

observations contained within the 95% CIs of the corresponding replicated data). Increasingly 

complex models are accompanied by improved model fit, so we accounted for this artifact of 

model complexity by calculating the Deviance Information Criterion (DIC) for each model 

variant (Spiegelhalter et al., 2002). DIC, although imperfect (Gelman et al., 2013; 

Spiegelhalter et al., 2014), corrects model fit for model complexity by taking into account the 

effective number of parameters in the model (pD). When DIC calculated for models of 

different complexity differs by 10 or more, the model with the lower DIC is preferred 

(Spiegelhalter et al., 2002).  

2.5 Evaluating Model Sensitivity to Data Selection 

We conducted tests to evaluate model sensitivity to (1) start of the growing season and (2) 

percent of gap-filled 30-minute data. Model sensitivity tests indicate that the April to October 

growing season captured the period significant for biological activity at both sites. Changing 

the defined growing season to March for the US-Mpj site, which is warmer and becomes 

active earlier in the year, did not significantly change the results (Table S1 and S4). 

Excluding gap-filled data did not significantly change our results (see Supplemental 

Materials, section B).  

3. Results 
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3.1. Model Fit 

All three model variants reproduced measured fluxes reasonably well. For the full SAM 

model, regressions of observed versus predicted observations produced R2 values of 0.65 and 

0.68 for NEE at US-Vcp and US-Mpj, respectively, and 0.72 and 0.77 for ET at US-Mpj and 

US-Vcp, respectively (Fig. 2 and Fig. S2). Nominal coverage probabilities (i.e., the percent of 

measured values that fall within the 95% Bayesian credible interval (CI) of their 

corresponding replicated data values) indicate that the full SAM model replicates the 

temporal variation in growing season fluxes well. At both sites, 95% to 96% of the measured 

ET and NEE values fall within this 95% (CI) of their corresponding replicated data values 

(Fig. S3). Including only current covariates or only main effects (i.e., current only or main 

effects SAM model variants) led to R2 values that were approximately 6% lower for ET at 

both sites and 9% to 13% lower for NEE at US-Mpj and US-Vcp, respectively (Fig. 2). 

Further, DIC for the full SAM variant was consistently lower by at least 24 units (Table S2), 

indicating that the full SAM variant provided the best model fit and that main effects or 

current conditions alone were inadequate to explain the variability in NEE and ET at each 

site. 

Since the full SAM variant provided the best model fit, we evaluated the posterior results 

of this model variant to compare the sensitivity of ET and NEE to atmospheric and moisture-

related covariates across the two ecosystems. The full SAM variant further allowed a 

comparison of the timescales over which each covariate exerts the greatest influence on ET 

and NEE. Finally, the full SAM model allowed an analysis of temporal variations in the net 

sensitivity of each flux to environmental drivers, /X, across each growing season that 

emerge from interactions between covariates. 

3.2. Significant Drivers of ET and NEE 
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NEE and ET at both sites respond similarly to the main atmospheric and moisture-related 

drivers (Table 1). Increases in Tair and Sshall generally enhanced water and CO2 loss at both 

sites. Increased VPD also enhanced CO2 loss while dampening water loss at both sites. In 

contrast, increased PAR and/or Sdeep enhanced CO2 storage in both ecosystems while 

increasing ET (Table 1; Table S1a and S1b). The range of VPD (ΔVPD) in a given day 

exerted an influence over both fluxes at US-Vcp but not at US-Mpj.  

Although the main and quadratic effects contribute to the net effect of each driver on 

each flux, they do not tell the whole story. For example, the main effects of precipitation 

were insignificant for driving CO2 fluxes at both sites, but there were significant interactions 

between precipitation and other drivers (Table 1; Table S1a and S1b). In addition, higher 

VPD dampens ET at both sites, but there are significant interactions between VPD and other 

climate drivers (Table 1) that make this result difficult to interpret without calculating net 

sensitivity, which simultaneously considers the main, quadratic, and interaction effects along 

with antecedent influences (see Section 3.3). 

3.3. Temporal Variability in Net Sensitivity to Drivers 

The net sensitivity of ET and NEE to each driver (i.e., /X [equation 3]) is generally 

consistent with parameter estimates for the main effects (Table 1) but varies temporally due 

to interactions with other covariates and is often stronger than the p-values of sensitivity to 

main drivers would suggest. The net sensitivity of ET and NEE varied both within growing 

seasons and across years (e.g., Fig. 3 and 4). Here, we focus on the net sensitivity of ET and 

NEE to the key atmospheric (Tair and VPD) and soil moisture (Sshall and Sdeep) drivers that 

govern these fluxes.  

Consistent with the main effects, ET/Tair (Fig. 3a) and ET/Sshall (Fig. 3c) were 

positive across the growing season in all years at both sites, indicating that ET increased in 

response to increases in these drivers (i.e., Tair and Sshall). Differences between the two sites, 
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however, emerge in the intraseasonal variability in the net sensitivity to Tair; At US-Mpj, 

ET/Tair increased in the middle of the growing season, whereas ET/Tair gradually 

decreased over the growing season at US-Vcp, often with a steep decline in July. These 

changes at both sites generally accompanied increased precipitation in the middle of the 

growing season (Fig. 3e), associated with the onset of the North American Monsoon. The 

temporal variation in ET/Sshall was nearly identical at both sites, and was generally highest 

early in the growing season (Fig. 3c).  

The net sensitivities of ET to VPD and Sdeep, ET/VPD (Fig. 3b) and ET/Sdeep (Fig. 

3d), respectively, were also generally consistent with the main effects of those drivers. For 

the most part, ET/VPD was negative throughout the growing season at both sites, meaning 

that ET decreased in response to increased VPD (Fig. 3b). While this is consistent with the 

main effect of VPD on ET (2, Table 1), ET/VPD increased around the middle of the 

growing season at the US-Vcp site in most years. There was less consistent intraseasonal 

variability at US-Mpj. Like the ET response to Sshall,  ET/Sdeep was positive across most of 

the growing season. Unlike ET/Sshall, however, the magnitude and temporal variability in 

ET/Sdeep is less consistent among the sites. The inter- and intraseasonal variability in the 

magnitude of ET/Sdeep (Fig. 3d) is likely due to variability in the sign and magnitude of the 

significant interactions involving Sdeep (Table 1) and the associated temporal variability in 

Sdeep especially at the US-Vcp site (Fig. 1f). Throughout the growing season, ET/Sdeep was 

lower at US-Mpj than at US-Vcp. At US-Vcp, ET/Sdeep varied bimodally and was highest 

during the dry, early part of the growing season and again later in the growing season.  

The magnitude of intraseasonal variability in the net sensitivity of NEE to atmospheric 

drivers was also similar across sites. At both sites, NEE was fairly insensitive to changes in 

Tair at the shoulder seasons (NEE/Tair close to zero) when NEE is neutral or slightly 
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negative (Fig. 1b). Occasional excursions of NEE/Tair toward negative values at the 

beginning of the growing season at US-Vcp indicate that NEE became more negative as Tair 

increased, indicating increased carbon sink strength. NEE/Tair shifted to high and 

significantly positive values as the growing season progressed, peaking mid-growing season 

(Fig. 4a). Across all growing seasons, NEE/VPD at US-Mpj was negative (i.e., as VPD 

increased, NEE became more negative or less positive) or near zero (i.e., VPD did not exert a 

significant influence over NEE). At US-Vcp, NEE/VPD was generally positive (i.e., NEE 

became more positive with increasing VPD) throughout the growing season (Fig. 4b), 

consistent with the main effect. Although the main effects and net sensitivities of each driver 

had the same sign at US-Vcp, the main effect alone did not capture the decrease in NEE 

sensitivity to VPD once precipitation increased in the middle of each growing season (Fig. 

4b). In general, NEE at US-Vcp was more sensitive to VPD (i.e., higher magnitude for 

NEE/VPD) than NEE across the growing season at US-Mpj.  

The net sensitivity of NEE to moisture-related variables (e.g., Sshall and Sdeep) was  

consistent with the main effects at both sites, but the main effects do not capture the temporal 

patterns in sensitivity, which are notably more variable at US-Vcp than at US-Mpj for both 

NEE/Sshall and NEE/Sdeep (Fig. 4c and 4d, respectively). At US-Mpj, NEE/Sshall was 

positive throughout the growing season, and fairly tightly constrained (narrow 95% CIs) to 

relatively small values. In contrast, at US-Vcp, NEE/Sshall was often positive at the start of 

the growing season, dropping to negative values over a period of 1-2 months, then increasing 

and reaching positive values after precipitation onset (Fig. 4c and 4e). The net sensitivity of 

NEE to Sdeep (NEE/Sdeep) was generally negative at both sites, but of larger magnitude at 

US-Vcp (Fig. 4d).  

3.4. Importance of Antecedent Drivers 
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The timescales over which individual atmospheric and moisture-related drivers 

influenced ET and NEE differed. At both sites, VPD, Tair, and Sshall exerted their greatest 

influence (i.e., highest importance weight, wj,t, equation (2)) over ET (Figs. 5a and 5c) and 

NEE (Figs. 5b and 5d) on the day of measurement, and the influence of these variables was 

negligible two or more days prior to the flux measurement (Fig. 5). At US-Vcp, concurrent 

VPD and Sshall accounted for approximately 45% (posterior mean for importance weight, wj,1 

= 0.45) of the total influence of these drivers over NEE, while concurrent Tair accounted for 

approximately 60% of the temperature influence on NEE (Fig. 3b). At US-Mpj, concurrent 

VPD, Tair, and Sshall exerted a stronger influence over NEE (posterior means for wj,1 = 0.70, 

0.80, and 0.90, respectively) than ET (wj,1 = 0.70, 0.60, and 0.80, respectively) (Fig. 5c and 

d).  

While Tair, VPD, and Sshall exerted an almost instantaneous influence over ET and NEE, 

antecedent Sdeep and precipitation were important for driving fluxes at both sites. At US-Vcp, 

Sdeep became increasingly important further into the past, with the highest importance weights 

occurring 6 days prior to the ET and NEE measurements (Figs. 5a and 5b). The timescales of 

influence of Sdeep over ET at US-Mpj are not well resolved, whereby the importance weights 

did not notably vary among past time steps (wj,t ≈ 0.14 for all t = 1, 2, …, 7) (Fig. 3c). NEE at 

US-Mpj was influenced more by Sdeep experienced a week ago (6 to 7 days in the past) than 

by concurrent Sdeep (Fig. 5d). 

The timescales of influence of precipitation at US-Vcp were more variable for NEE than 

for ET, with the highest importance weights for precipitation occurring three months prior to 

the NEE measurement (Fig. 5b). ET at the US-Vcp site responded more rapidly to 

precipitation, with the highest importance weights occurring the week prior to the flux 

measurement (Fig. 5a). In contrast, at US-Mpj, importance weights were highest for 

precipitation received four to five months prior, for both ET and NEE (Fig. 5c).  
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4. Discussion 

The goal of this study was to (1) compare ET and NEE responses to atmospheric and 

moisture-related drivers across semiarid ecosystems, (2) determine how the net sensitivity of 

these fluxes to individual climate variables vary temporally, and (3) determine the timescales 

over which drivers influence the fluxes.  

4.1. ET and NEE Responses to Atmospheric and Moisture-Related Drivers 

NEE and ET fluxes in both the pinyon-juniper woodland and ponderosa pine forest 

responded strongly to both atmospheric drivers and soil moisture status, consistent with 

previous studies in semiarid ecosystems (e.g., Jia et al., 2016; Jung et al., 2011, Anderson-

Teixeira et al. 2011). Warmer air temperatures (Tair), higher vapor pressure deficits (VPD), 

and greater shallow soil moisture (Sshall) all decreased net carbon uptake (resulting in more 

positive NEE) in both sites with variable impacts on water loss (ET). In contrast, increases in 

deep soil moisture (Sdeep) in both sites increased net carbon uptake (resulting in more negative 

NEE).  

We hypothesized that fluxes at the ponderosa pine site would be more sensitive to 

VPD and soil moisture because of the dominance of trees with generally isohydric properties. 

With the exception of the response of NEE to Tair at the ponderosa pine site, the sign of the 

responses to these individual drivers was the same in both ecosystem types (Table 1). 

However, the magnitude of the response of both ET and NEE to VPD and the magnitude of 

the NEE response to Sdeep were higher at the ponderosa pine site than the pinyon-juniper 

woodland (Table S1a), suggesting that this hypothesis is, at least partially, supported. 

However, interpreting the main, or even non-linear (quadratic), effects of individual drivers 

can be misleading due to the presence of significant interactions between drivers (Neter, 

1996). This motivated us to focus on the net sensitivities, which simultaneously account for 



 

 
©2020 American Geophysical Union. All rights reserved. 

the interactive, main, and quadratic effects, in addition to the timescales over which each 

driver influences NEE and ET. 

4.2. Temporal Variability in Net Sensitivity Across Ecosystems 

The net sensitivities of NEE and ET to different drivers varied within and across seasons 

at both sites. We expected the net sensitivities of ET and NEE to drivers such as VPD and 

soil moisture to be of higher magnitude (more sensitive) and to exhibit greater temporal 

variability at the ponderosa pine forest compared to the pinyon-juniper woodland, again, due 

to the different hydraulic properties of the dominant vegetation across the sites.  

In support of our hypothesis, NEE was more sensitive to VPD and soil-moisture-related 

drivers in the ponderosa pine forest compared to the pinyon-juniper woodland (Fig. 4b-d). At 

the ponderosa pine site, increased VPD reduced net CO2 uptake early in the growing season. 

In contrast, at the start of the growing season, NEE at the pinyon-juniper site was insensitive 

to VPD. Overall, these results suggest that high VPD (increased atmospheric water deficit) 

weakens the carbon sink to a greater degree in ponderosa pine forests than in pinyon-juniper 

woodlands, consistent with previous studies on the effects of rising temperature across the 

study region (Anderson-Teixeira et al., 2011).  

NEE in the ponderosa pine forest was also more sensitive, and exhibited greater 

intraseasonal variability, to soil moisture compared to NEE in the the pinyon-juniper 

woodland. Although the net sensitivity of NEE to shallow soil moisture (Sshall), NEE/Sshall, 

was consistently positive in the pinyon-juniper woodland, there were periods when 

NEE/Sshall was negative at the ponderosa pine site, particularly during the pre-monsoon dry 

period when Sshall is low (Fig. 1). Unlike the response of NEE to Sshall, the net sensitivity of 

NEE to deep soil moisture (Sdeep) was generally negative throughout the growing season at 

both sites (Fig. 4d). This is consistent with observations that tree species at both sites rely on 

deep soil moisture for growth, which would lead to negative NEE, particularly early in the 
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growing season (Chesus & Ocheltree, 2018; Grossiord, Sevanto, Borrego, et al., 2017; Guo et 

al., 2018; Kerhoulas et al., 2013, 2017; West et al., 2007). Microbes within a few centimeters 

of the surface become active quickly when wet, so heterotrophic respiration is typically 

uncoupled from deeper moisture (Belnap et al., 2005). This negative sensitivity may, 

therefore, describe the influence of deep moisture, which is generally higher and more 

variable at the ponderosa pine site (Fig. 1), on photosynthesis versus heterotrophic activity.  

The temporal variability in the net sensitivity of ET to atmospheric drivers and deep soil 

moisture also varied across sites. Again, the magnitude and temporal variability of the net 

sensitivity of ET to these drivers was greater at the ponderosa pine site. This was particularly 

true for the response to deep soil moisture. At the ponderosa pine site, ET was most sensitive 

to Sdeep early in the growing season (dry pre-monsoon) when these trees are expected to rely 

on deeper moisture recharged by snowmelt (e.g., Kerhoulas et al., 2013, 2017). At the 

pinyon-juniper site, ET/Sdeep was less variable than at the ponderosa pine site, and there 

were periods when water loss at this site was insensitive to Sdeep. The lower sensitivity of ET 

to Sdeep in the pinyon-juniper woodland may reflect the relatively low and invariable moisture 

status of the deeper layers at this site (Fig. 1). Alternatively, it could reflect a seasonal shift to 

greater reliance of the trees on shallower moisture sources, as has been documented for 

pinyons and junipers across the region (e.g., West et al., 2007; Grossiord et al., 2017). 

Finally, the lower sensitivity of ET to Sdeep at the pinyon-juniper woodland may also be due 

to a more dominant role of near-surface evaporation (relative to transpiration) at this site. 

This near-surface soil-water evaporation is typically decoupled from the water status of the 

deeper soil layers, and is a dominant process even after the onset of the monsoon at similar 

elevations across the region (Vivoni et al., 2008). 

4.3. Past Moisture Conditions Control CO2 and Water Fluxes 
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The degree to which antecedent conditions controlled carbon and water fluxes varied across 

the ecosystems. We hypothesized that the net carbon and water fluxes would be more 

sensitive to past conditions at the drier pinyon-juniper site, consistent with global studies 

(Besnard et al., 2019; Liu et al., 2019). This hypothesis is partially supported. In contrast to 

our hypothesis, however, fluxes in both ecosystems responded similarly and almost 

instantaneously to atmospheric drivers and shallow soil moisture (Fig. 5). In support of our 

hypothesis, while both antecedent precipitation and deep soil moisture were important at both 

sites, we observed longer response timescales for these driving variables at the pinyon-

juniper woodland. In the ponderosa pine forest, precipitation received one week to three 

months prior to the flux measurement exerted the most significant influence over ET and 

NEE, respectively. In contrast, precipitation received 5-6 months prior influenced both NEE 

and ET in the pinyon-juniper woodland.  

Globally, the timescales over which soil moisture and precipitation influence NEE are 

highly variable in forested ecosystems (1.5 to 7.5 months), with longer timescales reported 

for drier ecosystems (Liu et al., 2019). Our results for both ET and NEE are consistent with 

this finding, though the mechanisms that give rise to these long timescales are poorly 

understood. One possibility is that the 3 to 6 month timescale reflects the importance of 

winter precipitation to NEE and ET, similar to observations at other sites (Baek et al., 2017; 

Guo et al., 2018; Kerhoulas et al., 2017), For example, winter precipitation, especially snow, 

is important for moisture recharge of deeper soil depths (> 30 cm) and the subsequent 

stimulation of root development (Loik et al., 2013). The longer response timescales of fluxes 

to precipitation inputs at the pinyon-juniper site, compared to the ponderosa pine site, is 

consistent with precipitation exerting longer timescales of influence over NEE under more 

arid conditions (Liu et al., 2019). Moreover, the comparatively long timescales over which 

precipitation influences NEE and ET, and the multiple significant interactions between the 
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short timescale drivers and precipitation (Table 1), suggests that the precipitation regime 

several months prior to the flux measurement is an important determinant of the sensitivity of 

NEE and ET to other atmospheric- and moisture-related drivers.  

5. Conclusions 

The significant climatic drivers of ET and NEE and the timescales over which they 

influence these fluxes, were similar in two semiarid coniferous biomes. Many of the drivers 

interacted with each other to influence ET and NEE, leading to temporal variation in the 

sensitivity of these fluxes to key atmospheric and moisture-related drivers. Further, we found 

that ET and NEE in both ecosystems responded nearly instantaneously to air temperature, 

vapor pressure deficit, and shallow soil moisture, but responded to deep soil moisture and 

precipitation over longer timescales. The mechanisms underlying these delayed and / or 

persistent responses are unclear, but could reflect the role of rooting depth patterns, 

stimulation and production of deep roots, deep soil moisture recharge dynamics, and/or 

delays associated with hormonal signaling, among others. 

The notably long timescales over which past precipitation and deep soil moisture 

influence ET and NEE in both ecosystems, and the temporal variation in the flux sensitivities 

to climate drivers, highlights the importance of considering such temporal features when 

modeling ecosystem responses (i.e., NEE and ET) to environmental conditions. In the two 

coniferous semiarid systems studied here, temporal variation in the net sensitivities of NEE 

and ET are partly driven by cumulative precipitation patterns and align with the onset of the 

North American Monsoon. In a changing climate, factors that decrease an ecosystem’s 

capacity to store carbon or that enhance water loss are of particular concern. In both 

ecosystems studied here, warmer conditions consistently led to increased CO2 and water loss, 

while increases in deep soil moisture enhanced CO2 storage. As temperatures and VPD 

continue to rise across the region and winter precipitation potentially decreases (Jones & 
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Gutzler, 2016), this combination of changes may weaken the carbon sink and exacerbate 

evaporative water loss across the Southwest. 
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Figure 1. Observed time-series of daily (a) evapotranspiration (ET), (b) net ecosystem 

exchange (NEE) of CO2, (c) air temperature (Tair), (d) vapor pressure deficit (VPD), (e) 

shallow soil water content (0-5 cm, Sshall), (f) deep soil water content (25-30 cm, Sdeep), (g) 

precipitation at US-Vcp, and (h) precipitation at US-Mpj. Purple lines at the pinyon-juniper 

site (US-Mpj) and black lines at the ponderosa pine site (US-Vcp) represent the modeled 

growing season fluxes (panels a and b) and the full covariate datasets. Gray lines in panels a 

and b represent non-growing season fluxes that were not included as response variables in the 

models. Vertical gray shaded regions denote the growing season period, corresponding to the 

time periods represented in Figures 4 and 5.  
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Figure 2. Comparison of model fit (coefficient of determination, R2) between measured (Y) 

and modeled (Yrep) ET and NEE fluxes, for models that consider current covariates only 

(black bars), main effects only in the SAM framework (gray bars), and the full SAM model 

with main effects, quadratic terms, and interactive effects (white bars). Groups of bars are 

shown for each site (ponderosa pine = US-Vcp and pinyon-juniper = US-Mpj) and variable 

(NEE or ET) combination. 
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Figure 3. Variation in the net sensitivity of ET to environmental drivers (X), ET/X, for: (a) 

air temperature (Tair), (b) vapor pressure deficit (VPD), (c) shallow soil water content (Sshall), 

and (d) deep soil water content (Sdeep), within growing seasons and across years at US-Mpj 

(purple lines) and US-Vcp (gray lines), along with (e) observed daily precipitation. The solid 

purple and black lines are the posterior means for ET/X, and the shaded blue and gray 

regions are the corresponding 95% credible intervals (CIs). The horizontal red lines indicate 

ET/X = 0; the dotted vertical lines separate years; the gray vertical bars indicate the 

average timing of the North American Monsoon onset (early July) and retreat (early 

September) in New Mexico. 
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Figure 4. Variation in the net sensitivity of NEE to (a) Tair, (b) VPD, (c) Sshall, and (d) Sdeep 

within growing seasons and across years at US-Mpj (purple) and US-Vcp (gray), along with 

(e) observed daily precipitation. See Fig. 4 for more details. 
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Figure 5. Posterior means and 95% credible intervals (CIs) for the antecedent importance 

weights (wj,t, equation 2) for driving variables of (a) ET at US-Vcp, (b) NEE at US-Vcp, (c) 

ET at US-Mpj, and (d) NEE at US-Mpj. Symbols are colored according to the driving 

variable, with the atmospheric variables being VPD and Tair, and the moisture-related 

variables being precipitation (ppt), Sshall, and Sdeep (see Fig. 1 for definitions of these 

variables). The vertical dashed lines denote a change in the temporal scale. 
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Table 1. Summary of posterior estimates of the effects parameters in the full SAM model (see 

equation 1), for each response variable (Y) and site combination. Within each cells, the 

direction of the effect (+/-) is indicated, and cells are shaded by Bayesian p-values, with 

darker shading denoting greater significance*. See Tables S1a and S1b in the supplemental 

materials for numerical estimates (i.e., posterior means and 95% credible intervals). See Fig. 

1 for definitions of the covariates and site names. 

  Y = ET Y = NEE 

Effect 

parameter 
Covariate US-Vcp US-Mpj US-Vcp US-Mpj 

β1 Tair + + n.s + 

β2 VPD - - + + 

β3 Sshall + + + + 

β4 Sdeep + + - - 

β5 precipitation - + n.s n.s 

β6 PAR + + - - 

β7 ΔVPD + n.s - n.s 

β8 VPD2 n.s + n.s + 

β9 Tair2  n.s n.s + + 

β1,2 Tair × VPD + n.s - - 

β1,3 Tair × Sshall n.s + n.s + 

β1,4 Tair × Sdeep + + n.s + 

β1,5 Tair × precipitation - - n.s - 

β2,3 VPD × Sshall + + + n.s 

β2,4 VPD × Sdeep - - + - 

β2,5 VPD × precipitation + + - + 

β3,4 Sshall × Sdeep - - + n.s 

β3,5 Sshall × precipitation + + - n.s 

β4,5 Sdeep × precipitation - + + + 

*Definitions of shading as defined by Bayesian p-values: 

  p  0.001   0.01 < p  0.05 

  0.001 < p  0.01 n.s not significant 

+ β > 0 - β < 0 

 


