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Abstract We investigate the motion of a thin rigid body in Stokes flow and
the corresponding slender body approximation used to model sedimenting
fibers. In particular, we derive a rigorous error bound comparing a regular-
ized version of the rigid slender body approximation to the classical PDE for
rigid motion in the case of a closed loop with constant radius. Our main tool
is the slender body PDE framework established by the authors and D. Spirn
in [18,19], which we adapt to the rigid setting.
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1 Introduction

Determining the motion of a three-dimensional rigid body sedimenting in a
Stokesian fluid is an important problem in both theoretical and computational
fluid mechanics. This motion is described by a classical PDE [4,5,26], which
we write below in the case of a thin rigid body. We use £(u) = 3(Vu+(Vu)T)
to denote the symmetric gradient, and o = o(u,p) = 2&(u) — pI to denote
the stress tensor. Let Y. denote a closed loop slender body of radius € > 0
(to be made precise in Section 2.1) and let 2, = R3\ X, and I, = 9%, (see
Figure 1). For simplicity, we take the center of mass of the body to be at the
origin. The full PDE description of a slender body undergoing a rigid motion
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in Stokes flow may be written as follows:

—Au'+Vp' =0 in 2
divu' =0 in 2,
(1.1)
u'(x) =v +w' X, zel,
u'(xz) =0 as |x| — oo

and

/arndS:F, /wx(arn)dS:T.
I, I.

€

We are interested in the mobility problem [4], where the total force F' € R?
and torque T € R3 are given and we solve for the linear velocity v* € R? and
angular velocity w™ € R? of the body. Note that the boundary value problem
(1.1) is in fact valid for a rigid body of arbitrary shape, but for the purposes
of this paper we specifically consider here a slender closed loop. Using the
variational framework of [5,7,26], it can be shown that (1.1) is a well-posed
PDE.

On the computational side, there has been much recent interest in numer-
ical simulations of rigid particle sedimentation [9,10], and various tools have
been developed to facilitate these simulations [4,13,17].

en,(s)

/ | TN
L, = 0%, ok en (s

€

Fig. 1 The geometry of the rigid fiber may be parameterized with respect to the orthogonal
frame e¢(s), en; (), eny(s) defined in Section 2.1.

For a thin rigid body, a commonly-used tool for simplifying simulations
is slender body theory, which exploits the thin geometry of the body by ap-
proximating the filament as a one-dimensional force density distributed along
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the fiber centerline. Slender body theory is a popular method for modeling
sedimentation of thin fibers, both rigid [3,20,21,23] and semi-flexible [15,16].
Here we will specifically consider the slender body theory established by Keller
and Rubinow [14] and further developed in [8,12,25]. This slender body the-
ory is derived by integrating the fundamental solution to the Stokes equations
(the Stokeslet) and higher order corrections along the fiber centerline, yielding
an expression valid only away from the fiber centerline. A limiting expression
valid on the centerline itself (1.2) is then obtained via a matched asymptotic
expansion.

Let X : T = R/Z — R? denote the coordinates of the slender body
centerline, parameterized by arclength s and defined more precisely in Section
2.1. Given a line force density f(s), s € T, the slender body approximation
yields a direct expression approximating the velocity of the fiber, given by [22]:

ug(s) = A[f](s) + K[f](s),
A[f](s) : 1 [(I —3eel) —2(1+ ee}) 10g(7re/4)] f(s)

- 8
1 1 RyR} , I+ei(s)es(s)T ,
KIf) = | [<|R| IR ) F) = Tt — w8 &

(1.2)
Here e;(s) is the unit tangent vector to X (s) and Rg(s,s’) = X (s) — X (¢).
The slender body approximation generally allows for bending and flexing of
the filament along its centerline and requires specifying the one-dimensional
force density over the length of the fiber centerline. If the fiber is constrained
to be fully rigid, only the total force F' and torque T must be specified, where

/f(s) ds = F, /X(s) « f(s)ds = T. (1.3)
T T

These constraints give rise to a system of integral equations which must be
solved to obtain the line force density along the slender body (see [11,24]; also
[3,20,21,23]). However, these integral equations are ill-posed. Specifically, a
detailed spectral analysis by Gotz [8] in the case of a straight slender body
centerline shows that the slender body operator (A+ K) in (1.2) is not invert-
ible for all small €. A similar result for a perfectly circular, planar centerline
was shown by Shelley-Ueda in [22]. For fibers with more general centerline
curvature, a spectral analysis of the slender body integral operator is compli-
cated, but it is expected that the ill-posedness remains.

In practice, this ill-posedness is addressed by regularizing the integral op-
erator K to remove the invertibility issues encountered with (A+ K). Various
regularizations are possible; see Section 6 for one example. Therefore, to ana-
lyze the error in the rigid slender body approximation, we will instead consider
the regularized expression

Weg () = ALF7](s) + K[£7)(s) + re[£7](s), (1.4)
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where 7 is a regularization such that the operator (A + K + ) is invertible.
The regularization r. may be effected, for example, by regularizing the integral
kernel K:

Te = Krcg - K7
1
Kreg[f)(s) = o~ [ever + (I+ eve)) log(me/4)] f*(s)
1 I RoR} o
— 5(s")ds'.
"5 /Tr <(|R0|2 T T RPE(R £ 62)1/2) Jds

(1.5)
This choice of regularization is explored in more detail in Section 6. Vari-
ous other regularizations are possible, including numerical truncation of the
continuous integral operator K. To include room for other possible regulariza-
tions, we leave the particular form of r. unspecified for much of the analysis.
However the regularization is chosen, the idea is that r. should be small in
terms of € so that (1.4) is close to the expression (1.2). In particular, the K eg
example explored in Section 6 satisfies ||re[f*] HLQ(T) < Cellogel | £l cr (-

Combined with the conditions (1.3) and the constraint that the velocity of
the slender body centerline is a rigid motion, i.e.

U, (s) = 0° +w° x X(s), v°,w’eR’, (1.6)

the regularized expression (1.4) with an appropriate choice of r. likely gives
rise to a well-posed rigid slender body approximation. A general solution the-
ory for such regularized equations will require a detailed spectral analysis of
the regularized integral operator, which is beyond the scope of this paper.

Instead, the aim of this paper is to establish an a posteriori error bound
between the regularized slender body approximation for rigid motion in Stokes
flow (1.3)-(1.6) and the classical PDE (1.1). We take for granted that the reg-
ularized slender body approximation (1.4) gives rise to f5 € C*(T) satisfying
(1.3) and (1.6). This f° must then appear in the final error bound, giving
rise to a type of a posteriori error estimate, similar to the type of estimates
commonly used in finite element analysis [1]. To obtain an a priori bound, we
would need a general solution theory for (1.3)-(1.6) to then able to say that
such an f* is then bounded by the given F' and T. We show the following
theorem.

Theorem 1 Let X be a slender body as defined in Section 2.1. Suppose the
total force F € R? and torque T € R? are given, and assume that reqularized
rigid slender body approzimation (1.3)-(1.6) is satisfied by some f° € C(T).
Then the difference v" —v°, w" —w?® between the linear and angular velocities of
true rigid motion (1.1) and the reqularized slender body approximation (1.3)-
(1.6) satisfies

o' — v Hw" - Wt < C(ﬁllogel”2 (I1£° o oy +I FI+IT) )+e‘”zHr4f5H\L2(T))
(1.7)
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for C depending on cr, Kmax, and Emax-

The constants cp, Kmax, and Emax have to do only with the shape of the fiber
centerline and are defined in Section 2.1. Note that in order to obtain a con-
vergence result, the regularization r. must be chosen to be sufficiently small,
e.g. such that ||7"E[fs]||L2(T) < Cellogel || f5||c1(my (see Section 6). It may be
possible to improve the y/e¢ bound given a more complete solution theory for
the slender body approximation.

In order to prove Theorem 1, we introduce an intermediary PDE which
we will call the slender body PDE for rigid motion. The idea follows from
the notion of slender body PDE proposed by the authors and D. Spirn in
[18] and [19] as a framework for analyzing the error introduced by the Keller-
Rubinow slender body approximation for closed-loop and open-ended fibers,
respectively. To construct the rigid slender body PDE, we impose that the
velocity of the slender body is uniform over each cross section s of the fiber. In
particular, we approximate « € I'. as its L? projection onto the fiber centerline
X (s), thereby ignoring slight differences in torque across the slender body.
Note that the slender body geometry is defined in Section 2.1 such that this
projection onto the fiber centerline is unique; i.e. the notion of “fiber cross
section” is well-defined. We define the slender body PDE for rigid motion as
follows:

—AuP +VpP =0 in 2.
divuP =0 in £2,
(1.8)
uP(x) = vP + wP x X(s) on I,
uP(xz) —» 0 as |x| — oo

and

2m
/ oPn J.(s,0)d0ds = F, / X (s) x (/ oPn T (s, 9)d9) ds="T.
I. T 0
Here we have written dS = J.(s, 0) df ds, where J. is the Jacobian factor on
the slender body surface, which we parameterize as a tube about X (s) us-
ing surface angle 6 (see Section 2.1 and expression (2.5)). We show that for
a closed filament, the rigid slender body PDE is in fact close to the classical
PDE for rigid motion [5,26] — in particular, the variation in torque over any
cross section of the slender body is higher order in e.

In the case of a flexible filament with a prescribed force density per unit
length along the centerline, the slender body PDE of [18,19] is well-posed, and
the difference between the slender body approximation and the PDE solution
can be estimated in terms of the slender body radius and the given line force
density. We aim to use the existing error analysis in [18] to bound the difference
between the rigid slender body approximation and the rigid slender body PDE
solution. The rigid case is complicated by the fact that the existing error
bound relies on knowledge of the line force density along the filament, while
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only F' and T are specified. Below we outline our treatment of this and other
complications arising in the proof of Theorem 1.

1.1 Outline of the proof of Theorem 1

The strategy for proving Theorem 1 is to show that, given F and T, the so-
lution to the rigid slender body PDE (1.8) is close to both the classical rigid
PDE solution (1.1) and the rigid slender body approximation (1.3) - (1.6).

First, we must show that the rigid slender body PDE is well-posed. Using
Definition 3 of a weak solution to the rigid slender body PDE (1.8), where the
function space RV is as defined after (2.10), we show the following.

Theorem 2 Let Y. be a slender body as defined in Section 2.1. Given F and
T € R3, there exists a unique weak solution (uP,pP) € RIV x L2(£2.) to the
slender body PDE for rigid motion (1.8) satisfying the estimate

IVl 2y + 1271 2y < Cllogel 2 (17| +|T) (L9)

for C depending on cr and Kmax-

Theorem 2 can be established using many of the same tools from the well-
posedness theory in [18]. In addition, we will make use of the following bound
along the slender body centerline X (s):

Lemma 1 Let X be as in Section 2.1 and consider constant vectors v, w €
R3. Then

|+ |w| < Cllv+w x X2 (1.10)
for C depending only on cr and Kpax-

We will first prove Lemma 1 in Section 3; then Theorem 2 quickly follows
using some of the key inequalities collected in Section 2.3.

With the variational framework for (1.8), comparing (1.1) to (1.8) is rela-
tively straightforward. Using Lemma 1, we show that the difference between
the true rigid motion (1.1) and the slender body PDE description (1.8) satisfies
the following lemma.

Lemma 2 Let X be as in Section 2.1. Given F and T € R3, let (v*,w")
be the corresponding boundary values satisfying (1.1) and let (vP,wP) be the
boundary values satisfying (1.8). Then

|w" — wP| + |7 —vP| <e€lloge| C(IT| + | F|) (1.11)

where C' depends only on cp and Kmax-
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The main difficulties in proving Theorem 1 arise in comparing (1.8) to (1.3)
- (1.6). As discussed, we assume that we are considering a rigid slender body
approximation (1.3) - (1.6) that gives rise to a force density f5 € C1(T). A
difficulty is that in order to use the error analysis framework of [18], the line
force density along the slender body must be the same for both the slender
body approximation and the slender body PDE. Therefore we need to define
yet another intermediary PDE.

Given f5 € C*(T) satisfying (1.3) - (1.6) for given F and T € R3, we define
uP® as the solution to the PDE:

—AuP® 4+ VpP* =0 in (2,
divuP® =0 in £2,
2m
| orem) s 0)a8 = 129 on I,
0
uP®| = Tr(uP®)(s), unknown but independent of 6
uP® — 0 as |x| — oo.

(1.12)
Here Tr(uP®)(s) denotes the trace of uP® on I, and 6 refers to the parame-
terization of I'; as a tube about X (s) (see Section 2.1). By [18], we know that
a (weak) solution (uP®,pP*®) exists and is unique. Now, Tr(uP®)(s) may not
be precisely a rigid motion, but we can show that it is close. In particular, by
Theorem 1.3 in [18], we may bound the difference between Tr(uP*)(s) and the
non-regularized slender body approximation ug(s) (1.2) by

E s 3/2 s
ITr(uP?) = w2y < Cellog el [ £l o1 my (1.13)

for C depending only on ¢y and Ky ax. The regularized slender body approxi-
mation U3, (s) = ug(s) — re[f7](s) = v° + w® x X(s) (1.4) then satisfies

ITe(P®) — (0" + @ % X)lpacry < Cellog e | Fllor i) + [relf ]

(1.14)

A further technical issue arises in comparing (1.12) to (1.8). In order to
obtain a useful estimate of the difference between (uP® — uP, pP* — pP) in
terms of only F', T, and f*(s), we will need a careful characterization of the
e-dependence in a higher regularity estimate for solutions to (1.8) (see Lemma
9). Note that for a (sufficiently smooth) sedimenting rigid body, once well-
posedness of the PDE has been established, higher regularity of the solution
follows by standard arguments for a Stokes Dirichlet boundary value problem.
In our case, the novelty is determining how the higher regularity bound scales
with e. Our proof (see Appendix A.2) makes use of the local coordinate system
valid near the slender body. We obtain commutator estimates for the tangen-
tial derivatives along the slender body surface and use an integration by parts
argument, along with the form of the Stokes equations in local coordinates,
to show that the bound for an additional derivative of the rigid slender body
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PDE solution scales like 1/¢, up to logarithmic corrections.

Now, using the variational framework for the slender body PDE along with
this higher regularity lemma, we can show the following estimate.

Lemma 3 Let uP® satisfy (1.12) and let (vP,wP) denote the rigid slender
body PDE boundary values satisfying (1.8). Then

T (P ) — (PP x X)) < C(ﬁ o *'* (11| ¢y +F T )+e‘”2Hre[fS]HL2(T>>

(1.15)
for C depending on cr, Kmax, and Emax-

Combining estimate (1.14) with Lemma 3 and using Lemma 1 with vP —v?®
and wP? — w*® in place of v and w, we obtain the following bound for the
difference between the regularized slender body approximation (1.3)-(1.6) and
the slender body PDE (1.8):

E s 3/2 s _ s
o = ol = w7l < C(VEloge (IFlen oy HETHTT) +e 2l g )

(1.16)
Finally, combining the estimate (1.16) with Lemma 2 yields Theorem 1.
The remainder of this paper is thus devoted to showing Lemmas 1 - 3. We
will begin by introducing the variational framework for (1.8) and noting some
key inequalities in Section 2. In Section 3, we show Lemma 1 and use it to
derive estimates for (uP, pP, vP, wP) satisfying (1.8). These estimates can then
be used to show Theorem 2. In Section 4, we use the variational framework
for the rigid slender body PDE to prove Lemma 2. Finally, in Section 5, we
prove Lemma 3 to complete the proof of Theorem 1.

2 Geometry and variational framework

We begin in Section 2.1 with a precise definition of the slender body geometry.
In Section 2.2, we introduce the variational form of the slender body PDE for
rigid motion (1.8), which, along with the variational form of (1.12), will provide
the framework for obtaining Theorem 1. Finally, in Section 2.3, we make note
of some key inequalities that will be used throughout the remainder of this

paper.

2.1 Slender body geometry

As in [18], we let X : T = R/Z — R? denote the coordinates of a closed, non-
self-intersecting C® curve in R3, parameterized by arclength s. We require
that

Z cr (21)
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for some constant ¢,y > 0.

Along X (s) we consider the orthonormal frame (e:(s), en,(s), €n,(s)) de-
fined in [18]. Here e,(s) = %X is the unit tangent vector to X (s) and (e, (s), €, (s))
span the plane normal to e;(s). The frame satisfies the ODEs

d
- €t = Hlenl + K/Qenza

€n, = —K1€¢ + K3éy,
dS 1 29

€n, = —K2€t — R3€Ep,
(2.2)
where k2 (s)+#2(s) = k2(s), the fiber curvature, and k3 is a constant satisfying

|k3| < 7. We require the orthonormal frame to be C? and denote

a a
ds ds

PX
R

Fmax '= r?eax [£(8)], Emax = max

(2.3)

Note that |0k1/0s| + |0k2/0s| < &max + 2(Kmax + 7).

We define
e,(s,0) := cosfey, (s)+ sinbe,,(s)

and, for some Tmax = Tmax(Cr, Kmax) < #, we can uniquely parameterize

points & within a neighborhood dist(z, X) < rmax of X (s) as
x=X(s)+pey(s,0), 0<p<rmax.
For € < Tmax/4, we may then define a slender body of uniform radius € as
To={xeR® : o= X(s)+pey(s,0), p<e, 0<0<2r}. (2.4)
We parameterize the slender body surface I'. = 90X, as
I'e = X (s) + eep(s, 0).

In addition, we may parameterize the Jacobian factor J.(s,6) on the slender
body surface as

Je(5,0) = (1 — e(k1(s) cos b + ka(s) sinb)). (2.5)

2.2 Variational form of (1.8)

Letting 2. = R?\ X, for ¥, as in Section 2.1, we recall the following function
spaces, used in [18] to study a slender body PDE of the form (1.12). We use
D2(£2.) to denote the homogeneous Sobolev space

D"2(2.) ={ue L) : Vue L*(02.)}, (2.6)

which, due to the Sobolev inequality in 2. C R? (see Lemma 11), is a Hilbert
space with norm |[Vau| ;2 (g, ). We define Dy?(£2.) as the closure of C°(£2)

(smooth, compactly supported test functions) in D%2(£2,).
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We also recall the space A, the subspace of D%?(£2,.) with f-independent
boundary values:

Ac={ueD"?(2,) : u

L= u(s)}) (2.7)

Here the boundary value u| = u(s) is not directly specified but is required

to be independent of the surface angle §. We define A%V to be the divergence-
free subspace of A..

We also recall the variational form of (1.12), examined in detail in [18].

Definition 1 (Weak solution to (1.12)) A weak solution uP* € A% to
(1.12) satisfies

/ 28(uP®) : E(v)dx = / v(s) - f5(s)ds (2.8)
2 T

for any v € A%V, In addition, for uP* satisfying (2.8), there exists a unique
pressure pP* € L2(2.) satisfying

/ (2E(uP®) : E(v) — pP*divy) de = /v(s) - f5(s)ds (2.9)
Q. T
for any v € A..

To study (1.8), we define the following subspace of A., where we further
restrict the boundary value to be a rigid motion:

R.={ueD"?(Q) : u‘FE =v+wx X(s) for v, w e R?}. (2.10)

Again, v and w are not directly specified but are required to be constant vec-
tors in R3. We let R4V denote the divergence-free subspace of R..

We then define a weak solution to the rigid motion slender body PDE as
follows.

Definition 2 (Weak solution to (1.8)) A weak solution u? € R to (1.8)
satisfies
/ 26(wP): E(p)de=v, - F+w, - T (2.11)
£
for any ¢ € RYY | where we denote <p‘F =, +w, x X(s).

Given the existence and uniqueness of uP satisfying Definition 2, using an
essentially identical proof to that in Section 2.2 of [18], we can establish an
equivalent notion of weak solution that includes a corresponding weak pressure
pP € L?(§2.) and removes the divergence-free restriction on test functions ¢.

Definition 3 (Weak solution to (1.8) with pressure) Given uP € RIY
satisfying Definition 2, there exists a unique p? € L?(§2,) satisfying

/Q (2E(wP) : E(p) —pdive)de =v, - F+w, - T (2.12)

€

for any ¢ € R.. Here we again denote go|r = v, +w, X X(s).
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2.3 Important inequalities

In addition to the definitions of Section 2.2, we collect the statements of var-
ious inequalities that are used throughout the paper, keeping track of the
e-dependence in any constants that arise. The proofs of these inequalities are
mostly contained in [18], with the exception of Lemma 5, which appears in
Appendix A.

First, we note the following pair of trace inequalities. The first holds for
functions u € A, due to f-independence on .. As a slight abuse of notation,
the trace operator Tr, when applied to A, functions, will be considered as both
a function on I, and on T. Note that for u € A., we have

2
1T ()21, = / / ITr(u)(s)|2 . (s, 6)d0 ds
2
- / Te(u)(s)? [ (5. 0)a8ds = 2mel[Te(w)

where we have used that fOQﬁ Jc(s,0)df = 2me by (2.5). For u € A, the
following lemma holds.

Lemma 4 (L?(T) trace inequality) Let 2. = R3\ X, be as in Section 2.1.
Then any u € A, satisfies

I Tr(w)||2(ry < C|loge'/?|[Vul|z2(p,), (2.13)
where the constant C' depends on Kmax and cp but is independent of €.

The proof of this lemma appears in Appendix A.2.1 of [18].

On the other hand, for general D'2(§2) functions, the following trace in-
equality holds over the surface I%:

Lemma 5 (L?(I.) trace inequality) Let 2. = R3\X, be as in Section 2.1.
Then any uw € DY2(82.) satisfies

ITr(w)||2(r,) < CVellog el | Vul L2(q,), (2.14)
where the constant C depends on Kmax and cr but is independent of e.

The proof of Lemma 5 appears in Appendix A.

We will also need the following Korn inequality.

Lemma 6 (Korn inequality) Let 2. = R3\ X, be as in Section 2.1. Then any
u € DV2(42,) satisfies

IVl 20 < CllE(w)] 2., (2.15)

where the constant C' depends only on Kmax and cr.
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The proof of e-independence in the Korn constant is given in Appendix A.2.2
- A.2.3in [18].

Finally, we make use of the following pressure estimate.

Lemma 7 For (u,p) satisfying the Stokes equations in 2., we have

1Pl L2y < CEMW) 22, (2.16)

for C independent of €.

The proof of this lemma exactly follows the proof of estimate (2.17) in [18].

3 Proof of Lemma 1 and a corollary

Here we prove Lemma 1 and make note of a corollary which allows us to
obtain a useful bound for functions in R.. This corollary, along with the Korn
inequality (Lemma 6) and pressure estimate (Lemma 7), then allows us to
prove Theorem 2.

Proof (of Lemma 1:) Note that Lemma 1 is obviously true when v = w = 0;
thus we can assume that at least one of v, w is nonzero. Suppose that Lemma 1
does not hold. Then we may choose a sequence of triples (v, wy, Xk (s)) such
that the following properties hold for each k = 1,2,3,.... First, vy, w; € R3
satisfy [vg|® + |wi|” = 1, and X (s) is a closed curve satisfying the geometric
constraints of Section 2.1 — in particular, | X;/| < Kmax. In addition,

1= |vp? + wi)® > kz/ v + wi x Xi(s)]? ds.
T

Then

1
/|vk+wk X Xk(s)|2 ds < = —0
T

as k — 00. Since vy, wy, are just vectors in R3, some limit voo,woo exists.
Furthermore, since each X, is controlled in C? by kmax, we have that (passing
to a subsequence) Xy — X in C! for some closed, unit length curve X (s).
Thus

[ o+ x Xl s =0,
T

and therefore way, X X oo () = V0. But wy, and vy, are both constant vectors
With [Vee|” +|wee|” = 1, while X (s) necessarily has nonzero curvature. Thus
Weo X Xoo($s) cannot identically equal the constant vector —v.,. Furthermore,
because X} was allowed to vary among curves satisfying the constraints of
Section 2.1, the constant C' arising in Lemma 1 depends only on ¢y and Kmax.

Given F and T, as an immediate corollary to Lemma 1 we obtain the
following useful bound for any function ¢ € R..
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Corollary 1 Consider ¢ € R. with boundary value denoted by v, + w, X
X(s). Then
V| + |wg| < Cllog el 1€ 120, (3.1)
where C' depends only on ¢y and Kmax-
Proof Using Lemma 1 along with the slender body trace estimate (Lemma 4)
and Korn inequality (Lemma 6), we immediately obtain
1/2
Ivcpl + |w<p| < H'Ucp +wy X XHL2(11') < C|log el /

< Cllog e[ 1€(@) | 2,

for C depending only on ¢y and Kpax.

Vel 20,

Using Corollary 1 and the variational formulation of (1.8), we may now
prove Theorem 2.
Proof (of Theorem 2) We first show the existence of a weak solution uP € RV
satisfying Definition 2. Note that the bilinear form appearing on the left hand
side of Definition 2 is bounded on RYY | as

/Q 28(uP) : E(p) dze| < 2[|E(WP)| 20 1€ L2,y < 2[IVUPl| 20, VPl L2 (0, -

Coercivity of the bilinear form also follows by the Korn inequality (Lemma 6).
Furthermore, using Corollary 1, the linear functional on the right hand side of
Definition 2 is bounded for ¢ € RV, as

[0, - F +w, - T| < Cllog ] /2 |£()|| 2,y ([FIH|T]) < C flog e ? | Vool 2 ) (|FI+|T).

Then, by the Lax-Milgram theorem, there exists a unique weak solution uP €
RIV to (1.8).

In addition, using the variational form of (1.8) along with Corollary 1, we
have that uP satisfies

/Q |E(uP)]” de = / (VP + wP x X(s)) - (ePn)dS

I

e

:vp./r apndS+wp-/TX(s) « (/Oh(a'pn)je(s,e)ow)ds

€

IN

[Pl |[F

+ [wP| [T| < C log e[/ [|€(WP) | 12, (1F| + |T)

IN

1 2 2 2
5 I1EWP)Iz2(q,) + Cllogel ([FI” +[TT%),

where we have used Young’s inequality in the last line. We thus obtain the
estimate
IEP)| 2,y < C [log e/ (|F| + |T). (3.2)
As noted after Definition 2, the existence of a unique corresponding weak
pressure pP € L?(£2.) satisfying Definition 3 as well as Lemma 7 follows by an
essentially identical proof to that appearing in Section 2.2 of [18].

Combining (3.2) with Lemmas 6 and 7 then yields the bound (1.9).
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4 Classical versus slender body PDE description of rigid motion

Using the variational framework of Section 2 along with Lemma 1, we prove
Lemma 2 comparing the classical PDE (1.1) and slender body PDE (1.8)
descriptions of rigid slender body motion.

Proof (of Lemma 2:) The difference ©w = u* — uP, p = p* — pP, & = o — oP,
W =w' — wP, v = v" — vP satisfies the PDE

—Au+Vp=0, divi=0 in Q.
T(x) =7+ w Xz + ewP X e, xel,
u(z) 0 as |z| — oo (4.1)
/ ondS =0, / x X (on)dS = —e/ e, X (oPn) dS.
I. I. I

Then, multiplying (4.1) by @ and integrating by parts, we have that @
satisfies

/2|5(ﬁ)|2dw:/ (T+wxx+ewP xe,) - (on)dS
Ie

€

:6~/ End5+§~/ mx(En)dS+ewP-/ e, X (6n)dS
I Ie

I

—ea-/ e, X (6Pn)dS + ew? / e, X (on)dS.

(4.2)
To estimate the right hand side of (4.2), we first need to define a smooth
cutoff function ¢(p) satisfying

1, p<2
= 4.3
#(p) { N (4.3
with smooth decay satisfying
do
Ll < ey. 4.4
’ dp| S (4.4)

Then for x = X (s) + pe,(6,s) in a neighborhood of I't, we define ¢(p) :=
o(p/e).

We estimate the second term on the right hand side first, noting that the
estimation of the first term will be essentially identical. Using index nota-
tion (the subscript - ; signifies %; sum over repeated indices) along with the

J

divergence theorem, we may write

/ (ep X (En))ldS:/ z—:ijk(ep)jﬁkmgdS:/ ((;SEijk(ep)jEkg)’gda:
fe I o (4.5)

= / giji(G,0(ep)Tre + ¢ (€p)j,0Tke) dex.

€
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Here ¢;51, is the alternating symbol

1, for even permutations of i, j, k
gijk = § —1, for odd permutations of i, j, k

0, ifi=jj=k ork=4i,

and we have used that o is divergence-free.
Now, due to the cutoff ¢., the integrand on the right hand side of (4.5) is
supported only within the region

Oc :={X(s)+pey(s,0) : seT, e<p<de, 0<0<2m}

with |O,| = Ce? for some C depending only on cr and Kmax-
Within O, defining K(s, 0) := x1(s) cos 8 + ka(s) sinf, we have

1 1
|Vep<s,9>|=\ e g1 (36”— 6)T

p 90 T1_pr\ s on
) ) ) (4.6)
= ‘egeg — m(m cos 0 + ko sin 9)etetT < - + 4K max,

where the final k. bound is shown in Appendix A.2.

Using (4.4), (4.6), and Cauchy-Schwarz, we may estimate (4.5) as

/epx(an)dS’S/ (1pcVe,| +|Voe|) || da
I

€

12 (1 Ce 2 1/2
<OV (= + dbimax + -2 o) da (4.7)
€ € 2.

1/2
< c(/ l&|? dw)
2

e

where C depends only on the shape of X — in particular, ¢y and Kpax. Finally,
using Lemma 7, we obtain

e, x (Gn)dS| < C (|€@)[°+7%) da v <C E(@))? da 1/2.
I 2. 2.

(4.8)

Following exactly the same procedure, we can also show

/n e, x (oPn) dS’ < c</ﬂ & (uP)? dm)m_ (49)

Furthermore, in the same way as in Lemma 1, it can be shown that

@] 18] < C 5+ @ x @ + P x e, 2, < OVellog e/ @) (s
(4.10)
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Note that the first inequality holds via a similar contradiction as in the proof
of Lemma, 1, except here we must use that v+ W X  + ewP X e, =V + w x
X (s) +ew" x e,(s,0) for € I'.. The analogous contradiction arises from the
fact that ew” x e,(s,0) depends on 6, whereas T+ @ x X (s)) does not. For
the second inequality we have used the L?(I) trace estimate (Lemma 5) and
the Korn inequality (Lemma 6).

Then, using (4.8) and (4.9) in (4.2) along with Lemma 1 and (4.10), we
have

[ e@pae <o ([ jewr dw)1/2+e0|wp|( | te@p dw)l/g

€ € €

1/2 1/2
< e|loge|1/20</ € (uP)|? dm) (/ £ @) * d:c)
2. 2.

< \1oge|c/ 1 (uP)? da:+/ £ (@)[? da,
2.

€

(4.11)
where we have used Young’s inequality in the last line. Then, using (3.2), we
obtain

1E@)| L2,y < €lloge| C(IT| + | F). (4.12)

Finally, using (4.10) again, we obtain Lemma 2.

5 Proof of Lemma 3

Finally, we prove Lemma 3 comparing the rigid slender body PDE (1.8) to the
intermediary slender body PDE (1.12).

We begin by defining

fP(s) ::/0 7r(dpn) T(s,6)do (5.1)

for oP as in (1.8), and establish the following:

Lemma 8 Suppose the slender body X, is as in Section 2.1 — in particular,
X € C3(T). Let the total force F' and torque T be given, and let fP be as
defined in (5.1). Then

1P| ory < C [log el (|F| +|T) (5.2)
for C' depending only on cp, Kmax, and Epax-

Proof The proof of this lemma relies on a higher regularity estimate for oP.
Note that once Theorem 2 has been established, we immediately obtain that
uP|, = v+ wP x X(s) is in C?(£), since vP and wP are just constants

€

in R3 and the fiber centerline X is in C3(T). Given this C3 Dirichlet data,
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oP € H'(0,) follows by standard higher regularity arguments for the exterior
Stokes Dirichlet boundary value problem (see the proof of Lemma V.4.3 in [6]
or Theorem IV.5.8 in [2]). Note that since X € C3(T), oP should in fact be
even more regular, but the method we use to show Lemma 9 only allows us to
quantify the e-dependence in the estimate for [[VoP|| 2, ). In particular, we
can show the following bound on VoP.

Lemma 9 Given (2. as in Section 2.1, the solution oP to (1.8) belongs to
HY(0.) and satisfies

C 1/2
||VUP||L2(Q€) < ||v2up||L2(Qe)+||va”L2(.QE) < " |log € / (||VUPHL2(QE)+||pp||L2(QE) )7
(5.3)
where C' depends on cr, Kmax, 0nd Emax-

The proof of the e-dependence in Lemma 9 is given in Appendix A.2.

Using Lemma 9 and Corollary 1, we have the higher regularity estimate

C 1/2 C
190"y < < orel”® (19000 + 107 ) < & Nogel (F + 1T,
(5.4)
Now, using that J.(s,0) > 0 for each (s,6) € I'. and the surface measure
Il = [} 0277 Je(5,0)d0ds = €, we have
9 2 2 2m 9
197 = [| [ omn s oyas] as<ir [ [ mon)? guis.opavds
< Ce llog | [ VoI (o, < C llog el (|F| + |T))*.

Here we have applied both the L?(I.) trace inequality (Lemma 5) and the
higher regularity estimate (5.4) in the last line.

With Lemma 8, we are now equipped to show Lemma 3.

Proof (of Lemma 3:) The proof relies on estimates for the PDE satisfied by
the difference between solutions to (1.8) and (1.12). Letting u = uP*® — uP,
p=p°"" —pP v =00, W =w —wP, 6 =0cP°— oP, we consider the
following boundary value problem:

AT+ VF=0, divai=0 in 0,
u(x) =v+w x X(s)+ R(s), xzel,
u(x) = 0 as || = oo (5.5)

2m
/ on dS =0, /X(s) X (/ &ni(s,@)d@)ds—(),
I. T 0

where R(s) := Tr(uP*®)(s) — (v° 4+ w® x X(s)) satisfies

HRHLQ(’]I‘) < Ce |10g€|3/2 ||fs||cl(1r) + Hre[fs]HL?(T)’ (5.6)
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by (1.14). We consider the variational form of (5.5): multiplying by (5.5) by
u and integrating by parts, we have

/ 2|5(a)|2dm:/ (5 +&x X(s) + R(s)) - (&n) dS

E I

:T)-/ (on) dS+cTJ~/TX(s) X (/OQW(&n) je(s,e)dQ)ds

r.
v [ e ([ ema.0m)as

= /TR(S) (f° = £7) ds <Rl pagry (1F°N 2y + 1P 2 ery )

< C(efog e |l ) + rel Il ory) (155 2y + [log el (|| + [T])
< C(efloge* | 12 x + llogel® (1F| + |T1) + € H|re[ £} 2 py)-

Here we have used (5.6) and Lemma 8 in the second-to-last line.

Remark 1 It would seem to make sense to try to bound the difference f*— fP
appearing in the third equality by [|€(w)] 12(g, ), or try to use an extension
R(z) € D*(£2.) with ﬁ|F€ = R(s) and instead take u — R as a test function
in the above variational estimate to get rid of the boundary term. In either
case, we run into difficulties in that we only have an L?(T) estimate for R(s),
when at least an H'/?(T) estimate would be needed. However, as noted in
Lemma 9, bounding the gradient of a function on (2. incurs an additional
factor of 1/e. By scaling, an H'/?(T) estimate for R(s) would likely yield the
same /€ factor appearing in Lemma 3.

Now, using the L?(T) trace inequality (Lemma 4), the Korn inequality
(Lemma 6), and Young’s inequality, along the with above [|€(@)|[12 (g, esti-
mate, we have

s 1/2 ~ 1/2 ~
| Te () — (v + wP x X)| g2y < Cllogel'’? [Va] (g, , < C llogel/? |E@@)] 12 (g,
3/2 5 _ .
< Vellog e C(|F* o my + [F| + |T|) + Ce 2|l £4]|| o oy

yielding Lemma 3.

6 Regularizations

In practice, various regularizations r. are used to combat the non-invertibility
of the slender body integral operator (1.2). Here we explore an example from
[22] which removes (at least the most obvious) invertibility issues of (A + K)
and satisfies Lemma 10.
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In [22], the integral operator K is replaced with the operator

Kool £1(5) = 1= [evel + (T4 ece ) log(ne/4)] £(5)

1 I RyRY o
— ds'.
+ 5 | (v + ) 7
(6.1)
We have that this choice of regularization satisfies the following e bound:

Lemma 10 For K as in (1.2) and K,y as in (6.1), we have that r[f](s) =
Krog[f1(s) — K[f](s) satisfies

||Te[f]||L2(T) S € |10g€| C HfHCl(’]I‘) (62)

where C' depends only on cp and Kmax-

Proof Denoting a point on the slender body surface I'. by R(s,0) = Ry +
€e,(s,0) where e, is a unit vector normal to X (s), we can write

re[£1(s) = Kreg[£1(s) — K[f](s)

_ Kool f)(s) - Knlf)(s0) + Knlf)(s,0) - K[fis) D

where

Knlf1(s,0) = - [exel + T+ ece ) log(re/4)] £(s)

1 I RRT — eQePeE "o

Now, using Lemma 3.6 and the proof of Proposition 3.10 in [18], we have

|[Kr— K| < elloge|C[| e (6.4)

(T)

where C' depends on ¢y and Kpax.

To estimate |K,eg — K|, we first define
1 1 2€R0 “€p

Ip = — — = :
IRl (|Ro|>+€2)1/2  |R|(|Ro|* + ) /2((|Ro|* + €2)1/2 + | R])
(6.5)

Now, since we are taking X € C3(T), we can write
Ro(s,s') = X ()= X(s)) = (s=5)es(s)+(s=5)°Q(s. 8, Q] < “=, (6.6)

and therefore ( 2
e(s—s

Ipl < C—0=22

T

Furthermore, we have the following inequalities:

IR| > C(|Ro|* +€)Y2, |R| < V2(|Ro|” + ¢*)'/2, (6.8)
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where C' depends on kmax and cp. To prove (6.8), we note that, by (6.6),

[Rol* + € = (s =) +2(s —¢)°Q - es + (s — )" Q" + €
<(s—8)24]s = Fmax + (5 — s')4% + €
<C((s— ) +é%),

since |s — s’| < 1. Then by Lemma 3.1 in [18], we have |R| > C((s — s')? +
)12 > C’(|R0|2 + €2)1/2, Furthermore, by Young’s inequality,

IR = |Ro|> + € + 2ee, - Ry < 2(|Ro|* + €).
Now we write

K, — Kg Ji+ J2),

1
fg(

1 1 1
Jy ::/IR [I+< + + )RoRT]f(S’)dS’
T IR |R|(|Ro|> +€2)'/?  |Ro|* + ¢ ’

/ e(Roe} + e,Ry)
J2 =
T

s )#as.

Using (6.8), we have

1< [ ClrlIf e 5 < Cellogel £l
where we have also used (6.7) and Lemma 3.3 in [18].

Furthermore, by (6.6) and Lemmas 3.3 and 3.4 in [18], we have

/ e(s — ') (esel + epel)
T IR’
< Celloge| || fllcrry -

Thus |r.[f]| satisfies

(s —s")?

Jo| < +Clf /7@/
A Ifle | g

f(sHds

[7e[f]] < | Kreg — Kr| + [Kr — K| < €[log e[ C | flloiry »

and therefore

1/2
|mvmwm:(AmUW@) <elloge| Ol - (6.9)

A solution theory for the regularized rigid slender body approximation
using either the above choice of r. or any other regularization is still needed.
Given that the slender body PDE framework of [18,19] is well-posed, we should
be able to use this framework to come up with the ‘best’ regularization for
the slender body approximation. However, this is truly a deeper issue that we
plan to explore in future work.
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A Appendix

Here we provide proofs for the L2(I) trace inequality (Lemma 5) and the higher regularity
estimate (Lemma 9).

We first recall the following lemma, which will be used throughout the appendix.

Lemma 11 (Sobolev inequality) Let 2 = R3\X¢ be as in Section 2.1. For any u €
DY2(82.), we have
lullLe (o) < CliVullL2(n.) (A1)

where C depends only on ¢y and Kmax-

The proof of e-independence of C' appears in Appendix A.2.4 of [18].

A.1 Proof of Lemma 5

The proof of the L2(I) trace inequality follows the same outline as the proof of Lemma 4,
contained in Appendix A.2.1 of [18]. In particular, using the e-independent C2-diffeomorphisms
1; (defined in Appendix A.2.1, [18]) which map segments of the curved slender body Xe to
a straight cylinder, it suffices to show the /€ |log €| dependence of the trace constant for a
straight cylinder.

Accordingly, let D, C R? denote the open disk of radius p in R2, centered at the origin,
and, for some a < oo, define the cylindrical surface I'c o = 0D, X [—a, a] and the cylindrical
shell Ce,a = (D1\De¢) X [—a,a]. Consider the function space

Dp*(Cea) = {u € DV*(Ceia) : ulye \f,, =0}

As in the proof of Lemma 4, it suffices to show the /¢ |log €| dependence of the L2(I% )
trace constant for functions belonging to D}JQ(CEYG).
By estimate (A.4) in [18], any u € C1(Ce,q) N C?(Ce,q) N D1142(C€,a) satisfies

2

1
ITr(w)|? < |log e\/ pdp.
€

ou
dp
Then, noting that the surface element on I¢ 4 is simply €, we have

a 27
M@,y = [ e eavas

a 2w 1
caond [ [
—a JO €

The same result for u € DIIJQ(CE’Q) follows by density.

2

ou
B pdpdfds < e|loge| HV'U,H%Q(CQG) .

A.2 Proof of Lemma 9

To determine the e-dependence of the constant in (5.3), it suffices to work locally near the
slender body surface and show that Lemma 9 holds within an e-independent region about
the slender body centerline. We define the region

O={z e : x=2X(s)+pey(s,0), €<p<Tmax}, (A.2)
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where rmax is as in Section 2.1. Within O, we can use the orthonormal frame (2.2). We
will use the notation 95,0y, 0, to denote derivatives 9/9s, 8/06, 0/0p with respect to the
variables s, 8, p, defined with respect to the orthonormal frame. We verify the e-dependence
in the bound for V24P and VpP in two parts: we first show an L? bound for derivatives
V(9suP), V(9puP), dspP, and JypP in directions tangent to the slender body surface I,
and then use these bounds to estimate the derivatives V(9,uP), 0,pP normal to I.

We begin by estimating the tangential derivatives V(9s;uP) and V(9puP). Since the
derivatives s and 9y with respect to the orthonormal frame (2.2) do not commute with
the “straight” differential operators V and div, we will need to make use of the following
commutator bounds.

Proposition 1 (Commutator estimates) For any function u € Dé’Q(O) and for each
of the differential operators D = div, V, (), the following commutator estimates hold:

||[D:‘90}UHL2((9) <C ||V“HL2((9) ) H[Dvas]u||L2(o) <C HVU||L2((9) )
where the constant C' depends only on cr, Kmax, and Emax-
Proof We begin by denoting
ep(s,0) = —sinben, (s) + cosben, (s),
Up =U-€p, Ug = U- €9, Us = U - €.

Then, with respect to the orthonormal frame (2.2), the divergence and gradient are
given by

1 1 1—pk 1 1—pk
= L (L2 ) | 120 g 2
1—pk\p op p o0 Js
ouT 10uT 1 ou ou\"
Vu = ,0)— ,0)—— — | — —k3— | ,
u=enls, )5 +eols 0) 55 +els)] —pn(as 3 ae)
where
R(s,0) = k1(s) cos 0 + ka(s)sin 6. (A.3)
Direct computation of the commutators yields
OgR 10 e} 92r
[div, dglu = (LHZ\ (pdivu — 7—(p2up) - ﬂ) - ( eﬁlue
1—pk p Op 00 1—pk
Osk 10 o OpOsk
[div, BJu = ~22F) (pdivu — = (pPup) — ﬁ) - @0,
1—pk p Op 00 1—pk
ouT 10uT deR) (0 ou\"T
IV, Opu = eg 2 e, 1O etp(iﬂi)Q (;u _ Hgi)
dp p 00 (1—pr)2 \ Os a6
ouT 10uT p(BsR) 1 [Ou ou\"T
vV, 0s|u = (0 — o -— - 0, — — K3—
[V, 0s]u = ( sep)ap +( seg)p[)@ + (etl—pﬁ +( set)) l—pﬁ(as fisae)
Using (A.3) and the orthonormal frame ODEs (2.2), we have
|OpR| = |—K18In0 + k2 cos O] < Kmax, |OsKR| = |/§'1 cos 0 + kb sin 6| < &max + 2(Kmax + ),
|6§E| = |—R| < Kmax, [|0g0sK| = |7Hl1 sin 6 + k4 cos 9! < &max + 2(Kmax + ),
|856p| = ‘_/’%et + 5369| S Kmax + T, |6569| = |_(69k\)et - Nget‘ S Kmax + T,
! < ! < ! <4
1—pR| = 1 — rmaxfmax(cosf +sin@) — 1 — ﬁfﬂmax\/i -

Finally, noting that, by Lemma 11,
||U9HL2((9) < |O|1/3 HU”LG(o) <C ||VU||L2(O) )

the desired L2(£2) bounds follow for each of D = div, V. The estimate for the symmetric
gradient £(u) then follows from the gradient commutator bound.
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Now, to derive an estimate for V(9suP), we will make use of Definition 3 with a particular
test function ¢, which we will construct here. First, we want our test function to be supported
only within O. We define a smooth cutoff function

17 p < rmax/4 3111
_ W<, A4
e {07 A S (A4)

where C depends only on rmax. Note that ¢ (p) commutes with both 9¢ and 0.

We would like to use 92(y)uP) as a test function in Definition 3, but it will be more
convenient to work with a function which vanishes on I'.. We therefore construct a correction
g € C2%(£.) supported only in O and satisfying

9lp, = OsuP)|, =wP xels), [IVallp20) < Clwl, (A.5)

where C depends on ¢y and Kmax. To build g, we follow a similar construction used in
Section 4.1 of [18]. We define

wP X et(s) if p < 4e
b 07 =
90(p, 9, 5) { 0 otherwise

and take

9(07 07 S) = ¢€ (p)gO(p7 67 S)V
where ¢e(p) is the smooth cutoff defined in (4.3)-(4.4). Note that g € C2 and is supported
within the region

Oc = {X(s)+pep(s,0) : s€ET, e<p<de, 0<6<2r},

where |Oc| < Ce2. Then, using (4.4) and (2.2), we have

Vgl 20y < VIOl IVl o,

Oe
< vioa(| 5

1 9go
lgol +H—A— )<clrl,
con 9 IR s lleo,)

Now, we could just use 9s(9s(¢uP) — g) as a test function in Definition 3, but it will
actually be useful to include a second correction term in the following way. We consider
z € Dé’Q(O) satisfying

divz = div (¢9suP —g) in O

) A6
V2]l 20y < C lldiv (¥0suP — )]l 120 (A.6)

for C' depending only on ¢y and kmax. We know that such a z exists due to [6], Section
II1.3, and the constant C is independence of € due to Appendix A.2.5 of [18]. Furthermore,
since divuP = 0, by Proposition 1 we have

ldiv ($05u® - g) | 120y < Idiv (B9uP)l| 20y + C 196wl 120y + Vgl 120
< |I[div, 3] | 12 + C B6uP || 20y + C ||
< C|IVuP|| 20y + C lwP|.

Here we have also used that [|0puP|| 20y < [[PVUP|12(0) < Tmax [[VUP| 120 In partic-
ular, z satisfying (A.6) also satisfies

V2112 () < C VP 20y + C ] (A7)

Using extension by zero to consider z as a function over all {2, we can now construct
our desired test function for use in Definition 3. In particular, we will use the function
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05 (0s(uP) — g — z) in place of ¢ in Definition 3. Note that by definition of z, this function
may only belong to L2(QE). In this case, we can make sense of the following integration-by-
parts argument using finite differences rather than full derivatives (see [2], Section III.2.7
for construction of finite difference operators along a curved boundary). Thus we really
only need 9s(puP) — g — z € DV'2(£2¢) to make sense of the following result. Note that in
integrating by parts, we will also need to make use of the fact that, for ¢ = s, 0,

;R
0;(dz) = 71p Kgd:c = TJide, || <C; i=s,6, (A.8)

where C' depends on ¢, Kmax, and &Emax-

Then, using 9s(9s(¢YuP) — g — 2z) in Definition 3, we have

0= / (QS(up) : £(0s(0s(YuP) — g — z)) — pP div (9s(0s (YuP) — g — z))) dx
O

/ 2E(uP) : 0:E(0s(YuP) — g — z) dz -I—/ 2E(uP) : [E(+), 0s](0s (YuP) — g — z) dx
(@} (@]

- / PP By (div (B (YuP) — g — 2)) das — / PP [div,, 0,) (8 (buP) — g — 2) da
(@) (@)

—/ 205E(uP) : E(0s(YuP) — g — z) de — / 2E(uP) : E(0s(YuP) — g — 2) Ts dx
O (@}

+ / 2E(uP) : [£(), 06)(Bs (uP) — g — 2) da — / PP [div , 0,](0s (uP) — g — z) dae
(@) (@)

—/ 2E(0suP) : E(0s(YuP) — g — z)dx — / 2E(uP) : E(0s(YuP) — g — z) Ts dx
(@] (@]
+/ 2[E(+), Os|uP : E(0s(YuP) — g — z) dx +/ 2E(uP) : [E(+), Os](0s (YuP) — g — z) dz
(@] (@]
— /opp [div, 0s](0s(YuP) — g — 2z) du.

Note that the first integral in the third line vanishes due to the definition of z. In this way
we we can avoid having to deal with a dspP term in the resulting estimate.

Then, using Proposition 1, estimates (A.7) and (A.5), and Lemma 6, we have

I€@suP)[ 720y < ClIE@suP) 20y (105uPll2(0) + 1€ L2(0) + I1E@IL2(0))
+ ClEWP) 20y (IEWuP) I L2(0) + 1E@)IL2(0) + 1€ L2(0) )
+2[[EC), 0s]uP | L2 o) (IEWBsuP) | 120y + 1€(2)II L2(0) + 1€@) L2 (0))

+2[|EWP)| L2 (0) (IEC), 01 (W05 uP)ll L2 0y + IIE(), 0s](2) 20y + NE(), Ds)(@)l L2 (o) )
1Pl 220y (Nlldiv, 8s](v0suP) | L2 (o) + [div, 0s](2) [l L2 (o) + l[div, 0s)(9) Il L2 (o) )

< C(E0suP) 20y + IVUPll 20y + @D (IVUPll 20y + PPl L2 (0) + wP])

< S 1E@P) 220y + CO (IV8 250, + 1720 + P ?)

for any 0 < § € R, by Young’s inequality. Taking § = % and using Lemma 6, we obtain

IV(0:0P) |20y < IE@uP)| 20y < CUIVUPl 20y + 197 120y + wP])

(A.9)
< Cllogel'? (|VuP|| 12,y + PPl L2 (0, )

where we have used Corollary 1 to bound |wP|. Here C' depends only on ¢, Kmax, and Emax-.
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We may estimate dguP in a similar way. In fact, the construction of the analogous test
function is simpler since (8gup)|1_. = 0p(v + w x X(s)) = 0 and thus we do not need to
€

correct for a nonzero boundary value. Following the same steps used to estimate OsuP, we
obtain

IV (00w | 20y < CUIVPl 20,y + 17202 ) (A.10)

where C depends only on ¢, Kmax, and Emax-
In addition to the estimates (A.9) and (A.10), we need bounds for the tangential deriva-
tives OspP and OypP of the pressure. We begin by estimating 9spP; the bound for dygpP is
similar. Since we already know that 9spP € L2(§2¢), we may consider Z € Dé’z((’)) satisfying

divz = ¢dsp? in O,

) Al
IVZllz20) < C Y0P L2 (0 » e

where 1 is as in (A.4). Again, we know that such a Z exists due to [6], Section III.3 and
[18], Appendix A.2.5.

Using 05z as a test function in Definition 3 (again, we can make sense of the following
computation using finite differences, and thus only require Z € D12(0)), we have

0= /O (25(up) 1 £(0s2) — pP div (8523) de = /(9 2E(uP) : 0sE(Z) dx
+/02£(up):[$(~),BS]5dmf/opszdinda:7/(‘9pp [div, 8,]% da
:—/ 20, (uP) : £(3) dw—/ 2 (WP E(2) T d:c+/ 26 (uP) ¢ (), B)Z da
(@] (@] (@)

f/ P [div,8s}2da:+/ (Bsp)dindach/ P divE T, da
(@} (@} O

/ $(9sp)? da —/ 205E(uP) : £(Z) d —/ 28(uP) : £(Z) Js da
o o o
+/ 26 (uP) ¢ [E(-), B)F dar f/ P [div, 9,3 da +/ P div 2 7, da,
O O O
where Js dz is as in (A.8) and we have used (A.11). Then, using that ¢2 < 1), we have

148spP 117 20y < 2 1€(@suP)I 20y IEE) 20y + 2 N[E(C), Bs)uPl 20y 1€ @)l L2 (0
+ ClIE@P)I 20y IE@ I L2(0) + 2 I1EWP) I L2(0) ITEC), Os]Z]I 20y
+ PPl 20y Nldiv, 0s]Zll 20y + C PPNl L2(0) 1div 2] L2(0)
S O(IV©@suP)l 1200y + IVUP 120y + 1PP I L2(0y ) 140sPP [l 120
<5 1[90spPl|7 20y + CE) (IV@suP)lI7 20y + IVUPIT 20y + PP 11720y )

for 0 < § € R. Here we have used (A.8), (A.11), Proposition 1, and Young’s inequality.
Taking § = % and using (A.9), we obtain

H'@basppHL’z(o) <C ‘10g€|1/2 (HVupHLg(QE) + pr”LQ(QE) )-

Then, using (A.4), within the region

(’)':{mefle = X(s)+ pep(s,0), e<p< TITX},

we have
||8SPPHL2((9') <C |1Ogﬁ|1/2 (”VUPHL2(95) + ||Pp||L2(QE) ) (A.12)
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for C' depending only on ¢, Kmax, and Emax-
We can similarly use (A.10) to show
1867 20y < CUIVEP I L2y + PP 2ga ) )- (A.13)
Now we can use the tangential bounds (A.9), (A.10), (A.12), and (A.13) to obtain an

estimate for derivatives V(9,uP) normal to I'c. For this, we will use the full Stokes equations
(1.8), written with respect to the orthonormal frame e¢, e, eg in O as

OpP 1 OpP 1 OpP app)
“AuP + VpP = —AuP 4+ 22 it 0l i =0
w VP u+8pep+p8966+1—p7€(88 85 )€
v = L (19060 sRy) 1000 =R D)
1—pr\p op p 00 Os

Here K is as in (A.3) and we recall the notation u, = uP - e,, ug = uP - eg, us = uP - ey.

From the divergence-free condition on wP, after multiplying through by p(1 — pk) and
differentiating once with respect to p, we obtain

1
+ |- O3 ||uP
L2(0) HP LOQ(O)| M HLﬁ(O)

55 ()] [ (52)
== = + =
pOp \ 00 L2(0) dp \ Os

C
< = flogel/2 (IVwPllL2(0,) + 177 200, ).

|5
92%p

o
L2(0) P

L2(O))

where we have used (A.9) and (A.10) along with the Sobolev inequality on (2.

Furthermore, using the e, component of —AuP 4+ Vp = 0, we have

o/

ap = (AuP) - ep

L ) o L ()
" p(1—pR) 8p ’ ’ Op P p2(1 = pR) 96 )56 L

n 1 8( 1 |:8up aup})
— —— —k3——| | e
1—prOs\1—pr| 0s " 00 ’
19 o 1 P dup
= - =z 1 — pr) =2 (=R =)-
(1= o7%) 09 (v o )+ 2(1— p7) 90 (- %5 ) e
n 1 8( 1 [Bup 8up}) o
9 oub | Oul
1—prds\1—pk| Os Y -

since e, (s, 8) does not vary with p. Therefore, using (A.9), (A.10), (A.12), and (A.13), along
82
e,

with the the bound on we have

C
VPPl L2(0ry < " llog €|/ (IIVP|| 2 (0, + PPl 22 (0. )-

2
O%uy

Finally, to estimate 557

, j =0,s, we again use that
VpP - e; = (AuP) - e;(s,0)

_ég( (1- E)%)—i—;g((l— g)%).e.
T pa—pm) ap\" T ap ) T 21— pR) 90 P00 )
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4 1 8( 1 {Bup aup}) o
a_ — — R3— * €5, =0us,
1—prds\1—pk| Os 4 50 i

since each of e¢(s), e, (s,0) and eq(s, §) are independent of p. Then we have

02u; 1 d%uP
|52 <o([ IV lion + | 5

8p L2(07) P L>(0") Jds L2(07)

0?uP 0%uP
+ =5 + || VpP ’ )
H 8860 LZ(O/) H 862 L2(o/) ” P ||L2(O)
C .
s loge|'/2 (VP20 + PPNz, ), G=10,s,
where C depends only on ¢, Kmax, and Emax. Altogether, we obtain Lemma 9. O

Remark 2 We note that the factor of % in Lemma 9 is necessary. As a heuristic, we consider

an infinite straight cylinder of radius € and take u = (% - %)697 where ey is now the

(constant) angular vector in straight cylindrical coordinates, and p = constant. Ignoring
decay conditions toward infinity along the cylinder, (u,p) solves the Stokes equations with
u = 0 on the cylinder surface. Then

2
0

|V2u| = = g|Vu|7
p

9% 1|
o2 p|

and within the region € < p < 2¢, we have |V2u| > %|Vu|.
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