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Abstract

Water and CO> flux responses (e.g., evapotranspiration [ET] and net ecosystem exchange
[NEE]) to environmental conditions can provide insights into how climate change will affect
the terrestrial water and carbon budgets, especially in sensitive semiarid ecosystems. Here,
we evaluated sensitivity of daily ET and NEE to current and antecedent (past) environment
conditions, including atmospheric (vapor pressure deficit [VPD] and air temperature [Tair])
and moisture (precipitation and soil water) drivers. We focused on two common southwestern
U.S. (“Southwest”) biomes: pinyon-juniper woodland (Pinus edulis, Juniperus monosperma)
and ponderosa pine forest (Pinus ponderosa). Due to differences in aridity, rooting patterns,
and plant physiological strategies (stomatal and hydraulic traits), we expected ET and NEE in
these ecosystems to respond differently to atmospheric and moisture drivers, with longer
response timescales in the drier pinyon-juniper woodland. Net sensitivity to drivers varied
temporally in both ecosystems, reflecting the integrated influence of interacting drivers and
antecedent precipitation patterns. NEE sensitivity to VPD and soil moisture (and ET
sensitivity to deep soil moisture [Sqeep]) Was higher in the ponderosa forest. ET and NEE in
both ecosystems responded almost instantaneously to Tair, VPD, and shallow soil moisture
(Sshan), and increases in any of these drivers weakened the carbon sink and enhanced water
loss. Conversely, Sdeep and precipitation influenced ET and NEE over longer timescales (days
to months, respectively), and higher Sdeep enhanced the carbon sink. As climate changes,
these results suggest hotter and drier conditions will weaken the carbon sink and exacerbate

water loss from Southwest pinyon-juniper and ponderosa ecosystems.

Plain Language Summary

Water and CO; move between ecosystems and the atmosphere. As climate changes,

understanding what controls water loss and CO; exchange becomes more important. In dry
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areas like the southwestern U.S. (“Southwest”) the amount of water ecosystems lose to the
atmosphere is a significant part of the water balance. CO, that moves between the atmosphere
and ecosystems in dry regions is an important source of variability in carbon stored in
vegetation globally. We used six years of measurements from two important ecosystems in
the Southwest to understand how, and over what timescales, environmental conditions
(temperature, atmospheric dryness, precipitation, and soil moisture) control the movement of
water and CO; between the land and atmosphere. We focused on ponderosa pine and pinyon-
Jjuniper ecosystems because they comprise most woodlands in the Southwest. We found that
both ecosystems responded to similar drivers. However, the ponderosa pine forest was more
sensitive to atmospheric dryness and soil moisture. The pinyon-juniper woodland responded
more to past precipitation and deep soil moisture. Sensitivity to each environmental condition
varied during growing seasons with changes associated with precipitation. In general, hotter
and drier conditions increased the amount of carbon and water each ecosystem lost to the

atmosphere.
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Introduction

Drylands cover nearly 47% of Earth’s land surface (Reynolds, 2001), support ~20% of
the world’s population (Reynolds & Stafford-Smith, 2002), and are expanding as climate
changes (e.g., Huang et al., 2016; Mankin et al., 2017; Schlaepfer et al., 2017; Trenberth et
al., 2014; Xia et al., 2016; Zhang et al., 2015). Semiarid and arid ecosystems within these
regions have been identified as major modulators of CO» exchange between the land and
atmosphere globally, but models remain under-constrained across these regions (Ahlstrom et
al., 2015; Biederman, et al., 2017; Vargas et al., 2010). While the combinations of drivers
most important for ET and NEE vary across dryland biomes (Law et al. 2002; Richardson et
al. 2007), previous studies on CO2 and H>O fluxes suggest the importance of climatic drivers
(e.g., Baldocchi et al., 2018; Ellison et al., 2017; Morillas et al., 2017; Sandvig & Phillips,
2006; Y. Zhang et al., 2016). Additionally, antecedent (past) ecosystem states, disturbances,
and environmental conditions can influence future ecosystem responses in drylands, often
with considerable delays between the timing of a significant environmental event (e.g.,
drought, rain inputs, frost events) and the full ecosystem response (e.g., Anderegg et al.,
2015; Ogle et al., 2015; Peltier et al., 2016; Ryan et al., 2015; Liu et al., 2019). Quantifying
biome-specific sensitivity of ET and NEE to environmental drivers, and the timescales over
which these drivers govern ET and NEE (Williams et al., 2009) provides important
constraints on water (Bradford et al., 2006, 2014; Lauenroth & Bradford, 2006; Parton, 1978;
Sala et al., 1992) and carbon (Wang & Dickinson, 2012; Zhang et al., 2017) budgets across
multiple scales (e.g., local, regional, to global), especially in the context of climate change.

Here, we evaluate and compare the climatic controls on NEE and ET in two important
tree-dominated semiarid biomes in the southwestern U.S. (hereafter, the “Southwest”): a
ponderosa pine (Pinus ponderosa) forest (US-Vcp) and a pinyon-juniper woodland (US-Mpj)

co-dominated by Pinus edulis and Juniperus monosperma. These two biome types are
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ubiquitous across the region and have experienced increased mortality since the start of the
21" century (McDowell et al., 2016). The southwestern U.S. (hereafter, the “Southwest™) is
an ideal region to quantify the sensitivity of NEE and ET to combinations of drivers and their
timescales of influence across arid and semiarid ecosystems. The Southwest’s rugged
topography juxtaposes ecosystems with different dominant vegetation over short geographic
distances. Further, the Southwest generally experiences a bimodal distribution of annual
precipitation, with relatively wet winters and summers (via Pacific storms and the North
American Monsoon, respectively), and generally dry spring and fall (Chorover et al., 2011;
Szejner et al., 2016). This precipitation pattern establishes a mechanism for lags between
water inputs and fluxes (Biederman et al., 2017) and divides the growing season into distinct
periods: the dry early growing season (pre-monsoon drought) and a relatively wet mid- to
late-growing season that occurs after the onset of the North American Monsoon (typically
July; Grantz et al., 2007).

Like many regions across the globe, climate in the Southwest has been changing, and is
projected to continue changing over the next century, due to rising atmospheric CO: (e.g.,
Gonzalez et al., 2018; IPCC, 2013). Temperatures and drought frequency have already
increased across the region (Gonzalez et al., 2018; Prein et al., 2016), triggering large-scale
tree mortality events with the potential to alter the distribution and function of key
ecosystems (Allen et al., 2010; Allen & Breshears, 1998; Mueller et al., 2005; Williams et al.,
2012; McDowell et al., 2016, Adams et al., 2009; Anderegg et al., 2013; Breshears et al.,
2013). Mean annual temperature and VPD are projected to increase across the region over
the 21% century (Gonzalez et al., 2018; Jones & Gutzler, 2016; Seager et al., 2007; Seager &
Ting, 2017). Although winter precipitation is expected to decrease, average annual
precipitation may remain relatively unchanged (Garcia-Forner et al., 2016; Gonzalez et al.,

2018; Grantz et al., 2007; Jones & Gutzler, 2016; Mankin et al., 2017; Schwalm et al., 2012;
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Seager et al., 2007; Ting et al., 2018; Williams et al., 2012). Trees in many Southwest
ecosystems rely on winter precipitation to recharge soil moisture (Baek et al., 2017;
Kerhoulas et al., 2017), thus projected decreases in winter precipitation (Jones & Gutzler,
2016) will likely suppress ecosystem productivity and carbon sequestration (Knowles et al.,
2018). It is becoming increasingly important to understand how these climate factors interact
to drive ecosystem fluxes and the timescales over which these conditions are significant.
Specifically, our study is motivated by the following questions: (1) Do ET and NEE in
two distinct dryland biomes respond similarly to atmospheric (e.g., VPD and Tair) and
moisture-related (e.g., soil moisture or precipitation) drivers? While we expect fluxes in the
pinyon-juniper woodland and ponderosa pine forest to respond similarly to the same key
environmental drivers we predict that fluxes at the ponderosa pine site are more sensitive to
soil moisture recharge during the monsoon and to VPD (regardless of season) due to the
predominantly isohydric response of P. ponderosa in contrast to the more drought-tolerant
behavior of J. monosperma (Anthoni et al., 1999; Dore et al., 2010; Manrique-Alba et al.,
2018; Martinez-Vilalta & Garcia-Forner, 2017; McDowell et al., 2008; Voelker et al., 2018)
(2) In each biome, how does the overall (or net) sensitivity of ET and NEE to each
environmental driver, and interaction between environmental drivers, vary over time? In both
ecosystems, we expect the net response of both fluxes to each driver to be temporally variable
due to interactions with other drivers. In particular, we expect the magnitude and temporal
variability in the net sensitivities of both fluxes to soil moisture and VPD to be greater at the
ponderosa pine site (more sensitive) due to the different hydraulic characteristics of the
dominant tree species. Finally, (3) how important are antecedent (past) environmental
conditions for driving NEE and ET at each site? We expect NEE and ET fluxes at both sites
to respond to antecedent drivers, but the importance of antecedent conditions is likely to be

greater at the drier pinyon-juniper site (Liu et al., 2019).
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We addressed our research questions by synthesizing six years of daily NEE and ET flux
observations and associated climate and environmental data at each site using a Bayesian
framework. The approach we employed enables quantification of time-varying environmental
sensitivities and inference about the timescales over which the environmental drivers
influence ET and NEE. Our results will advance our understanding of how water and carbon
fluxes in these two tree-dominated biomes respond to climate drivers that are likely to change

as global climate changes.

2. Methods

2.1. Field Sites

This study uses multi-year data from two sites in the New Mexico Elevation Gradient
(NMEG) (Anderson-Teixeira et al., 2011), an array of eddy covariance towers in the
AmeriFlux network (Baldocchi et al., 2001; Law, 2005). The sites and instrumentation used
to obtain data for this study and methods used for quality control and gap-filling across the
NMEG have been described in detail elsewhere (Anderson-Teixeira et al., 2011; Morillas et
al., 2017), but we provide a summary here. The flux towers span an elevation gradient of
~1200 m in central to northern New Mexico, U.S., with ecosystems that range from desert
grasslands to subalpine mixed conifer forests. This study compares two sites within the
NMEG network, a pinyon-juniper woodland (US-Mpj) and a ponderosa pine forest (US-
Vep). We focus on these two sites for three primary reasons. First, these two sites represent
major tree-dominated ecosystems common to the Southwest that are particularly sensitive to
drought and climate change (Allen et al., 2010; Allen & Breshears, 1998; Breshears et al.,
2013; Huang et al., 2015; Mueller et al., 2005; Petrie et al., 2015; Shaw et al., 2005). Second,

the number of co-occurring species at these sites is small, so it is likely that the dominant tree
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species primarily control ecosystem fluxes. Third, relatively long (2008-2014), continuous
records of ecosystem fluxes and environmental driver data are available for these sites.

The lower elevation, pinyon-juniper woodland site (US-Mpj) is located in central New
Mexico just south of Mountainair, NM (elevation = 2196 m). The site is dominated by two
tree species, pinyon (P. edulis) and one-seed juniper (J. monosperma), with an open canopy
and an herbaceous understory comprised mainly of blue grama (Bouteloua gracilis), a C4
grass common to the region. The higher-elevation (2500 m) site (US-Vc¢p) is located
approximately 150 miles northwest of US-Mpj on the flanks of a resurgent volcanic dome in
the Jemez Mountains of northern New Mexico, and is dominated by P. ponderosa
(ponderosa) with an oak (Quercus gambelii) understory and minimal herbaceous species
cover in the footprint of the flux tower. At the US-Vcp site, average canopy height is 18-20 m
within the footprint of the 25 m high tower. At the US-Mpj site, average canopy height is 2.8
m, and the flux tower is 9 m tall (Morillas et al., 2017). Both sites are relatively flat with
slopes of less than 5% in the footprint of the towers. Soils at US-Mpj are Turkey Springs
stony loam soils and alluvially deposited limestone that generates a shallow, discontinuous
petrocalcic horizon or “caliche” layer between 30 and 80 cm depth. Soils at US-Vcp are
Jaramillo loam soils that are well-drained.

Although mean annual temperature (MAT) at the US-Mpj site is only 0.7°C warmer than
the US-Vcep site (10.5 °C vs 9.8 °C, respectively), US-Mpj receives 30% less precipitation
(385 vs 550 mm) per year and has a lower aridity index (0.34 vs 0.53), indicative of drier
average conditions (aridity index extracted from CGIAR-CSI Global-PET Dataset

[http://www.cgiar-csi.org/data/global-aridity-and-pet-database], downloaded on 20 April

2017 (Zomer et al., 2007, 2008)). Both sites receive ~47% of their total annual precipitation
during the North American Monsoon period (summer). Partitioned gross primary production

(GPP) fluxes indicate that trees at both sites are active in spring and summer, so we focus
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here on NEE and ET measured during this growing season. The growing season varies
interannually with increased GPP starting between March and April at both sites and ending
by October. In order to be consistent between sites, we chose to model fluxes from April to
October (“growing season”).

Ecosystem-atmosphere exchange of carbon and water was measured at both sites using
open-path eddy covariance. Eddy covariance instrumentation was identical at both sites (LI-
7500 open-path infrared gas analyzer (LI-COR, Lincoln, NE, USA), a CSAT-3 sonic
anemometer (Campbell Scientific Logan, UT, USA). 10Hz data were logged with a Campbell
Scientific CR5000 at both sites, and thirty-minute covariances were corrected for air density
fluctuations due to temperature (Webb et al., 1980), and frequency response (Massman,
2000) using Matlab scripts (Anderson-Texiera et al. 2011; Morillas et al. 2017).
Measurements from both sites were filtered for conditions that could compromise data
quality, including low-turbulence conditions (" < 0.16 ms™"), during precipitation pulses,
non-optimal wind directions (+30° behind the tower), and instrument malfunctions (Morillas
et al., 2017). We used directly measured net CO2 and water fluxes (i.e., NEE and ET) for data
analysis and modeling, rather than partitioned fluxes (i.e., GPP, Reco, Or transpiration derived
from tree-level sap-flow), to minimize additional sources of error or uncertainty associated
with partitioning the measured fluxes. We did, however, partition NEE into the main
components GPP and Reco by estimating respiration from night-time NEE measurements and
extrapolation to daytime (Reichstein et al. 2005), and calculated GPP as (NEE + Reco), to help
interpret model results (Fig. S1).

Air temperature (Tair) and relative humidity ([used to calculate VPD] (HMP45C Vaisala,
Helsinki, Finland), photosynthetically active radiation [PAR]( (LI-190SB, Licor Bioscience),
were recorded as 30-minute averages and precipitation (TES25MM-L50 tipping bucket rain

gauge, Texas Electronic) was recorded as 30-minute sums at both sites. Soil moisture

©2020 American Geophysical Union. All rights reserved.



measurements were made in four to six profiles per site at depths of 0-5 cm (“shallow,” Sghart)
and 25-30 cm (“deep,” Sdeep) using Campbell Scientific CS 616 probes (Anderson-Teixeira et
al., 2011). Gaps in the PAR data at US-Vcp were filled using linear interpolation; only 13%
of the daily PAR observations were missing across all growing seasons. No data were
missing in 2009 and 2011, and the mean gap length in the 2010, 2012, 2013, and 2014
growing season was 11 days. Figure 1 shows growing season fluxes along with continuous
micrometeorological and soil moisture data from the two sites.

We used daily sums of daytime, 30-minute NEE and ET measurements in our analyses.

Gaps in 30-minute flux measurements were filled using Reddyproc (http://www.bgc-

jena.mpg.de/~MDIwork/eddyproc/method.php), a freely available, web-based eddy

covariance gap-filling and flux-partitioning tool based on methods described in Falge et al.
(2001) and Reichstein et al. (2005). These methods primarily rely on spatial variability in
radiation parameters to fill in missing flux values. At both sites, 65% to 75% of the daily,
daytime ET and NEE values used in this study were based on mostly complete data (missing
zero to six 30-minute daytime measurements). Prior to using these methods to fill gaps in
NEE and ET, any missing meteorological data were filled using data from nearby
meteorological stations. The meteorological station used to gap-fill Tair and VPD at the US-
Mpj site is located approximately 5 km away in a similar pinyon-juniper woodland (Morillas
et al., 2017). Meteorological data used to fill in data gaps at the US-Vcp site were obtained
from a weather station maintained by the Western Regional Climate Center

(https://wrec.dri.edu/weather/vijem.html) approximately 13 km away in a similar ponderosa

pine ecosystem.

2.2. Data Analysis and Modeling
We implemented a stochastic antecedent model (SAM) in a Bayesian framework (Ogle et

al. 2015) to evaluate the sensitivity of ET and NEE to environmental drivers, their

©2020 American Geophysical Union. All rights reserved.


http://www.bgc-jena.mpg.de/~MDIwork/eddyproc/method.php
http://www.bgc-jena.mpg.de/~MDIwork/eddyproc/method.php
https://wrcc.dri.edu/weather/vjem.html

interactions, and the timescales over which each driver influences NEE and ET. The model
specification includes a regression submodel for the flux of interest (ET or NEE) with linear,
quadratic, and interactive effects of each driver (covariate). Additionally, we define a
submodel to define antecedent covariates, which makes the SAM framework a non-linear
regression approach. The SAM model enables evaluation of the significance of different
environmental drivers and their timescales of influence. By implementing the model in a
Bayesian framework, we were able to obtain full posterior distributions for quantities of
interest and were able to incorporate priors that obey mass-balance-type constraints (e.g.,
antecedent importance weights must sum to 1; see below). The SAM approach has been
successfully applied to a variety of ecological time-series data (Guo & Ogle, 2018; Ibafiez et
al., 2017; Kropp et al., 2017; Ogle et al., 2015; Peltier et al., 2017), including ecosystem CO»
fluxes (Barron-Gafford et al., 2014; Liu et al., 2019; Ryan et al., 2015, 2017). To explicitly
evaluate the importance of antecedent environmental conditions and interactions among
environmental drivers, we compared results from the “full SAM” model to simpler models
that (1) considered concurrent environmental conditions only (“current only” model) or (2)
removed all non-linear effects (i.e., quadratic terms and all two-way interactions; “main
effects SAM” model).

For the three model variants, we assumed that the observed flux (Y = ET or NEE)
measured on day i follows a normal distribution such that ¥; ~ Normal(ui, 6*), where u; is the
mean or predicted flux and o? describes the residual variance about this mean. We modeled
i as a linear regression on potentially important antecedent environmental variables
(covariates; see Table 1). To capture potential non-linear responses, we included quadratic
terms for atmospheric drivers, and two-way interactions among most drivers (see Table 1).

For observation i and covariate j or k, the mean model is defined as:
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7 2 4 5
H= By + Z'BJXI'J’ +Zﬂ7+jX.ii +Z Z BuX ;X (D)
=1 =1

J1 k=j+1
The main effects of each covariate are depicted by i, f, ..., 7, the quadratic effects of VPD
and Tair are described by fs and fo, respectively, and the two-way interactions among the first
five covariates are described by S, f13, ..., P45 (see Table 1). For covariate j and day i, Xj,
is/based on standardized values, Z;;, of each measured covariate (see equation (2)) such that

Z,,=(x;,,—X,)/sd,;, where x;; is the original observation of covariate j on day 7, and X, and

sd; are the sample mean and standard deviation computed across all observations of covariate
j (equation 2, below, describes the relationship between X and Z). All standardized covariates
are, therefore, unitless and on the same scale, facilitating direct comparison of the magnitude
of the main effects. Further, f (intercept) describes the predicted flux at average
environmental conditions. For the main effects SAM model, we excluded all quadratic terms
and two-way interactions.

For both the full and main effects SAM models, covariates (X’s) in equation (1) represent
the antecedent values of the observed environmental drivers. The SAM approach specifies a
stochastic model that calculates each antecedent covariate as a weighted average of past

values:

We interpret the antecedent importance weights (wj,) as the relative importance of covariate j
at varying time periods # into the past for driving the response of interest (i.e., NEE or ET).
Each wj, is constrained between 0 and 1 and sums to 1 across all past time steps (=0, ...,
Tlg)- The magnitude of the w’s, therefore, reveal timescales of influence for each individual
driver or covariate (Ogle et al., 2015). For all covariates except precipitation, we used a daily

time step for ¢, with 71, = 6 days; that is, r = 0 is concurrent with (same day as) the flux
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measurement, ¢ = 1 is the previous time step (i.e., yesterday), ¢ = 2 represents two days prior,
and ¢ = T}, represents conditions 6-days prior.

Precipitation (X5) is integrated over a 6-month period at varying time steps, ranging from
weeks (=0, 1, 2, or 3 weeks, covering the month leading up to the flux measurement) to
months (=4, 5, ..., 8, representing 2, 3, ..., 6 months prior). See supplemental information
for details. We set ws o = 0 such that precipitation received during the week leading up to the
flux measurement is not considered since antecedent soil moisture over the past week is
already included in the model, and NEE and ET are expected to respond directly to soil
moisture at this timescale.

For the current only model, we simply set Xj; = Z;,, which is equivalent to setting w;, = 1
for the current time step (¢ = 0) and w;, = 0 for all past time steps (=1, 2, ...). We excluded
precipitation from the current model variant because we accounted for current soil moisture
conditions, and current precipitation (defined as precipitation received the week leading up to
the flux measurement) is not included in any of the models. Shallow soil moisture
measurements integrate moisture from the surface to 5-cm depth, which should capture the
moisture source involved in rapid ET responses to small precipitation events. Similarly,
concurrent precipitation is not used in the SAM model variants.

We completed the model specification by assigning priors to all unknown, stochastic
parameters. We chose relatively non-informative conjugate priors for the regression
coefficients such that each 8 term was assigned a Normal(0,10°) prior, where 10° is the prior
variance. We specified a wide, uniform prior for the standard deviation describing the
distribution of Y; such that ¢ ~ Uniform(0,1000). Finally, we specified a relatively non-
informative Dirichlet prior for each vector of antecedent weights, w; = (wjo, wj1, ..., W}, Tlug),

such that w; ~ Dirichlet(1), where 1 is a vector of 1’s of length 7j,+1. The model was fit

©2020 American Geophysical Union. All rights reserved.



separately to the NEE and ET data for each site, producing four sets of parameter estimates (2

flux variables x 2 sites) for each of the three model variants.

2.3. Evaluating the Net Effect of Each Driver
We evaluated the net sensitivity of each flux variable to each antecedent driving variable
(covariate) by computing the partial derivative of x4 (equation (1)) with respect to the

covariate of interest, X. For example, the net sensitivity of predicted NEE or ET to antecedent

Tair (X1) s given by:
OH; RN
P ﬁ] + 2ﬂ8X1,i + Zlgl,ka,i 3)
oxX, k=2

Computation of 04/0X, as illustrated by 01/0X1, accounts for uncertainty in the antecedent
weights and regression coefficients, producing posterior distributions for the sensitivity
indices. In general, when 0ET/0X is positive, ET increases (decreases) in response to an
increase (decrease) in the driver, X. When ONEE/0OX is positive, an increase in the driver leads
to less negative (or more positive) NEE, indicating an increased contribution of Reco relative
to GPP (e.g., increased carbon loss to the atmosphere), while a decrease in the driver leads to
more negative (or less positive) NEE (relatively high GPP component or carbon gain). In
contrast, when ONEE/0X is negative, a decrease (increase) in the driver leads to increasingly

positive (increasingly negative) NEE.

2.4. Model Implementation and Fit

We coded the models in JAGS 4.0.0 (Plummer, 2003) and implemented each through R
(Core Team, 2015), using the rjags package. For each model variant (i.e., current only, main
effects SAM, and full SAM), we sampled the posterior parameter space and assessed
convergence using three parallel MCMC chains run for 40,000 iterations. We subsequently

thinned the chains to produce > 3,000 approximately independent posterior samples for each
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quantity of interest. We assessed convergence using the Gelman and Rubin (1992) diagnostic.
Parameter estimates are reported as the posterior means and 95% credible intervals (Cls),
defined by the 2.5™ and 97.5" percentiles.

We evaluated model fit for each model variant by computing the coefficient of
determination (R?) from a regression of the observed fluxes (¥ = NEE or ET) on the predicted
fluxes given the fitted values for u; and o (i.e., using replicated data, as per Gelman et al.
2013). We compared R? values among models, in addition to coverage (i.e., percent of
observations contained within the 95% Cls of the corresponding replicated data). Increasingly
complex models are accompanied by improved model fit, so we accounted for this artifact of
model complexity by calculating the Deviance Information Criterion (DIC) for each model
variant (Spiegelhalter et al., 2002). DIC, although imperfect (Gelman et al., 2013;
Spiegelhalter et al., 2014), corrects model fit for model complexity by taking into account the
effective number of parameters in the model (pD). When DIC calculated for models of
different complexity differs by 10 or more, the model with the lower DIC is preferred

(Spiegelhalter et al., 2002).

2.5 Evaluating Model Sensitivity to Data Selection

We conducted tests to evaluate model sensitivity to (1) start of the growing season and (2)
percent of gap-filled 30-minute data. Model sensitivity tests indicate that the April to October
growing season captured the period significant for biological activity at both sites. Changing
the defined growing season to March for the US-Mpj site, which is warmer and becomes
active earlier in the year, did not significantly change the results (Table S1 and S4).
Excluding gap-filled data did not significantly change our results (see Supplemental

Materials, section B).

3. Results
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3.1. Model Fit

All three model variants reproduced measured fluxes reasonably well. For the full SAM
model, regressions of observed versus predicted observations produced R? values of 0.65 and
0.68 for NEE at US-Vcp and US-Mpj, respectively, and 0.72 and 0.77 for ET at US-Mpj and
US-Vcp, respectively (Fig. 2 and Fig. S2). Nominal coverage probabilities (i.e., the percent of
measured values that fall within the 95% Bayesian credible interval (CI) of their
corresponding replicated data values) indicate that the full SAM model replicates the
temporal variation in growing season fluxes well. At both sites, 95% to 96% of the measured
ET and NEE values fall within this 95% (CI) of their corresponding replicated data values
(Fig. S3). Including only current covariates or only main effects (i.e., current only or main
effects SAM model variants) led to R? values that were approximately 6% lower for ET at
both sites and 9% to 13% lower for NEE at US-Mpj and US-Vcp, respectively (Fig. 2).
Further, DIC for the full SAM variant was consistently lower by at least 24 units (Table S2),
indicating that the full SAM variant provided the best model fit and that main effects or
current conditions alone were inadequate to explain the variability in NEE and ET at each
site.

Since the full SAM variant provided the best model fit, we evaluated the posterior results
of this model variant to compare the sensitivity of ET and NEE to atmospheric and moisture-
related covariates across the two ecosystems. The full SAM variant further allowed a
comparison of the timescales over which each covariate exerts the greatest influence on ET
and NEE. Finally, the full SAM model allowed an analysis of temporal variations in the net
sensitivity of each flux to environmental drivers, 01/0X, across each growing season that

emerge from interactions between covariates.

3.2. Significant Drivers of ET and NEE
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NEE and ET at both sites respond similarly to the main atmospheric and moisture-related
drivers (Table 1). Increases in Tair and Sshanl generally enhanced water and CO; loss at both
sites. Increased VPD also enhanced CO> loss while dampening water loss at both sites. In
contrast, increased PAR and/or S¢eep enhanced CO; storage in both ecosystems while
increasing ET (Table 1; Table Sla and S1b). The range of VPD (AVPD) in a given day
exerted an influence over both fluxes at US-Vcp but not at US-Mpj.

Although the main and quadratic effects contribute to the net effect of each driver on
each flux, they do not tell the whole story. For example, the main effects of precipitation
were insignificant for driving CO; fluxes at both sites, but there were significant interactions
between precipitation and other drivers (Table 1; Table S1a and S1b). In addition, higher
VPD dampens ET at both sites, but there are significant interactions between VPD and other
climate drivers (Table 1) that make this result difficult to interpret without calculating net
sensitivity, which simultaneously considers the main, quadratic, and interaction effects along

with antecedent influences (see Section 3.3).

3.3. Temporal Variability in Net Sensitivity to Drivers

The net sensitivity of ET and NEE to each driver (i.e., 0/0X [equation 3]) is generally
consistent with parameter estimates for the main effects (Table 1) but varies temporally due
to interactions with other covariates and is often stronger than the p-values of sensitivity to
main drivers would suggest. The net sensitivity of ET and NEE varied both within growing
seasons and across years (e.g., Fig. 3 and 4). Here, we focus on the net sensitivity of ET and
NEE to the key atmospheric (Tair and VPD) and soil moisture (Sshan and Sdeep) drivers that
govern these fluxes.

Consistent with the main effects, OET/0Tair (Fig. 3a) and OET/0Sshan (Fig. 3¢) were
positive across the growing season in all years at both sites, indicating that ET increased in

response to increases in these drivers (i.e., Tair and Sshan). Differences between the two sites,
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however, emerge in the intraseasonal variability in the net sensitivity to Tair; At US-Mpj,
OET/0T.ir increased in the middle of the growing season, whereas OET/0Tair gradually
decreased over the growing season at US-Vc¢p, often with a steep decline in July. These
changes at both sites generally accompanied increased precipitation in the middle of the
growing season (Fig. 3e), associated with the onset of the North American Monsoon. The
temporal variation in OET/0Sshant was nearly identical at both sites, and was generally highest
early in the growing season (Fig. 3c¢).

The net sensitivities of ET to VPD and Sqeep, OET/OVPD (Fig. 3b) and OET/0Seep (Fig.
3d), respectively, were also generally consistent with the main effects of those drivers. For
the most part, OET/0VPD was negative throughout the growing season at both sites, meaning
that ET decreased in response to increased VPD (Fig. 3b). While this is consistent with the
main effect of VPD on ET (/, Table 1), OET/OVPD increased around the middle of the
growing season at the US-Vcp site in most years. There was less consistent intraseasonal
variability at US-Mpj. Like the ET response to Ssha, OET/0Sdeep Was positive across most of
the growing season. Unlike OET/0Sshai, however, the magnitude and temporal variability in
OET/0Sqeep 1s less consistent among the sites. The inter- and intraseasonal variability in the
magnitude of OET/0Sqeep (Fig. 3d) is likely due to variability in the sign and magnitude of the
significant interactions involving Sqeep (Table 1) and the associated temporal variability in
Sdeep €specially at the US-Vcp site (Fig. 1f). Throughout the growing season, OET/0Sgeep Was
lower at US-Mpj than at US-Vcp. At US-Vep, OET/0Sqeep varied bimodally and was highest
during the dry, early part of the growing season and again later in the growing season.

The magnitude of intraseasonal variability in the net sensitivity of NEE to atmospheric
drivers was also similar across sites. At both sites, NEE was fairly insensitive to changes in

Tair at the shoulder seasons (ONEE/0OT.ir close to zero) when NEE is neutral or slightly
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negative (Fig. 1b). Occasional excursions of ONEE/0T.i: toward negative values at the
beginning of the growing season at US-Vcp indicate that NEE became more negative as Tair
increased, indicating increased carbon sink strength. ONEE/OT.; shifted to high and
significantly positive values as the growing season progressed, peaking mid-growing season
(Fig. 4a). Across all growing seasons, ONEE/OVPD at US-Mpj was negative (i.e., as VPD
increased, NEE became more negative or less positive) or near zero (i.e., VPD did not exert a
significant influence over NEE). At US-Vcp, ONEE/OVPD was generally positive (i.e., NEE
became more positive with increasing VPD) throughout the growing season (Fig. 4b),
consistent with the main effect. Although the main effects and net sensitivities of each driver
had the same sign at US-Vcp, the main effect alone did not capture the decrease in NEE
sensitivity to VPD once precipitation increased in the middle of each growing season (Fig.
4b). In general, NEE at US-Vcp was more sensitive to VPD (i.e., higher magnitude for
ONEE/0VPD) than NEE across the growing season at US-Mp)j.

The net sensitivity of NEE to moisture-related variables (e.g., Sshan and Sgeep) Was
consistent with the main effects at both sites, but the main effects do not capture the temporal
patterns in sensitivity, which are notably more variable at US-Vc¢p than at US-Mpj for both
ONEE/0Sshan and ONEE/0Seep (Fig. 4c and 4d, respectively). At US-Mpj, ONEE/OSshan was
positive throughout the growing season, and fairly tightly constrained (narrow 95% Cls) to
relatively small values. In contrast, at US-Vcp, ONEE/OSshan was often positive at the start of
the growing season, dropping to negative values over a period of 1-2 months, then increasing
and reaching positive values after precipitation onset (Fig. 4c and 4e). The net sensitivity of
NEE to Sgeep (ONEE/OSqeep) Was generally negative at both sites, but of larger magnitude at

US-Vep (Fig. 44d).

3.4. Importance of Antecedent Drivers

©2020 American Geophysical Union. All rights reserved.



The timescales over which individual atmospheric and moisture-related drivers
influenced ET and NEE differed. At both sites, VPD, Tair, and Ssnan exerted their greatest
influence (i.e., highest importance weight, w;, equation (2)) over ET (Figs. 5a and 5c¢) and
NEE (Figs. 5b and 5d) on the day of measurement, and the influence of these variables was
negligible two or more days prior to the flux measurement (Fig. 5). At US-Vcp, concurrent
VPD and Ssnann accounted for approximately 45% (posterior mean for importance weight, wj 1
= 0.45) of the total influence of these drivers over NEE, while concurrent Tair accounted for
approximately 60% of the temperature influence on NEE (Fig. 3b). At US-Mpj, concurrent
VPD, Tair, and Ssnan exerted a stronger influence over NEE (posterior means for w;; = 0.70,
0.80, and 0.90, respectively) than ET (w;,; = 0.70, 0.60, and 0.80, respectively) (Fig. 5c and
d).

While Tair, VPD, and Sghan exerted an almost instantaneous influence over ET and NEE,
antecedent Sqeep and precipitation were important for driving fluxes at both sites. At US-Vcp,
Sdeep became increasingly important further into the past, with the highest importance weights
occurring 6 days prior to the ET and NEE measurements (Figs. 5a and 5b). The timescales of
influence of Sdeep Over ET at US-Mpj are not well resolved, whereby the importance weights
did not notably vary among past time steps (w;;~0.14 forall t=1, 2, ..., 7) (Fig. 3c). NEE at
US-Mpj was influenced more by Sqeep €xperienced a week ago (6 to 7 days in the past) than
by concurrent Sgeep (Fig. 5d).

The timescales of influence of precipitation at US-Vcp were more variable for NEE than
for ET, with the highest importance weights for precipitation occurring three months prior to
the NEE measurement (Fig. 5b). ET at the US-Vcp site responded more rapidly to
precipitation, with the highest importance weights occurring the week prior to the flux
measurement (Fig. 5a). In contrast, at US-Mpj, importance weights were highest for

precipitation received four to five months prior, for both ET and NEE (Fig. 5c¢).
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4. Discussion

The goal of this study was to (1) compare ET and NEE responses to atmospheric and
moisture-related drivers across semiarid ecosystems, (2) determine how the net sensitivity of
these fluxes to individual climate variables vary temporally, and (3) determine the timescales

over which drivers influence the fluxes.

4.1. ET and NEE Responses to Atmospheric and Moisture-Related Drivers

NEE and ET fluxes in both the pinyon-juniper woodland and ponderosa pine forest
responded strongly to both atmospheric drivers and soil moisture status, consistent with
previous studies in semiarid ecosystems (e.g., Jia et al., 2016; Jung et al., 2011, Anderson-
Teixeira et al. 2011). Warmer air temperatures (Tair), higher vapor pressure deficits (VPD),
and greater shallow soil moisture (Sshan) all decreased net carbon uptake (resulting in more
positive NEE) in both sites with variable impacts on water loss (ET). In contrast, increases in
deep soil moisture (Sdeep) in both sites increased net carbon uptake (resulting in more negative
NEE).

We hypothesized that fluxes at the ponderosa pine site would be more sensitive to
VPD and soil moisture because of the dominance of trees with generally isohydric properties.
With the exception of the response of NEE to Tair at the ponderosa pine site, the sign of the
responses to these individual drivers was the same in both ecosystem types (Table 1).
However, the magnitude of the response of both ET and NEE to VPD and the magnitude of
the NEE response to S¢eep Were higher at the ponderosa pine site than the pinyon-juniper
woodland (Table S1a), suggesting that this hypothesis is, at least partially, supported.
However, interpreting the main, or even non-linear (quadratic), effects of individual drivers
can be misleading due to the presence of significant interactions between drivers (Neter,

1996). This motivated us to focus on the net sensitivities, which simultaneously account for
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the interactive, main, and quadratic effects, in addition to the timescales over which each

driver influences NEE and ET.

4.2. Temporal Variability in Net Sensitivity Across Ecosystems

The net sensitivities of NEE and ET to different drivers varied within and across seasons
at both sites. We expected the net sensitivities of ET and NEE to drivers such as VPD and
soil moisture to be of higher magnitude (more sensitive) and to exhibit greater temporal
variability at the ponderosa pine forest compared to the pinyon-juniper woodland, again, due
to the different hydraulic properties of the dominant vegetation across the sites.

In support of our hypothesis, NEE was more sensitive to VPD and soil-moisture-related
drivers in the ponderosa pine forest compared to the pinyon-juniper woodland (Fig. 4b-d). At
the ponderosa pine site, increased VPD reduced net CO; uptake early in the growing season.
In contrast, at the start of the growing season, NEE at the pinyon-juniper site was insensitive
to VPD. Overall, these results suggest that high VPD (increased atmospheric water deficit)
weakens the carbon sink to a greater degree in ponderosa pine forests than in pinyon-juniper
woodlands, consistent with previous studies on the effects of rising temperature across the
study region (Anderson-Teixeira et al., 2011).

NEE in the ponderosa pine forest was also more sensitive, and exhibited greater
intraseasonal variability, to soil moisture compared to NEE in the the pinyon-juniper
woodland. Although the net sensitivity of NEE to shallow soil moisture (Sshai), ONEE/0Sghal,
was consistently positive in the pinyon-juniper woodland, there were periods when
ONEE/0Sshan was negative at the ponderosa pine site, particularly during the pre-monsoon dry
period when Sghan is low (Fig. 1). Unlike the response of NEE to Sghan, the net sensitivity of
NEE to deep soil moisture (Sdeep) Was generally negative throughout the growing season at
both sites (Fig. 4d). This is consistent with observations that tree species at both sites rely on

deep soil moisture for growth, which would lead to negative NEE, particularly early in the
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growing season (Chesus & Ocheltree, 2018; Grossiord, Sevanto, Borrego, et al., 2017; Guo et
al., 2018; Kerhoulas et al., 2013, 2017; West et al., 2007). Microbes within a few centimeters
of the surface become active quickly when wet, so heterotrophic respiration is typically
uncoupled from deeper moisture (Belnap et al., 2005). This negative sensitivity may,
therefore, describe the influence of deep moisture, which is generally higher and more
variable at the ponderosa pine site (Fig. 1), on photosynthesis versus heterotrophic activity.
The temporal variability in the net sensitivity of ET to atmospheric drivers and deep soil
moisture also varied across sites. Again, the magnitude and temporal variability of the net
sensitivity of ET to these drivers was greater at the ponderosa pine site. This was particularly
true for the response to deep soil moisture. At the ponderosa pine site, ET was most sensitive
to Sdeep €arly in the growing season (dry pre-monsoon) when these trees are expected to rely
on deeper moisture recharged by snowmelt (e.g., Kerhoulas et al., 2013, 2017). At the
pinyon-juniper site, OET/0Sqeep Was less variable than at the ponderosa pine site, and there
were periods when water loss at this site was insensitive to Sdeep. The lower sensitivity of ET
to Sdeep in the pinyon-juniper woodland may reflect the relatively low and invariable moisture
status of the deeper layers at this site (Fig. 1). Alternatively, it could reflect a seasonal shift to
greater reliance of the trees on shallower moisture sources, as has been documented for
pinyons and junipers across the region (e.g., West et al., 2007; Grossiord et al., 2017).
Finally, the lower sensitivity of ET to Sqeep at the pinyon-juniper woodland may also be due
to a more dominant role of near-surface evaporation (relative to transpiration) at this site.
This near-surface soil-water evaporation is typically decoupled from the water status of the
deeper soil layers, and is a dominant process even after the onset of the monsoon at similar

elevations across the region (Vivoni et al., 2008).

4.3. Past Moisture Conditions Control CO2 and Water Fluxes
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The degree to which antecedent conditions controlled carbon and water fluxes varied across
the ecosystems. We hypothesized that the net carbon and water fluxes would be more
sensitive to past conditions at the drier pinyon-juniper site, consistent with global studies
(Besnard et al., 2019; Liu et al., 2019). This hypothesis is partially supported. In contrast to
our hypothesis, however, fluxes in both ecosystems responded similarly and almost
instantancously to atmospheric drivers and shallow soil moisture (Fig. 5). In support of our
hypothesis, while both antecedent precipitation and deep soil moisture were important at both
sites, we observed longer response timescales for these driving variables at the pinyon-
juniper woodland. In the ponderosa pine forest, precipitation received one week to three
months prior to the flux measurement exerted the most significant influence over ET and
NEE, respectively. In contrast, precipitation received 5-6 months prior influenced both NEE
and ET in the pinyon-juniper woodland.

Globally, the timescales over which soil moisture and precipitation influence NEE are
highly variable in forested ecosystems (1.5 to 7.5 months), with longer timescales reported
for drier ecosystems (Liu et al., 2019). Our results for both ET and NEE are consistent with
this finding, though the mechanisms that give rise to these long timescales are poorly
understood. One possibility is that the 3 to 6 month timescale reflects the importance of
winter precipitation to NEE and ET, similar to observations at other sites (Baek et al., 2017;
Guo et al., 2018; Kerhoulas et al., 2017), For example, winter precipitation, especially snow,
is important for moisture recharge of deeper soil depths (> 30 cm) and the subsequent
stimulation of root development (Loik et al., 2013). The longer response timescales of fluxes
to precipitation inputs at the pinyon-juniper site, compared to the ponderosa pine site, is
consistent with precipitation exerting longer timescales of influence over NEE under more
arid conditions (Liu et al., 2019). Moreover, the comparatively long timescales over which

precipitation influences NEE and ET, and the multiple significant interactions between the
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short timescale drivers and precipitation (Table 1), suggests that the precipitation regime
several months prior to the flux measurement is an important determinant of the sensitivity of

NEE and ET to other atmospheric- and moisture-related drivers.

5. Conclusions

The significant climatic drivers of ET and NEE and the timescales over which they
influence these fluxes, were similar in two semiarid coniferous biomes. Many of the drivers
interacted with each other to influence ET and NEE, leading to temporal variation in the
sensitivity of these fluxes to key atmospheric and moisture-related drivers. Further, we found
that ET and NEE in both ecosystems responded nearly instantaneously to air temperature,
vapor pressure deficit, and shallow soil moisture, but responded to deep soil moisture and
precipitation over longer timescales. The mechanisms underlying these delayed and / or
persistent responses are unclear, but could reflect the role of rooting depth patterns,
stimulation and production of deep roots, deep soil moisture recharge dynamics, and/or
delays associated with hormonal signaling, among others.

The notably long timescales over which past precipitation and deep soil moisture
influence ET and NEE in both ecosystems, and the temporal variation in the flux sensitivities
to climate drivers, highlights the importance of considering such temporal features when
modeling ecosystem responses (i.e., NEE and ET) to environmental conditions. In the two
coniferous semiarid systems studied here, temporal variation in the net sensitivities of NEE
and ET are partly driven by cumulative precipitation patterns and align with the onset of the
North American Monsoon. In a changing climate, factors that decrease an ecosystem’s
capacity to store carbon or that enhance water loss are of particular concern. In both
ecosystems studied here, warmer conditions consistently led to increased CO> and water loss,
while increases in deep soil moisture enhanced CO- storage. As temperatures and VPD

continue to rise across the region and winter precipitation potentially decreases (Jones &
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Gutzler, 2016), this combination of changes may weaken the carbon sink and exacerbate

evaporative water loss across the Southwest.
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Figure 1. Observed time-series of daily (a) evapotranspiration (ET), (b) net ecosystem
exchange (NEE) of CO», (¢) air temperature (Tair), (d) vapor pressure deficit (VPD), (e)
shallow soil water content (0-5 cm, Sshan), (f) deep soil water content (25-30 cm, Sdeep), ()
precipitation at US-Vcp, and (h) precipitation at US-Mpj. Purple lines at the pinyon-juniper
site (US-Mpj) and black lines at the ponderosa pine site (US-Vcp) represent the modeled
growing season fluxes (panels a and b) and the full covariate datasets. Gray lines in panels a
and b represent non-growing season fluxes that were not included as response variables in the
models. Vertical gray shaded regions denote the growing season period, corresponding to the
time periods represented in Figures 4 and 5.
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Figure 2. Comparison of model fit (coefficient of determination, R?) between measured (Y)
and modeled (Yrep) ET and NEE fluxes, for models that consider current covariates only
(black bars), main effects only in the SAM framework (gray bars), and the full SAM model
with main effects, quadratic terms, and interactive effects (white bars). Groups of bars are
shown for each site (ponderosa pine = US-Vc¢p and pinyon-juniper = US-Mpj) and variable

(NEE or ET) combination.
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Figure 3. Variation in the net sensitivity of ET to environmental drivers (X), 0ET/0X, for: (a)
air temperature (Tair), (b) vapor pressure deficit (VPD), (c) shallow soil water content (Sshar),
and (d) deep soil water content (Sdeep), Within growing seasons and across years at US-Mpj
(purple lines) and US-Vcp (gray lines), along with (e) observed daily precipitation. The solid
purple and black lines are the posterior means for OET/0X, and the shaded blue and gray
regions are the corresponding 95% credible intervals (Cls). The horizontal red lines indicate
OET/0X = 0; the dotted vertical lines separate years; the gray vertical bars indicate the
average timing of the North American Monsoon onset (early July) and retreat (early
September) in New Mexico.
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Figure 4. Variation in the net sensitivity of NEE to (a) Tair, (b) VPD, (c) Sshai, and (d) Saeep
within growing seasons and across years at US-Mpj (purple) and US-Vcp (gray), along with
(e) observed daily precipitation. See Fig. 4 for more details.
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Figure 5. Posterior means and 95% credible intervals (CIs) for the antecedent importance
weights (w;,, equation 2) for driving variables of (a) ET at US-Vcp, (b) NEE at US-Vcp, (¢)
ET at US-Mpj, and (d) NEE at US-Mpj. Symbols are colored according to the driving
variable, with the atmospheric variables being VPD and Tair, and the moisture-related
variables being precipitation (ppt), Sshai, and Sqeep (see Fig. 1 for definitions of these
variables). The vertical dashed lines denote a change in the temporal scale.
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Table 1. Summary of posterior estimates of the effects parameters in the full SAM model (see
equation 1), for each response variable (Y) and site combination. Within each cells, the
direction of the effect (+/-) is indicated, and cells are shaded by Bayesian p-values, with
darker shading denoting greater significance®. See Tables Sla and S1b in the supplemental
materials for numerical estimates (i.e., posterior means and 95% credible intervals). See Fig.
1 for definitions of the covariates and site names.

Y =ET Y =NEE

paf‘::ilﬁztter Covariate US-Vep US-Mpj US-Vep  US-Mpj

B Thair . r

b2 VPD

B3 Sshalt

Pa Sdeep

Ps precipitation

Pe PAR

B AVPD

Ps VPD?

Po Tair?

P12 Tair X VPD

pis Tair X Sshall

Pra Tair X Sdeep

P Tair X precipitation

,52,3 VPD X Sgharl

P24 VPD X Sgeep

a5 VPD x precipitation

Bsa Sshall X Sdeep

Ba.s Sshatl X precipitation

Pas Sdeep X precipitation

*Definitions of shading as defined by Bayesian p-values:

p<0.001 0.01 <p<0.05
0.001 <p<0.01 n.s not significant
i ﬂ> 0 - ﬂ <0
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