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Effective field theories (EFTs) organize the description of complex systems into an infinite sequence of
decreasing importance. Predictions are made with a finite number of terms, which induces a truncation error
that is often left unquantified. We formalize the notion of EFT convergence and propose a Bayesian truncation
error model for predictions that are correlated across the independent variables, e.g., energy or scattering angle.
Central to our approach are Gaussian processes that encode both the naturalness and correlation structure of EFT
coefficients. Our use of Gaussian processes permits efficient and accurate assessment of credible intervals, allows
EFT fits to easily include correlated theory errors, and provides analytic posteriors for physical EFT-related
quantities such as the expansion parameter. We demonstrate that model-checking diagnostics—applied to the
case of multiple curves—are powerful tools for EFT validation. As an example, we assess a set of nucleon-
nucleon scattering observables in chiral EFT. In an effort to be self-contained, appendices include thorough
derivations of our statistical results. Our methods are packaged in Python code, called gsum, that is available for

download on GitHub.
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I. INTRODUCTION

The power counting of an effective field theory (EFT)
mandates how to organize an infinite number of operators into
a sequence of decreasing importance. The precision of EFT
predictions is then governed by the uncertainty in the fol-
lowing quantities: (1) the fit of the parameters, or low-energy
constants (LECs), of the EFT, (2) the error due to truncation
of the infinite EFT series, and (3) other approximations made
in prediction. For chiral EFT calculations, recent advances in
precision motivate a rigorous accounting of all these theoreti-
cal uncertainties, but such an accounting is desirable for EFTs
across all domains. This work will focus on the uncertainty
due to truncation, but our results have consequences for how
LECs should be fit [1].
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In previous works, we proposed a pointwise Bayesian sta-
tistical model to estimate EFT truncation errors for predicted
observables y [2,3] (see also Ref. [4]). This model formalizes
the notion of convergence in y, which allows one to credibly
assert which observations are consistent with theory. One can
incorporate expert knowledge on the convergence pattern (in-
herited from the EFT power counting) into prior distributions
and subsequently update these beliefs given order-by-order
predictions {y,} [4]. If the observable is itself a function y(x),
e.g., a cross section at a range of energies, then Refs. [2,3]
simply compute its posterior in a pointwise manner. This
pointwise model is tractable, but it is flawed since it ignores
information about y(x) as a whole, that is, the correlations of
y at nearby x.

Here we extend the pointwise model to functions y(x),
encoding the idea of curvewise convergence for observables
via Gaussian processes (GPs). GPs are powerful tools for
both regression and classification and have become popular
in statistics, physics, applied mathematics, machine learning,
and geostatistics [5—7]. Their popularity is due in part to their
modeling flexibility and the mathematical convenience of
Gaussian distributions. Despite the leap from points to curves,
our algorithm remains analytic due to a convenient yet flexible
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choice of priors. The GP parameters are interpretable from
an EFT convergence standpoint and can be easily calibrated
against known order-by-order predictions.

We develop the intuition behind our convergence model
and provide a primer on GPs (Sec. II) and then explore ways
to assess whether our assumptions are failing (Sec. III). To
display the procedure in action, we show success and failure
using toy EFT predictions (Sec. IV) and assess nucleon-
nucleon—(NN) scattering predictions in chiral EFT (Sec. V).
We then discuss future prospects and conclude the main text
(Sec. VI) before providing an extended discussion on the
statistical derivations relevant to the pointwise and GP models
(Appendix).

II. THE MODEL
A. Setup

Predictions of experimental quantities can be inaccurate
due to shortcomings of the theoretical framework and noisy
measurements. This work focuses on building a model dis-
crepancy term for EFT truncation errors. The exact manner by
which specific errors propagate can be complicated, but here
we assume a simple additive model of theoretical discrepancy,

yexp(x) = ym(x; @) + Sym(x) + (SYCxp(x)a (D

where x € R? is the independent variable,' & are the fitted
parameters of the theory prediction yy, (here the LECs of an
EFT?), and Yexp are experimental measurements. The uncer-
tainties associated with the theory and experiment are given by
8yt and Syexp. Of course, if the exact values of dyg and 8yexp
were known, then there would be no uncertainty. Instead, §yg
and 8yeyp, are treated as random variables, which makes Eq. (1)
true in a distributional sense. The simple relationship (1)
directly impacts both the fitting protocol and error propagation
to observables. For example, if one assumes that §yy, = 0 and
8Yexp 1s normally distributed, then this leads to a least-squares
log-likelihood function for d given ye [1]. Here we use
general properties of EFTs to develop a Bayesian model for
8y (x) with a nontrivial correlation structure depending on x.
Unless otherwise stated, we assume that the EFT has already
been fit to experimental data and return to discuss the fitting
procedure in Sec. IID.

Denote an observable y calculated with an nth-order EFT
(N"LO) as y,. Suppose that the EFT expansion has only been
computed up to kth order. Though y; may work well as an
approximation to reality, we seek a probability distribution for
the full summation® y = y,, based on the convergence pattern

IThe differential cross section, as a function of both energy and
scattering angle, is an example where d = 2.

2Note that the LECs & are not the same as the observable coeffi-
cients ¢, introduced in Eq. (3). These parameters @ do not play an
explicit role in our treatment of truncation errors, although they do
appear via a brief discussion of EFT parameter fitting in Sec. I D.

3We are aware that EFTs are often asymptotic in nature. We seek
the best possible estimate up to where the sum starts diverging. Our
assumption is that the divergence occurs sufficiently beyond the kth
order that the truncation model error estimate up to order oo is a good
approximation.

of all known predictions yg, y1, ..., yx. That is, ys, = yx and
we wish to quantify §ygy = §y,. This hierarchy of predictions
could instead be written as a leading-order calculation y, and

a set of higher-order corrections Ay,, withn € {1,2,...,k}.
Given this change of variables, the n < k-order prediction is
Yu(xX) = yo(x) + Ay (x) + - - + Aya(x), 2

where each term in the series is known.

Without further knowledge of the convergence pattern in
Eq. (2), it is difficult to make progress in approximating y. To
proceed, we employ prior information about the construction
of EFTs, that is, if the EFT is working as advertised, then each
correction should be roughly suppressed by the dimensionless
expansion parameter Q—in accordance with the EFT power
counting. Here we assume for simplicity the following power
counting: the N"LO correction Ay, is suppressed by Q",
though other prescriptions, e.g., 9", can be easily incorpo-
rated into this framework. That is, up to dimensionful scales,
one would generally expect yo is O(Q°) and Ay, is O(Q").

Inspired by Eq. (2) and the power counting of the EFT,
Ref. [2] proposed the following factorization:

k
V@) = et (1) ) €a(0)Q" (). 3)
n=0

Here yy is a dimensionful quantity that sets the scale of vari-
ation, while the ¢, are dimensionless observable coefficients.
Since all scales have been factored into y.¢ and Q, the c,
should be natural, or order 1, assuming they have not been fine
tuned. Combinatorial factors, if known, should also appear
in Eq. (3), else the naturalness assumption may need to be
modified to account for them.

The road-map from continuous observable quantities
Yo, - - -, Y to coefficients is shown visually for toy EFT pre-
dictions in Fig. 1. Predictions for the four lowest orders of the
EFT are plotted in Fig. 1(a) and show a steady convergence
toward the final result. Suppose that the N°LO EFT is the
state of the art; thus our task is to estimate the uncertainty
in y3. The change of variables described by Eq. (2) is illus-
trated in Fig. 1(b). Note that there is a clear hierarchy to the
corrections: They tend to become smaller as order increases.
Assume that y.s is known, say, from dimensional analysis,
and Q is known from theory arguments. The coefficients of
the expansion can then be extracted using Eq. (3), as shown
in Fig. 1(c). The hierarchy has vanished, and we are left
with a set of curves that appear randomly drawn from an
underlying process. Reference [3] displays ¢, for a collection
of NN-scattering observables in chiral EFT, many of which
exhibit these properties.

Before moving on, we would like to correct some common
misconceptions about Eq. (3). We have made no assumptions
about the structure of the expansion thus far. In fact, Eq. (3)
is not a formal expansion of y in powers of Q. Rather, we
have only noted that if we assume values for y,.s and Q along
with the factorization of Eq. (3), then there is a one-to-one

correspondence between the predictions {yy, ..., yx} and the
coefficients ¢, given by
Yo(X) = Yrer(x)co(x)
Ay (X) = Yret (X)cn(x)Q" (x). (€]
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FIG. 1. The roadmap from EFT predictions to prediction coefficients: (a) the predictions themselves as a function of a generic variable x,
(b) the leading-order prediction y, and the increasingly suppressed order-by-order corrections Ay,, and (c) the dimensionless coefficients c,
(using yf = 10 and Q = 0.5). One might object that |Ay;]| is often larger than |Ay,| or that the coefficients in (c) do not appear sufficiently
random. This is a consequence of a small sample size and seeing patterns in randomness: The coefficients ¢, shown above are actual random
draws from an underlying GP and were used to build parts (a) and (b). By chance c; is relatively small, and thus the correction |Ay»| is actually
smaller than | Ays| for this choice of Q. It pays to remember this example when considering real EFT predictions.

The coefficients are not the LECs of the EFT. Because we
are making predictions that take the LECs as input, the c,
are potentially complicated functions of the LECs, Q, and
other variables. Therefore, we do not have a general proof
that the naturalness of the LECs propagates to the c,; rather, it
must be verified in each application. If some of the ¢, do not
conform to our assumptions, they may need to be left out of
the analysis.

Our manipulations thus far have simply defined our ter-
minology, but the arguments above lead to a physics-based
uncertainty model that can be tested against reality. By a
logical extension of Eq. (3), the truncation error §y; would
consist of all terms not included in the sum, i.e.,

8Ye(x) = Yrer (¥) Y ca(¥)Q"(x). (5)

n=k+1

We can now describe the details of the EFT convergence
model. By induction, we assume that the properties of the
unobserved ¢, for n > k are the same as the ¢, for n < k.
Specifically, we assume that the ¢, are independent and iden-
tically distributed (i.i.d.) random curves. Moreover, we have
some prior knowledge of the curves’ properties: They should
be smooth and naturally sized, i.e., have a standard deviation
of order 1. Data from the lower-order predictions can then
be used to refine the estimates for the sizes and shapes of all
subsequent ¢, and, via Eq. (5), estimate the truncation error.
This is shown visually in the Bayesian network of Fig. 2.
Because the coefficients are treated as random curves,
the distribution from which they are drawn is known as a
stochastic process. A stochastic process is essentially an in-
finite dimensional generalization of a probability distribution.
Processes associate a random variable with each point in a
continuous domain, hence their infinite dimensionality, and
correlations between the random variables at different points

can be built in. Through the appropriate assumption on this
correlation structure, one can enforce desirable qualities in
random draws from the process, such as continuity of the
drawn functions and their derivatives. The GP is a particu-
larly useful type of stochastic process and will be employed
throughout this paper.

B. A brief introduction to Gaussian processes
1. Definitions

GPs are a popular tool for nonparametric regression due
to their flexible nature and tractable analytic forms. They
are used in fields such as statistics, machine learning, and
geostatistics, where GP regression is known as kriging [5-7].
For appropriate priors, GPs arise as the limit of a specific
type of neural network [8] and are equivalent to common
interpolants, e.g., splines [9]. Here we will review the most
common applications of GPs: interpolation and regression.
Then we discuss the calibration of the GP parameters, which is
a crucial step in our truncation error model. For more in-depth
discussions of GPs, see Refs. [7,9,10].

The defining quality of a GP is given in Ref. [7]:

A Gaussian process is a collection of random variables, any
finite number of which have a joint Gaussian distribution.

A GP is specified by a mean function m(x) and a positive
semidefinite covariance function, or kernel, «(x, x’), where
x € R%. Assuming both the mean and covariance functions
are known, a GP f(x) is denoted by*

f &) ~ GPIm(x), & (x, x")]. (6)

“The z ~ - - - notation is a common shorthand in statistical litera-
ture for “z is distributed as.” Some authors use pr(z) = --- as well
[11]. Also “z|I” is read as “z given [.”
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FIG. 2. A Bayesian network that demonstrates the causal con-
nections between the random variables in our model. Order-by-order
corrections Ay, are assumed to be composed of coefficients c,,
which are draws from a GP, and factors of Q, as in Eq. (4). The
observed values of Ay, are used to update our beliefs of the GP
parameters 6 and the expansion parameter Q, which themselves
are random variables governed by the hyperparameters oy and o,
respectively. For example, 1o, V, vo, rg € ay as assumed in Eq. (24).
Once posteriors for # and Q have been obtained, they can be used to
create a posterior for 8y, hence quantifying the uncertainties in the
predictions. Note that information only flows from the differences
Ay, to the truncation error 8y via the GP parameters @ and the
expansion parameter Q. The reference scale y.s is assumed to be
known throughout and thus is not included in this diagram.

We do not operate on the infinite-dimensional object in prac-
tice; rather, the definition of GPs allows us to compute using
a finite number of points. Let x = {x;}?_; be a set of N input
points and f = {f(x;)}!Y_, be the corresponding set of function
values.’ Henceforth, we refer to coefficient values computed
at particular input points as “data,” because these are the
points used to train the GP emulator.

Define m = m(x) e RN and K = «(x,x) € RVV, f is
then distributed as the multivariate normal

f]x ~ N(m, K). 7

The fact that Eq. (6) implies Eq. (7) is the definition of a GP
in a mathematical form. Often the explicit conditioning on
input points x from f | x is dropped for notational simplicity.
The N-dimensional Gaussian distribution of Eq. (7) can then

5To specify how the GP enters in our truncation model, we must
work in multiple vector spaces. The bold notation for vectors signals
an element of RY while we use arrows to indicate a vector in the
space of EFT orders R". Bold with arrows is used for elements
of both spaces. The d-dimensional input space is not explicitly
indicated. This notation is summarized in Table II.

easily be used to draw samples of f using the Cholesky
decomposition of K.

The mean function is an a priori “best guess” of f and
should capture overall trends in the data; the GP then soaks
up deviations from this mean in accordance with the chosen
kernel [11]. Basis function models for m(x) are convenient
choices due to their analytic tractability and flexibility [11].
But the effects of mean functions can also be shuffled into the
kernel (see Appendix) or simply subtracted from the data in
preprocessing, hence many authors set the mean to zero. The
convergence model proposed here uses a constant (possibly
unknown) mean p, which we leave in the mean function slot
for clarity.

One of the most popular covariance functions is the
squared exponential (or radial basis function or Gaussian). It
is defined by

k(x,x;¢,L) = &r(x,x;L)
_ 526—%(X—-¥’)TL"(X—X’)’ 8)

EZef(xfx’)T(xfx’)/ZZ’ (9)

where r(x, x’; L) is the correlation function and L is a d x d
diagonal matrix of correlation length parameters, allowing
one to model cases where the correlation length varies by
direction [7]. For simplicity our examples are in one dimen-
sion (d = 1), so L reduces to a single correlation length £.
Functions drawn from a GP with a squared exponential kernel
are infinitely differentiable. The marginal variance ¢> controls
the width of variation about the mean, while the length scale
£ controls the correlation between points in the input domain,
see Fig. 3. Some have argued that the squared exponential is
too smooth, and thus not applicable in many situations [12].
Thus, an alternative kernel is the Matérn, which provides an
extra parameter v and results in realizations that are [v] — 1
times differentiable, reproducing the squared exponential in
the limit v — oo.

The squared exponential kernel, along with the Matérn,
are stationary, which means that they only depend on the
absolute difference in input space |x — x’|. Draws from a
stationary process would, on average, behave similarly across
the domain of interest. Stationarity is a strong assumption
about the physics of the system, which can be advantageous in
data-sparse regimes that could benefit from extra constraints.
But its validity should be checked. We introduce diagnostics
that can point to issues with the assumption of stationarity,
along with the choices of mean and covariance, in Sec. III.

We assume the functional form of the mean and covariance
functions (e.g., squared exponential) are known. Their param-
eters,® on the other hand, can be updated based on observed
data. We denote the set of all parameters in both m and « (e.g.,
W, €2, £) as @. We are careful to write - | § when 0 is given (i.e.,
conditioned on) and omit 0 otherwise.

“We choose to call u, ¢, etc., the parameters of the GP to distin-
guish them from the hyperparameters we will introduce later. They
are more regularly referred to as hyperparameters.
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FIG. 3. The random draws from a GP used in Fig. 1(c). The
GP has mean p, marginal standard deviation ¢, and a Gaussian
covariance function with length scale ¢, each of which are annotated
on the plot. The “uncorrelated” and “fully correlated” truncation
error model discussed in Ref. [1] correspond to this model with £ = 0
and £ = oo, respectively, and u = 0. By using a finite set of points
along each curve, shown as dots, these parameters can be estimated
(or calibrated) rather than assumed. This GP model is contrasted with
the pointwise model from Refs. [2,3], where data at each x; are used
to estimate a ¢; = ¢(x;) (and where there is no £).

2. Interpolation and regression

To use GPs for interpolation or regression, we must be
able to incorporate (noisy) observations into our predictions.
Interpolation, in this case, simply refers to the procedure of
finding a curve that passes directly through known data, re-
gardless of whether the predictions are made within or outside
the support of the data. Consider the partition x = [x;  X;]"
and f = f(x) = [f) f,]" into NV training and N, test points,
with corresponding partitioning of m and K. We would like to
predict the unseen function values f, given observed function
values f;. By definition of GPs, their N; 4+ N,-dimensional
joint distribution is Gaussian:

fl m K Kz
oo v(|m] & K)o

Then, by standard Gaussian identities [7],

f,]x, f1, 0 ~ N (i, Kp), (11)

where
iy = mp + Ky K (F —my), (12)
K» = K» — K2 K} ' K. (13)

Since we assume that K can factorize into a marginal variance
¢2 and a correlation matrix R, i.e., K = ¢2R, this can be written
as

iy, = my + Ry Ry (F; — my), (14)
Kzz = 62(R22 — R21R1711R12) = 52R22. (15)

C1 (Un = 0)
C3 (Jn = 015)

FIG. 4. Examples of interpolation (o,, = 0) and regression (o, =
0.15) using the GP described in Fig. 3. The true curves are shown
as solid lines and the interpolants are shown as dashed lines. The
bands denote 20 marginal confidence intervals. As one might expect,
there is a bubblelike structure to the interpolation error when between
known points. The process will eventually return to the mean when
far from the support of the data.

This work considers a hierarchy of noiseless computer simula-
tions as its data, so interpolation is the primary fitting method
and an example is shown in Fig. 4. Nevertheless, interpolation
may require a small amount of noise called a nugger for the
numerical stability of the matrix inversion [13-17].

To make predictions of f, assuming Gaussian white noise
in the observed data f;, one need only make the replacement
K — K1+ onz]INI in Egs. (12) and (13), leaving K3, etc.,
unchanged. This is what we refer to as regression. The identity
matrix is denoted by I with the rank as subscript, and here o,
is the nugget used to regularize the matrix inversion. To make
predictions that also include the effects of noise, one must
also make the replacement K, — Ky + anz]INz. An example
of regression with noise is shown in Fig. 4. We include the
nugget via (R + o Iy) to integrate ¢ out analytically.

3. Calibration

Until now, we have assumed that the GP parameters 6
are known and correct, but that is rarely ever the case in
practice. We often want to find the @ that produce the best
fit in interpolation/regression, or # may be of interest in its
own right. The procedure of finding the posterior for 6 values
is known as calibration or simply Bayesian inference for the
model parameters [18].

Given data f at input points X, the posterior for 6 is

pr(@|x, f) o pr(f |x, 0)pr(8). (16)

If f is modeled as a GP, then Eq. (16) is, up to a normalization
constant, Eq. (7) multiplied by the priors. The posterior can be
sampled via Markov-chain Monte Carlo (MCMC) methods
or optimized using gradient descent to find its maximum a
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posteriori (MAP) value @yap. When a single value for 6
is used as a “best guess,” e.g., Oyap, this is called a point
estimate.

For certain cases, one can find analytic posteriors for
parameters in @ by making use of conjugate priors, whose
posteriors have the same functional form as the prior [11]. For
our applications only a few features of the prior information
are important; we are generally insensitive to details of the
priors’ functional form. Our strategy is then to make use of
conjugate priors where they are flexible enough to capture
distributions’ relevant features and find MAP values for the
remaining parameters.

The conjugate priors on the GP parameters 1 and & are
characterized by hyperparameters that quantify the mean and
variance for the prior distributions of both, as well as the
heaviness of the ¢ distribution’s tail. Our model is also easily
built into existing MCMC samplers, such as PyMC3 [19],
where any functional form for the priors can be used.

To make predictions unconditional on @, which take all
plausible values into account, one must compute

prfy | x, ) = /pr(fz |x, f1, @)pr(0|x,, f;)d0. 17

This can be approximated by replacing the integral over 6 by
evaluation of the integrand at @yap, computed numerically
with Monte Carlo methods, or evaluated analytically with the
help of conjugacy. For example, Appendix shows how u and
&2 are integrated out of Eq. (17) analytically via conjugacy.

This brief introduction to GPs is enough to set the stage for
our model of truncation errors.

C. The GP model of EFT convergence

Recall from Sec. IT A that after making the transformation
from prediction functions {y,} to coefficient functions {c,}, the
coefficients appeared as naturally sized random curves. Here
we will specify exactly what we mean by random and discuss
how we can extract meaningful insight from this assumption.

We formalize our EFT convergence assumptions via
Egs. (3) and (5), where the coefficients ¢, are independent
draws from a single underlying GP. We assume a con-
stant mean function m(x) = u for simplicity and a kernel
Kk (x,x'; ¢, €) = &r(x, x'; £) that need not be stationary. Thus,

()10 % GPLu, Er(x, X'; 0], (18)
0= {u 0. (19)

Figure 3 shows random draws from such a process and a
comparison to the model described in Refs. [2,3].

The parametrization of Eq. (18) can be generalized as
appropriate. Nonconstant mean functions can be incorporated
by promoting w to a vector of regression coefficients multi-
plying basis functions. For the model of the c,’s that we use
here this basis would contain only one, constant, function.
But if one wants to build specific structure into the mean
function for y; and Sy, then the notion of a basis is useful
for discussing the distribution of these quantities. We discuss
that more general case, adopting vector and matrix notation,
in Appendix. The factorization of the kernel into a marginal

variance ¢ and a correlation function r that depends on a

correlation length £ may seem restrictive. On the contrary, this
kernel can incorporate a wide range of functional structures
since r can be nonstationary in general and £ can stand in for
any set of correlation parameters. Thus here we make p, &2,
and /£ the explicit parameters of our GP model: This allows us
to show how they can be calibrated or integrated out of this
system.

The distribution of 8y, and thus the full prediction y =
Vi + 8yx, can be derived using the remarkable property of
Gaussian random variables: they are closed under addi-
tion and matrix multiplication. Let X ~ A (i1, K1) and Y ~
N (12, K7) be length-N independent random variables and let
A, B be known M x N matrices. Then

AX + BY ~ N(Au; + Bu,, AK1AT + BK,BT). (20)

Equation (5), which defines the truncation error 8y, is a
geometric sum over normally distributed variables. Using
Egs. (18) and (20), one can readily find the prior

Syk(x) 10, Q ~ GPlms(x), ERs (x, ' 0)],  (21)

where
(x)k-H
msj(x) = ymf(X)l——Q(x)M = bsr (O, (22)
[Q(x)O( )]

Rsie(x, X'5£) = Yref (X)Yrer (x") r(x, x';0). (23)

1 = 0(x)Qx")
We have defined the basis function bg;(x) as it will recur
below. Although Rs; may look like a correlation matrix, the
inclusion of the y..s and Q factors mean that Rs;(x, x; £) # 1,
in general. The marginal variance of Eq. (21) is thus, in
general, x dependent and equal to 2Ry (x, x3 0).

Equations (21)—(23) define the functional form of the trun-
cation errors, but how should one estimate their parameters
in a statistically rigorous manner? The simplest (and least
rigorous) way is to assume some reasonable values for 6 and
Q based on expert knowledge of the system. For example,
w=0and ¢ = 1 is a good place to start if one can assume
that the coefficients are naturally sized and equally likely to
be positive or negative. Then ¢ and Q could be based on
arguments specific to the observable and EFT under consid-
eration. Again, yer is assumed to be known in this work,
possibly based on dimensional analysis for the observable.
The next best way would be to combine expert knowledge of
the system with the known low-order predictions to compute
point estimates of # and Q. (Remember, information only
propagates from the order-by-order predictions to dy; via
0 and Q, as shown in Fig. 2.) Finally, the most rigorous
Bayesian method is to compute the full posterior for # and
0 and marginalize (integrate) over all of their possible values.
Depending on the specific application of this model and the
needs of the user, different degrees of rigor may be warranted.

Assuming that we want to combine expert knowledge
of the system with the order-by-order EFT predictions to
estimate §y;, we must start by formalizing our knowledge as
Bayesian priors. We have checked the prior dependence of our
pointwise model in previous works and found that truncation
error estimates are fairly insensitive to their exact choice
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vr? /(v +2)

Marginal Variance (&%)

Mean (u)

FIG. 5. Slices of the distribution u, &> ~ Nx~2(n,V, v, t). The
left plot is a Gaussian while the right is a scaled inverse 2
distribution.

[2,3]. Therefore, we choose to work with conjugate priors,
which yield intuitive analytic posteriors and point estimates
for the GP parameters 6. We place a (scaled) normal-inverse-
x? prior” on p and &2,

1, & ~ Nx (10, Vo, vo, 75)- (24)

This joint prior factorizes as pr(u,c?) = pr(u | &>)pr(e?),
where

pe* ~ N, V), (25)
&~ x7 (vo. 1) (26)

2
exp (—%) 27)

See Fig. 5 for a graphical representation of pr(u, ¢). The
hyperparameters can be interpreted as follows:

The inverse x 2 density is given by

(ve?/2)"?

T@0 ) = 5oyt

(i) The prior mean ny: Our best guess for u before seeing
the data.

(i) The prior dispersion® Vy: When combined with &2,
this is our estimated uncertainty in p. It makes sense
that if the spread of the ¢, is large, then we would be
less certain about their mean.

(iii) The prior degrees-of-freedom vy: This quantity es-
sentially describes our uncertainty in ¢2. For v = 0,
Eq. (27) reduces to the scale-invariant Jeffreys prior
used in Ref. [3], whereas for v — o0, it becomes
sharply peaked.

(iv) The prior scale 102: For large v, this is our best guess
for 2. The mode and mean of Eq. (27) are given by
vt?/(v £ 2), respectively. The mean is only defined
forv > 2.

There are no conjugate priors for £ or Q. Reasonable choices
could be a strictly positive log-normal prior for £ and a beta
prior for Q, since it is restricted to be between zero and one.

A more common and mathematically equivalent choice is the
normal-inverse-gamma prior. We find the normal-inverse-x2 prior
more intuitive to work with in this context and thus promote its use.

$We have not found a standard name for this quantity in the
literature. The dispersion, a generic term describing the variability
or spread of a distribution, is as good as any.

Once priors have been chosen for # and Q, the rest of
the process is algorithmic. Given order-by-order data y; =
{y:}i<k, one can derive analytic posteriors for all of # and Q.
See Appendix for details on how this is done. From now on
we assume that £ and Q are known a priori or point estimates
are obtained from their posteriors. Analytic results for the
truncation error posterior follow. Formulae in which £ and Q
are marginalized over are more complicated and not analytic.
Point estimates of ¢ and Q are often good approximations
in our application, making numerical integration a needless
complication. MCMC sampling can be used in cases where
this approximation is not adequate.

Conjugacy ensures that the posterior for 4, ¢ has the same
functional form as the prior. That is,

1, & |6 €, 0 ~ Ny 2(n, V, v, %) (28)

for updated hyperparameters 7, V, v, and 7> given by

Egs. (A27)—(A30). The path forward depends on whether
point estimates of ;. and &> are sufficient. If so, then the mean
values E[-] of « and &2, given by

E[w|¥x €, Q1 =1, (29)

vt

v—2

can be used as point estimates in Eq. (21). It is interesting
to note that these estimates are Bayesian analogs to standard
frequentist estimators for the mean and variance. If one inte-
grates over all possible values of 1 and &2, then the posterior
is a Student-t process (TP) [20],

Syr(x) | ¥k, £, O
~ TPulbsi(x)n, T [Rsx (x, X5 €) + by (x)Vbsi (X)), (31)

Like a GP, any finite collection of random variables from a
TP has a joint Student-¢ distribution. Equation (31) is centered
at our best guess for bg(x)u but also includes the uncertainty
in pu via bg(x)Vbsi(x') and the uncertainty in ¢ via the
heavy tails of the ¢ distribution (which are heavier for smaller
V). The k(x, x') in TP, [m(x), k(x, x)] is not the covariance
function in our notation but instead a scale function. The
covariance between the response at x and x” for a TP is given
by vk(x,x)/(v —2) and is only defined for v > 2. Given
this fact, note the relationship between the point estimate in
Eq. (30) and the covariance in Eq. (31).

E[e® | §x, £, Q] = : (30)

D. Application types

We have shown how to arrive at a physically motivated
distribution for the truncation error, which we will now use
as a springboard to discuss how our EFT convergence model
is applicable to two situations that can arise when fitting and
predicting.

(1) For certain physical systems, predictions may be ex-
pensive to compute. This can affect the fitting of the
LECs, where predictions must be made repeatedly
to find a best fit (or posterior), but can also affect
predictions with fixed LECs for particularly expensive
systems. For example, fitting chiral EFT beyond the
two-body sector becomes computationally expensive.

044001-7



J. A. MELENDEZ et al. PHYSICAL REVIEW C 100, 044001 (2019)

(a) (b) (c)
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FIG. 6. Toy predictions of y(x) = y,(x) 4+ 8y,(x) vs x for n < 3. Shaded regions denote 20 bands, whose colors correspond to orders
described in the legend. True values for # and Q are assumed throughout. (a) A computationally inexpensive system with truncation error
uncertainty. Higher-order predictions are generally contained within the lower-order bands. (b) A computationally expensive system that
combines both truncation error and interpolation error quickly and analytically. Three data points from (a) were used to fit y,(x) at each order,
with zero numerical noise assumed. Solid lines are the interpolants, which are close to the y, (x) from (a) to within their bubblelike interpolation
errors. Note that uncertainty in y;(x) is almost purely due to interpolation. (c) An inexpensive system with the corrections ¢, (x) constrained to
be zero at the endpoints. This imposes a constraint on §y,(x) as well. As expected, the truncation error smoothly vanishes when approaching

| of = 2

the endpoints.

(2) Certain observables may have symmetry constraints,
which provides information about contributions from
higher orders in the EFT. For example, certain spin
observables in the NN sector of chiral EFT must
vanish at & = 0° or 180°. Thus, the distribution for the
truncation error should reflect this fact.

Here we discuss how our correlated convergence model can
solve both of these problems and how to use this model when
fitting an EFT. We assume that point estimates from Eqs. (29)
and (30) are used so that everything remains Gaussian and
leave the TP case for Appendix.

1. Inexpensive predictions

If predictions are inexpensive, then y;(x) can be computed
at all x of interest. In this case, we do not need to interpolate
vk (x) and can instead focus on estimating the truncation error,
i.e., estimating # and Q. In this data-rich environment, we
must be careful when learning the point estimates for these
quantities, since too much data within one correlation length
£ can cause ill-conditioned matrices and thus poor point esti-
mates [13—17]. We suggest simply choosing a representative
subset of data for learning # and Q and using a small nugget
to regularize the matrix inversion. Then §y; can be produced
at all points of interest without issue using Eq. (21). The
distribution for the full observable y = y; + §y; has mean and
covariance function given by

My (x) = yr(x) + mgi(x), (32)
Sn(x, x5 0) = R (x, x5 0). (33)

An example of the posteriors for y(x) assuming different max
orders k is given in Fig. 6(a).

2. Expensive predictions

If predictions are expensive, then one may want an estimate
of yi(x) at some x that was not explicitly computed with
the EFT. Thus, we now have both interpolation error and
truncation error to worry about. Fortunately, GPs are made
for interpolation and are very fast. In this case, we need a
distribution for y, (x) as opposed to 8y, (x). Following Egs. (3),
(18), and (20), one can write

Yk(x) 160, Q ~ GPmi(x), Ry (x, x5 0)], (34)
where
1— Q(x)k+l

— o “= be(x)p, (35)

My (X) = Yrer (X)

1 — [Q)Q()]!
1 —0(x)0(x')
(36)
Now it is a simple matter to estimate § and Q as before and
then apply Eqgs. (11)—(13) to Eq. (34). Because the conditional
distribution of Eq. (11) is still Gaussian, one can again use
the fact that GPs are closed under addition to compute y =
Yk + 8yx, which has mean and covariance functions

M (X) = Mg (x) + mee(x), (37)
S, x5 0) = E[Re(x, 45 0) + Ry (x, x5 01 (38)

Rk(xa x/;ﬂ) = yref(x)yref(x,)r(xa x/;z)

[Remember that the tildes above m and R refer to the condi-
tioning shown in Eqs. (11)—(13).] See Fig. 6(b) for an example
when only a few points are computed at each order and used to
estimate the full prediction with combined interpolation errors
and truncation errors.

3. Symmetry constraints

Above we discussed how to constrain yi(x) based on
known data, but sometimes we could constrain §y;(x) based
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on, e.g., symmetry arguments. That is, we may know that
higher-order coefficients are zero at a particular x. In this case,
we need only constrain §y,(x) via Egs. (11)-(13) according
to our knowledge of the system. This could apply regardless
of whether y;(x) is expensive or inexpensive. Again, since
Eq. (11) is still Gaussian, y = y; + 8y, is a GP. One need
only make the replacements mgs; — g, and Rg — Ry in
Egs. (32)-(33) and (37)—(38). Figure 6(c) shows an example
of how information about symmetries can be applied to an
inexpensive system.

4. EFT fitting

Our model permits—for the first time—a rigorous inclu-
sion of all higher-order terms and their correlations within the
fitting procedure. Interpolation of expensive predictions fits
seamlessly into this framework, which allows more experi-
mental data to be used than might otherwise be possible. The
posterior for the LECs gy of the kth-order EFT, given data for
different observables D = {y.xp}:, is given by Bayes’ theorem

pr(dx | D, I) o< pr(D | Gy, Dpr(@x) = pr(a) [ | pr(D: . I,
(39)

where [; is the prior information for the ith observable, and
we have assumed that different observables are conditionally
independent of one another given d.

Consider one specific observable y. Prior information about
y could include @ and Q (from previous lower-order fits of
the EFT, for example) and also its experimental uncertainty
Yexp- The values of gy, 8, and Q are sufficient to construct the
distribution for y(x;dy) = yx(x;dx) + Syx(x), which is a GP
with mean function my,(x; dy, #, Q) and covariance function
Zm(x, x50, Q). The exact form of these functions is depen-
dent on whether the predictions are interpolated and whether
the truncation error is constrained, as discussed above. Once
the distribution for y(x; dy) is determined, then the likelihood
for this observable is given by

pr(Di |aks [l) X e_%(Yexp_mth)T():lh+Eexp)7l(Yexp_m!h). (40)

This is an extension of the likelihood proposed in Ref. [1],
whose “uncorrelated” and “fully correlated” models corre-
spond to £ = 0 and £ = oo limits. Applying Eq. (40) to data
with finite positive £ is a subject for future work.

III. MODEL CHECKING

Though the application of our model to any given data set is
simple enough in practice, one must validate that the modeling
assumptions made in Sec. II are appropriate for the system
under consideration. If this model is inappropriate, then the
estimates of # and Q, along with the truncation error distri-
butions, could be biased or even meaningless. Conversely, if
one assumes our model describes how an EFT should behave,
then it would be of great interest to know when a given EFT is
failing. Thus a well-chosen set of model-checking diagnostics
are critical to test our assumptions against the data at hand.

To test our assumptions against reality, we must first enu-
merate them:

(1) The coefficients ¢, are i.i.d. realizations of a GP.

(2) The ¢, GP’s mean and covariance functions—and their
parameters #—have been correctly identified.

(3) From the knowledge of a few coefficients, we can
create a statistically meaningful distribution for the
truncation error.

Model-checking diagnostics can assess whether these as-
sumptions are violated at a statistically significant level. The
question of how to diagnose issues with GP fitting and pre-
diction has been addressed thoroughly in Ref. [21]. However,
our situation is novel compared to that of the everyday GP
practitioner: (1) they typically have points along one curve,
we have multiple i.i.d. curves; (2) their main focus is often
the accuracy of the GP regressor’s predictions, our focus is
mainly on the parameters 6 themselves; and (3) our model
for the ¢, leads to a truncation error distribution which itself
can be tested. Nevertheless, the same techniques discussed in
Ref. [21] are directly applicable here.

Throughout the discussion below, we assume that the
parameters for a GP have either been fixed a priori, or
calibrated/marginalized via training data fi,;,. The resulting
GP (or TP) is then to be evaluated against test (or validation)
data fy,. One should take care that the training set fi,,
does not overlap with any points in f,;;. We have greater-
than-average freedom with how we partition f,;, and f,,
because our data contain multiple i.i.d. curves c, that could
be tested against one another and because our truncation error
model can be tested against reality. For now, assume that
fi.in contains data on one curve and was used to construct
an emulator via Eqs. (11)—(13) to predict f,, from that same
curve. We will return to the details on how one might choose
different emulators, or how to partition the training/test sets
differently, in Sec. III D. Below, we use the generic notation
of m and K for the mean and covariance of the emulator (with
v degrees of freedom in the TP case).

A. Mahalanobis distance

A common way to measure the loss, or incorrectness, of
a prediction is through the sum of squared residuals. This
metric as a summary assumes that the errors at different
input points x are completely uncorrelated; the individual
weighted residuals at each point are simply summed up. The
Mahalanobis distance is the multivariate analog of this idea
that takes into account these correlations. That is,

Dip(fva) = (Fya — m)TK ' (1 — m). (41)

Large Dg,, implies that the validation data does not match the
emulator. But what defines “large” and “small” in this con-
text? A necessary component of any diagnostic is a reference
distribution. A reference distribution sets the scale of variation
and defines what normal and abnormal diagnostic values look
like.

Suppose that we have validation data at M locations. Then,
if the emulator is Gaussian, then the reference distribution for
pr(D3;,) is a x? distribution with M degrees of freedom. If
the emulator is a TP with v degrees of freedom, then the
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reference distribution is an F distribution Fj, , that is scaled
by s = (v —2)M/v [21]. (That is, D%,ID/S follows a standard
Fy, distribution.) The reference distributions in either the GP
or TP cases do not depend on the specific form of the means
and covariance functions: only the number of validation data
and, if applicable, the degrees of freedom. Both the x2 and
the F distributions are available in standard statistical libraries
and permit simple analytic evaluations of credible intervals.

But, in general, the distributions of such diagnostics may
not have a simple form. A surefire way to generate a dis-
tribution in any case is to simply sample from the emulator
and compute the diagnostic for each f in the sample. Then
the validation data f,,; could then be rejected at a 68% or
95% level, for example, based on the empirical reference
distribution.

B. Pivoted Cholesky decomposition

The MD is great as a one-number summary, but more
information can be gained by considering decompositions of
this quantity. Let G be defined by K = GGT. Then

D; = G ' (fyy — m) (42)

is a variance decomposition of D}, = D[Dg. There is free-
dom in the exact definition of this diagnostic because G is
not unique. The pivoted Cholesky decomposition of K leads
to a diagnostic (Dpc) that pinpoints the data contributing
to a failing Df;, and shows useful patterns when plotted
graphically vs index [21]. A misestimated variance leads to
unusually sized Dpc across all indices, whereas an incorrect
estimation of the length scale leads to failing Dpc at large
index.

The reference for each component of Dg is distributed as
a standard Gaussian (for a GP emulator) since the points have
been scaled and decorrelated by G. For the TP emulator, the
reference is a Student-¢ distribution with v degrees of free-
dom. The desired credible interval (here 2¢") can be computed
accordingly.

C. Credible interval diagnostic

The credible interval diagnostic tests the accuracy of the
emulator. An emulator is accurate if a 100« % credible interval
(CI) contains approximately 100a% of the validation data.
This diagnostic could be particularly useful when comparing
experimental data ye, to the full prediction with truncation
uncertainty, since it captures whether the error behaves as
advertised. Following Ref. [21], start by building CI;(«),
the 100a% marginal CI at the point x;, for each of the M
corresponding f; € f,,. Then compute the accuracy of the
credible intervals:

1 M
Dei(@. fua) = - > 11fi € Cli(@)], (43)
i=1

where 1 is an indicator function, i.e., it equates to 1 if its ar-
gument is true and equates to O otherwise. Note that although
the CI may be informed by training data at many points, the
D¢t is computed point by point.

This diagnostic is the analog to the “consistency plots”
shown in Ref. [3], which used the pointwise truncation model.
It was shown that in this pointwise case, where the data are
assumed uncorrelated with one another, the reference distri-
bution is a simple binomial. Since the data here are curves, the
reference is more complicated. Here we compute the reference
distribution by simulation, that is, we sample the emulator and
compute D¢y for each sample. The creation of a reference in
this manner takes into account correlations by widening the
acceptable region of accuracy, though the diagnostic is still
inherently a point-by-point summary. Interestingly, we have
found that the simulated reference is approximately a bino-
mial with an effective number of data M = Ax/£, where Ax
is the difference between the minimum and maximum values
of x.

D. Honorable mentions

We have tested many more diagnostics than are shown
graphically in this work, such as the following:

(a) Variogram: A common tool used to investigate corre-
lation structure by looking at the variability of pairs
of points across the domain [22,23]. We have found
that it is too sensitive to random fluctuations for our
application.

(b) KL divergence: Another one-number summary for em-
ulators. We did not find that it gave any new informa-
tion beyond Dﬁ,ID.

(c) Other variance decompositions: In addition to the Dpc,
we considered the standard Cholesky decomposition
and the eigendecomposition. The Cholesky decompo-
sition has the benefit that each index corresponds to
a single validation datum, but it does not order the
indices in a visually intuitive manner for diagnosing
problems. The eigendecomposition, on the other hand,
displays similar qualities as the pivoted Cholesky de-
composition when plotted vs index, but its indices do
not correspond to individual validation points. Thus,
we choose to display only the pivoted Cholesky here,
which enjoys the best of both worlds.

The above diagnostics are still available in the gsum [24]
package despite not appearing here.

E. How to choose an emulator

We have described the most common approach for diag-
nosing GP emulators: fi,;, and f,, are function values from
one curve evaluated at mutually exclusive sets of input points
x. Now we discuss alternatives to this approach based on
the questions our diagnostics are designed to address. This
discussion is split into two parts: (1) evaluating coefficients ¢,
and (2) evaluating predictions y,,.

By testing the coefficients we can address the question
of whether the observed convergence pattern matches our
assumptions. Because they are assumed to be i.i.d., the pa-
rameters of their process can be learned from training data
along each ¢, simultaneously or along a subset of the curves.
Then an emulator for some ¢, could be used to predict test
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data between the interpolating points, regardless of whether
those points along ¢, were used to estimate 6.

A problem occurs when using interpolating processes if the
training data are too close [13—17]. The bubblelike interpo-
lation uncertainty becomes very small and can approach the
size of the nugget used for numerical stability. In this case the
diagnostics become highly sensitive to the nugget regulator,
a clear sign of diagnostics gone awry. One way to avoid this
issue is to spread the training points out relative to the length
scale of the system, but this solution comes with a price. The
estimates of @ and the accuracy of the interpolants will suffer.

But the issue of numerical instability can be mitigated by
avoiding interpolating processes altogether. Our goal is to
test whether the ¢, are drawn from one underlying process,
so why not test the coefficients against this process rather
than interpolating? The marginal variance of the underlying
process should always be large with respect to the nugget size,
which sidesteps the problem of comparable sizes. Because the
emulator is not forced to interpolate the training data (only 6
is tuned), it may be less crucial to exclude training data from
the validation set and would allow for more data to be used
in the analysis. Diagnosing against the underlying process is
thus the method of choice in this work.

Now we outline the diagnosis procedure for y,. The predic-
tions y, allow us to test whether our truncation (and possibly
interpolation) model behaves as advertised. The data used to
estimate the parameters 6 could include all EFT predictions
up to the highest order available, with the caveat that data
that are too closely spaced could cause numerical instability
in their estimates. Then an emulator for the full prediction can
be constructed as discussed in Sec. IID, and the validation
data could then consist of experimental data yeyp. If testing
the truncation error, there is no issue computing diagnostics
with the same x as was used in the training set.

Modulo the possible numerical issues discussed above,
poorly behaving diagnostics are a sign that something is
wrong with the EFT or the convergence model assumptions.
To diagnose such problems requires a working knowledge of
what success and failure look like. Hence, it will be more
illuminating to see the diagnostics in action rather than to
further discuss theory. After the following illustrations it
should be clear that statistics is a powerful tool to diagnose
physics and EFT failure modes.

IV. TOY APPLICATION

Figure 1 is a summary of how one takes the theoretical
predictions of an EFT and extracts coefficients, which then
inform the truncation error model as described in Sec. II.
This section takes the predictions from Fig. 1(a) as given
and provides an example workflow for extracting physical
insights from the data. By working with toy predictions,
we are able to assess the accuracy of both the truncation
error bands and the extracted GP parameters 6. We test the
distribution of the coefficients in Fig. 1(c) against our GP
model, and then compute the truncation error distributions
for each y, in Fig. 1(a), followed by an assessment against
a to-all-orders EFT prediction. Throughout, we show visually

how the diagnostics from Sec. III behave and how to know
when they are failing.

Let us assume that mapping from predictions y, to coef-
ficients ¢, is well understood, that is, the values of y.s and
Q are known. (We will return later to relax this assumption.)
Then we are left with two projects: estimating the process
from whence the coefficients were drawn and subsequently
using that process to compute the truncation error distribution,
all the while validating assumptions along the way. The first
step is to outline the priors on the GP parameters 6. Here
we take 19 = 0 and Vy = O (i.e., the mean of the coefficients
is known to be zero), which corresponds to the belief that
the coefficients are just as likely to be positive as negative
and matches the distribution from which they are drawn. The
prior on the variance ¢ is given vy = 1 and 7§ = 1, which is
fairly uninformative with a mode at 1/3 and a very heavy tail.
Finally, an improper uniform prior on the interval (0, co) is
taken for the length scale £.

Once priors have been assigned to 6, the next step is
to update our beliefs using the coefficients as data. We
choose five points along each of the four ¢, with Ax =
0.25, shown as dots in Fig. 7(a), and use them to compute
E[¢*] and £map [Eqgs. (30) and (AS54)]. This optimization
procedure results in estimates that are remarkably close to
the true parameter values, see Table I. Plugging these es-
timates into Eq. (18) yields an estimate of the underlying
process that generated the c,, whose mean and marginal
variance are plotted on Fig. 7(a) as black solid and dashed
lines. The interpolating processes can then be computed for
each ¢, [Egs. (11)—-(13)], whose means and marginal vari-
ances are given by colored dashed lines and filled areas
in Fig. 7(a).

We know that the estimated process is quite close to the
generating process, but we have no such guarantee when
considering real EFT predictions. This is where the diag-
nostics proposed in Sec. III come into play. We choose to
compare the ¢, validation data, whose locations are indicated
by minor ticks in Fig. 7(a), to the underlying GP, as opposed
to each interpolating process. Thus, our diagnostics will in-
dicate whether these data points could have feasibly been
drawn from the GP that we have learned from the training
points. The results of the diagnostics are shown in Figs. 7(b)
and 7(c). As expected, the diagnostics behave quite well
because the emulator matches the generating process. The
DI%/ID does return a small value for ¢;, reflecting our intuition
that ¢, looks abnormally small compared to the others. The
pivoted Cholesky decomposition vector, plotted vs its index,
shows an essentially random variation of points, meaning
that the variation of the ¢, about the mean are distributed

TABLE 1. Parameter estimates for the emulators in Fig. 7(a)
using a nugget of o2 = 10710

Prior Estimate True
n N(0,0) 0 0
& x2(1, 1) 0.98% 1
l U (0, 00) 0.20 0.2
o U@,1) 0.48 0.5
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FIG. 7. Toy coefficients and their corresponding diagnostics computed against the underlying process. Colors match across each subplot.
(a) The coefficients from Fig. 1 and their corresponding GP emulators. The mean and 20 bands of the calibrated underlying process are shown
as black and gray lines, respectively. The colored dashed lines and corresponding bands are the interpolants and 2¢ bands found by fitting this
underlying GP to each ¢, individually with Egs. (11)—(13). The training data are denoted by dots, whereas the validation data locations are
indicated by the minor ticks. (b) The Mahalanobis distance computed against the underlying (not interpolating) process. The interior line, box
end caps, and whiskers on the box plot show the median, 50% credible intervals, and 95% credible intervals, respectively. The blue D3, for
¢, is the smallest, which shows that the diagnostic reflects our intuition as discussed in Fig. 1. Overall, the DIZVID are reasonably sized. (c) The
pivoted Cholesky diagnostic Dpc vs index, with gray lines that represent its 20 error bands. The points seem to be distributed as expected:
approximately distributed as a standard Gaussian, with no real pattern vs index.

approximately as expected. Again, c¢; is rather small, given
that the vertical variation should follow a standard normal,
but the others show a mixture of large and small values of Dpc.
Such diagnostics show that the coefficients from the computed
EFT orders conform to the assumptions of our convergence
model.

The computed EFT orders are only half of the story; we
desire truncation bands that take into account all not yet
computed orders. By inserting point estimates of § and Q
into Eq. (21) [or by using its marginalized analog, Eq. (31)],
posteriors for the full EFT summation are just as simple as
the posterior for the ¢,. The truncation error bands for each
Y, using the point estimates of @ in Table I, are shown in
Fig. 8(a). As an example, a higher-order prediction y, is taken
as the true value of the prediction. Given the truncation error
processes and the validation data of y,y, we can again compute
diagnostics to determine whether the truncation errors behave
as expected. We show the credible interval diagnostic in
Fig. 8(b), which assesses the accuracy of the truncation error
credible intervals. On average, the error estimates contain
the true value of y in the proportion dictated by the credi-
ble interval. This is the sign of a healthy EFT convergence
pattern.

Thus far we have assumed for simplicity that the path-
way from order-by-order predictions to naturally sized coef-
ficients, via Eq. (4), was known in advance. But first there is
some work to do to even make this conversion: Assumptions
must be made for y,s and Q. As we have stated previously,
Yret can be derived based on dimensional analysis for the ob-

servable at hand, and Q can be based on a separation-of-scales
argument specific to the EFT in use. But this can be easier said
than done. We have found that one of the most informative
pathways to physics insight is graphically exploring a data set.
Plotting coefficients generated from different assumptions on
Vet and Q can show very different patterns, some of which
better conform to the assumption that the ¢, are identically
distributed. Empirical exploration of coefficients’ behavior
can often lead to useful insights regarding the parameters
that enter the EFT convergence model. For example, the
assignment y.f = 1 for spin observables in Ref. [3] was
first hit on through such exploration. This process should be
iterative, with scale arguments from the EFT reinforcing or
critiquing such empirical observations. The diagnostics we
have presented here lend statistical rigor to this process.

An important tool for exploring the EFT convergence is
the model evidence [25] pr(¥x | £, O, yret), given by Eq. (A48)
(where dependence on yr.s is shown explicitly here). Up to
prior factors and an unimportant normalization constant, the
model evidence is equivalent to the posterior for £, Q, and yrt.
Suppose that £ and Q are both scalar quantities with uniform
priors and y¢ is known. Then the posterior pr(¢, Q | ¥ ) can be
computed analytically, as is shown in Fig. 9 and summarized
in Table I. Figure 9 is a pathway to learning the convergence
pattern, and other EFT quantities, through data. In fact, even
if Q is a function of x and other parameters, such as the EFT
breakdown scale Aj, then the posterior for these parameters
is still analytic and can be optimized to find a MAP value [see
Eq. (AS55)].
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FIG. 8. (a) Toy predictions from Fig. 1 and their corresponding 2¢ truncation error estimates generated from the underlying process in
Fig. 7. The black dashed line is the observable computed up to order n = 20, which represents the true value of the observable and is used as
validation data. Minor ticks denote the validation data locations used in the diagnostic. (b) The credible interval diagnostic for the truncation
error bands. The stepwise nature of the lines arises from the finite number of points used in the diagnostic. Dark and light bands represent 1o

and 20 credible intervals. By chance, y; is very close to the true curve, which results in a D¢; that is too accurate at small «.

But choosing Q may not be as simple as finding the best
Ay, rather, one may need to decide between a discrete set
of functional forms for Q(x). In this case, differing Q(x) can
be thought of as models to choose between. Moreover, one
could question the choice, or functional form, of y.f. The

S 05 -

0.4 .

0.1 0.2 0.3
l

FIG. 9. The joint and marginal posteriors for ¢ and Q given
data in Fig. 7(a), with a uniform prior pr(¢, Q) o 1. The contours
increment in approximately half-standard-deviation intervals, with
a point denoting the MAP value. The gray lines represent the true
values of £ and Q. The training data are spaced with Ax ~ 0.25,
meaning that the £ posterior cannot entirely discount the possibility
of small ¢ without prior information.

model evidence is useful as a diagnostic tool in this case as
well. (£ could be integrated out numerically, if desired.) In this
case, one can compute Bayes’ factors, i.e., ratios of the model
evidence for different choices (Q, yr), to determine the
choice statistically favored by the EFT convergence pattern
[25,26].

As an example of what can occur when Q is misestimated,
we now choose Q = 0.3 (opposed to the true Q = 0.5) and
repeat the analysis of Fig. 7. The results of this analysis
are shown in Fig. 10. Since Q is underestimated, then the
¢, grow with n, as dictated by Eq. (4). Thus c3 is large
compared to the others and causes the ¢ estimate to increase.
In general, the marginal variance is biased upward by large
outliers. This is reflected by the Mahalanobis distance only
capturing c3, but the other coefficients are abnormally small.
The assumption that the curves are identically distributed
has broken down. The pivoted Cholesky decomposition in
Fig. 10(c) provides further evidence of this breakdown; the
lower-order components are too small compared to the ref-
erence distribution. Moreover, there is a trend of smaller
errors near the right side of the chart: evidence that the
length scale has been misestimated. Indeed, the length scale
found by optimizing the likelihood is ¢ = 0.17, small enough
compared to the true value of £ = 0.2 to show up in this
diagnostic.

V. APPLICATION TO NN SCATTERING WITH CHIRAL
EFT POTENTIALS

Now that we have introduced both the truncation error
model and its diagnostics, we dedicate this section to a
real-world example in low-energy nuclear physics. In this
regime, chiral EFT is a popular tool used to develop a
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FIG. 10. Toy coefficients extracted using Q = 0.3 (opposed to the true Q = 0.5) and their corresponding diagnostics. In (a), the training
data are denoted by dots, whereas the validation data locations are indicated by the minor ticks. See Fig. 7 for the remaining figure notation.
The coefficients no longer look particularly i.i.d. given the large size of c3. This biases the estimates of & and £ and results in the failure modes
of the Mahalanobis distance and its pivoted Cholesky distribution. The funnel-like behavior of the pivoted Cholesky when moving from low
to high index signals a misspecification of the length scale, which indeed is biased downward due to the incorrectly chosen Q.

systematically improvable description of nuclear observables.
The most popular version of chiral EFT is the original pro-
posed in Weinberg’s seminal works, where a nuclear po-
tential is written down and resummed using the Lippmann-
Schwinger (LS) equation [27,28]. This resummation obscures
the power counting that was manifest in the potential. Nev-
ertheless, for certain regulators, the convergence of nucleon-
nucleon scattering observables appears consistent with this
power counting [2,3].

But the promising results in Refs. [2,3] were obtained
using the pointwise convergence model. Though it permitted
a statistical extraction of the EFT breakdown scale A, strong
conclusions about Aj; could not be made due to the lack
of correlations inherent in the pointwise approach. Here we
readdress a subset of these analyses using our GP approach.
A more thorough treatment of this and other systems is a topic
for future work.

We consider three neutron-proton (np) scattering observ-
ables: the differential cross section o(0) as a function of
center-of-mass angle 6, the total cross section oy, as a function
of laboratory energy FEi,, and the spin observable A as a
function of 8. Each of the observables are computed using
the semilocal potential of Epelbaum, Krebs, and Meifiner
(EKM) [29,30]. We find that, for NN data in chiral EFT, the
coefficients look very smooth and center around a mean of
zero, see Ref. [3]. Thus, we model the correlation structure
using the squared exponential kernel, Eq. (9), and choose a
mean function of zero.

Once the coefficients’ mean and covariance functions have
been specified, choices must be made for y.f and Q. In
Ref. [3], yret = Yo Was used for the total and differential cross
section, while it was argued that y.r = 1 is the appropriate
scale for spin observables. Here we argue for a slight modifi-

cation: We choose y.f = ys5 for the differential cross section
since the leading-order prediction yy gets dangerously close
to 0 in some regions, which causes unnatural peaks in the
coefficient curves.

The expansion parameter Q is a ratio of low- to high-energy
scales. The high-energy scale is the breakdown scale of the
EFT A,, whose value is obscured by the LS equation. For
np scattering in chiral EFT, the low-energy scales include
quantities such as the beam kinetic energy in the laboratory
frame Ej,, and the pion mass m, . In the center-of-momentum
frame, one can rewrite the laboratory energy as the relative
momentum given the proton mass M, and neutron mass M,,

EiaM; (Evy + 2M,,)
(Mp + Mn)z + 2MpE'lab .

2
Prel =

(44)

With p, a function of Ej,p, the expansion parameter is defined
as

Ay

where f(pre1, my ) is some mapping of py, m,. We take A, =
600 MeV here and return to estimating its value in future
work.

Again, due to the resummation performed by the LS
equation, the exact mapping f(prel, M) 1S not known.
One would expect that lim,_ s, f(Prel, Mz) = pra and
lim,, , «m, f(Pret, Mz ) = my, but many functional forms could
satisfy these constraints. In prior work, we have assumed
the mapping f (pre1, My ) — max(prel, My ) or a smoothed max
function

O(Ep) = 45)

7 n
Pty

= — (46)
Prel + my

f(prel’ m:r) g
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0.9 fm potential evaluated at Ej,, = 150 MeV. In (a), the training data

are denoted by dots, whereas the validation data locations are indicated by the minor ticks. See Fig. 7 for the remaining figure notation. The
problems with the diagnostics for ¢; and ¢, are driven primarily by the backward angles, which are unusually large. Outlier values at large
index in the pivoted Cholesky plot point to problems with nonstationarity.

with n = 8 [3]. Here we choose the smooth max function,
Eq. (46).

Let us begin by testing the convergence pattern of the EFT
for the total and differential cross sections. To do so, we follow
the path set out in Sec. IV, that is, we extract the observable
coefficients using the physically motivated assumptions of
yrer and Q described above and evaluate their features using
the diagnostics of Sec. III. The analysis of the differential
cross section evaluated at Ej,, = 150 MeV is given in Fig. 11.
The coefficients look beautifully i.i.d. and stationary until
0 approaches backward angles, at which point ¢3 and c4
grow in size. This observation is reflected in the diagnostics
computed at the validation points. It is clear that both c¢3 and
c4 are outliers by the Mahalanobis distance, whereas ¢, and
cs are appropriately sized. The pivoted Cholesky provides
some insight into the problem: Unusually sized values at
high index point to problems in the correlation structure or
nonstationarity. And it turns out that these outliers at large
index are exactly the validation points at large 6, as can be
verified by removing all points greater than 6 = 125° from
the diagnostic. If the backward angles are excluded, then
both diagnostics show excellent agreement with our model
assumptions.

Now we turn to the analysis of the total cross section,
which was extensively studied in Refs. [2,3] for differently
regulated potentials. The coefficients and their diagnostics are
shown in Fig. 12. The choice of test and validation points
merit mention here. The highly nonstationary behavior at low
energy is not representative of the high-energy data and would
bias the analysis if a stationary process were used. This is a
standard artifact that appears in our tested NN observables
when plotted against laboratory energy [3]. Hence these points
were omitted from this preliminary analysis. Additionally,

the training and test points must be spaced out—due to the
very large length scale in this system—otherwise numerical
instabilities appear. Given these caveats, the analysis of the
total cross section nevertheless show interesting patterns. The
diagnostics show that cs is a clear outlier, even when restricted
to high-energy data. The pivoted Cholesky points again to
the onset of nonstationarity or a misestimation of the length
scale.

How does chiral EFT fare when subjected to these diag-
nostics? Both the total and differential cross sections show
behavior that is consistent with our convergence model in
some regimes yet inconsistent in others. In this case, there are
plausible physical explanations for the diagnostics of unusual
size. Likely explanations for the failures of the differential and
total cross sections are a misspecification of Q at backward
angles and low energies, respectively. This problem with the
choice of Q will then result in incorrect truncation error
estimates. It may be that the correct expansion parameter takes
into account the momentum transfer for angle-dependent ob-
servables like the differential cross section. Meanwhile, the
nonstationarity appearing at low energies occurs in the regime
where pr & m,, pointing to the possibility that the crossover
region of O was not parameterized correctly. Barring the
wrong choice of Q, these diagnostic failure modes could
simply point to the possibility that the EFT convergence
pattern fails in these regimes according to the definition of
convergence proposed in this work.

We have shown how observable coefficients can be ana-
lyzed in real EFT predictions; truncation errors follow as in
Sec. IV. We illustrate this for the spin observable A, which
is constrained to be zero at 6 = 0° if the (small) magnetic-
moment interaction is neglected, as it is here. Therefore
contributions from all orders of the EFT are zero as well.
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FIG. 12. (a) Total cross-section coefficients using the EKM R = 0.9 potential, as shown in Ref. [3]. The training data are denoted by dots,
whereas the validation data locations are indicated by the minor ticks. See Fig. 7 for the remaining figure notation. (b) The D3, clearly shows
a problem with ¢s, whereas the others are behaving well. (¢) When decomposed as Dpc, the issue with ¢s appears at large index, indicating
potential problems with nonstationarity. If low Ej,;, validation data were included, then the problem becomes much more visible.

We can accommodate the constraint using the formalism
described in Sec. IID and shown in Fig. 6(c). Two sets
of EFT truncation errors are proposed in Fig. 13, with-
out and with the constraint. The bands in Fig. 13(b) are
unrealistically large at 6§ = 0° given the information we
know about this system. On the other hand, the bands
in Fig. 13(c) vanish at 6 = 0° as expected. This example

uses Epp = 96 MeV, but the point is general. The trunca-
tion errors are smoothly connected between the constrained
and unconstrained regions in a manner harmonious with
the way that lower-order coefficients approach zero. That
is, the extent of the domain affected by this constraint is
dependent on the length scale ¢ extracted from the known
coefficients.
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FIG. 13. The spin observable A, calculated at Ej;, = 96 MeV using the EKM R = 0.9 fm potential, with the magnetic-moment interaction
neglected for simplicity. A is then constrained to be zero at & = 0°. (a) The observable coefficients and the points used to learn ¢ and ¢ of
their underlying distribution. One can choose to estimate the truncation error using the coefficients’ underlying distribution, shown as a solid
gray line, or the underlying distribution conditioned to be 0 at & = 0°, shown as a darker gray dashed line. The conditioned distribution more
closely follows the pattern of the coefficients and will more accurately describe the higher-order coefficients due to the symmetry of the system.
(b) The EFT predictions and their 20 truncation errors using the underlying unconstrained coefficient distribution. The truncation error does
not vanish at & = 0°. (c) The EFT predictions and their 20 truncation errors using the constrained coefficient distribution. Now the truncation

error does vanish at 6 = 0°, as expected by symmetry arguments.
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VI. SUMMARY AND OUTLOOK

Order-by-order predictions of a well-behaved EFT should
converge regularly toward the all-orders value. We have for-
malized this idea into a falsifiable EFT convergence model.
Rigorous estimates of the truncation error—induced by stop-
ping the EFT expansion at a finite order—are now made
possible, as are novel techniques for estimating EFT-related
quantities, such as the expansion parameter Q, breakdown
scale Ay, and LECs. We believe that formalizing and testing
convergence is a crucial step when using an EFT, otherwise
failure may go unrecognized.

This work answers several open questions faced by EFT
practitioners that were left unresolved by our earlier work
[1-3].

(1) EFTs make predictions y,(x) that may be correlated
in x, which in turn induces correlations in the truncation
errors; how should that be taken into account when making
predictions and fitting? With the EFT power counting as
our guide, we propose a change of variables that allows us
to isolate the correlated quantities: observable coefficients
cn(x) (see Fig. 1). The truncation error distribution follows by
modeling the ¢, as draws from a GP and summing all higher-
order contributions. Originally, we had treated predictions at
each kinematic value in a pointwise manner [2,3] and later
modeled correlations in two extreme limits, which correspond
to zero and infinite GP length scale ¢ [1]. Now £ can be
estimated using data across multiple curves. This GP model
could be adapted to correlations between discrete predictions
as well.

(2) Is this Bayesian formalism computationally demanding ?
Bayesian updating of our convergence model parameters 6
is made simple and analytic by the use of conjugate priors.
Our self-contained treatment shows how prior information on
naturalness and correlations is updated using all available data
and derives a novel analytic posterior for the EFT expansion
parameter Q (see Fig. 9 and Appendix).

(3) What about computationally expensive systems? If it
is too expensive to compute an EFT prediction at all points
x or orders n, then @ and Q, which control the truncation
error distribution, can still be estimated from the available
predictions without problem. (Even for inexpensive systems,
if some low-order corrections are known to be unrepresen-
tative of those at higher orders, then one would not want
to use these in estimating the truncation error; for example,
c1 vanishes by symmetry in chiral EFT.) In these cases, the
posteriors of @ and Q are simply more influenced by the priors.
After estimating @ and Q, our convergence model then seam-
lessly combines truncation estimates with fast interpolation
formulas to make predictions at all desired x (see Fig. 6 and
Sec. IID, which also shows how to incorporate symmetry
constraints).

(4) How do these results affect EFT fitting? We derived a
novel likelihood function [Eq. (40)] that enables the EFT fit
to account for all higher-order terms and their correlations in
x. This extends to fitting with interpolation as well, allowing
more experimental data to be used than might otherwise be
computationally feasible. Because it is Gaussian, this likeli-
hood can easily be incorporated into existing fitting proce-
dures.

(5) How is this falsifiable? We provide a menu of model
checking diagnostics that enable anyone to assess whether
an EFT is working as advertised. We emphasize that these
diagnostics require reference distributions (whose functional
forms are given in Sec. III E) to assign statistical significance
to their output. Claims about EFT convergence or truncation
errors can then be falsified at any desired level of significance.
We demonstrate the usefulness of these diagnostics on a toy
example in Sec. IV, which exemplifies the general workflow
of testing an EFT. Section V does the same for selected NN-
scattering observables in chiral EFT. The success and failure
modes within chiral EFT point to new research directions
to pursue. This ability to probe for failure using statistical
diagnostics and visualization means that our framework is
not just a way to establish theoretical error bars but provides
powerful tools for identifying limitations in our statistical
model and in the physical understanding encoded in an EFT.

The stage is now set for a wide range of applications within
chiral EFT; some of the paths in progress are as follows:

(i) A reevaluation of the EFTs critiqued with the point-
wise convergence model in Ref. [3] in light of the
GP model. Additionally, new variants of chiral EFT,
which may show promising convergence properties in
the NN sector and fewer regulator artifacts [31,32],
should be included in the analysis.

(i) A systematic study of EFT convergence beyond NN
observables to assess its validity. This includes few-
body, nuclear matter, and Compton scattering observ-
ables.

(iii) An exploration of the effects of our proposed like-
lihood [Eq. (40)] on the LECs’ posteriors and in
particular the effect on three-body LECs.

The models and tools we have developed apply generally
to other EFTs and perturbative theories in general, so we
anticipate many other applications. The pointwise and curve-
wise models and associated model checking diagnostics are
implemented in the gsum [24] Python package.

The gsum Python package is and can be freely downloaded
and used [24]. This includes a notebook that creates all figures
shown here, among other examples.
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APPENDIX: DERIVATIONS

The mathematical details of the model described in Sec. II
are shown here. Due to the choice of conjugate priors on u, &2,
almost all posteriors of interest can be provided in closed
form.

Before getting into the fine details of the GP model dis-
cussed in this work, we believe it instructive to begin with a
short aside. We have considered a simpler pointwise model in
previous works [2,3], which is shown graphically in Fig. 3.
To our knowledge, no one has yet worked out analytic ex-
pressions for the case of conjugate priors, whose derivations
mirror the correlated case. Hence we will provide the results
below for completeness. Again, conjugacy allows for efficient
computation of truncation errors, parameter posteriors, and
evidences using standard statistical libraries. We promote the
use of these conjugate priors over the options laid out in
previous works.

See Table II for a summary of the vector notation. Footnote
4 gives a brief overview of the statistics notation.

1. Pointwise model

Consider a set of EFT predictions {y,}, each of which is
a number rather than a function. In this case, the quantity of
interest y, could itself be a scalar or we could be considering
a functional quantity y,(x) at a specific input point x in its
domain. Here we wish to predict the truncation error indepen-
dently of the function values at any surrounding input points.
This procedure could be repeated at all points in the domain
to produce error bands, as was done in Ref. [3]. This is what
we call the pointwise model.

If the expansion parameter Q and reference scale y.¢ are
assumed to be known, then the data ¥; can be converted to
coefficients ¢,

Fe=boy - wl"T=&=lcocr -+ el (AD)

Here we assume that the coefficients ¢, are normal given &>

and that &2 has a scaled inverse- 2 prior [11],

iid

| &~ N0, ), (A2)

&~ x 7 (vo, 79)- (A3)
TABLE II. Notation for vectors in different spaces.
Notation Example Description
— x e R? Input space (suppressed)
Bold c, e RY A set using inputs {x;}¥_,
Arrow & € R Orders ¢y, ¢q, ..., Ck
Bold italics 0 GP parameters {u, ¢, £}
— w,n,V Mean basis space
Composition ¢ e R x RV Combination of above
x e RV x R?

Equation (A3) has qualitatively similar properties to priors
used in past works [2,3]: It is strictly positive, can penalize ¢
for being or large or too small, and reduces to a scale-invariant
prior for vy = 0. Unlike past priors on &2, the scaled inverse-
x? permits intuitive analytic posteriors for 8y; and Q for all
choices of vy and 1:02.

Analogously to Eq. (21), one can derive from Egs. (5), (20),

and (A2) that
5 5 QZ(k+l) )
Syl c ,Q~N[O,ymf1 _Q25 ]

The above equations outline our prior beliefs about the co-
efficients, their widths, and how they combine to form a
discrepancy term for y;. If ¢ was precisely known from a
priori arguments or otherwise, then Eq. (A4) is sufficient
to estimate the truncation error. Since this is not the case
in general, we would like to update these priors based on
order-by-order predictions.
Our belief about an unseen coefficient ¢, is updated via

(A4)

o0
prica 150 = [ prica e e, (a9
By marginalizing in information about &2, it is clear that the
effect of data on ¢, flows through ¢2. To compute the posterior
predictive distribution, Eq. (AS), we must first understand how
the observed coefficients & impact our understanding of &2.
This is where the utility of conjugate priors is realized. The
posterior of ¢* has the same functional form as the prior—an
inverse x? distribution—but with v and 7?2 that are updated
by the data. This property simplifies our analysis greatly:
Computing the posterior &2 | & is reduced to determining v
and 2. From Bayes’ theorem and the fact that the & are

marginally independent given &2,

pr(e* | &) o pr(é | &)pr(@®) = pr(e®) [ [ pr(ca 1)

1 1 2 =2
(e3¢ WGXP |:—2—62(U0T0 +Ck)]' (A6)

Above we have defined 7, to be the number of coefficients in
¢y, that are useful for induction (which is not always k + 1, see
Ref. [2]). On comparison with Eq. (27), we can read off

v = vy + ne, (A7)
vt? = vot§ + &2 (A8)

Therefore, we have shown that
&8~ 2w, ), (A9)

with v and t2 defined by Egs. (A7) and (AS8).

Now that the posterior for &> has been established as
Eq. (A9), we can return our attention to Eq. (AS). This integral
v+1

1 r(y)

evaluates to
62 2
> (1+—"2> .
Va2 T'(%) VT

Equation (A10) is the pdf for the Student-# distribution with
degrees of freedom v, mean 0, and scale 7, i.e.,

pr(ca | &) = (A10)

Cn | & ~ 1,00, 7). (ALD)
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In contrast to the notation of the Gaussian distribution, the
variance of the Student- is given by vt?/(v — 2) and is only
defined when v > 2.

Let us pause and ponder the implications of what we have
derived. Equations (A2), (A7)-(A9), and (Al1l) fit together
within one cohesive picture and relate to common estimators
employed in frequentist statistics.

(i) The variance of ¢* decreases as the degrees of free-
dom v increases. This uncertainty in ¢ maps directly
to the heaviness of the tails in the ¢ distribution, which
is also controlled by v.

(i1) A strict prior (vp > 1) or a lot of data (n. > 1)
both lead to pr(¢? | &) being sharply peaked at &> ~
2. This informative distribution for > corresponds
to a pr(c,|¢) that approximates a Gaussian with
variance 2.

(iii) Given a lot of data, then ¢* ~ 72 &~ &?/n., which is a
frequentist estimator known as the sample variance.
In this case pr(c, | ¢x) will approximate a Gaussian
with ¢2/n, as its variance.

(iv) Rather than integrating over &2, we could use its mean
value as a point estimate for the variance in Eq. (A2).
The mean of Eq. (A9) is given by vz?/(v —2),
which is exactly the variance of the ¢ distribution in
Eq. (A11).

By computing or assuming values for v and 72, we are able
to relax the assumption of a known & in Eq. (A2) by giving
¢, a distribution With tails and a scale compatible with our
understanding of ¢>. A Bayesian perspective allows us to
incorporate prior behefs about naturalness and update them
with finite sets of data in a manner that is harmonious with the
limiting cases assumed in frequentist statistics.

A better understanding of unseen observable coefficients ¢,
is useful as a means to better understand the truncation error
0yk. The steps in deriving Eq. (A11) lead analogously to the
posterior

2(k41)
Q 2}, (A12)

-

where v and t2 are computed via Egs. (A7) and (A8). The
distribution for the full prediction y = yx + 8y is thus

QZ(k-H) )
S|

Equation (A13) is a novel result from this work and is the
most straightforward method to compute posteriors of y in
the pointwise model. Statistical packages such as SciPy have
built-in ¢ distributions which can easily calculate credible
intervals for Eq. (A13).

Until now, we have assumed that the expansion parameter
Q is known, but in practice this may not be the case. In fact, Q
may even be a function of x in certain circumstances, which
we assume here for generality. Fortunately, conjugacy permits
the analytic computation of the (un-normalized) posterior

pr(Q | ¥i) o< pr(yi | Q)pr(Q).

5yk |S;k7 Q ~ tv |:07 yrzef

V1P Q~t, [yk,y?ef (A13)

(A14)

The right-hand side is (up to a simple integral over Q) the
model evidence, which is a useful quantity for model com-
parison, and the likelihood pr(y; | Q) is exactly calculable.
The pointwise model assumes that each of the y;(x;) are
independent and each have their own ¢;, so that pr(y; | Q) =
[T priFe(x:) | O(x:)]. We consider each x; individually and
drop x; for convenience. Note that since yg = yrerco and y, =
YVn—1 + Vet €, Q", we can make a change of variables

pr(ck)
Hn |yrean| '

where ¢y = Yo/t and ¢, = Ay, /s Q" implicitly depend
on Q. Thus we need only compute the joint distribution
pr(cy). Although the distribution of one coefficient ¢, follows
a t distribution Eq. (A11), the same is not true of the joint
distribution of multiple coefficients ¢;. Nevertheless, we can
find an analytic form for their distribution using the clever
manipulation of normalization constants. Let primes denote
un-normalized distributions. Then both

(075 /2)"" 2 (

prox | Q) = (A15)

pr(@ | &) = (vo, 7§ HrN/(o &?),

Pr(Ck)F(Vo/Z)
(A16)
from Bayes’ theorem, and
_ oy,
PT(C [ ) = T/z)x (v, 77), (A17)

from Eq. (A9), are true statements. Since pr(¢;) does not
depend on &2, equating the normalization coefficients yields
the desired quantity

T2 [ 1 (wg/2)"
pr(c) = F(V0/2)\/(27T)”‘ w22y

Through Egs. (A15) and (A18) we have completely specified
Vi | Q, and ¥y | Q is simply the product of these quantities.

Finally, we can write an un-normalized expression for the
expansion parameter posterior by dropping terms independent
of Q and multiplying y(x;) | Q(x;) at each x;

-1
pr(Q 130 ocpr(Q [ | [r,.“f I Q;?]

Rather than dealing with the multidimensional object Q, one
can instead parametrize Q as a low-energy scale f(x) and
a high-energy scale Aj,, known as the breakdown scale of
the EFT. These are related to Q via Q(x) = f(x)/Ap. The
posterior for Aj, assuming f(x) is known, has a simple
relationship to the posterior for Q:

pr(Ap | i, £) o pr(§x | £, Ap)pr(Ap) = pr(Fi | Q)pr(Ap)

—1
ocpr(Ay) [ | [r,»“" I1 Q?}

This is a more general version of the posterior given in
Ref. [3], where the restriction vy = 0 was required. Here,
thanks to conjugacy, vy and rg are free to be chosen by the

(A18)

(A19)

(A20)

044001-19



J. A. MELENDEZ et al.

PHYSICAL REVIEW C 100, 044001 (2019)

modeler. The extension to further parameters of Q requires
only a modification of the prior pr(A;) in Eq. (A20).

2. Gaussian process model

Here we will expand on the template provided by sub-
section 1 of Appendix and derive analogous results for the
GP truncation error model introduced in Sec. II. The results
in this Appendix follow exactly from the analysis of the
Bayesian linear model (see Ref. [33], chaps. 9 and 10) but
are reproduced here for completeness. As a reminder, we have
assumed that the ¢, are GPs with the following form:

cn(¥) 18 % GP, &r(x, x'; 0)], (18)
and placed a normal-inverse- 2 prior on u, &2,
1, & ~Nx7 (no, Vo, vo, 7). (24"

We now generalize the parametrization as promised in
Sec. II C by introducing a length p vector of functions b(x)
that multiplies a length p vector of regression coefficients u to
allow for a non-constant mean function as in, e.g., Ref. [21].
That is, we make the replacement u — bT(x)u in Eq. (18).
Both g and Vp, previously scalars, are promoted to a length p
vector and a p X p matrix, respectively. For the examples of
EFT truncations shown in this work, we use b(x) = 1.

As before, we would like to condition on data to gain a
better understanding of the observable coefficients and ulti-
mately the discrepancy 8y (x). Again, assume that Q and yi¢
are known so that our data are N vectors of coefficients ¢
(each of length n,.) at the chosen input points. The combined
(n. x N)-shaped observations are denoted € (see Table II).
The posterior predictive distribution for a new curve c,(x) is
then

prica(x) | €&) = / prlc,(x) | 01pr(0 | €)db, (A21)
where 0 = {u, ¢, £}. As before, the data influence c,(x) by
updating our beliefs about #. Because of the conjugate prior on
w and &2, they can be updated and integrated out of Eq. (A21)
analytically, but there is no conjugate prior for £. For now,
assume that £ is known; we will return to finding its posterior
later. With a posterior for ¢, one could use its MAP value as a
point estimate in the following equations or marginalize over
it numerically.

To make progress on Eq. (A21) requires deriving
pr(u, ¢ | €, £). Again, since we know that this posterior has
the same functional form as the prior, our task is to determine
n,V,v, 72, As usual, Bayes’ theorem gets the ball rolling:

pr(u, &S, ¢, Q) o pr(T |0, Q)pr(u, &)

ocpr(p. &) [ [pr(e.16).  (A22)

Next, by inserting Egs. (18) and (24),
pr(p, & &, £, Q)

—1
oc g0Vt exp ﬁ[vofoz + (= n0)"Vy (= 10)]

-1
xexp o ) (e = BWTR; ' (ey = Bu). (A23)

where Ry = r(x,x;¢) and B=bT(x) are N x N and N X p
matrices, respectively. If b(x) =1, as is assumed for the
examples here, then B = 1, a length N vector of ones.

So far we can read off the updated value of v = vy 4+ Nn,
but must inspect the exponent further for the others. Define
(€x) as an N x 1 vector that is the average over the n. orders,

@ ="

The sum over the quadratic form can be rearranged as

> (en = Bu)TR; (e, — Bu)

= n.((&) — BWTR; (&) — Bu)
+ ) (e — @NDTR '(er — (@), (A25)

(A24)

so that we can complete the square for w in the exponent of
Eq. (A23). The result is

—1
Z—EZW +(w=mTV =, (A26)
where
n=V(Vy o+ nBTR; (@), (A27)
V=(Vy' +nBR,'B)", (A28)
v = vy + Nng, (A29)

ve? = vy +ndVy o+ D eIR; e, — 0TV . (A30)
n

After some algebra, one can rewrite Eq. (A30) in an intuitive
way [33]:

vr? = V()‘lfg + nCs2

R ~1
+ ((€k) — Bno)T <n—l +BVoBT> ((€x) — Bno),

C

(A31)

which updates the scale 72> by combining prior information
with two other terms: one due to the discrepancy between the
prior mean and sample mean and the other due to the sample
variance s for correlated observations,

st = ni D (e — @)TR; ! (€0 — () (A32)
(4 n

When n. > 1, then 72 ~ s>/N. If one only wanted point

estimates so that the ¢, or 8y, posteriors remain Gaussian, then

w ~ n and & ~ vr?/(v — 2) provide approximate Bayesian

estimators [see Egs. (29) and (30)].

Returning to Eq. (A21), we must integrate out x and &>
(again, assuming ¢ is fixed). Though the integral over w
is doable, there is neat trick to see the answer right away:
Rewrite the GP as a mean p (whose distribution is Gaussian)

plus a zero-mean GP, that is,
() = DT + (), ()~ GPIO, Er(x, 23 0)],

(A33)

(A34)

©=n+e, e~ N(0, V).
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Now substitute Eq. (A34) into Eq. (A33) and use Gaussian
sum rules to arrive at

cn(0) | €, &, €~ GP (b7 (0, [r(x, '50) + bT(0)V ()]},
(A35)
which has marginalized out u for us. The integral over &2,

follows from the multivariate analog of Eq. (All), that is,

integrating Eq. (A35) over &* yields a Student-t process

TPulm(x), k(x, x')] [20]
en () [ &, €~ TPUBT (), T2[r(x, x'3) + bT(x)V ()]}
(A36)

Just like GPs, TPs are collections of random variables, any
finite number of which have a joint ¢ distribution. Specifically,
the density of an N-dimensional multivariate ¢ distribution is

KI~/2 T3
(NP T(v/2)

y [1 N (y-m)TK '(y —m)

pr(y [v.m, K) =

1

] " (A37)

Vv

With this notation, «(x, x) is not the covariance function of
TP,[m(x), «(x,x")], and, similarly, K is not the covariance
matrix in Eq. (A37). Rather, the covariance is given by
v (x,x")/(v — 2) and is only defined for v > 2. This differs
from the notation in, say, Refs. [20,21]. TPs, like GPs, can be
used in regression, etc., but can better handle outliers in the
data. Here, TPs only show up in our convergence model due
to our choice of priors but are convenient objects to work with
nevertheless.

For completeness, we provide the conditional distribution
for Student-t processes, which is very similar to the GP
version in Sec. II B 2. Suppose y; and y, are length n; and
n, vectors, respectively, and

Yi| o (™| | K Ki
Y2 \|my | [Ka1 K| )

- v +d1 ~
Y2l y1 ~ togn, | T2, K» ),
v+ n

where 1, and K, are defined as in Eqs. (12) and (13),
and d; = (y; —m )TKI_Il (y1 — my). One could derive this by
starting with y | o2 ~N@m, %K) and 62 ~ x2(v, 1), using
the Gaussian conditional rules described in Sec. IIB2 and
then marginalizing over o2 at the end.

It is important to note that Eq. (A39) is not how we
compute conditionals for, e.g., Eq. (A36). This is because con-
ditioning and marginalizing over the mean do not commute.
Consider the case where f = [f;  £>]" is normally distributed
just as c¢,. Then

(A38)

Then

(A39)

pr(fy [ £1) = / pr(fy | £1, 1, @)pr(u, & |£1)dnde,  (A40)

from which it is clear that one must first follow the conditional
rules of Egs. (11)—(13) and update the posterior of © and &2

before integrating them out. Thus, following the same logic as
above,

pr(f | £1) = t,[Ra Ry + Bon, v (R + BoVB])], (A41)

where, remembering that B = 1 (a vector of ones) is the basis
matrix for our coefficients,

By =B, — RyR;'By. (A42)

Of course, there could be other i.i.d. data beyond just f; that
could be used to compute pr(u, &2 | f1), which would serve
only to adjust n, V, v, and 7.

The above analysis is sufficient to finish our derivation for
full uncertainty quantification of y,, though the details will
vary depending on the application as described in Sec. IID.
In all cases, the derivation involves simply computing my, and
S from Sec. IID and integrating out u and &2 by following
Eq. (A36) or Eq. (A41). Below we provide the mean and scale
function for 7P, [mn(x), Zm(x, x')] in each case.

3. Inexpensive predictions

Let primes denote means with © — 5, e.g.,

Q(x)kJrl

e —— A43
1_Q(x)n (A43)

m:ﬁk(x) = bgk(x)ﬁ = yref(x)

Then

M (x) = yr(x) 4+ mg (x), (A44)
Sn(x, x5 €) = TZ[Rak(X,x’;E) + b}k(X)Vbak(x’)]- (A45)

4. Expensive predictions

Define b;(x) for i € {k, 8k} as the nonvectorized version of
Eq. (A42), using the appropriate b;(x) and R;. Then

M (x) = 7 (x) + mly (x), (A46)
o (x, X5 €) = TH{Re(x, '3 €) + Ry (x, X5 £)
+ [bi (x) + bse OITV [Br(x') + bse (X1}

(A47)

5. Constraints

One only needs to make the replacements my, — iy,
bsy — bgy, and Rs — Ry, in the above equations.

In the final part of this Appendix, we derive the formu-
las for the posterior pr(€, Q| yx) o< pr(¥« | £, Q)pr(¢, Q). The
quantity pr(yx | ¢, Q) is (almost) the marginal likelihood (or,
evidence) and can be computed exactly. The first step is to
make a change of variables from the data ¥, to coefficients

pr(c; | £)
[T, et (DO (x|

pr(¥x 1£,Q) = (A48)

To find pr(é;|¢), we will make use of the same normal-
izing constant trick as in the uncorrelated case. Again, let
primes denote un-normalized distributions and Zgs; be their
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normalizing constants. By Bayes’ theorem,

—1 7—ne

Z Z
. X,.0°N -2/ 2
) )= "N , Vo, vo,
pr(p, & | &, £) TR (m0- Vo. vo. 75)
< [TV (. &Re) (A49)
and by conjugacy
22 1 -2/ 2
pr(p, ¢ | &, ) = Z—NX m,V,v, 7). (AS0)
X
Given that
2)v0/2 1
Z_}) _ (UOTO/ ) ’ /T/’l _ (A51)
* V127V I'(v9/2) V127 R |
with a similar form for Z, , then
~ rw/2) [IVI/IVol (vot2/2)"
pr(&c | ) = \/ Mo ( 02/ )U . (ASD)
F(vo/2) Y 27 Re|™ (vT2/2)

The joint posterior pr(¢, Q| y;) follows from Egs. (A48) and
(A52) and a choice of prior pr(¢, Q). It follows that the un-
normalized marginal posteriors for Q and ¢ are

o pr(Q)
)X A53
pr(Q| ¥, £) x L, 10" (AS53)
pr(£ |y, Q) pr(®) / VI ) (A54)
0\ [Re|™

The posterior for the breakdown scale Aj,, where Q(x; Ap) =
f(x)/Ap, follows from the same logic as in subsection 1 of
Appendix and is given by

pr(As)
T [, 10"l

MAP values can then be found numerically and used as point
estimates in the analytic equations derived in this Appendix.

pr(Ap | ¥, £, f) (AS55)
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