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Abstract We investigate the motion of a thin rigid body in Stokes flow and
the corresponding slender body approximation used to model sedimenting
fibers. In particular, we derive a rigorous error bound comparing a regular-
ized version of the rigid slender body approximation to the classical PDE for
rigid motion in the case of a closed loop with constant radius. Our main tool
is the slender body PDE framework established by the authors and D. Spirn
in [18,19], which we adapt to the rigid setting.
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1 Introduction

Determining the motion of a three-dimensional rigid body sedimenting in a
Stokesian fluid is an important problem in both theoretical and computational
fluid mechanics. This motion is described by a classical PDE [4,5,26], which
we write below in the case of a thin rigid body. We use E(u) = 1

2 (∇u+(∇u)T)
to denote the symmetric gradient, and σ = σ(u, p) = 2E(u) − pI to denote
the stress tensor. Let Σε denote a closed loop slender body of radius ε > 0
(to be made precise in Section 2.1) and let Ωε = R3 \ Σε and Γε = ∂Σε (see
Figure 1). For simplicity, we take the center of mass of the body to be at the
origin. The full PDE description of a slender body undergoing a rigid motion
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in Stokes flow may be written as follows:

−∆ur +∇pr = 0 in Ωε

divur = 0 in Ωε

ur(x) = vr + ωr × x, x ∈ Γε
ur(x)→ 0 as |x| → ∞

(1.1)

and ∫
Γε

σrn dS = F ,

∫
Γε

x× (σrn) dS = T .

We are interested in the mobility problem [4], where the total force F ∈ R3

and torque T ∈ R3 are given and we solve for the linear velocity vr ∈ R3 and
angular velocity ωr ∈ R3 of the body. Note that the boundary value problem
(1.1) is in fact valid for a rigid body of arbitrary shape, but for the purposes
of this paper we specifically consider here a slender closed loop. Using the
variational framework of [5,7,26], it can be shown that (1.1) is a well-posed
PDE.

On the computational side, there has been much recent interest in numer-
ical simulations of rigid particle sedimentation [9,10], and various tools have
been developed to facilitate these simulations [4,13,17].

θ

ε

X(s)

Γε = ∂Σε

et(s)

en2
(s)

en1
(s)

Fig. 1 The geometry of the rigid fiber may be parameterized with respect to the orthogonal
frame et(s), en1 (s), en2 (s) defined in Section 2.1.

For a thin rigid body, a commonly-used tool for simplifying simulations
is slender body theory, which exploits the thin geometry of the body by ap-
proximating the filament as a one-dimensional force density distributed along
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the fiber centerline. Slender body theory is a popular method for modeling
sedimentation of thin fibers, both rigid [3,20,21,23] and semi-flexible [15,16].
Here we will specifically consider the slender body theory established by Keller
and Rubinow [14] and further developed in [8,12,25]. This slender body the-
ory is derived by integrating the fundamental solution to the Stokes equations
(the Stokeslet) and higher order corrections along the fiber centerline, yielding
an expression valid only away from the fiber centerline. A limiting expression
valid on the centerline itself (1.2) is then obtained via a matched asymptotic
expansion.

Let X : T ≡ R/Z → R3 denote the coordinates of the slender body
centerline, parameterized by arclength s and defined more precisely in Section
2.1. Given a line force density f(s), s ∈ T, the slender body approximation
yields a direct expression approximating the velocity of the fiber, given by [22]:

us
C(s) = Λ[f ](s) +K[f ](s),

Λ[f ](s) :=
1

8π

[
(I− 3ete

T
t )− 2(I + ete

T
t ) log(πε/4)

]
f(s)

K[f ](s) :=
1

8π

∫
T

[(
I

|R0|
+
R0R

T
0

|R0|3

)
f(s′)− I + et(s)et(s)

T

| sin(π(s− s′))/π|
f(s)

]
ds′.

(1.2)
Here et(s) is the unit tangent vector to X(s) and R0(s, s′) = X(s) −X(s′).
The slender body approximation generally allows for bending and flexing of
the filament along its centerline and requires specifying the one-dimensional
force density over the length of the fiber centerline. If the fiber is constrained
to be fully rigid, only the total force F and torque T must be specified, where∫

T
f(s) ds = F ,

∫
T
X(s)× f(s) ds = T . (1.3)

These constraints give rise to a system of integral equations which must be
solved to obtain the line force density along the slender body (see [11,24]; also
[3,20,21,23]). However, these integral equations are ill-posed. Specifically, a
detailed spectral analysis by Götz [8] in the case of a straight slender body
centerline shows that the slender body operator (Λ+K) in (1.2) is not invert-
ible for all small ε. A similar result for a perfectly circular, planar centerline
was shown by Shelley-Ueda in [22]. For fibers with more general centerline
curvature, a spectral analysis of the slender body integral operator is compli-
cated, but it is expected that the ill-posedness remains.

In practice, this ill-posedness is addressed by regularizing the integral op-
erator K to remove the invertibility issues encountered with (Λ+K). Various
regularizations are possible; see Section 6 for one example. Therefore, to ana-
lyze the error in the rigid slender body approximation, we will instead consider
the regularized expression

us
reg(s) = Λ[f s](s) +K[f s](s) + rε[f

s](s), (1.4)
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where rε is a regularization such that the operator (Λ+K + rε) is invertible.
The regularization rε may be effected, for example, by regularizing the integral
kernel K:

rε = Kreg −K;

Kreg[f s](s) =
1

4π

[
ete

T
t + (I + ete

T
t ) log(πε/4)

]
f s(s)

+
1

8π

∫
T

(
I

(|R0|2 + ε2)1/2
+

R0R
T
0

|R0|2(|R0|2 + ε2)1/2

)
f s(s′) ds′.

(1.5)
This choice of regularization is explored in more detail in Section 6. Vari-
ous other regularizations are possible, including numerical truncation of the
continuous integral operator K. To include room for other possible regulariza-
tions, we leave the particular form of rε unspecified for much of the analysis.
However the regularization is chosen, the idea is that rε should be small in
terms of ε so that (1.4) is close to the expression (1.2). In particular, the Kreg

example explored in Section 6 satisfies
∥∥rε[f s]

∥∥
L2(T) ≤ Cε |log ε| ‖f s‖C1(T).

Combined with the conditions (1.3) and the constraint that the velocity of
the slender body centerline is a rigid motion, i.e.

us
reg(s) = vs + ωs ×X(s), vs,ωs ∈ R3, (1.6)

the regularized expression (1.4) with an appropriate choice of rε likely gives
rise to a well-posed rigid slender body approximation. A general solution the-
ory for such regularized equations will require a detailed spectral analysis of
the regularized integral operator, which is beyond the scope of this paper.

Instead, the aim of this paper is to establish an a posteriori error bound
between the regularized slender body approximation for rigid motion in Stokes
flow (1.3)-(1.6) and the classical PDE (1.1). We take for granted that the reg-
ularized slender body approximation (1.4) gives rise to f s ∈ C1(T) satisfying
(1.3) and (1.6). This f s must then appear in the final error bound, giving
rise to a type of a posteriori error estimate, similar to the type of estimates
commonly used in finite element analysis [1]. To obtain an a priori bound, we
would need a general solution theory for (1.3)-(1.6) to then able to say that
such an f s is then bounded by the given F and T . We show the following
theorem.

Theorem 1 Let Σε be a slender body as defined in Section 2.1. Suppose the
total force F ∈ R3 and torque T ∈ R3 are given, and assume that regularized
rigid slender body approximation (1.3)-(1.6) is satisfied by some f s ∈ C1(T).
Then the difference vr−vs, ωr−ωs between the linear and angular velocities of
true rigid motion (1.1) and the regularized slender body approximation (1.3)-
(1.6) satisfies

|vr − vs|+|ωr − ωs| ≤ C
(√

ε |log ε|3/2
(
‖f s‖C1(T)+|F |+|T |

)
+ε−1/2

∥∥rε[f s]
∥∥
L2(T)

)
(1.7)
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for C depending on cΓ , κmax, and ξmax.

The constants cΓ , κmax, and ξmax have to do only with the shape of the fiber
centerline and are defined in Section 2.1. Note that in order to obtain a con-
vergence result, the regularization rε must be chosen to be sufficiently small,
e.g. such that

∥∥rε[f s]
∥∥
L2(T) ≤ Cε |log ε| ‖f s‖C1(T) (see Section 6). It may be

possible to improve the
√
ε bound given a more complete solution theory for

the slender body approximation.

In order to prove Theorem 1, we introduce an intermediary PDE which
we will call the slender body PDE for rigid motion. The idea follows from
the notion of slender body PDE proposed by the authors and D. Spirn in
[18] and [19] as a framework for analyzing the error introduced by the Keller-
Rubinow slender body approximation for closed-loop and open-ended fibers,
respectively. To construct the rigid slender body PDE, we impose that the
velocity of the slender body is uniform over each cross section s of the fiber. In
particular, we approximate x ∈ Γε as its L2 projection onto the fiber centerline
X(s), thereby ignoring slight differences in torque across the slender body.
Note that the slender body geometry is defined in Section 2.1 such that this
projection onto the fiber centerline is unique; i.e. the notion of “fiber cross
section” is well-defined. We define the slender body PDE for rigid motion as
follows:

−∆up +∇pp = 0 in Ωε

divup = 0 in Ωε

up(x) = vp + ωp ×X(s) on Γε

up(x)→ 0 as |x| → ∞

(1.8)

and∫
Γε

σpn Jε(s, θ) dθ ds = F ,

∫
T
X(s)×

(∫ 2π

0

σpnJε(s, θ)dθ
)
ds = T .

Here we have written dS = Jε(s, θ) dθ ds, where Jε is the Jacobian factor on
the slender body surface, which we parameterize as a tube about X(s) us-
ing surface angle θ (see Section 2.1 and expression (2.5)). We show that for
a closed filament, the rigid slender body PDE is in fact close to the classical
PDE for rigid motion [5,26] – in particular, the variation in torque over any
cross section of the slender body is higher order in ε.

In the case of a flexible filament with a prescribed force density per unit
length along the centerline, the slender body PDE of [18,19] is well-posed, and
the difference between the slender body approximation and the PDE solution
can be estimated in terms of the slender body radius and the given line force
density. We aim to use the existing error analysis in [18] to bound the difference
between the rigid slender body approximation and the rigid slender body PDE
solution. The rigid case is complicated by the fact that the existing error
bound relies on knowledge of the line force density along the filament, while
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only F and T are specified. Below we outline our treatment of this and other
complications arising in the proof of Theorem 1.

1.1 Outline of the proof of Theorem 1

The strategy for proving Theorem 1 is to show that, given F and T , the so-
lution to the rigid slender body PDE (1.8) is close to both the classical rigid
PDE solution (1.1) and the rigid slender body approximation (1.3) - (1.6).

First, we must show that the rigid slender body PDE is well-posed. Using
Definition 3 of a weak solution to the rigid slender body PDE (1.8), where the
function space Rdiv

ε is as defined after (2.10), we show the following.

Theorem 2 Let Σε be a slender body as defined in Section 2.1. Given F and
T ∈ R3, there exists a unique weak solution (up, pp) ∈ Rdiv

ε × L2(Ωε) to the
slender body PDE for rigid motion (1.8) satisfying the estimate

‖∇up‖L2(Ωε)
+ ‖pp‖L2(Ωε)

≤ C |log ε|1/2 (|F |+ |T |) (1.9)

for C depending on cΓ and κmax.

Theorem 2 can be established using many of the same tools from the well-
posedness theory in [18]. In addition, we will make use of the following bound
along the slender body centerline X(s):

Lemma 1 Let X be as in Section 2.1 and consider constant vectors v, ω ∈
R3. Then

|v|+ |ω| ≤ C ‖v + ω ×X‖L2(T) (1.10)

for C depending only on cΓ and κmax.

We will first prove Lemma 1 in Section 3; then Theorem 2 quickly follows
using some of the key inequalities collected in Section 2.3.

With the variational framework for (1.8), comparing (1.1) to (1.8) is rela-
tively straightforward. Using Lemma 1, we show that the difference between
the true rigid motion (1.1) and the slender body PDE description (1.8) satisfies
the following lemma.

Lemma 2 Let X be as in Section 2.1. Given F and T ∈ R3, let (vr,ωr)
be the corresponding boundary values satisfying (1.1) and let (vp,ωp) be the
boundary values satisfying (1.8). Then

|ωr − ωp|+ |vr − vp| ≤ ε |log ε|C(|T |+ |F |) (1.11)

where C depends only on cΓ and κmax.
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The main difficulties in proving Theorem 1 arise in comparing (1.8) to (1.3)
- (1.6). As discussed, we assume that we are considering a rigid slender body
approximation (1.3) - (1.6) that gives rise to a force density f s ∈ C1(T). A
difficulty is that in order to use the error analysis framework of [18], the line
force density along the slender body must be the same for both the slender
body approximation and the slender body PDE. Therefore we need to define
yet another intermediary PDE.

Given f s ∈ C1(T) satisfying (1.3) - (1.6) for given F and T ∈ R3, we define
up,s as the solution to the PDE:

−∆up,s +∇pp,s = 0 in Ωε

divup,s = 0 in Ωε∫ 2π

0

(σp,sn) Jε(s, θ) dθ = f s(s) on Γε

up,s
∣∣
Γε

= Tr(up,s)(s), unknown but independent of θ

up,s → 0 as |x| → ∞.
(1.12)

Here Tr(up,s)(s) denotes the trace of up,s on Γε, and θ refers to the parame-
terization of Γε as a tube about X(s) (see Section 2.1). By [18], we know that
a (weak) solution (up,s, pp,s) exists and is unique. Now, Tr(up,s)(s) may not
be precisely a rigid motion, but we can show that it is close. In particular, by
Theorem 1.3 in [18], we may bound the difference between Tr(up,s)(s) and the
non-regularized slender body approximation us

C(s) (1.2) by

‖Tr(up,s)− us
C‖L2(T) ≤ Cε |log ε|3/2 ‖f s‖C1(T) (1.13)

for C depending only on cΓ and κmax. The regularized slender body approxi-
mation us

reg(s) = us
C(s)− rε[f s](s) = vs + ωs ×X(s) (1.4) then satisfies

‖Tr(up,s)− (vs + ωs ×X)‖L2(T) ≤ Cε |log ε|3/2 ‖f s‖C1(T) +
∥∥rε[f s]

∥∥
L2(T).

(1.14)
A further technical issue arises in comparing (1.12) to (1.8). In order to

obtain a useful estimate of the difference between (up,s − up, pp,s − pp) in
terms of only F , T , and f s(s), we will need a careful characterization of the
ε-dependence in a higher regularity estimate for solutions to (1.8) (see Lemma
9). Note that for a (sufficiently smooth) sedimenting rigid body, once well-
posedness of the PDE has been established, higher regularity of the solution
follows by standard arguments for a Stokes Dirichlet boundary value problem.
In our case, the novelty is determining how the higher regularity bound scales
with ε. Our proof (see Appendix A.2) makes use of the local coordinate system
valid near the slender body. We obtain commutator estimates for the tangen-
tial derivatives along the slender body surface and use an integration by parts
argument, along with the form of the Stokes equations in local coordinates,
to show that the bound for an additional derivative of the rigid slender body
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PDE solution scales like 1/ε, up to logarithmic corrections.

Now, using the variational framework for the slender body PDE along with
this higher regularity lemma, we can show the following estimate.

Lemma 3 Let up,s satisfy (1.12) and let (vp,ωp) denote the rigid slender
body PDE boundary values satisfying (1.8). Then

‖Tr(up,s)−(vp+ωp×X)‖L2(T) ≤ C
(√

ε |log ε|3/2
(
‖f s‖C1(T)+|F |+|T |

)
+ε−1/2

∥∥rε[f s]
∥∥
L2(T)

)
(1.15)

for C depending on cΓ , κmax, and ξmax.

Combining estimate (1.14) with Lemma 3 and using Lemma 1 with vp−vs
and ωp − ωs in place of v and ω, we obtain the following bound for the
difference between the regularized slender body approximation (1.3)-(1.6) and
the slender body PDE (1.8):

|vp − vs|+|ωp − ωs| ≤ C
(√

ε |log ε|3/2
(
‖f s‖C1(T)+|F |+|T |

)
+ε−1/2

∥∥rε[f s]
∥∥
L2(T)

)
.

(1.16)
Finally, combining the estimate (1.16) with Lemma 2 yields Theorem 1.

The remainder of this paper is thus devoted to showing Lemmas 1 - 3. We
will begin by introducing the variational framework for (1.8) and noting some
key inequalities in Section 2. In Section 3, we show Lemma 1 and use it to
derive estimates for (up, pp,vp,ωp) satisfying (1.8). These estimates can then
be used to show Theorem 2. In Section 4, we use the variational framework
for the rigid slender body PDE to prove Lemma 2. Finally, in Section 5, we
prove Lemma 3 to complete the proof of Theorem 1.

2 Geometry and variational framework

We begin in Section 2.1 with a precise definition of the slender body geometry.
In Section 2.2, we introduce the variational form of the slender body PDE for
rigid motion (1.8), which, along with the variational form of (1.12), will provide
the framework for obtaining Theorem 1. Finally, in Section 2.3, we make note
of some key inequalities that will be used throughout the remainder of this
paper.

2.1 Slender body geometry

As in [18], we let X : T ≡ R/Z→ R3 denote the coordinates of a closed, non-
self-intersecting C3 curve in R3, parameterized by arclength s. We require
that

inf
s6=s′
|X(s)−X(s′)|
|s− s′|

≥ cΓ (2.1)
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for some constant cΓ > 0.

Along X(s) we consider the orthonormal frame (et(s), en1
(s), en2

(s)) de-
fined in [18]. Here et(s) = dX

ds is the unit tangent vector toX(s) and (en1
(s), en2

(s))
span the plane normal to et(s). The frame satisfies the ODEs

d

ds
et = κ1en1

+ κ2en2
,

d

ds
en1

= −κ1et + κ3en2
,

d

ds
en2

= −κ2et − κ3en1

(2.2)
where κ21(s)+κ22(s) = κ2(s), the fiber curvature, and κ3 is a constant satisfying
|κ3| ≤ π. We require the orthonormal frame to be C2 and denote

κmax := max
s∈T
|κ(s)| , ξmax = max

s∈T

∣∣∣∣∂3X∂s3
∣∣∣∣ . (2.3)

Note that |∂κ1/∂s|+ |∂κ2/∂s| ≤ ξmax + 2(κmax + π).

We define
eρ(s, θ) := cos θen1(s) + sin θen2(s)

and, for some rmax = rmax(cΓ , κmax) ≤ 1
2κmax

, we can uniquely parameterize
points x within a neighborhood dist(x,X) < rmax of X(s) as

x = X(s) + ρeρ(s, θ), 0 ≤ ρ < rmax.

For ε < rmax/4, we may then define a slender body of uniform radius ε as

Σε :=
{
x ∈ R3 : x = X(s) + ρeρ(s, θ), ρ < ε, 0 ≤ θ < 2π

}
. (2.4)

We parameterize the slender body surface Γε = ∂Σε as

Γε = X(s) + εeρ(s, θ).

In addition, we may parameterize the Jacobian factor Jε(s, θ) on the slender
body surface as

Jε(s, θ) = ε
(
1− ε(κ1(s) cos θ + κ2(s) sin θ)

)
. (2.5)

2.2 Variational form of (1.8)

Letting Ωε = R3\Σε for Σε as in Section 2.1, we recall the following function
spaces, used in [18] to study a slender body PDE of the form (1.12). We use
D1,2(Ωε) to denote the homogeneous Sobolev space

D1,2(Ωε) =
{
u ∈ L6(Ωε) : ∇u ∈ L2(Ωε)

}
, (2.6)

which, due to the Sobolev inequality in Ωε ⊂ R3 (see Lemma 11), is a Hilbert
space with norm ‖∇u‖L2(Ωε)

. We define D1,2
0 (Ωε) as the closure of C∞0 (Ωε)

(smooth, compactly supported test functions) in D1,2(Ωε).
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We also recall the space Aε, the subspace of D1,2(Ωε) with θ-independent
boundary values:

Aε =
{
u ∈ D1,2(Ωε) : u

∣∣
Γε

= u(s)
}
. (2.7)

Here the boundary value u
∣∣
Γε

= u(s) is not directly specified but is required

to be independent of the surface angle θ. We define Adiv
ε to be the divergence-

free subspace of Aε.

We also recall the variational form of (1.12), examined in detail in [18].

Definition 1 (Weak solution to (1.12)) A weak solution up,s ∈ Adiv
ε to

(1.12) satisfies ∫
Ωε

2E(up,s) : E(v) dx =

∫
T
v(s) · f s(s) ds (2.8)

for any v ∈ Adiv
ε . In addition, for up,s satisfying (2.8), there exists a unique

pressure pp,s ∈ L2(Ωε) satisfying∫
Ωε

(
2E(up,s) : E(v)− pp,s div v

)
dx =

∫
T
v(s) · f s(s) ds (2.9)

for any v ∈ Aε.
To study (1.8), we define the following subspace of Aε, where we further

restrict the boundary value to be a rigid motion:

Rε =
{
u ∈ D1,2(Ωε) : u

∣∣
Γε

= v + ω ×X(s) for v, ω ∈ R3
}
. (2.10)

Again, v and ω are not directly specified but are required to be constant vec-
tors in R3. We let Rdiv

ε denote the divergence-free subspace of Rε.

We then define a weak solution to the rigid motion slender body PDE as
follows.

Definition 2 (Weak solution to (1.8)) A weak solution up ∈ Rdiv
ε to (1.8)

satisfies ∫
Ωε

2 E(up) : E(ϕ) dx = vϕ · F + ωϕ · T (2.11)

for any ϕ ∈ Rdiv
ε , where we denote ϕ

∣∣
Γε

= vϕ + ωϕ ×X(s).

Given the existence and uniqueness of up satisfying Definition 2, using an
essentially identical proof to that in Section 2.2 of [18], we can establish an
equivalent notion of weak solution that includes a corresponding weak pressure
pp ∈ L2(Ωε) and removes the divergence-free restriction on test functions ϕ.

Definition 3 (Weak solution to (1.8) with pressure) Given up ∈ Rdiv
ε

satisfying Definition 2, there exists a unique pp ∈ L2(Ωε) satisfying∫
Ωε

(
2 E(up) : E(ϕ)− p divϕ

)
dx = vϕ · F + ωϕ · T (2.12)

for any ϕ ∈ Rε. Here we again denote ϕ
∣∣
Γε

= vϕ + ωϕ ×X(s).
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2.3 Important inequalities

In addition to the definitions of Section 2.2, we collect the statements of var-
ious inequalities that are used throughout the paper, keeping track of the
ε-dependence in any constants that arise. The proofs of these inequalities are
mostly contained in [18], with the exception of Lemma 5, which appears in
Appendix A.

First, we note the following pair of trace inequalities. The first holds for
functions u ∈ Aε due to θ-independence on Γε. As a slight abuse of notation,
the trace operator Tr, when applied to Aε functions, will be considered as both
a function on Γε and on T. Note that for u ∈ Aε, we have

‖Tr(u)‖2L2(Γε)
=

∫
T

∫ 2π

0

|Tr(u)(s)|2 Jε(s, θ)dθ ds

=

∫
T
|Tr(u)(s)|2

∫ 2π

0

Jε(s, θ)dθ ds = 2πε‖Tr(u)‖2L2(T),

where we have used that
∫ 2π

0
Jε(s, θ)dθ = 2πε by (2.5). For u ∈ Aε, the

following lemma holds.

Lemma 4 (L2(T) trace inequality) Let Ωε = R3\Σε be as in Section 2.1.
Then any u ∈ Aε satisfies

‖Tr(u)‖L2(T) ≤ C| log ε|1/2‖∇u‖L2(Ωε), (2.13)

where the constant C depends on κmax and cΓ but is independent of ε.

The proof of this lemma appears in Appendix A.2.1 of [18].

On the other hand, for general D1,2(Ω) functions, the following trace in-
equality holds over the surface Γε:

Lemma 5 (L2(Γε) trace inequality) Let Ωε = R3\Σε be as in Section 2.1.
Then any u ∈ D1,2(Ωε) satisfies

‖Tr(u)‖L2(Γε) ≤ C
√
ε| log ε|1/2‖∇u‖L2(Ωε), (2.14)

where the constant C depends on κmax and cΓ but is independent of ε.

The proof of Lemma 5 appears in Appendix A.

We will also need the following Korn inequality.

Lemma 6 (Korn inequality) Let Ωε = R3\Σε be as in Section 2.1. Then any
u ∈ D1,2(Ωε) satisfies

‖∇u‖L2(Ωε) ≤ C‖E(u)‖L2(Ωε), (2.15)

where the constant C depends only on κmax and cΓ .
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The proof of ε-independence in the Korn constant is given in Appendix A.2.2
- A.2.3 in [18].

Finally, we make use of the following pressure estimate.

Lemma 7 For (u, p) satisfying the Stokes equations in Ωε, we have

‖p‖L2(Ωε)
≤ C ‖E(u)‖L2(Ωε)

(2.16)

for C independent of ε.

The proof of this lemma exactly follows the proof of estimate (2.17) in [18].

3 Proof of Lemma 1 and a corollary

Here we prove Lemma 1 and make note of a corollary which allows us to
obtain a useful bound for functions in Rε. This corollary, along with the Korn
inequality (Lemma 6) and pressure estimate (Lemma 7), then allows us to
prove Theorem 2.

Proof (of Lemma 1:) Note that Lemma 1 is obviously true when v = ω = 0;
thus we can assume that at least one of v,ω is nonzero. Suppose that Lemma 1
does not hold. Then we may choose a sequence of triples (vk,ωk,Xk(s)) such
that the following properties hold for each k = 1, 2, 3, . . . . First, vk,ωk ∈ R3

satisfy |vk|2 + |ωk|2 = 1, and Xk(s) is a closed curve satisfying the geometric
constraints of Section 2.1 – in particular, |X ′′k | ≤ κmax. In addition,

1 = |vk|2 + |ωk|2 > k2
∫
T
|vk + ωk ×Xk(s)|2 ds.

Then ∫
T
|vk + ωk ×Xk(s)|2 ds < 1

k2
→ 0

as k → ∞. Since vk,ωk are just vectors in R3, some limit v∞,ω∞ exists.
Furthermore, since each Xk is controlled in C2 by κmax, we have that (passing
to a subsequence) Xk →X∞ in C1 for some closed, unit length curve X∞(s).
Thus ∫

T
|v∞ + ω∞ ×X∞(s)|2 ds = 0,

and therefore ω∞×X∞(s) ≡ −v∞. But ω∞ and v∞ are both constant vectors

with |v∞|2 + |ω∞|2 = 1, while X∞(s) necessarily has nonzero curvature. Thus
ω∞×X∞(s) cannot identically equal the constant vector −v∞. Furthermore,
because Xk was allowed to vary among curves satisfying the constraints of
Section 2.1, the constant C arising in Lemma 1 depends only on cΓ and κmax.

Given F and T , as an immediate corollary to Lemma 1 we obtain the
following useful bound for any function ϕ ∈ Rε.
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Corollary 1 Consider ϕ ∈ Rε with boundary value denoted by vϕ + ωϕ ×
X(s). Then

|vϕ|+ |ωϕ| ≤ C| log ε|1/2 ‖E(ϕ)‖L2(Ωε)
(3.1)

where C depends only on cΓ and κmax.

Proof Using Lemma 1 along with the slender body trace estimate (Lemma 4)
and Korn inequality (Lemma 6), we immediately obtain

|vϕ|+ |ωϕ| ≤ ‖vϕ + ωϕ ×X‖L2(T) ≤ C |log ε|1/2 ‖∇ϕ‖L2(Ωε)

≤ C |log ε|1/2 ‖E(ϕ)‖L2(Ωε)

for C depending only on cΓ and κmax.

Using Corollary 1 and the variational formulation of (1.8), we may now
prove Theorem 2.

Proof (of Theorem 2) We first show the existence of a weak solution up ∈ Rdiv
ε

satisfying Definition 2. Note that the bilinear form appearing on the left hand
side of Definition 2 is bounded on Rdiv

ε , as∣∣∣∣∫
Ωε

2 E(up) : E(ϕ) dx

∣∣∣∣ ≤ 2 ‖E(up)‖L2(Ωε)
‖E(ϕ)‖L2(Ωε)

≤ 2 ‖∇up‖L2(Ωε)
‖∇ϕ‖L2(Ωε)

.

Coercivity of the bilinear form also follows by the Korn inequality (Lemma 6).
Furthermore, using Corollary 1, the linear functional on the right hand side of
Definition 2 is bounded for ϕ ∈ Rdiv

ε , as

|vϕ · F + ωϕ · T | ≤ C |log ε|1/2 ‖E(ϕ)‖L2(Ωε)
(|F |+|T |) ≤ C |log ε|1/2 ‖∇ϕ‖L2(Ωε)

(|F |+|T |).
Then, by the Lax-Milgram theorem, there exists a unique weak solution up ∈
Rdiv
ε to (1.8).

In addition, using the variational form of (1.8) along with Corollary 1, we
have that up satisfies∫
Ωε

|E(up)|2 dx =

∫
Γε

(vp + ωp ×X(s)) · (σpn) dS

= vp ·
∫
Γε

σpn dS + ωp ·
∫
T
X(s)×

(∫ 2π

0

(σpn)Jε(s, θ)dθ
)
ds

≤ |vp| |F |+ |ωp| |T | ≤ C |log ε|1/2 ‖E(up)‖L2(Ωε)
(|F |+ |T |)

≤ 1

2
‖E(up)‖2L2(Ωε)

+ C |log ε| (|F |2 + |T |2),

where we have used Young’s inequality in the last line. We thus obtain the
estimate

‖E(up)‖L2(Ωε)
≤ C |log ε|1/2 (|F |+ |T |). (3.2)

As noted after Definition 2, the existence of a unique corresponding weak
pressure pp ∈ L2(Ωε) satisfying Definition 3 as well as Lemma 7 follows by an
essentially identical proof to that appearing in Section 2.2 of [18].

Combining (3.2) with Lemmas 6 and 7 then yields the bound (1.9).
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4 Classical versus slender body PDE description of rigid motion

Using the variational framework of Section 2 along with Lemma 1, we prove
Lemma 2 comparing the classical PDE (1.1) and slender body PDE (1.8)
descriptions of rigid slender body motion.

Proof (of Lemma 2:) The difference u = ur − up, p = pr − pp, σ = σr − σp,
ω = ωr − ωp, v = vr − vp satisfies the PDE

−∆u+∇p = 0, divu = 0 in Ωε

u(x) = v + ω × x+ εωp × eρ, x ∈ Γε
u(x)→ 0 as |x| → ∞∫

Γε

σn dS = 0,

∫
Γε

x× (σn) dS = −ε
∫
Γε

eρ × (σpn) dS.

(4.1)

Then, multiplying (4.1) by u and integrating by parts, we have that u
satisfies∫
Ωε

2|E(u)|2 dx =

∫
Γε

(
v + ω × x+ εωp × eρ

)
· (σn) dS

= v ·
∫
Γε

σn dS + ω ·
∫
Γε

x× (σn) dS + εωp ·
∫
Γε

eρ × (σn) dS

= −εω ·
∫
Γε

eρ × (σpn) dS + εωp ·
∫
Γε

eρ × (σn) dS.

(4.2)
To estimate the right hand side of (4.2), we first need to define a smooth

cutoff function φ(ρ) satisfying

φ(ρ) =

{
1, ρ < 2

0, ρ > 4
(4.3)

with smooth decay satisfying ∣∣∣∣dφdρ
∣∣∣∣ ≤ cφ. (4.4)

Then for x = X(s) + ρeρ(θ, s) in a neighborhood of Γε, we define φε(ρ) :=
φ(ρ/ε).

We estimate the second term on the right hand side first, noting that the
estimation of the first term will be essentially identical. Using index nota-
tion (the subscript ·,j signifies ∂·

∂xj
; sum over repeated indices) along with the

divergence theorem, we may write∫
Γε

(
eρ × (σn)

)
i
dS =

∫
Γε

εijk(eρ)jσk`n` dS =

∫
Ωε

(φ εijk(eρ)jσk`),` dx

=

∫
Ωε

εijk
(
φ,`(eρ)jσk` + φ (eρ)j,`σk`

)
dx.

(4.5)



An error bound for rigid slender body theory 15

Here εijk is the alternating symbol

εijk =


1, for even permutations of i, j, k

−1, for odd permutations of i, j, k

0, if i = j, j = k, or k = i,

and we have used that σ is divergence-free.
Now, due to the cutoff φε, the integrand on the right hand side of (4.5) is

supported only within the region

Oε :=
{
X(s) + ρeρ(s, θ) : s ∈ T, ε ≤ ρ ≤ 4ε, 0 ≤ θ < 2π

}
with |Oε| = Cε2 for some C depending only on cΓ and κmax.

Within Oε, defining κ̂(s, θ) := κ1(s) cos θ + κ2(s) sin θ, we have

|∇eρ(s, θ)| =
∣∣∣∣1ρ ∂eρ∂θ eTθ +

1

1− ρκ̂

(
∂eρ
∂s
− κ3

∂eρ
∂θ

)
eTt

∣∣∣∣
=

∣∣∣∣1ρeθeTθ − 1

1− ρκ̂
(κ1 cos θ + κ2 sin θ)ete

T
t

∣∣∣∣ ≤ 1

ε
+ 4κmax,

(4.6)

where the final κmax bound is shown in Appendix A.2.

Using (4.4), (4.6), and Cauchy-Schwarz, we may estimate (4.5) as∣∣∣∣∫
Γε

eρ × (σn) dS

∣∣∣∣ ≤ ∫
Oε

(
|φε∇eρ|+ |∇φε|) |σ| dx

≤ |Oε|1/2
(

1

ε
+ 4κmax +

cφ
ε

)(∫
Ωε

|σ|2 dx
)1/2

≤ C
(∫

Ωε

|σ|2 dx
)1/2

(4.7)

where C depends only on the shape of X – in particular, cΓ and κmax. Finally,
using Lemma 7, we obtain∣∣∣∣∫
Γε

eρ × (σn) dS

∣∣∣∣ ≤ C(∫
Ωε

(
|E(u)|2+p2

)
dx

)1/2

≤ C
(∫

Ωε

|E(u)|2 dx
)1/2

.

(4.8)
Following exactly the same procedure, we can also show∣∣∣∣∫

Γε

eρ × (σpn) dS

∣∣∣∣ ≤ C(∫
Ωε

|E(up)|2 dx
)1/2

. (4.9)

Furthermore, in the same way as in Lemma 1, it can be shown that

|ω|+ |v| ≤ C ‖v + ω × x+ εωp × eρ‖L2(Γε)
≤ C
√
ε |log ε|1/2 ‖E(u)‖L2(Ωε)

.

(4.10)
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Note that the first inequality holds via a similar contradiction as in the proof
of Lemma 1, except here we must use that v + ω × x + εωp × eρ = v + ω ×
X(s) + εωr × eρ(s, θ) for x ∈ Γε. The analogous contradiction arises from the
fact that εωr × eρ(s, θ) depends on θ, whereas v + ω ×X(s)) does not. For
the second inequality we have used the L2(Γε) trace estimate (Lemma 5) and
the Korn inequality (Lemma 6).

Then, using (4.8) and (4.9) in (4.2) along with Lemma 1 and (4.10), we
have∫
Ωε

2|E(u)|2 dx ≤ εC |ω|
(∫

Ωε

|E(up)|2 dx
)1/2

+ εC |ωp|
(∫

Ωε

|E(u)|2 dx
)1/2

≤ ε |log ε|1/2 C
(∫

Ωε

|E(up)|2 dx
)1/2(∫

Ωε

|E(u)|2 dx
)1/2

≤ ε2 |log ε|C
∫
Ωε

|E(up)|2 dx+

∫
Ωε

|E(u)|2 dx,

(4.11)
where we have used Young’s inequality in the last line. Then, using (3.2), we
obtain

‖E(u)‖L2(Ωε)
≤ ε |log ε|C(|T |+ |F |). (4.12)

Finally, using (4.10) again, we obtain Lemma 2.

5 Proof of Lemma 3

Finally, we prove Lemma 3 comparing the rigid slender body PDE (1.8) to the
intermediary slender body PDE (1.12).

We begin by defining

fp(s) :=

∫ 2π

0

(σpn)Jε(s, θ)dθ (5.1)

for σp as in (1.8), and establish the following:

Lemma 8 Suppose the slender body Σε is as in Section 2.1 – in particular,
X ∈ C3(T). Let the total force F and torque T be given, and let fp be as
defined in (5.1). Then

‖fp‖L2(T) ≤ C |log ε|3/2 (|F |+ |T |) (5.2)

for C depending only on cΓ , κmax, and ξmax.

Proof The proof of this lemma relies on a higher regularity estimate for σp.
Note that once Theorem 2 has been established, we immediately obtain that
up
∣∣
Γε

= vp + ωp × X(s) is in C3(Ωε), since vp and ωp are just constants

in R3 and the fiber centerline X is in C3(T). Given this C3 Dirichlet data,
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σp ∈ H1(Ωε) follows by standard higher regularity arguments for the exterior
Stokes Dirichlet boundary value problem (see the proof of Lemma V.4.3 in [6]
or Theorem IV.5.8 in [2]). Note that since X ∈ C3(T), σp should in fact be
even more regular, but the method we use to show Lemma 9 only allows us to
quantify the ε-dependence in the estimate for ‖∇σp‖L2(Ωε)

. In particular, we
can show the following bound on ∇σp.

Lemma 9 Given Ωε as in Section 2.1, the solution σp to (1.8) belongs to
H1(Ωε) and satisfies

‖∇σp‖L2(Ωε)
≤
∥∥∇2up

∥∥
L2(Ωε)

+‖∇pp‖L2(Ωε)
≤ C

ε
|log ε|1/2

(
‖∇up‖L2(Ωε)

+‖pp‖L2(Ωε)

)
,

(5.3)
where C depends on cΓ , κmax, and ξmax.

The proof of the ε-dependence in Lemma 9 is given in Appendix A.2.

Using Lemma 9 and Corollary 1, we have the higher regularity estimate

‖∇σp‖L2(Ωε)
≤ C

ε
|log ε|1/2

(
‖∇up‖L2(Ωε)

+ ‖pp‖L2(Ωε)

)
≤ C

ε
|log ε| (|F |+ |T |).

(5.4)
Now, using that Jε(s, θ) > 0 for each (s, θ) ∈ Γε and the surface measure

|Γε| =
∫
T
∫ 2π

0
Jε(s, θ)dθds = ε, we have

‖fp‖2L2(T) =

∫
T

∣∣∣∣∫ 2π

0

σpnJε(s, θ)dθ
∣∣∣∣2 ds ≤ |Γε|∫

T

∫ 2π

0

|Tr(σp)|2 Jε(s, θ)dθ ds

≤ Cε2 |log ε| ‖∇σp‖2L2(Ωε)
≤ C |log ε|3 (|F |+ |T |)2.

Here we have applied both the L2(Γε) trace inequality (Lemma 5) and the
higher regularity estimate (5.4) in the last line.

With Lemma 8, we are now equipped to show Lemma 3.

Proof (of Lemma 3:) The proof relies on estimates for the PDE satisfied by
the difference between solutions to (1.8) and (1.12). Letting ũ = up,s − up,
p̃ = pp,s − pp, ṽ = vs − vp, ω̃ = ωs − ωp, σ̃ = σp,s − σp, we consider the
following boundary value problem:

−∆ũ+∇p̃ = 0, div ũ = 0 in Ωε

ũ(x) = ṽ + ω̃ ×X(s) +R(s), x ∈ Γε
ũ(x)→ 0 as |x| → ∞∫

Γε

σ̃n dS = 0,

∫
T
X(s)×

(∫ 2π

0

σ̃nJε(s, θ)dθ
)
ds = 0,

(5.5)

where R(s) := Tr(up,s)(s)−
(
vs + ωs ×X(s)

)
satisfies

‖R‖L2(T) ≤ Cε |log ε|3/2 ‖f s‖C1(T) +
∥∥rε[f s]

∥∥
L2(T), (5.6)
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by (1.14). We consider the variational form of (5.5): multiplying by (5.5) by
ũ and integrating by parts, we have∫
Ωε

2|E(ũ)|2 dx =

∫
Γε

(
ṽ + ω̃ ×X(s) +R(s)

)
· (σ̃n) dS

= ṽ ·
∫
Γε

(σ̃n) dS + ω̃ ·
∫
T
X(s)×

(∫ 2π

0

(σ̃n)Jε(s, θ)dθ
)
ds

+

∫
T
R(s) ·

(∫ 2π

0

(σ̃n)Jε(s, θ)dθ
)
ds

=

∫
T
R(s) ·

(
f s − fp

)
ds ≤ ‖R‖L2(T)

(
‖f s‖L2(T) + ‖fp‖L2(T)

)
≤ C

(
ε |log ε|3/2 ‖f s‖C1(T) +

∥∥rε[f s]
∥∥
L2(T)

)(
‖f s‖L2(T) + |log ε|3/2 (|F |+ |T |)

)
≤ C

(
ε |log ε|3 ‖f s‖2C1(T) + ε |log ε|3 (|F |+ |T |)2 + ε−1

∥∥rε[f s]
∥∥2
L2(T)

)
.

Here we have used (5.6) and Lemma 8 in the second-to-last line.

Remark 1 It would seem to make sense to try to bound the difference f s−fp

appearing in the third equality by ‖E(ũ)‖L2(Ωε)
, or try to use an extension

R(x) ∈ D1,2(Ωε) with R
∣∣
Γε

= R(s) and instead take ũ−R as a test function
in the above variational estimate to get rid of the boundary term. In either
case, we run into difficulties in that we only have an L2(T) estimate for R(s),
when at least an H1/2(T) estimate would be needed. However, as noted in
Lemma 9, bounding the gradient of a function on Ωε incurs an additional
factor of 1/ε. By scaling, an H1/2(T) estimate for R(s) would likely yield the
same

√
ε factor appearing in Lemma 3.

Now, using the L2(T) trace inequality (Lemma 4), the Korn inequality
(Lemma 6), and Young’s inequality, along the with above ‖E(ũ)‖L2(Ωε)

esti-
mate, we have

‖Tr(up,s)− (vp + ωp ×X)‖L2(T) ≤ C |log ε|1/2 ‖∇ũ‖L2(Ωε)
≤ C |log ε|1/2 ‖E(ũ)‖L2(Ωε)

≤
√
ε |log ε|3/2 C

(
‖f s‖C1(T) + |F |+ |T |

)
+ Cε−1/2

∥∥rε[f s]
∥∥
L2(T),

yielding Lemma 3.

6 Regularizations

In practice, various regularizations rε are used to combat the non-invertibility
of the slender body integral operator (1.2). Here we explore an example from
[22] which removes (at least the most obvious) invertibility issues of (Λ+K)
and satisfies Lemma 10.
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In [22], the integral operator K is replaced with the operator

Kreg[f ](s) =
1

4π

[
ete

T
t + (I + ete

T
t ) log(πε/4)

]
f(s)

+
1

8π

∫
T

(
I

(|R0|2 + ε2)1/2
+

R0R
T
0

|R0|2(|R0|2 + ε2)1/2

)
f(s′) ds′.

(6.1)
We have that this choice of regularization satisfies the following ε bound:

Lemma 10 For K as in (1.2) and Kreg as in (6.1), we have that rε[f ](s) =
Kreg[f ](s)−K[f ](s) satisfies∥∥rε[f ]

∥∥
L2(T) ≤ ε |log ε|C ‖f‖C1(T) (6.2)

where C depends only on cΓ and κmax.

Proof Denoting a point on the slender body surface Γε by R(s, θ) = R0 +
εeρ(s, θ) where eρ is a unit vector normal to X(s), we can write

rε[f ](s) = Kreg[f ](s)−K[f ](s)

= Kreg[f ](s)−KR[f ](s, θ) +KR[f ](s, θ)−K[f ](s)
(6.3)

where

KR[f ](s, θ) =
1

4π

[
ete

T
t + (I + ete

T
t ) log(πε/4)

]
f(s)

+
1

8π

∫
T

(
I

|R|
+
RRT − ε2eρeTρ

|R|3

)
f(s′) ds′.

Now, using Lemma 3.6 and the proof of Proposition 3.10 in [18], we have

|KR −K| ≤ ε |log ε|C ‖f‖C1(T) (6.4)

where C depends on cΓ and κmax.

To estimate |Kreg −KR|, we first define

IR :=
1

|R|
− 1

(|R0|2 + ε2)1/2
=

2εR0 · eρ
|R| (|R0|2 + ε2)1/2((|R0|2 + ε2)1/2 + |R|)

.

(6.5)
Now, since we are taking X ∈ C3(T), we can write

R0(s, s′) = X(s)−X(s′) = (s−s′)et(s)+(s−s′)2Q(s, s′), |Q| ≤ κmax

2
, (6.6)

and therefore

|IR| ≤ C
ε(s− s′)2

|R|3
. (6.7)

Furthermore, we have the following inequalities:

|R| ≥ C(|R0|2 + ε2)1/2, |R| ≤
√

2(|R0|2 + ε2)1/2, (6.8)
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where C depends on κmax and cΓ . To prove (6.8), we note that, by (6.6),

|R0|2 + ε2 = (s− s′)2 + 2(s− s′)3Q · es + (s− s′)4 |Q|2 + ε2

≤ (s− s′)2 + |s− s′|3 κmax + (s− s′)4κmax

4
+ ε2

≤ C((s− s′)2 + ε2),

since |s− s′| ≤ 1. Then by Lemma 3.1 in [18], we have |R| ≥ C((s − s′)2 +

ε2)1/2 ≥ C(|R0|2 + ε2)1/2. Furthermore, by Young’s inequality,

|R|2 = |R0|2 + ε2 + 2εeρ ·R0 ≤ 2(|R0|2 + ε2).

Now we write

Kreg −KR =
1

8π
(J1 + J2),

J1 :=

∫
T
IR

[
I +

(
1

|R|2
+

1

|R| (|R0|2 + ε2)1/2
+

1

|R0|2 + ε2

)
R0R

T
0

]
f(s′) ds′

J2 :=

∫
T

ε(R0e
T
ρ + eρR

T
0 )

|R|3

)
f(s′) ds′.

Using (6.8), we have

|J1| ≤
∫
T
C |IR| ‖f‖C(T) ds

′ ≤ Cε |log ε| ‖f‖C(T) ,

where we have also used (6.7) and Lemma 3.3 in [18].

Furthermore, by (6.6) and Lemmas 3.3 and 3.4 in [18], we have

|J2| ≤
∣∣∣∣ ∫

T

ε(s− s′)(eseTρ + eρe
T
s )

|R|3
f(s′)ds′

∣∣∣∣+ C ‖f‖C(T)

∫
T

ε(s− s′)2

|R|3
ds′

≤ Cε |log ε| ‖f‖C1(T) .

Thus |rε[f ]| satisfies

|rε[f ]| ≤ |Kreg −KR|+ |KR −K| ≤ ε |log ε|C ‖f‖C1(T) ,

and therefore∥∥rε[f ]
∥∥
L2(T) =

(∫
T
|rε[f ]|2 ds

)1/2

≤ ε |log ε|C ‖f‖C1(T) . (6.9)

A solution theory for the regularized rigid slender body approximation
using either the above choice of rε or any other regularization is still needed.
Given that the slender body PDE framework of [18,19] is well-posed, we should
be able to use this framework to come up with the ‘best’ regularization for
the slender body approximation. However, this is truly a deeper issue that we
plan to explore in future work.
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A Appendix

Here we provide proofs for the L2(Γε) trace inequality (Lemma 5) and the higher regularity
estimate (Lemma 9).

We first recall the following lemma, which will be used throughout the appendix.

Lemma 11 (Sobolev inequality) Let Ωε = R3\Σε be as in Section 2.1. For any u ∈
D1,2(Ωε), we have

‖u‖L6(Ωε)
≤ C‖∇u‖L2(Ωε)

(A.1)

where C depends only on cΓ and κmax.

The proof of ε-independence of C appears in Appendix A.2.4 of [18].

A.1 Proof of Lemma 5

The proof of the L2(Γε) trace inequality follows the same outline as the proof of Lemma 4,
contained in Appendix A.2.1 of [18]. In particular, using the ε-independent C2-diffeomorphisms
ψj (defined in Appendix A.2.1, [18]) which map segments of the curved slender body Σε to
a straight cylinder, it suffices to show the

√
ε |log ε| dependence of the trace constant for a

straight cylinder.

Accordingly, let Dρ ⊂ R2 denote the open disk of radius ρ in R2, centered at the origin,
and, for some a <∞, define the cylindrical surface Γε,a = ∂Dε × [−a, a] and the cylindrical
shell Cε,a = (D1\Dε)× [−a, a]. Consider the function space

D1,2
Γ (Cε,a) =

{
u ∈ D1,2(Cε,a) : u

∣∣
∂Cε,a\Γε,a

= 0
}
.

As in the proof of Lemma 4, it suffices to show the
√
ε |log ε| dependence of the L2(Γε,a)

trace constant for functions belonging to D1,2
Γ (Cε,a).

By estimate (A.4) in [18], any u ∈ C1(Cε,a) ∩ C0(Cε,a) ∩D1,2
Γ (Cε,a) satisfies

|Tr(u)|2 ≤ |log ε|
∫ 1

ε

∣∣∣∣∂u∂ρ
∣∣∣∣2 ρ dρ.

Then, noting that the surface element on Γε,a is simply ε, we have

‖Tr(u)‖2L2(Γε,a)
=

∫ a

−a

∫ 2π

0
|Tr(u)|2 ε dθ ds

≤ ε |log ε|
∫ a

−a

∫ 2π

0

∫ 1

ε

∣∣∣∣∂u∂ρ
∣∣∣∣2 ρ dρ dθ ds ≤ ε |log ε| ‖∇u‖2L2(Cε,a) .

The same result for u ∈ D1,2
Γ (Cε,a) follows by density.

A.2 Proof of Lemma 9

To determine the ε-dependence of the constant in (5.3), it suffices to work locally near the
slender body surface and show that Lemma 9 holds within an ε-independent region about
the slender body centerline. We define the region

O =
{
x ∈ Ωε : x = X(s) + ρeρ(s, θ), ε < ρ < rmax

}
, (A.2)
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where rmax is as in Section 2.1. Within O, we can use the orthonormal frame (2.2). We
will use the notation ∂s, ∂θ, ∂ρ to denote derivatives ∂/∂s, ∂/∂θ, ∂/∂ρ with respect to the
variables s, θ, ρ, defined with respect to the orthonormal frame. We verify the ε-dependence
in the bound for ∇2up and ∇pp in two parts: we first show an L2 bound for derivatives
∇(∂sup), ∇(∂θu

p), ∂spp, and ∂θp
p in directions tangent to the slender body surface Γε,

and then use these bounds to estimate the derivatives ∇(∂ρup), ∂ρpp normal to Γε.

We begin by estimating the tangential derivatives ∇(∂sup) and ∇(∂θu
p). Since the

derivatives ∂s and ∂θ with respect to the orthonormal frame (2.2) do not commute with
the “straight” differential operators ∇ and div , we will need to make use of the following
commutator bounds.

Proposition 1 (Commutator estimates) For any function u ∈ D1,2
0 (O) and for each

of the differential operators D = div , ∇, E(·), the following commutator estimates hold:

‖[D, ∂θ]u‖L2(O) ≤ C ‖∇u‖L2(O) , ‖[D, ∂s]u‖L2(O) ≤ C ‖∇u‖L2(O) ,

where the constant C depends only on cΓ , κmax, and ξmax.

Proof We begin by denoting

eθ(s, θ) = − sin θen1 (s) + cos θen2 (s),

uρ = u · eρ, uθ = u · eθ, us = u · et.

Then, with respect to the orthonormal frame (2.2), the divergence and gradient are
given by

divu =
1

1− ρκ̂

(
1

ρ

∂(ρ(1− ρκ̂)uρ)

∂ρ
+

1

ρ

∂((1− ρκ̂)uθ)

∂θ
+
∂us

∂s

)
∇u = eρ(s, θ)

∂u

∂ρ

T

+ eθ(s, θ)
1

ρ

∂u

∂θ

T

+ et(s)
1

1− ρκ̂

(
∂u

∂s
− κ3

∂u

∂θ

)T

,

where
κ̂(s, θ) = κ1(s) cos θ + κ2(s) sin θ. (A.3)

Direct computation of the commutators yields

[div , ∂θ]u =
(∂θκ̂)

1− ρκ̂

(
ρ divu−

1

ρ

∂

∂ρ

(
ρ2uρ

)
−
∂uθ

∂θ

)
−

(∂2θ κ̂)

1− ρκ̂
uθ

[div , ∂s]u =
(∂sκ̂)

1− ρκ̂

(
ρ divu−

1

ρ

∂

∂ρ

(
ρ2uρ

)
−
∂uθ

∂θ

)
−

(∂θ∂sκ̂)

1− ρκ̂
uθ

[∇, ∂θ]u = eθ
∂u

∂ρ

T

− eρ
1

ρ

∂u

∂θ

T

+ et
ρ(∂θκ̂)

(1− ρκ̂)2

(
∂u

∂s
− κ3

∂u

∂θ

)T

[∇, ∂s]u = (∂seρ)
∂u

∂ρ

T

+ (∂seθ)
1

ρ

∂u

∂θ

T

+

(
et
ρ(∂sκ̂)

1− ρκ̂
+ (∂set)

)
1

1− ρκ̂

(
∂u

∂s
− κ3

∂u

∂θ

)T

Using (A.3) and the orthonormal frame ODEs (2.2), we have

|∂θκ̂| = |−κ1 sin θ + κ2 cos θ| ≤ κmax, |∂sκ̂| =
∣∣κ′1 cos θ + κ′2 sin θ

∣∣ ≤ ξmax + 2(κmax + π),∣∣∂2θ κ̂∣∣ = |−κ̂| ≤ κmax, |∂θ∂sκ̂| =
∣∣−κ′1 sin θ + κ′2 cos θ

∣∣ ≤ ξmax + 2(κmax + π),

|∂seρ| = |−κ̂et + κ3eθ| ≤ κmax + π, |∂seθ| = |−(∂θκ̂)et − κ3et| ≤ κmax + π,∣∣∣∣ 1

1− ρκ̂

∣∣∣∣ ≤ 1

1− rmaxκmax(cos θ + sin θ)
≤

1

1− 1
2κmax

κmax

√
2
≤ 4.

Finally, noting that, by Lemma 11,

‖uθ‖L2(O) ≤ |O|
1/3 ‖u‖L6(O) ≤ C ‖∇u‖L2(O) ,

the desired L2(Ω) bounds follow for each of D = div ,∇. The estimate for the symmetric
gradient E(u) then follows from the gradient commutator bound.
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Now, to derive an estimate for∇(∂sup), we will make use of Definition 3 with a particular
test function ϕ, which we will construct here. First, we want our test function to be supported
only within O. We define a smooth cutoff function

ψ(ρ) =

{
1, ρ < rmax/4

0, ρ > rmax/2,

∣∣∣∣∂ψ∂ρ
∣∣∣∣ ≤ C, (A.4)

where C depends only on rmax. Note that ψ(ρ) commutes with both ∂θ and ∂s.

We would like to use ∂2s (ψup) as a test function in Definition 3, but it will be more
convenient to work with a function which vanishes on Γε. We therefore construct a correction
g ∈ C2(Ωε) supported only in O and satisfying

g
∣∣
Γε

= (∂su
p)
∣∣
Γε

= ωp × et(s), ‖∇g‖L2(O) ≤ C |ω| , (A.5)

where C depends on cΓ and κmax. To build g, we follow a similar construction used in
Section 4.1 of [18]. We define

g0(ρ, θ, s) =

{
ωp × et(s) if ρ < 4ε

0 otherwise

and take
g(ρ, θ, s) := φε(ρ)g0(ρ, θ, s),

where φε(ρ) is the smooth cutoff defined in (4.3)-(4.4). Note that g ∈ C2 and is supported
within the region

Oε :=
{
X(s) + ρeρ(s, θ) : s ∈ T, ε ≤ ρ ≤ 4ε, 0 ≤ θ < 2π

}
,

where |Oε| ≤ Cε2. Then, using (4.4) and (2.2), we have

‖∇g‖L2(O) ≤
√
|Oε| ‖∇g‖C(Oε)

≤
√
|Oε|

(∥∥∥∥∂φε∂ρ
∥∥∥∥
C(Oε)

‖g0‖C(Oε) +

∥∥∥∥ 1

1− ρκ̂
∂g0

∂s

∥∥∥∥
C(Oε)

)
≤ C |ωp| .

Now, we could just use ∂s(∂s(ψup) − g) as a test function in Definition 3, but it will
actually be useful to include a second correction term in the following way. We consider
z ∈ D1,2

0 (O) satisfying

div z = div (ψ∂su
p − g) in O

‖∇z‖L2(O) ≤ C ‖div (ψ∂su
p − g)‖L2(O)

(A.6)

for C depending only on cΓ and κmax. We know that such a z exists due to [6], Section
III.3, and the constant C is independence of ε due to Appendix A.2.5 of [18]. Furthermore,
since divup = 0, by Proposition 1 we have

‖div (ψ∂su
p − g)‖L2(O) ≤ ‖div (∂θu

p)‖L2(O) + C ‖∂θup‖L2(O) + ‖∇g‖L2(O)

≤ ‖[div , ∂θ]up‖L2(O) + C ‖∂θup‖L2(O) + C |ωp|

≤ C ‖∇up‖L2(O) + C |ωp| .

Here we have also used that ‖∂θup‖L2(O) ≤ ‖ρ∇up‖L2(O) ≤ rmax ‖∇up‖L2(O). In partic-

ular, z satisfying (A.6) also satisfies

‖∇z‖L2(O) ≤ C ‖∇u
p‖L2(O) + C |ωp| . (A.7)

Using extension by zero to consider z as a function over all Ωε, we can now construct
our desired test function for use in Definition 3. In particular, we will use the function
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∂s(∂s(ψup)− g− z) in place of ϕ in Definition 3. Note that by definition of z, this function
may only belong to L2(Ωε). In this case, we can make sense of the following integration-by-
parts argument using finite differences rather than full derivatives (see [2], Section III.2.7
for construction of finite difference operators along a curved boundary). Thus we really
only need ∂s(ψup) − g − z ∈ D1,2(Ωε) to make sense of the following result. Note that in
integrating by parts, we will also need to make use of the fact that, for i = s, θ,

∂i(dx) = −
ρ∂iκ̂

1− ρκ̂
dx := Ji dx, |Ji| ≤ C; i = s, θ, (A.8)

where C depends on cΓ , κmax, and ξmax.

Then, using ∂s(∂s(ψup)− g − z) in Definition 3, we have

0 =

∫
O

(
2E(up) : E

(
∂s(∂s(ψu

p)− g − z)
)
− pp div (∂s(∂s(ψu

p)− g − z))

)
dx

=

∫
O

2E(up) : ∂sE(∂s(ψu
p)− g − z) dx+

∫
O

2E(up) : [E(·), ∂s](∂s(ψup)− g − z) dx

−
∫
O
pp ∂s(div (∂s(ψu

p)− g − z)) dx−
∫
O
pp [div , ∂s](∂s(ψu

p)− g − z) dx

= −
∫
O

2∂sE(up) : E(∂s(ψu
p)− g − z) dx−

∫
O

2E(up) : E(∂s(ψu
p)− g − z)Js dx

+

∫
O

2E(up) : [E(·), ∂s](∂s(ψup)− g − z) dx−
∫
O
pp [div , ∂s](∂s(ψu

p)− g − z) dx

= −
∫
O

2E(∂su
p) : E(∂s(ψu

p)− g − z) dx−
∫
O

2E(up) : E(∂s(ψu
p)− g − z)Js dx

+

∫
O

2[E(·), ∂s]up : E(∂s(ψu
p)− g − z) dx+

∫
O

2E(up) : [E(·), ∂s](∂s(ψup)− g − z) dx

−
∫
O
pp [div , ∂s](∂s(ψu

p)− g − z) dx.

Note that the first integral in the third line vanishes due to the definition of z. In this way
we we can avoid having to deal with a ∂spp term in the resulting estimate.

Then, using Proposition 1, estimates (A.7) and (A.5), and Lemma 6, we have

‖E(∂su
p)‖2L2(O) ≤ C ‖E(∂su

p)‖L2(O)

(
‖∂sup‖L2(O) + ‖E(z)‖L2(O) + ‖E(g)‖L2(O)

)
+ C ‖E(up)‖L2(O)

(
‖E(ψ∂su

p)‖L2(O) + ‖E(g)‖L2(O) + ‖E(z)‖L2(O)

)
+ 2 ‖[E(·), ∂s]up‖L2(O)

(
‖E(ψ∂su

p)‖L2(O) + ‖E(z)‖L2(O) + ‖E(g)‖L2(O)

)
+ 2 ‖E(up)‖L2(O)

(
‖[E(·), ∂s](ψ∂sup)‖L2(O) + ‖[E(·), ∂s](z)‖L2(O) + ‖[E(·), ∂s](g)‖L2(O)

)
+ ‖pp‖L2(O)

(
‖[div , ∂s](ψ∂su

p)‖L2(O) + ‖[div , ∂s](z)‖L2(O) + ‖[div , ∂s](g)‖L2(O)

)
≤ C(‖E(∂su

p)‖L2(O) + ‖∇up‖L2(O) + |ω|)
(
‖∇up‖L2(O) + ‖pp‖L2(O) + |ωp|

)
≤ δ ‖E(∂su

p)‖2L2(O) + C(δ)
(
‖∇up‖2L2(O) + ‖pp‖2L2(O) + |ωp|2

)
for any 0 < δ ∈ R, by Young’s inequality. Taking δ = 1

2
and using Lemma 6, we obtain

‖∇(∂su
p)‖L2(O) ≤ ‖E(∂su

p)‖L2(O) ≤ C
(
‖∇up‖L2(O) + ‖pp‖L2(O) + |ωp|

)
≤ C |log ε|1/2

(
‖∇up‖L2(Ωε)

+ ‖pp‖L2(Ωε)

)
,

(A.9)

where we have used Corollary 1 to bound |ωp|. Here C depends only on cΓ , κmax, and ξmax.
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We may estimate ∂θu
p in a similar way. In fact, the construction of the analogous test

function is simpler since (∂θu
p)
∣∣
Γε

= ∂θ(v + ω ×X(s)) = 0 and thus we do not need to

correct for a nonzero boundary value. Following the same steps used to estimate ∂sup, we
obtain

‖∇(∂θu
p)‖L2(O) ≤ C

(
‖∇up‖L2(Ωε)

+ ‖pp‖L2(Ωε)

)
, (A.10)

where C depends only on cΓ , κmax, and ξmax.

In addition to the estimates (A.9) and (A.10), we need bounds for the tangential deriva-
tives ∂spp and ∂θp

p of the pressure. We begin by estimating ∂spp; the bound for ∂θp
p is

similar. Since we already know that ∂spp ∈ L2(Ωε), we may consider z̃ ∈ D1,2
0 (O) satisfying

div z̃ = ψ∂sp
p in O,

‖∇z̃‖L2(O) ≤ C ‖ψ∂sp
p‖L2(O) ,

(A.11)

where ψ is as in (A.4). Again, we know that such a z̃ exists due to [6], Section III.3 and
[18], Appendix A.2.5.

Using ∂sz̃ as a test function in Definition 3 (again, we can make sense of the following
computation using finite differences, and thus only require z̃ ∈ D1,2(O)), we have

0 =

∫
O

(
2E(up) : E(∂sz̃)− pp div (∂sz̃)

)
dx =

∫
O

2E(up) : ∂sE(z̃) dx

+

∫
O

2E(up) : [E(·), ∂s]z̃ dx−
∫
O
pp ∂sdiv z̃ dx−

∫
O
pp [div , ∂s]z̃ dx

= −
∫
O

2∂sE(up) : E(z̃) dx−
∫
O

2E(up) : E(z̃)Js dx+

∫
O

2E(up) : [E(·), ∂s]z̃ dx

−
∫
O
pp [div , ∂s]z̃ dx+

∫
O

(∂sp)div z̃ dx+

∫
O
pp div z̃ Js dx

=

∫
O
ψ(∂sp)

2 dx−
∫
O

2∂sE(up) : E(z̃) dx−
∫
O

2E(up) : E(z̃)Js dx

+

∫
O

2E(up) : [E(·), ∂s]z̃ dx−
∫
O
pp [div , ∂s]z̃ dx+

∫
O
pp div z̃ Js dx,

where Js dx is as in (A.8) and we have used (A.11). Then, using that ψ2 ≤ ψ, we have

‖ψ∂spp‖2L2(O) ≤ 2 ‖E(∂su
p)‖L2(O) ‖E(z̃)‖L2(O) + 2 ‖[E(·), ∂s]up‖L2(O) ‖E(z̃)‖L2(O)

+ C ‖E(up)‖L2(O) ‖E(z̃)‖L2(O) + 2 ‖E(up)‖L2(O) ‖[E(·), ∂s]z̃‖L2(O)

+ ‖pp‖L2(O) ‖[div , ∂s]z̃‖L2(O) + C ‖pp‖L2(O) ‖div z̃‖L2(O)

≤ C
(
‖∇(∂su

p)‖L2(O) + ‖∇up‖L2(O) + ‖pp‖L2(O)

)
‖ψ∂spp‖L2(O)

≤ δ ‖ψ∂spp‖2L2(O) + C(δ)
(
‖∇(∂su

p)‖2L2(O) + ‖∇up‖2L2(O) + ‖pp‖2L2(O)

)
for 0 < δ ∈ R. Here we have used (A.8), (A.11), Proposition 1, and Young’s inequality.
Taking δ = 1

2
and using (A.9), we obtain

‖ψ∂spp‖L2(O) ≤ C |log ε|1/2
(
‖∇up‖L2(Ωε)

+ ‖pp‖L2(Ωε)

)
.

Then, using (A.4), within the region

O′ =

{
x ∈ Ωε : x = X(s) + ρeρ(s, θ), ε < ρ <

rmax

4

}
,

we have
‖∂spp‖L2(O′) ≤ C |log ε|1/2

(
‖∇up‖L2(Ωε)

+ ‖pp‖L2(Ωε)

)
(A.12)
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for C depending only on cΓ , κmax, and ξmax.

We can similarly use (A.10) to show

‖∂θpp‖L2(O′) ≤ C
(
‖∇up‖L2(Ωε)

+ ‖pp‖L2(Ωε)

)
. (A.13)

Now we can use the tangential bounds (A.9), (A.10), (A.12), and (A.13) to obtain an
estimate for derivatives ∇(∂ρup) normal to Γε. For this, we will use the full Stokes equations
(1.8), written with respect to the orthonormal frame et, eρ, eθ in O as

−∆up +∇pp = −∆up +
∂pp

∂ρ
eρ +

1

ρ

∂pp

∂θ
eθ +

1

1− ρκ̂

(
∂pp

∂s
− κ3

∂pp

∂θ

)
et = 0

divup =
1

1− ρκ̂

(
1

ρ

∂(ρ(1− ρκ̂)uρ)

∂ρ
+

1

ρ

∂((1− ρκ̂)uθ)

∂θ
+
∂us

∂s

)
= 0.

Here κ̂ is as in (A.3) and we recall the notation uρ = up · eρ, uθ = up · eθ, us = up · et.

From the divergence-free condition on up, after multiplying through by ρ(1 − ρκ̂) and
differentiating once with respect to ρ, we obtain∥∥∥∥∂2uρ∂2ρ

∥∥∥∥
L2(O)

≤ C
(∥∥∥∥1

ρ
∇up

∥∥∥∥
L2(O)

+

∥∥∥∥1

ρ

∥∥∥∥
L∞(O)

|O|1/3
∥∥up

∥∥
L6(O)

+

∥∥∥∥1

ρ

∂

∂ρ

(
∂uθ

∂θ

)∥∥∥∥
L2(O)

+

∥∥∥∥ ∂∂ρ
(
∂us

∂s

)∥∥∥∥
L2(O)

)
≤
C

ε
|log ε|1/2

(
‖∇up‖L2(Ωε)

+ ‖pp‖L2(Ωε)

)
,

where we have used (A.9) and (A.10) along with the Sobolev inequality on Ωε.

Furthermore, using the eρ component of −∆up +∇p = 0, we have

∂pp

∂ρ
= (∆up) · eρ

=
1

ρ(1− ρκ̂)

∂

∂ρ

(
ρ(1− ρκ̂)

∂up

∂ρ

)
· eρ +

1

ρ2(1− ρκ̂)

∂

∂θ

(
(1− ρκ̂)

∂up

∂θ

)
· eρ

+
1

1− ρκ̂
∂

∂s

(
1

1− ρκ̂

[
∂up

∂s
− κ3

∂up

∂θ

])
· eρ

=
1

ρ(1− ρκ̂)

∂

∂ρ

(
ρ(1− ρκ̂)

∂uρ

∂ρ

)
+

1

ρ2(1− ρκ̂)

∂

∂θ

(
(1− ρκ̂)

∂up

∂θ

)
· eρ

+
1

1− ρκ̂
∂

∂s

(
1

1− ρκ̂

[
∂up

∂s
− κ3

∂up

∂θ

])
· eρ,

since eρ(s, θ) does not vary with ρ. Therefore, using (A.9), (A.10), (A.12), and (A.13), along

with the the bound on
∂2uρ
∂ρ2

, we have

‖∇pp‖L2(O′) ≤
C

ε
|log ε|1/2

(
‖∇up‖L2(Ωε)

+ ‖pp‖L2(Ωε)

)
.

Finally, to estimate
∂2uj
∂ρ2

, j = θ, s, we again use that

∇pp · ej = (∆up) · ej(s, θ)

=
1

ρ(1− ρκ̂)

∂

∂ρ

(
ρ(1− ρκ̂)

∂uj

∂ρ

)
+

1

ρ2(1− ρκ̂)

∂

∂θ

(
(1− ρκ̂)

∂up

∂θ

)
· ej
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+
1

1− ρκ̂
∂

∂s

(
1

1− ρκ̂

[
∂up

∂s
− κ3

∂up

∂θ

])
· ej , j = θ, s,

since each of et(s), eρ(s, θ) and eθ(s, θ) are independent of ρ. Then we have∥∥∥∥∂2uj∂ρ2

∥∥∥∥
L2(O′)

≤ C
(∥∥∥∥1

ρ

∥∥∥∥
L∞(O′)

‖∇up‖L2(O′) +

∥∥∥∥∂2up

∂s2

∥∥∥∥
L2(O′)

+

∥∥∥∥∂2up

∂s∂θ

∥∥∥∥
L2(O′)

+

∥∥∥∥∂2up

∂θ2

∥∥∥∥
L2(O′)

+ ‖∇pp‖L2(O′)

)
≤
C

ε
|log ε|1/2

(
‖∇up‖L2(Ωε)

+ ‖pp‖L2(Ωε)

)
, j = θ, s,

where C depends only on cΓ , κmax, and ξmax. Altogether, we obtain Lemma 9. �

Remark 2 We note that the factor of 1
ε

in Lemma 9 is necessary. As a heuristic, we consider

an infinite straight cylinder of radius ε and take u = ( 1
ρ
− 1

ε
)eθ, where eθ is now the

(constant) angular vector in straight cylindrical coordinates, and p ≡ constant. Ignoring
decay conditions toward infinity along the cylinder, (u, p) solves the Stokes equations with
u = 0 on the cylinder surface. Then

|∇2u| =
∣∣∣∣ ∂2∂ρ2 1

ρ

∣∣∣∣ =

∣∣∣∣ 2

ρ3

∣∣∣∣ =
2

ρ

∣∣∇u∣∣,
and within the region ε < ρ ≤ 2ε, we have |∇2u| ≥ 1

ε
|∇u|.
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