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Integrating Species-Specific Information in Models
Improves Regional Projections
Under Climate Change
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, Marcy E. Litvak" (),
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Abstract Models commonly used to project forest carbon response to climate change reduce biodiversity
to a small number of plant functional types or plant functional traits for the sake of computational
efficiency at large spatial scales. We simulated the climate sensitivity of the dominant woody vegetation
types in New Mexico using both a generalized functional type and a species-specific model parameterization.
Both parameterizations achieve reasonable current carbon uptake rates and aboveground biomass
amount at the ecosystem scale. When vegetation types are subjected to increasing temperature and
decreasing precipitation, the generalized parameterization differs substantially from the species-specific
parameterization by homogenizing the diversity of adaptations for dealing with higher temperature and
drought, leading to divergent responses under changing climate. We recommend integrating species-specific
information, when available, to improve projections of climate change impacts on forested ecosystems to
develop robust ecosystem management strategies at regional scales.

Plain Language Summary Vegetation responses to climate change are commonly simulated
using models that generalize the characteristics of species and ecosystems to facilitate global-scale
modeling efforts. We compared the climate sensitivity of the dominant woody vegetation types in New
Mexico using a simplified model parameterization that treated all species the same, regardless of ecosystem
type, versus a species-specific model parameterization. Our results show that a simplified model
parameterization can achieve reasonable current carbon uptake rates at the ecosystem scale. However, when
subjected to increasing temperature and decreasing precipitation, the generalized parameterization differs
substantially from the species-specific parameterization by homogenizing the diversity of adaptations for
dealing with higher temperature and drought. We recommend integrating species-specific information,
when available, to facilitate the development of ecosystem management strategies because management
decisions focus on the biology of the species that comprise ecosystems.

1. Introduction

Accelerated tree-mortality driven by hotter droughts threatens forests and their contribution to regulating the
climate system through carbon uptake and storage (Adams et al., 2009; Allen et al., 2015; Frank et al., 2015;
Heimann & Reichstein, 2008; Williams et al., 2013). Many projections of forest carbon response to climate
change are based on models that simplify tree species diversity by defining vegetation characteristics as func-
tional traits (Purves & Pacala, 2008; Yang et al., 2015). However, it is broadly accepted that individual species
respond uniquely to abiotic and biotic factors (Chen et al., 2011; Liu et al., 2018; Pearson & Dawson, 2003;
Plaut et al., 2012; Walther, 2010). Quantifying the influence of species-specific responses to climate change
is central to developing robust forest projections of carbon dynamics and management strategies.

Empirical studies of terrestrial ecosystem responses to climate change have documented widespread evi-
dence of species-specific range expansion, contraction, and extinction (Neilson et al., 2005; Pecl et al.,
2017). However, the Dynamic Global Vegetation Models (DGVM) commonly used to simulate terrestrial
ecosystems at a global scale reduce biodiversity to a small number of plant functional types (PFT) or func-
tional traits (FT) for the sake of computational efficiency (Fischer et al., 2015; Pavlick et al., 2013; Yang
et al., 2015).

Two major disadvantages emerge from simplifying forests to functional types or assemblages of traits. First,
the taxonomic unit of both legal environmental frameworks (e.g. US Endangered Species Act) and
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12 = 0.605 ; RMSE =30.05 g C m” ment strategies for a range of objectives, including habitat and ecosystem
service provision, are in part dependent upon understanding how the spe-
cies that comprise ecosystems will respond to global change factors
(Gamfeldt et al., 2013; Lindenmayer et al., 2006). Second, even if a gener-
alized representation of an ecosystem produces reasonable aggregate car-

Ponderosa pine

90
60
30

NetPsn (gC m?)

bon dynamics under current climate, the results could be due to
counteracting errors leading to a reasonable overall outcome. For exam-
ple, in a mixed-species forest, overall carbon uptake may not change
because growth in one species is compensating for declines in another
(Hurteau et al., 2014). The direction and magnitude of different error
sources may change with projected climate, yielding high uncertainty
under projected changes in climate (Buotte et al., 2018; McDowell et al.,
2015; McMahon et al., 2011; Purves & Pacala, 2008).

>=0.786 ; RMSE = 18.46 g C m™
?=0.788 ; RMSE =17.73 g C m

Pifion—Juniper

30

NetPsn (gC m?)

7\

Arid and semi-arid ecosystems are especially vulnerable to climate warm-
ing and resultant drying due to increased atmospheric water demand
r’=0.527; RMSE = 15.65 ¢ C m” (Allen et al., 2010; Breshears & Barnes, 1999). In the southwestern
r'=0472; RMSE=2091 g Cm” United States (US), hotter droughts and climate-driven increases in dis-
turbance intensity are causing increased tree mortality and having dispro-
portionate impacts on some tree species, with increased vulnerability to
drought-mortality projected under future climate (Breshears et al., 2005;
Buotte et al., 2018; Williams et al., 2010). For example, pifion-juniper

Figure 1. Averages of simulated monthly net photosynthesis (net Psn)
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8 9 10 11 12 woodlands, the most common woody vegetation type in the southwestern

Months US, show differential drought-related mortality between species (Gaylord

et al., 2013; Mueller et al., 2005). Yet, in a DGVM framework, all south-
western woody vegetation is represented by one biome type that aggre-

generalized functional type parametrization gates the traits of evergreen needleleaf species (Lawrence & Chase,

2007; McDowell et al., 2015).

from the species-specific parameterization (red) and the generalized Given the empirical evidence of species-specific differences in response to
functional type parameterization (blue) for three New Mexico sites with changing climate, we sought to quantify the differences between a model

eddy-covariance observations (black). Shading represents the standard error
and is computed from January 2007 to December 2012 for the mixed-conifer
site, from January 2007 to December 2016 for the ponderosa pine site,

and from January 2008 to December 2016 for the pifion-juniper site for the

parameterization that includes species-specific values and a generalized
functional type parameterization on projected carbon dynamics and
future vegetation trajectories. To achieve this objective, we simulated

flux towers and from the 30 replicate simulations at each site for the two the climate sensitivity of the carbon dynamics for the dominant woody
different model parameterizations. For the mixed-conifer site, data from vegetation types in New Mexico, US to incremental changes in tempera-

January 2013 to December 2017 were excluded because of carbon flux
uncertainties due to stand-replacing wildfire.

ture and precipitation using both a generalized functional type and a
species-specific model parameterization (Goeking et al., 2014).

2. Data and Methods

We conducted simulations for three sites from the New Mexico Elevation Gradient (NMEG) of eddy-
covariance flux towers located in mixed-conifer forest, ponderosa pine forest, and pifion-juniper woodland
(described in Anderson-Teixeira et al., 2011; Table S1). We used the LANDIS-II (v.6.0) forest landscape
model with the PnET (Photosynthesis and EvapoTranspiration)-Succession mechanistic growth and succes-
sion extension (v.2.1.1) to simulate carbon fluxes and biomass pools of species-specific age-cohorts for the
three ecosystem types (de Bruijn et al., 2014; Gustafson et al., 2015; Scheller et al., 2007). The PnET-
Succession extension is based on the Biomass Succession extension of Scheller and Mladenoff (2004) and
integrates the ecophysiology model PnET-II (Aber et al., 1995). The model is driven by monthly climate,
photosynthetically active radiation, and atmospheric CO, data. We parameterized the model using tree
inventory and soil data from the NMEG sites and species-specific ecophysiological characteristics from the
literature (Table S2). We used US Forest Service Forest Inventory and Analysis data to develop age-diameter
relationships to parameterize cohort ages (available at https://www.fia.fs.fed.us/). We used soil data from
SSURGO datasets (Soil Survey Geographic Database, available at https://websoilsurvey.nrcs.usda.gov/).
Tree inventory data from four 10 m radius circle plots at each site were also used to quantify the current
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aboveground biomass (AGB) by using genus-specific allometric equations
(Chojnacky et al., 2014; Jenkins et al., 2003). We used monthly tempera-
ture, precipitation, and photosynthetically active radiation data from
January 2007 to December 2017 at the mixed-conifer and ponderosa pine
sites and from January 2008 to December 2017 at pifion-juniper site. We
used monthly CO, data from the Mauna Loa Observatory (available at
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the NOAA website: ftp://aftp.cmdl.noaa.gov/products/trends/co2/co2_
mm_mlo.txt).

We calibrated species-specific ecophysiological parameters at each site by
comparing simulated net photosynthesis to eddy-covariance tower data
over the measurement period (data available at https://fluxnet.fluxdata.
org, Table S2). Following model validation against the tower data, we
averaged the species-specific parameter values for the evergreen needle-
leaf species across the three NMEG sites to create a generalized functional

Pifion—Juniper
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type parameterization; this parameterization does not account for the pre-
sence of deciduous broadleaf species at the sites, which only account for a
small fraction of the biomass.

We designed 36 different climate scenarios, replicating each 30 times, to
test simulated forest response in terms of carbon dynamics to climate
using both the species-specific and generalized functional type parameter-
izations. We sampled from monthly distributions of temperature and pre-
cipitation from each tower site to generate climate data for each of the 30
replicate simulations for each vegetation type, thereby retaining site-
specific seasonal temperature and precipitation variability. We increased

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 mean monthly temperature from current to +5 °C using 1 °C increments

Figure 2. Simulated monthly cumulative net photosynthesis (NetPsn) from

and reduced mean monthly precipitation from current to —25% using 5%

Months . . . . .
increments. This approach was applied to each of the replicate climate
flux tower : fohili : :
species—specific parameterization data sets to retain monthly variability. All simulations were performed
generalized functional type parameterization by using site-specific current climate conditions for the model spin-up

period, the length of which was governed by the age of the oldest
tree cohort.

the species-specific and the generalized functional type parameterizations at
the three sites and compared with eddy-covariance observations. The To evaluate the performance of the species-specific and generalized func-

shaded envelopes correspond to the standard deviation around the mean
from 30 replicate simulations. For the mixed-conifer site, data from January
2013 to December 2017 were excluded because of carbon flux uncertainties

due to stand-replacing wildfire.

tional type parameterizations, we used the r-squared values to compare
the monthly simulated net photosynthesis with the eddy-covariance flux
tower records (net ecosystem production) and compared the annual simu-
lated aboveground biomass with empirical aboveground biomass data col-
lected from four circular plots (10 m radius) at the three sites using a t-test. We then computed differences of
simulated annual net photosynthesis from the two parameterizations under incremental increases in tem-
perature and decreases in precipitation. To allow vegetation to stabilize under warmer and drier climates,
we ran simulations for 200-years and took the mean of the last decade of each of the 30 replicate simulations
to compare net photosynthesis.

3. Calibration and Validation of Species-Specific Parameterization

When compared to the eddy-covariance observations, both parameterizations captured the within year
variability of observed monthly net photosynthesis at the mixed-conifer, ponderosa pine and pifion-juniper
sites due to the bimodal precipitation distribution (Figures 1, S1 & S2). The model overestimated net photo-
synthesis during spring and underestimated it during fall at the mixed-conifer site. This may be driven by the
fact that the model does not distribute snowmelt water over time as occurs at this 3000 m elevation site
(Gustafson & Miranda, 2018). Consequently, all water stored in the snowpack is plant available when spring
temperatures rise above freezing. Additionally, the precipitation measurements made at the tower sites do
not account for belowground water transport or entirely capture the portion of precipitation that falls as
snow. However, simulated cumulative net photosynthesis tracked tower-measured cumulative net
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Ponderosa pine Pifion-Juniper photosynthesis well over the measurement period (Figure 2), indicat-
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ing that there was little to no impact of these seasonal disparities on
monthly fluxes over the course of the year.

4. Model Parameterization Comparison Under
Current Climate

The simulated aboveground biomass (AGB) was within the range of
variability for the empirical estimates for both parameterizations at
the mixed-conifer site (Figure 3). The generalized parameterization
had higher uptake during the growing season because of higher
drought-resistance and more biomass allocated to root growth
(Figure 1; Table S2), which resulted in reduced AGB relative to the
species-specific parametrization results (Figure 3).

The generalized functional type parameterization performed simi-
larly to the species-specific parameterization at the ponderosa pine
site, which resulted in similar aboveground biomass estimates
(Figures 1 & 3). However, the homogenization of parameter values
resulted in ponderosa pine having a higher wilting point for photo-
synthesis, higher foliar nitrogen content, higher resistance to water
stress and a higher amount of woody biomass that has active xylem
capable of supporting foliage favorable for higher uptake (Table S2).
These parameter values that increase carbon uptake were offset by

B species-specific parameterization
[ generalized functional type parameterization

inventory data

lower specific leaf weight, higher canopy light attenuation, lower half
saturation light level for photosynthesis and a lower fraction of the
amount of active woody biomass that is allocated to foliage per year.

The largest difference in net photosynthesis and AGB between the
two parameterizations and with empirical estimates occurred at the

Figure 3. Mean of the aboveground biomass of woody vegetation types simulated  pifion-juniper site. A pine beetle outbreak occurred at the site from
with the species-specific and the generalized functional type parameterizations 2013 to 2016, which killed 60% of the pifion pine. We did not simulate

under current climate conditions, compared to empirical estimates from the
inventory data at the flux tower sites. The dotted bar corresponds to the dead
wood inventoried at the pifion-juniper site after a pine beetle outbreak that

this insect outbreak, which was largely responsible for the
18 + 6 Mg ha™' of dead wood inventoried at the site in 2017.

occurred from 2013 to 2016. Error bars correspond to the standard deviation Accounting for the beetle-induced transition from live to dead by
computed from the 30 simulation replicates for both parameterizations, and from  including the AGB in dead trees (Figure 3; total live and dead AGB:

four circle plots at each flux tower site for the inventory data. An asterisk denotes
when simulated aboveground biomass is significantly different (p < 0.05) from

the empirical estimate.

65+ 17 Mg.ha_l) indicates that the species-specific parameterization
(70 + 2 Mg ha™") better approximated AGB accumulation at the
pifion-juniper site (live aboveground biomass: 47 + 11 Mg ha™") than
the generalized functional type parameterization (112 + 2 Mg ha™")
(Table S3). The generalized parameterization values increased pifion pine (Pinus edulis) net photosynthesis
compared to the species-specific parameterization values (Figure S4) and resulted in a higher fraction of bio-
mass aboveground and a higher amount of woody biomass that has active xylem capable of supporting foli-
age (Table S2).

5. Model Parameterization Comparison Under Changing Climate

The differences in net uptake between the two parameterizations under different climate conditions at the
end of the 200-year simulation period demonstrate how a simplified approach encompassing the different
vegetation types in only one biome can yield large differences compared to a species-specific simulation
approach (Figure 4). Allowing the simulations to run for 200 years compounded the differences between
the two parametrizations and caused large discrepancies in carbon uptake at the mixed-conifer and the pon-
derosa pine sites under current climate conditions (Figures 4 & S4, upper left corner). The use of the general-
ized functional type parameterization showed higher productivity in mixed-conifer and lower productivity
in ponderosa pine relative to the species-specific parameterization (Figure S4). For mixed-conifer, the gen-
eralized parameterization increased the half saturation light level for photosynthesis and the intercept of
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Figure 4. Difference between the annual net photosynthesis simulated with the
generalized parameterization and with the species-specific parameterization at
the three sites under different climate scenarios (see figure S2 for original simu-
lated values from both parameterizations). Values correspond to the mean of the
last decade of the 30 replicate 200-year simulations.

the relationship between foliar nitrogen content and maximum net
photosynthetic rate of the coniferous species, leading to increased
productivity. The lower productivity under the generalized parame-
trization in ponderosa pine is due to lower water use efficiency, lower
half saturation light level for photosynthesis and lower maximum
specific leaf weight for ponderosa pine (Figure 4 & Table S2). While
the parameter differences were less apparent over the short time per-
iod of the flux tower record (Figure 1), they compounded when simu-
lated over a longer time period. The general trends in mixed-conifer
and ponderosa pine net photosynthesis were not linear for each
incremental increase in temperature and decrease in precipitation
(Figure 3). The mixed-conifer productivity increase and the
ponderosa pine productivity decrease with the generalized
parameterization was less pronounced under larger decreases in
precipitation (> —15%) because the low level of precipitation causes
substantial drought-stress regardless of the drought sensitivity
parameter values (Figure 4 & Table S2). The differences between
the two parameterizations for pifion-juniper were less pronounced
under lower amounts of warming and smaller decreases in precipita-
tion (Figure 4). Pifion pine and juniper have distinct physiologies
with respect to water use efficiency and water stress and the
generalized parameterization is more similar to pifion (Table S2).
As warming increased and precipitation decreased, the more pifion-
like generalized parameterization (Figure 4) had larger declines in
net photosynthesis than the species-specific parameterization
because of the decreased water use efficiency (Figure S3 & Table S2).
Under the species-specific parameterization, juniper is capable of
continuing to take-up carbon under warmer and drier conditions
(Figure S4). The difference between the two parameterizations for
pifion-juniper is considerably lower than for mixed-conifer and pon-
derosa pine because pifion-juniper is a much less productive system.

6. Implications of Model Parameterization Choice
at Biome Scale

On a per-unit area basis, the differences between the two model para-
meterizations are relatively small. However, in New Mexico, mixed-
conifer forest (0.9 million ha), ponderosa pine forest (2 million ha),
and pifion-juniper woodlands (5.3 million ha) cover 8.2 million hec-
tares (USGS National Gap Analysis Program, 2005). If we assume
that the productivity of each vegetation type is the same across the
state, differences between the parameterizations compound substan-
tially when scaled to the land area occupied by each vegetation type.
For example, under current climate, the generalized parameteriza-
tion (24.7 Tg C yr™ ) carbon uptake is 0.24 Tg C yr~* lower than
the species-specific parameterization uptake (25.0 Tg C yr~") when
scaled to the state-level (Table S4). Increasing temperature and
decreasing precipitation exacerbated the differences between the
two parameterizations when scaled to the state-level, with the gener-
alized parameterization being lower by 0.32 Tg C yr™* (with a 10%
decrease in precipitation and no increase in temperature) to 0.96 Tg

yr~! (with a 5 °C increase in temperature and no decrease in precipitation).

These results demonstrate that while a simplified parameterization can achieve reasonable current carbon
uptake rates at a biome-scale (Figures 1, 2 and 3), it is the result of counteracting errors within different
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vegetation types. Consequently, these errors minimized or exaggerated the drought sensitivity of each vege-
tation type subjected to increasing temperature and decreasing precipitation (Figure 4). Most recent climate
scenarios for the 21% century project that precipitation will decrease by 0-10% relative to the 1979-2005 aver-
age and temperature will increase by 1-2.5 °C by mid-century and 2.5-4.8 °C by late-century, relative to
1976-2005 within the southwestern US (USGCRP, 2017). At the site-scale, our simulations with mean tem-
perature and precipitation values encompassing the latest projections show substantial differences between
the generalized functional type and species-specific parameterizations (Figure 4). However, our results are
solely based on model sensitivity to parameterization and climate.

Natural disturbances can act as a catalyst for vegetation change and some are projected to increase in fre-
quency and severity with ongoing climate change (Bernhardt-Romermann et al., 2011; McDowell et al.,
2015; Shellito & Sloan, 2006). Extreme drought, wildfire, and insect outbreaks are common in the southwes-
tern US and can have significant implications for carbon dynamics (Allen et al., 2015; Bond et al., 2005;
Hurteau, 2017; Williams et al., 2013; Turner, 2010). Extreme drought and insect outbreaks disproportio-
nately affect some species (e.g. pifion versus juniper); a difference not captured by a simplified parameteriza-
tion (Gaylord et al., 2013). Severe wildfire can act as a catalyst for biome change when dominant species are
killed (Liang et al., 2017a). These disturbances are likely to shift the distribution of species and alter the com-
position of vegetation communities (Coop et al., 2016; Liang et al., 2017b), which could further compound
the carbon uptake discrepancies that occur with the generalized parameterization under climate change
(Buotte et al., 2018; Kolus et al., 2019).

Managing natural systems to meet societal objectives, including continued climate regulation, and quantify-
ing the adaptive capacity of a particular ecosystem to ongoing climate change require understanding the
responses of individual species that comprise the ecosystem. Plant competition, mortality, recruitment,
and responses to disturbances are not well captured in generalized simulation approaches and the aggregate
response of an ecosystem can be the result of compensatory effects between species (Hurteau et al., 2014;
Moorcroft et al., 2006). Changes in the distribution of species and vegetation types could alter future fire
and insect outbreak activity, depending on the species that establish following disturbance (Hicke et al.,
2016; Thonicke et al., 2010). Managing to build adaptive capacity requires understanding the potential out-
comes for different strategies and their ability to ameliorate the effects of host-specific insects and the effects
of vegetation changes on fire hazard, among other disturbances (Hurteau, 2017; Scheller et al., 2018). Thus, a
generalized functional type parameterization could lead to ill-informed decisions about adaptation and miti-
gation strategies for reducing the loss of woody biomass and carbon emissions (Kautz et al., 2018; Littell
et al., 2011).

7. Conclusion and Perspectives

Our results demonstrate the importance of accounting for species-specific sensitivity to climate when simu-
lating ecosystem carbon dynamics. Yet, adequately representing the diversity of species within ecosystem
models will require a large number of species-specific parameter values and ecosystem-specific empirical
data (e.g. net photosynthesis and aboveground biomass values); data that are limited in more diverse forest
ecosystems (e.g. tropical ecosystems). Recent efforts to develop databases of ecophysiological parameters are
advancing our ability to capture species-specific differences in ecosystem models (Kattge et al., 2012). Model
validation data sets also face similar limitations, where the distribution of eddy-covariance measurements
does not encompass the diversity of ecosystems (fluxnet.fluxdata.org). Moreover, eddy-covariance measure-
ment density is correlated with measurement uncertainty and the regions of the globe most subject to rapid
change are underrepresented in the empirical data (Schimel et al., 2015). Recent advances in remote sensing
driven plant trait retrieval (Schneider et al., 2017) are helping to close these spatial knowledge gaps, and their
inclusion in earth system models is being used to constrain uncertainty in global efforts (Butler et al., 2017).

Given the limitations inherent in the use of DGVMs based on plant functional types and functional traits to
account for species-specific responses to climate change and the need for this information to develop robust
ecosystem management strategies, integrating species-specific information in models and validation against
ecosystem-specific empirical data should be a priority for improving projections of climate change impacts
on forest and woodland ecosystems at regional scales.
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Simulation output data and code used in this study are available at https://digitalrepository.unm.edu/bio_
data/2/.
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