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1 REGULARIZATION FOR

ENHANCED DISCONTINUOUS GALERKIN METHODS∗
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Abstract. This paper investigates the use of `1 regularization for solving hyperbolic conservation
laws based on high order discontinuous Galerkin (DG) approximations. We first use the polynomial
annihilation method to construct a high order edge sensor which enables us to flag “troubled” ele-
ments. The DG approximation is enhanced in these troubled regions by activating `1 regularization
to promote sparsity in the corresponding jump function of the numerical solution. The resulting `1

optimization problem is efficiently implemented using the alternating direction method of multipli-
ers. By enacting `1 regularization only in troubled cells, our method remains accurate and efficient,
as no additional regularization or expensive iterative procedures are needed in smooth regions. We
present results for the inviscid Burgers’ equation as well as a nonlinear system of conservation laws
using a nodal collocation-type DG method as a solver.
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1. Introduction. This work is about a novel shock capturing procedure in spec-
tral element (SE) type of methods for solving time-dependent hyperbolic conservation
laws

∂tu+ ∂xf(u) = 0,(1.1)

with smooth and discontinuous solutions. Such methods include the spectral difference
(SD) [49, 71], discontinuous Galerkin (DG) [34], and flux reconstruction [38] methods.
While all these methods provide fairly high orders of accuracy for smooth problems,
they often lack desired stability and robustness properties, especially in the presence
of (shock) discontinuities.

Many shock capturing techniques have therefore been developed over the last
few decades. Such efforts date back more than 60 years to the pioneering work
of von Neumann and Richtmyer [70], in which they add artificial viscosity terms
to (1.1) in order to construct stable finite difference schemes for the equations of
hydrodynamics. Since then, artificial viscosity has been added to a variety of algo-
rithms [24, 41, 42, 50, 53, 58]. However, augmenting (1.1) with additional (higher)
viscosity terms requires care about their design and size. Otherwise, new time stepping
constraints for explicit methods can considerably decrease computational efficiency;
see, e.g., [42, equation (2.1)]. Other interesting alternatives are based on (modal)

∗Submitted to the journal’s Methods and Algorithms for Scientific Computing section June 18,
2018; accepted for publication (in revised form) March 6, 2019; published electronically April 30,
2019.

http://www.siam.org/journals/sisc/41-2/M119528.html
Funding: The work of the first author was supported by the German Research Foundation

(DFG, Deutsche Forschungsgemeinschaft) under grant SO 363/15-1. The work of the second author
was partially supported by AFOSR9550-18-1-0316 and NSF-DMS 1502640.

†Institut Computational Mathematics, TU Braunschweig, Universitaetsplatz 2, 38106 Braun-
schweig, Germany (j.glaubitz@tu-bs.de).

‡Department of Mathematics, Dartmouth College, Hanover, NH 03755 (annegelb@math.
dartmouth.edu).

A1304

D
o
w

n
lo

ad
ed

 0
6
/1

2
/2

0
 t

o
 7

3
.2

3
8
.9

9
.5

8
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

HIGH ORDER EDGE SENSORS FOR DGM A1305

filters [25, 33, 58] or applying viscosity to the different spectral scales [66, 67]. Finally,
we mention those methods based on order reduction [9], mesh adaptation [12], and
weighted essentially nonoscillatory (WENO) concepts [63, 64]. Yet, a number of issues
regarding the fundamental convergence properties for these methods still remain unre-
solved. Moreover, even when the extension to multiple dimensions is straightforward,
these schemes may be too computationally expensive for practical usage.

In this work we propose `1 regularization as a novel tool to capture shocks in
SE methods by promoting sparsity in the jump function of the approximate solution.
`1 regularization methods are frequently encountered in signal processing and imag-
ing applications. They are still of limited use in solving partial differential equations
numerically, however, and only a few studies (see, e.g., [30, 36, 46, 47, 61, 62]) have
considered sparsity or `1 regularization of the numerical solution. A brief discussion
of these investigations can be found in [61]. We note that while problems with dis-
continuous initial conditions were studied in [30, 46, 47], problems that form shocks
were not. The technique developed in [62] was designed to promote sparsity in the
frequency domain, making it less amenable to problems emitting shocks, where the
frequency domain is not sparse. Further, with the exception of [61], each of these in-
vestigations applied `1 regularization directly to numerical solution or to its residual,
rather than incorporating it directly in the time stepping evolution.

In this investigation we follow the approach in [61], which incorporates `1 regular-
ization directly into the time dependent solver. Specifically, we promote the sparsity
of the jump function that corresponds to the discontinuous solution. The jump func-
tion approximation is performed using the (high order) polynomial annihilation (PA)
operator [2, 4, 72], which eliminates the unwanted “staircasing” effect, a common
degradation of detail of the piecewise smooth solution arising from the classical total
variation (TV) regularization. More specifically, the high order PA operator allows
the resulting solution to be comprised of piecewise polynomials instead of piecewise
constants. We solve the resulting `1 optimization problem by the alternating direction
method of multipliers (ADMM) [48, 59, 60]. A similar application of `1 regulariza-
tion was used in [61] to numerically solve hyperbolic conservation laws, though only
for the Lax–Wendroff scheme and Chebyshev and Fourier spectral methods. It was
concluded in [61] that although the Lax–Wendroff scheme yielded sufficient accuracy
for relatively simple problems, its lower order convergence properties made it difficult
to resolve more complicated ones. The new technique fared better using Chebyshev
polynomials, although their global construction made it difficult to resolve the local
structures without oscillations or excessive smoothing.

One possible solution is to use SE methods as the underlying mechanism for solv-
ing the hyperbolic conservation law. SE methods have the advantage of being more
localized, for instance, and allow element-to-element variations in the optimization
problem. In particular for the method we develop here, `1 regularization is only acti-
vated in troubled elements, i.e., in elements where discontinuities are detected. This
further enhances efficiency of the method. In the process, a novel discontinuity sensor
based on PA operators of increasing orders is proposed, which is able to flag troubled
elements. The discontinuity sensor steers the optimization problem and thus locally
calibrates the method with respect to the smoothness of the solution. Numerical
tests are performed for a nodal collocation-type DG method and the inviscid Burgers’
equation as well as for a nonlinear system. It should be stressed that the proposed
procedure also carries over to other classes of methods, with the obvious extension
to SE type methods. The extension to other types of methods, such as finite volume
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A1306 JAN GLAUBITZ AND ANNE GELB

methods, is also possible under slight modifications of the procedure. We should also
stress that in our new development of the `1 regularization method for solving PDEs
that admit shocks in their solutions that we do not require different methods to be
used in smooth and unsmooth regions. Such methods have been developed in, for
instance, [13] and have been shown to be effective. Here we demonstrate that it is
possible to avoid such additional complexities.

The rest of this paper is organized as follows. Section 2 briefly reviews the nodal
collocation-type DG method, `1 regularization, and PA operators which are needed
for the development of our method. In section 3 we describe the application of `1

regularization by higher order edge detectors to SE type methods. Further, a novel
discontinuity sensor based on PA operators of increasing orders is proposed. Nu-
merical tests for the inviscid Burgers’ equation, the linear advection equation, and a
nonlinear system of conservation laws are presented in section 4. The tests demon-
strate that we are able to better resolve numerical solutions when `1 regularization is
utilized. We close this work with concluding thoughts in section 5.

2. Preliminaries. In this section we briefly review all necessary concepts in
order to introduce `1 regularization into the framework of discontinuous Galerkin
methods in the subsequent section.

2.1. A nodal discontinuous Galerkin method. Let us consider a hyperbolic
conservation law

∂tu+ ∂xf (u) = 0, x ∈ Ω,(2.1)

with suitable initial and boundary conditions. The domain Ω ⊂ R is decomposed into
I disjoint, face-conforming elements Ωi, Ω =

⋃I
i=1 Ωi. All elements are mapped to a

reference element, typically Ωref = [−1, 1], where all computations are performed.
In this work we consider a nodal collocation-type DG method [34] on the ref-

erence element. The solution u as well as the flux function f are approximated by
interpolation polynomials of the same degree, giving the advantage of highly efficient
operators. We further collocate the flux approximation based on interpolation with
the numerical quadrature used for the evaluation of the inner products [43].

The first step is to introduce a nodal polynomial approximation

u (t, ξ) ≈ up (t, ξ) =

p
∑

k=0

uk (t) `k (ξ) ,(2.2)

where p is the polynomial degree and {uk}
p
k=0 are the p + 1 time dependent nodal

degrees of freedom at the element grid nodes −1 ≤ ξ0 < · · · < ξp ≤ 1. Common
choices are either the Gauss–Legendre or the Gauss–Lobatto node [10]. We use Gauss–
Lobatto points in the latter numerical tests, as they include the boundary points
ξ0 = −1, ξp = 1 and thus render the method more robust [17, 18, 44]. For the procedure
of `1 regularization proposed in this work the specific choice of grid nodes is not crucial,
however.

Further, the Lagrange basis functions of degree p are given by

`k (ξ) =

p
∏

i=0
i 6=k

ξ − ξi
ξk − ξi

(2.3)
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and satisfy the cardinal property `k (ξi) = δki. The flux function is approximated in
the same way, i.e.,

f (u) ≈ fp (t, ξ) =

p
∑

k=0

fk (t) `k (ξ) ,(2.4)

where, collocating the nodes for both approximations, the nodal degrees of freedom
{fk}

p
k=0 are given by fk (t) = f

(

uk (t)
)

.
We now obtain the formulation of the nodal DG method by inserting the poly-

nomial approximations (2.2) and (2.4) into the conservation law (2.1), multiplying
by a test function ` ∈ {`k}

p
k=0, integrating over the reference element, and applying

integration by parts, resulting in

∫ 1

−1

u̇p`i dξ + (fnum`i)
∣

∣

∣

1

−1
−

∫ 1

−1

fp`
′
i dξ, i = 0, . . . , p.(2.5)

Here, fnum is a suitably chosen numerical flux, providing a mechanism to couple
the solutions across elements [69]. Further, u̇p denotes the time derivative of the
approximation while `′i denotes the spatial derivative of the basis element with respect
to ξ.

Next, the integrals are approximated by an (interpolatory) quadrature rule using
the same nodes,

∫ 1

−1

g (ξ) dξ ≈

∫ 1

−1

p
∑

k=0

g (ξk) `k (ξ) dξ =

p
∑

k=0

ωkg (ξk) .(2.6)

From this quadrature rule, we introduce a discrete inner product

〈u, v〉M =

p
∑

k=0

ωku (ξk) v (ξk) = uTMv(2.7)

with mass matrix

M = diag
(

[ω0, . . . , ωp]
)

(2.8)

and vectors of nodal degrees of freedom

u = [u0, . . . , up]
T , v = [v0, . . . , vp]

T .(2.9)

Using the discrete inner product, the spacial approximation (2.5) becomes

〈

u̇p, `i
〉

M
=
〈

fp, `
′
i

〉

M
− (fnum`i)

∣

∣

∣

1

−1
, i = 0, . . . , p.(2.10)

Finally going over to a matrix vector representation and utilizing the cardinal property
of the Lagrange basis functions, the DG approximation can be compactly rewritten
in its weak form as

Mu̇ = DTMf −RTBfnum,(2.11)

where

D =
(

`′i (ξk)
)p

k,i=0
, R =

(

0 . . . 0 1
1 0 . . . 0

)

, B =

(

−1 0
0 1

)

(2.12)
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A1308 JAN GLAUBITZ AND ANNE GELB

are the differentiation matrix, restriction matrix, and boundary matrix, respectively.
Let fnum denote the vector containing the values of the numerical flux at the element
boundaries. Note that applying integration by parts a second time to (2.5) would
result in the strong form

Mu̇ = −MDf −RTB
(

fnum −Rf
)

(2.13)

of the DG approximations. Both forms are equivalent when using summation by parts
operators, MD +DTM = RTBR. The strong form (2.13) can further be recovered
as a special case of flux reconstruction schemes [1, 11, 73].

2.2. `
1 regularization. Let u (ξ) = u (t, ξ) be the unknown solution on an

element Ωi transformed into the reference element Ωref and up ∈ Pp (Ωref) a spatial
polynomial approximation at fixed time t. Assume that some measurable features of
u have sparse representation. Consequently, the approximation up is desired to have
this sparse representation as well.

Let H be a regularization functional which measures sparsity. The objective is to
then solve the constrained optimization problem

argmin
v∈Pp(Ωref )

H (v) s.t.
∥

∥v − up

∥

∥ = 0.(2.14)

The equality constraint, referred to as the data fidelity term, measures how accurately
the reconstructed approximation fits the given data with respect to some seminorm
‖·‖. Typically, the continuous L2-norm ‖f‖

2
2 =

∫

|f |2 or some discrete counterpart
is used. The regularization term H (v) enforces the known sparsity present in the
underlying solution u by penalizing missing sparsity in the approximation. The reg-
ularization functional H further restricts the approximation space to a desired class
of functions, here Pp (Ωref). Note that any p-norm with p ≤ 1 will enforce spar-
sity in the approximation. In this work, we choose H to be the `1-norm of certain
transformations of v.

It should be stressed that if‖·‖ is not just a seminorm but a strictly convex norm,
for instance, induced by an inner product, the equality constraint immediately and
uniquely determines the approximation. Thus, instead of (2.14), typically the related
denoising problem

argmin
v∈Pp(Ωref )

H (v) s.t.
∥

∥v − up

∥

∥ < σ(2.15)

with σ > 0 is solved, which relaxes the equality constraint on the data fidelity term.
Equivalently, the denoising problem (2.15) can also be formulated as the unconstrained
(or penalized) problem

argmin
v∈Pp(Ωref )

(

∥

∥v − up

∥

∥

2

2
+ λH (v)

)

(2.16)

by introducing a nonnegative regularization parameter λ ≥ 0. λ represents the trade-
off between fidelity to the original approximation and sparsity.

The unconstrained problem (2.16) is often solved with H (v) = TV (v), where
TV (v) is the TV of v. Following [61], however, in this work we solve (2.16) with

H (v) =‖Lmv‖1 ,(2.17)

where Lm is a PA operator introduced in the next subsection. Using higher order PA
operators will help to eliminate the staircase effect that occurs when using the TV
operator (PA for m = 1) for H; see [65].
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2.3. Polynomial annihilation. PA operators were originally proposed in [4].
One main advantage in using PA operators of higher orders (m > 1) for the regular-
ization functional H is that they allow distinction between jump discontinuities and
steep gradients, which is critical in the numerical treatment of nonlinear conservation
laws. PA regularization is also preferable to TV regularization when the resolution is
poor, even when the underlying solution is piecewise constant.

Let u
(

ξ−
)

and u
(

ξ+
)

respectively denote the left- and right-hand-side limits of
u : Ωref = [a, b] → R at ξ. We define the jump function of u as

[u] (ξ) = u
(

ξ+
)

− u
(

ξ−
)

(2.18)

and note that [u] (ξ) = 0 at every ξ ∈ Ωref where u has no jump. We thus say that
the jump function [u] has a sparse representation. The PA operator of order m,

Lm[u] (ξ) =
1

qm (ξ)

∑

xj∈Sξ

cj (ξ)u
(

xj

)

,(2.19)

is designed in order to approximate the jump function [u]. Here

Sξ = {x0 (ξ) , . . . , xm (ξ)} ⊂ Ωref(2.20)

is a set of m+1 local grid points around ξ, the annihilation coefficients cj : Ωref → R

are given by
∑

xj∈Sξ

cj (ξ) pl
(

xj

)

= p
(m)
l (ξ) , j = 0, . . . ,m,(2.21)

and {pl}
m
l=0 is a basis of Pm (Ωref). An explicit formula for the annihilation coefficients

utilising Newton’s divided differences is given by [4]

cj (ξ) =
m!

ωj

(

Sξ

) with ωj

(

Sξ

)

=
∏

xi∈Sξ

i 6=j

(

xj − xi

)

(2.22)

for j = 0, . . . ,m. Finally, the normalization factor qm, calculated as

qm (ξ) =
∑

xj∈S+

ξ

cj (ξ) ,(2.23)

ensures convergence to the right jump strength at every discontinuity. Here S+
ξ

denotes the set {xj ∈ Sξ | xj ≥ ξ} of all local grid points to the right of ξ.
In this work, the PA operator is applied to the reference element Ωref = [−1, 1]

of the underlying nodal DG method using p+ 1 collocation points {ξk}
p
k=0, typically

Gauss–Lobatto points including the boundaries. We can thus construct PA operators
up to order p by allowing the sets of local grid points Sξ to be certain subsets of the
p+ 1 collocation points.

In [4] it was shown that

Lm[u] (ξ) =







[u] (x) +O
(

h (ξ)
)

if xj−1 ≤ ξ, x ≤ xj ,

O
(

hmin(m,k) (ξ)
)

if u ∈ Ck
(

Iξ
)

,
(2.24)

where h (ξ) = max{|xi − xi−1 | xi−1, xi ∈ Sξ} and Iξ is the smallest closed interval
such that Sξ ⊂ Iξ. Note that h(ξ) depends on the density of the set of local grid points
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absolute value decreases significantly when going from m = 1 to m = 3. This is
consistent with the results in (2.24) and will be used to construct the discontinuity
sensor in section 3.3. For a discussion on the convergence of the PA operator see [4].

Remark 2.1. In this work, we only consider one-dimensional conservation laws. It
should be stressed, however, that PA can be extended to multivariate irregular data
in any domain. It was demonstrated in [4] that PA is numerically cost efficient and
entirely independent of any specific shape or complexity of boundaries. In particular,
in [3] and [40] the method was applied to high dimensional functions that arise when
solving stochastic partial differential equations, which reside in a high dimensional
space which includes the original space and time domains as well as additional random
dimensions.

3. Application of `1 regularization. In this section, we describe how the
proposed `1 regularization using PA operators, i.e., H (v) = ‖Lmv‖1 in (2.16), can
be incorporated into a DG method. While this kind of regularization functional was
already investigated in [61], this work is the first to extend these ideas to an SE
method and thus to allow element-to-element variations in the optimization problem.
It should be stressed that the subsequent procedure relies on a piecewise polynomial
approximation in space. Yet, by appropriate modifications of the procedure, it is also
possible to apply `1 regularization (with PA) to any other method.

3.1. Procedure. One of the main challenges in solving nonlinear conserva-
tion laws (2.1) is balancing high resolution properties and the amount of viscosity
introduced to maintain stability, especially near shocks [24, 53, 70]. Applying the
techniques presented in sections 2.2 and 2.3, we are now able to adapt the nodal DG
method described in section 2.1 to include `1 regularization.

Our procedure consists of replacing the usual polynomial approximation up by a
sparse reconstruction

uspar
p = argmin

v∈Pp(Ωref )

(

1

2

∥

∥v − up

∥

∥

2

2
+ λ‖Lmv‖1

)

(3.1)

with regularization parameter λ in troubled elements after every (or every kth) time
step by an explicit time integrator.

For the ADMM described in section 3.5, it is advantageous to rewrite (3.1) in the
usual form of an `1 regularized problem as

uspar
p = argmin

v∈Pp(Ωref )

(

‖Lmv‖1 +
µ

2

∥

∥v − up

∥

∥

2

2

)

,(3.2)

where µ = 2
λ is referred to as the data fidelity parameter. Note that (3.1) and

(3.2) are equivalent. In the later numerical tests, the data fidelity parameter µ and
the regularization parameter λ will be steered by a discontinuity sensor proposed in
section 3.3.

Remark 3.1. One of the main drawbacks in using `1 regularization for solving
numerical partial differential equations, as well as for image restoration or sparse
signal recovery, is in choosing the regularization parameter λ (or µ). Ideally, one
would want to balance the terms in (3.1) or (3.2), but this is difficult to do without
knowing their comparative size. Indeed, the `1 regularization term ‖Lmv‖1 heavily
depends on the magnitudes of nonzero values in the sparsity domain, in this case the
jumps. Larger jumps are penalized significantly more in the `1 norm than smaller
values.
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Iterative spacially varying weighted `1 regularization techniques (see, e.g., [8, 20])
are designed to help reduce the size of the norm, since the remaining values should
be close to zero in magnitude. Specifically, the jump discontinuities which are meant
to be in the solution can “pass through” the minimization. In this way, with some
underlying assumptions made on the accuracy of the fidelity term, one could argue
that both terms are close to zero. Consequently, the choice of λ (or µ) should not
have as much impact on the results, leading to greater robustness overall. For the
numerical experiments in this investigation, we simply chose regularization parameters
that worked well. We did not attempt to optimize our results and leave parameter
selection to future work.

3.2. Selection of the regularization parameter λ. The `1 regularization
should only be activated in troubled elements. In particular, we do not want to
unnecessarily degrade the accuracy in the smooth regions of the solution. We thus
propose to adapt the regularization parameter λ in (3.1) to appropriately capture
different discontinuities and regions of smoothness. As a result, the optimization
problem will be able to calibrate the resulting sparse reconstruction to the smoothness
of the solution. More specifically, to avoid unnecessary regularization, we choose λ = 0
in elements corresponding to smooth regions. Note that this also renders the proposed
method more efficient.

On the other hand, when a discontinuity is detected in an element, `1 regular-
ization will be fully activated by choosing λ = λmax in (3.1), which corresponds to
the amount of regularization necessary to reconstruct sharp shock profiles. While
no effort was made to optimize or even adapt this parameter, we found that using
λmax = 4 · 102 in all of our numerical experiments yielded good results. A heuristic
explanation for choosing λmax in this way stems from the goal of balancing the size
of ‖Lmv‖1 with the expected size of the fidelity term, which in this case means to
be consistent with the order of accuracy of the underlying numerical PDE solver. As
mentioned previously, choosing an appropriate λ will be the subject of future work.

Between these extreme cases, i.e., λ = 0 and λ = λmax, we allow the regular-
ization parameter to linearly vary and choose λ as a function of the discontinuity
sensor proposed in section 3.3. As a consequence, we obtain more accurate sparse
reconstructions while still maintaining stability in regions around discontinuities.

3.3. Discontinuity sensor. We now describe the discontinuity sensor which
is used to activate the `1 regularization and to steer the regularization parameter λ
in (3.1). The sensor is based on comparing PA operators of increasing orders. To
the best of our knowledge this is the first time the PA operator is utilized for shock
(discontinuity) detection in a PDE solver.1

At least for smooth solutions, discontinuous Galerkin methods are capable of
spectral orders of accuracy. `1 regularization as well as any other shock capturing
procedure [24, 25, 53, 58, 70] should thus be just applied in (and near) elements
where discontinuities are present. We refer to those elements as troubled elements.

Many shock and discontinuity sensors have been proposed over the last 20 years for
the selective application of shock capturing methods. Some of them use information
about the L2-norm of the residual of the variational form [7, 39], the primary orienta-
tion of the discontinuity [32], the magnitude of the facial interelement jumps [6, 15], or

1Of course (W)ENO schemes [56, 63, 64] compare slope magnitudes for determining troubled
elements and choosing approximation stencils, so in this regard our method was inspired by WENO
type methods.
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A1314 JAN GLAUBITZ AND ANNE GELB

Table 1

Shock sensor for function displayed in Figure 2.

Element Ω1 = (0, 2) Ω2 = (2, 4) Ω3 = (4, 6) Ω4 = (6, 8) Ω5 = (8, 10)
S1 1.58 1.07 1.07 2.79 0.38
S3 1.99 0.60 1.38 3.00 0.17

Discontinuity yes no yes yes no

the discontinuities. Such information can be used for refined domain decomposition
[3]. Finally, we decide for the regularization parameter λ to linearly vary between
λ = 0 and λ = λmax and thus utilize the parameter function

λ(S) =







0 if S ≤ κ,
λmax(S − κ)/(1− κ) if κ < S < 1,
λmax if 1 ≤ S,

(3.6)

where κ ∈ [0, 1) is a problem dependent ramp parameter. Observe that using λ(S) is
comparable to employing the weighted `1 regularization as discussed in Remark 3.1.

For the later numerical tests we also considered other parameter functions, some
as discussed in [37]. Yet the best results were obtained with (3.6). The same holds
for other discontinuity sensors, such as the modal-decay based sensor of Persson and
Peraire [37, 53] and its refinements [6, 42] as well as the KXRCF sensor [45, 56] of
Krivodonova et al., which is built up on a strong superconvergence phenomenon of
the DG method at outflow boundaries. For brevity, those results are omitted here.

Remark 3.2. We note that the PA sensor might produce false positive or false
negative misidentifications in certain cases. A false negative misidentification might
arise from a discontinuity where the solution is detected to be smooth. This is en-
countered by the ramp parameter κ, which is observed to work robustly for κ = 0.8 or
κ = 0.9 in all later numerical tests. A false positive misidentification might arise from
a smooth solution which is detected to be nonsmooth (possibly discontinuous). In
this case smooth parts of the solution with steep gradients will result in significantly
greater values of Lmu than parts of the solution with less steep gradients. As a result,
the standard `1 regularization would heavily penalize these features of the solution,
yielding inappropriate smearing of steep gradients in smooth regions. By making
λ = λ(S) dependent on the sensor value, this problem can be somewhat alleviated.
Using a weighted `1 regularization, as suggested in Remark 3.1, should also reduce
the unwanted smearing effect. Failure to detect a discontinuity would, after a number
of time steps, yield instability. However it is unlikely that this would occur as the
growing oscillations would more likely be identified as shock discontinuities.

3.4. Efficient implementation of the PA operator. While the PA operator
was defined on the interior of the reference element Ωref = [−1, 1] in section 2.3, the
shock sensor proposed in section 3.3 only relies on the values of the PA operator at
the p midpoints {ξk+ 1

2
}p−1
k=0 of the collocation points {ξk}

p
k=0. The same holds for the

`1 regularization term H (v) =‖Lmv‖1. The `
1-norm of the PA transformation is thus

given by

‖Lmv‖1 =
∥

∥

∥Lmv
∥

∥

∥

1
=

p−1
∑

k=0

∣

∣

∣

∣

Lm[v]
(

ξk+1/2

)

∣

∣

∣

∣

,(3.7)

where the vector v once more consists of nodal degrees of freedom. We now aim
to provide an efficient implementation of the PA operator Lm in form of a matrix
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HIGH ORDER EDGE SENSORS FOR DGM A1315

representation Lm, which maps the nodal values v to the values of the PA operator

at the midpoints. Revisiting (2.19), this matrix representation is given by

Lm = Q−1C ∈ R
p×(p+1)(3.8)

with

Q = diag

(

[

qm

(

ξ1/2

)

, . . . , qm

(

ξp−1/2

)

]

)

,(3.9)

qm

(

ξk+1/2

)

=
∑

xj∈S+

ξk+1/2

cj

(

ξk+1/2

)

(3.10)

and

C =

(

cj

(

ξk+1/2

)

)p−1,p

k,j=0

,(3.11)

where

cj

(

ξk+1/2

)

=







m!

ωj

(

Sξk+1/2

) if xj ∈ Sξk+1/2
,

0 else ,
(3.12)

ωj

(

Sξk+1/2

)

=
∏

xi∈Sξk+1/2

i 6=j

(

xj − xi

)

.(3.13)

Utilizing all prior matrix vector representations, we can now give the discretization
of the `1 regularized optimization problem (3.2) by

uspar = argmin
v∈Rp+1

(

∥

∥

∥Lmv
∥

∥

∥

1
+

µ

2
‖v − u‖

2
M

)

.(3.14)

Thus, we are able to solve the optimization problem directly for the nodal degrees of
freedom of the sparse reconstruction uspar

p . Alternatively, the fidelity term
∥

∥v − up

∥

∥

can also be approximated as

‖v − u‖
2
2 =

p
∑

k=0

∣

∣v(ξk)− u(ξk)
∣

∣

2
,(3.15)

i.e., by the Euclidean norm, yielding

uspar = argmin
v∈Rp+1

(

∥

∥

∥Lmv
∥

∥

∥

1
+

µ

2
‖v − u‖

2
2

)

,(3.16)

instead of (3.14). Future works will investigate the influence of the choice of the
discrete norm on the performance of the `1 regularization. Here we decided to use the
Euclidean norm and thus the minimization problem (3.16), making the computations
in section 3.5 more intelligible.

3.5. The alternating direction method of multipliers. Many techniques
have been recently proposed to solve optimization problems in the form of (3.14).
Following [61], we use the ADMM [48, 59, 60] in our implementation. The ADMM
has its roots in [27] and details of its convergence properties can be found in [14, 16, 26].
In the context of `1 regularization, ADMM is commonly implemented using the split
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A1316 JAN GLAUBITZ AND ANNE GELB

Bregman method [28], which is known to be an efficient solver for a broad class of
optimization problems. To implement the ADMM, it is first necessary to eliminate
all nonlinear terms within the `1-norm. We thus introduce a slack variable

g = Lmv ∈ R
p(3.17)

and formulate (3.14) equivalently as

argmin
v∈Rp+1,g∈Rp

(

∥

∥

∥g
∥

∥

∥

1
+

µ

2
‖v − u‖

2
2 s.t. Lmv = g

)

.(3.18)

To solve (3.18), we further introduce Lagrangian multipliers σ ∈ R
p, δ ∈ R

p+1 and
solve the unconstrained minimisation problem given by

argmin
v∈Rp+1,g∈Rp

Jσ,δ

(

v, g
)

(3.19)

with objective function

Jσ,δ

(

v, g
)

=
∥

∥

∥g
∥

∥

∥

1
+

µ

2
‖v − u‖

2
2 +

β

2

∥

∥

∥Lmv − g
∥

∥

∥

2

2
−
〈

Lmv − g, σ
〉

2
− 〈v − u, δ〉2 .

(3.20)

Here, β > 0 is an additional positive regularization parameter and recall that the data
fidelity parameter µ is given by µ = 2

λ for λ > 0; see (3.1) and (3.2). Note that if
the Lagragian multipliers σ, δ are updated a sufficient number of times, the solution
of the unconstrained problem (3.19) will converge to the solution of the constrained
problem (3.18). In the ADMM, the solution is approximated by alternating between
minimizations of v and g. A crucial advantage of this method is that, given the current
value of v as well as the Lagrangian multipliers, the optimal value of g can be exactly
determined by the shrinkage-like formula [28]

(

g
k+1

)

i
= shrink

(

(

Lmv
)

i
−

1

β
(σk)i ,

1

β

)

,(3.21)

where

shrink (x, γ) =
x

|x|
·max

(

|x| − γ, 0
)

.(3.22)

Given the current value g
k+1

, on the other hand, the optimal value of v is computed

by the gradient descent method as

vk+1 = vk − α∇vJσ,δ

(

v, g
k+1

)

,(3.23)

where

∇vJσ,δ

(

v, g
k+1

)

= µ (v − u) + β
(

Lm

)T (

Lmv − g
k+1

)

−
(

Lm

)T

σk − δk,(3.24)

and the step size α > 0 is chosen to provide a sufficient descent in direction of the
gradient. Finally, the Lagrangian multipliers are updated after each iteration by

σk+1 = σk − β
(

Lmvk+1 − g
k+1

)

,

δk+1 = δk − µ
(

vk+1 − u
)

.
(3.25)
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HIGH ORDER EDGE SENSORS FOR DGM A1319

implies that the additional constraint in (3.29) reduces to

û0 = v̂0.(3.32)

Basis functions {ϕk}
p
k=0 with zero average for k > 0 are, for instance, given by the

orthogonal basis (OGB) of Legendre polynomials.

We now propose the following simple algorithm to repair mass conservation in
the `1 regularization.

Algorithm 3.2. Mass correction.

1: Compute û0

2: Compute uspar
p according to (3.1)/(3.14)

3: Represent uspar
p w.r.t. an OGB: uspar

p = ûspar
0 ϕ0 + · · ·+ ûspar

p ϕp

4: Replace ûspar
0 by û0

The advantage of this additional step is demonstrated in Figure 4 as well, where
the absolute difference between the mass of up and of its sparse reconstruction with
additional mass correction, denoted by uspar,corr

p , is illustrated by (black) squares. In
contrast to the sparse reconstruction without mass correction, illustrated by (red)
crosses, uspar,corr

p is demonstrated to preserve mass nearly up to machine precision
(≈ 10−16). Finally, we note that for the test illustrated in Figure 3(d), `1 regulariza-
tion with and without mass correction resulted in the same approximations, due to u
being an odd function. Thus, we omit those results.

We present a flowchart in Figure 5 illustrating the proposed procedure for a fixed
time t < tend.

4. Numerical tests. We now numerically demonstrate the application of `1

regularization (with and without mass correction) to a nodal DG method for the
inviscid Burgers’ equation, the linear advection equation, and a nonlinear system of
conservation laws. Our results show that `1 regularization provides increased accuracy
of the numerical solutions. In all numerical tests, we use a PA operator of third order
and choose the same parameters as before, i.e., λmax = 4 · 102, K = 400, β = 20,
α = 0.0001, and tol = 0.001. We have made no effort to optimize these parameters.

4.1. Inviscid Burgers’ equation. We start our numerical investigation by con-
sidering the inviscid Burgers’ equation

∂tu+ ∂x

(

u2

2

)

= 0(4.1)

on Ω = [0, 2] with initial condition

u(0, x) = u0(x) = sin (πx)(4.2)

and periodic boundary conditions. For this test case, a shock discontinuity develops
in the solution at x = 1.

In the subsequent numerical tests, the usual local Lax–Friedrichs flux

fnum(u−, u+) =
1

2

(

f(u+) + f(u−)
)

−
αmax

2
(u+ − u−)(4.3)
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Start

i = 1

i < I?

Input: up ∈ Pp(Ωi)

i = i+ 1 Stop

Compute S according to (3.5)

S > κ?

Compute λ according to (3.6)

Compute uspar

p according to (3.1)

Correct mass, yielding uspar,corr
p ,

according to Algorithm 3.2

Replace up by uspar,corr
p

no

yes

no

yes

Fig. 5. Flowchart describing `1 regularization with mass correction. The procedure is described

for a fixed time and includes the loop over all I elements.D
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Table 2

Errors of the numerical solutions without and with `1 regularization. In cases where the error

value is NaN, the numerical solution broke down before the final time was reached. “no `1” refers

to the underlying DG method without `1 regularization, “`1” refers to the DG method with `1

regularization, and “`1-mc” refers to the DG method with `1 regularization and additional mass

correction.

‖·‖
M

-error ‖·‖1-error ‖·‖∞-error
p I no `1 `1 `1-mc no `1 `1 `1-mc no `1 `1 `1-mc

3 15 1.5e-2 3.3e-2 3.3e-2 1.2e-2 2.2e-1 1.2e-2 1.7e-1 3.3e-1 3.3e-1
31 1.5e-2 2.0e-2 2.0e-2 1.1e-2 1.2e-2 1.2e-2 2.2e-1 3.2e-1 3.2e-1
63 1.9e-2 2.4e-2 2.4e-2 1.1e-2 1.1e-2 X 1.1e-2 3.6e-1 5.6e-1 5.6e-1

127 3.3e-2 2.7e-2 X 2.7e-2 1.3e-2 1.1e-2 X 1.1e-2 1.4e-0 8.3e-1 X 8.3e-1
4 15 7.0e-2 5.9e-2 X 5.9e-2 3.9e-2 2.7e-2 X 2.7e-2 7.6e-1 7.5e-1 X 7.5e-1

31 5.5e-2 4.6e-2 X 4.6e-2 2.4e-2 1.7e-2 X 1.7e-2 8.7e-1 8.6e-1 X 8.6e-1
63 4.3e-2 3.9e-2 X 3.9e-2 1.6e-2 1.3e-2 X 1.3e-2 1.0 1.0e-0 X 1.0e-0

127 3.8e-2 3.6e-2 X 3.6e-2 1.2e-2 1.2e-2 X 1.1e-2 1.4 1.3e-0 X 1.3e-0
5 15 1.6e-2 1.5e-2 X 1.5e-2 1.2e-2 1.2e-2 X 1.2e-2 2.5e-1 1.9e-1 X 1.7e-1

31 2.0e-2 1.4e-2 X 1.3e-2 1.3e-2 1.0e-2 X 1.0e-2 5.3e-1 2.6e-1 X 2.5e-1
63 7.3e-2 1.9e-2 X 1.6e-2 2.2e-2 1.0e-2 X 1.0e-2 3.6e-0 5.3e-1 X 4.3e-1

127 NaN 2.7e-2 ! 2.2e-2 NaN 1.0e-2 ! 1.0e-2 NaN 1.1e-0 ! 9.1e-1
6 15 5.9e-2 5.2e-2 X 5.2e-2 3.2e-2 2.3e-2 2.3e-2 8.1e-1 8.0e-1 X 8.0e-1

31 4.7e-2 4.3e-2 X 4.3e-2 2.0e-2 1.6e-2 X 1.6e-2 9.6e-1 9.5e-1 X 9.5e-1
63 3.9e-2 3.7e-2 X 3.6e-2 1.2e-2 1.2e-2 X 1.2e-2 1.2e-0 1.1e-0 X 1.1e-0

127 NaN 3.4e-2 ! 3.2e-2 NaN 1.1e-2 ! 1.1e-2 NaN 1.3e-0 ! 1.3e-0
7 15 1.7e-2 1.8e-2 1.8e-2 1.4e-2 1.2e-2 X 1.2e-2 2.2e-1 2.7e-1 2.8e-1

31 2.5e-2 1.7e-2 X 1.8e-2 1.5e-2 1.1e-2 X 1.1e-2 7.0e-1 3.8e-1 X 4.0e-1
63 5.0e-1 2.1e-2 X 2.2e-2 1.4e-1 1.0e-2 X 1.0e-2 1.1e+1 6.9e-1 X 7.5e-1

127 2.8e-2 2.5e-2 X 2.5e-2 1.0e-2 1.0e-2 X 1.0e-2 1.3e-0 1.2e-0 X 1.2e-0
8 15 5.9e-2 4.9e-2 X 4.9e-2 3.2e-2 2.1e-2 X 2.1e-2 9.9e-1 8.6e-1 X 8.6e-1

31 4.5e-2 4.0e-2 X 4.0e-2 1.9e-2 1.4e-2 X 1.4e-2 1.0e-0 1.0e-0 X 1.0e-0
63 3.8e-2 3.6e-2 X 3.7e-2 1.2e-2 1.2e-2 X 1.2e-2 1.4e-0 1.3e-0 X 1.3e-0

127 1.5e-1 3.2e-2 X 3.1e-2 3.1e-2 1.1e-2 X 1.1e-2 6.9e-0 1.4e-0 X 1.4e-0
9 15 2.0e-2 1.9e-2 X 1.8e-2 1.5e-2 1.3e-2 X 1.3e-2 4.5e-1 3.0e-1 X 2.9e-1

31 7.8e-2 1.9e-2 X 1.8e-2 2.5e-2 1.1e-2 X 1.1e-2 4.5e-0 4.5e-1 X 4.1e-1
63 NaN 2.3e-2 ! 2.2e-2 NaN 1.0e-2 ! 1.0e-2 NaN 9.0e-1 ! 8.3e-1

127 NaN 2.7e-2 ! 2.8e-2 NaN 1.0e-2 ! 1.0e-2 NaN 1.4e-0 ! 1.4e-0

‖unum‖
2
=

I
∑

i=1

|Ωi|

2

∥

∥

∥u(i)
p

∥

∥

∥

2

,(4.4)

where u
(i)
p denotes the numerical solution (polynomial approximation) on the ith

element Ωi.
Table 2 demonstrates that for almost all these norms as well as combinations of

polynomial degrees p = 4, 5, 6, 7, 8, 9 and number of elements I = 15, 32, 63, 127, the
numerical solution with `1 regularization is more accurate than the numerical solution
without `1 regularization. Further, we observe just a slight difference in accuracy for
`1 regularization with and without mass correction. See, for instance, p = 5 in Table
2. We only utilise odd number of elements, so that the shock discontinuity arises in
the interior of an element. By using an even number of elements, on the other hand,
the shock would arise at the interface between two elements and the error analysis of
the `1 regularization would be blurred by the dissipation added by the numerical flux.

In Table 2, all cases where the accuracy is increased or remains the same by
applying `1 regularization are flagged with a checkmark. It should be stressed that
no effort was made to optimize the parameters in the `1 regularization. In particular,
the parameters in the `1 regularization have not been adapted to the specific choice
of the polynomial degree p, the number of elements I, or the number of time steps
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used in the solver. We think that by further investigations of the parameters in the
`1 regularization, all above errors could be further reduced.

Finally, special attention should be given to the cases flagged by an exclamation
mark (!). In these cases, the numerical solver without `1 regularization broke down
completely. Yet, when `1 regularization was applied, the same computations yielded
fairly accurate numerical solutions.

4.2. Linear advection equation. The prior test case featured a shock discon-
tinuity and might not fully reflect the behavior of the `1 regularized DG method in
smooth regions. Note that for the underlying spectral DG method used in this work,
given p + 1 nodes, the optimal order of convergence is p + 1 in sufficiently smooth
regions. Especially in smooth regions, it is desirable that the convergence properties
of the underlying method are preserved when using the `1 regularization method.
Convergence of the `1 regularised DG method, however, also depends on the conver-
gence of the PA operator. In all numerical tests presented in this work, a PA operator
of order three, i.e., L3, is used. Hence, if falsely activated (false positive; see Re-
mark 3.2) by the discontinuity sensor (3.5), `1 regularization might affect the order of
convergence of the underlying method in smooth regions. In our numerical tests, we
observed the sensor to be fairly reliable for sufficient resolution, and `1 regularization
did not get activated in smooth regions.

To investigate this potential drawback and demonstrate the reliability of the `1

regularized DG method in smooth regions, we now consider the linear advection
equation

∂tu+ ∂xu = 0(4.5)

on Ω = [0, 2] with initial condition

u(0, x) = sin (2πx)(4.6)

and periodic boundary conditions, which provides a smooth solution for all times.
Table 3 lists comparative errors for DG with and without the `1 regularization and
with the additional mass conservation correction term at time T = 2.

Our results indicate that `1 regularization is only activated, and thus affects
convergence of the underlying method, if the solution is heavily underresolved. This
can be noted in Table 3 from p = 3 and N = 2, 4 as well as p = 4, 5, 6 and N = 2.
For p = 7, even N = 2 provides sufficient resolution and the `1 regularization is not
activated. For all numerical solutions, using at least N = 8 elements, `1 regularization
does not affect accuracy and convergence of the underlying method in smooth regions.
Finally, we note that in the cases where the numerical solution is heavily underresolved
and `1 regularization is activated, `1 regularization with additional mass correction
(l1-mc) provides slightly more accurate solutions than `1 regularization without mass
correction (l1). Finally, we note that because the `1 regularization is only activated
in elements containing discontinuities, the efficiency of our new method is comparable
to the underlying DG method. Moreover, as in [61], we observed that for our specific
set of test problems we were able to maintain stability for time step sizes larger than
the standard CFL constraints suggest. Theoretical justification for this will be part
of future investigations.

4.3. Systems of conservation laws. We now extend our hybrid `1 regularized
DG method to the nonlinear system of conservation laws

∂t

(

u0

u1

)

+
1

2
∂x

(

u2
0 + u2

1

2u0u1

)

= 0(4.7)
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Table 3

u(0, x) = sin (2πx). Errors of the numerical solutions without and with `1 regularization. “no

`1” refers to the underlying DG method without `1 regularization, “`1” refers to the DG method

with `1 regularization, and “`1-mc” refers to the DG method with `1 regularization and additional

mass correction.

‖·‖
M

-error ‖·‖1-error ‖·‖∞-error
p I no `1 `1 `1-mc no `1 `1 `1-mc no `1 `1 `1-mc

3 2 1.2e-0 1.2e-0 1.2e-0 1.5e-0 1.6e-0 1.6e-0 9.5e-1 9.8e-1 9.8e-1
4 1.3e-1 4.4e-1 4.4e-1 1.4e-1 5.8e-1 5.8e-1 1.3e-1 4.1e-1 4.1e-1
8 6.3e-3 6.3e-3 6.3e-3 7.0e-3 7.0e-3 7.0e-3 1.2e-2 1.2e-2 1.2e-2

16 3.8e-4 3.8e-4 3.8e-4 3.8e-4 3.8e-4 3.8e-4 9.9e-4 9.9e-4 9.9e-4
4 2 3.4e-1 9.2e-1 9.2e-1 4.2e-1 9.7e-1 9.6e-1 3.8e-1 9.0e-1 8.8e-1

4 7.8e-3 7.8e-3 7.8e-3 1.0e-2 1.0e-2 1.0e-2 1.2e-2 1.2e-2 1.2e-2
8 4.2e-4 4.2e-4 4.2e-4 4.4e-4 4.4e-4 4.4e-4 1.2e-3 1.2e-3 1.2e-3

16 1.3e-5 1.3e-5 1.3e-5 1.3e-5 1.3e-5 1.3e-5 4.4e-5 4.4e-5 4.4e-5
5 2 8.0e-2 1.0e-0 1.0e-0 1.0e-1 1.3e-0 1.3e-0 1.3e-1 8.4e-1 7.8e-1

4 2.1e-3 2.1e-3 2.1e-3 2.3e-3 2.3e-3 2.3e-3 5.3e-3 5.3e-3 5.3e-3
8 2.8e-5 2.8e-5 2.8e-5 2.9e-5 2.9e-5 2.9e-5 7.7e-5 7.7e-5 7.7e-5

16 1.2e-6 1.2e-6 1.2e-6 1.5e-6 1.5e-6 1.5e-6 1.6e-6 1.6e-6 1.6e-6
6 2 2.1e-2 9.9e-1 9.9e-1 2.5e-2 1.1e-0 1.1e-0 5.1e-2 9.9e-1 9.9e-1

4 7.5e-5 7.5e-5 7.5e-5 8.0e-5 8.0e-5 8.0e-5 1.8e-4 1.8e-4 1.8e-4
8 6.0e-6 6.0e-6 6.0e-6 7.6e-6 7.6e-6 7.6e-6 7.5e-6 7.5e-6 7.5e-6

16 7.3e-7 7.3e-7 7.3e-7 9.4e-7 9.4e-7 9.4e-7 7.4e-7 7.4e-7 7.4e-7
7 2 2.0e-3 2.0e-3 2.0e-3 2.0e-3 2.0e-3 2.0e-3 6.4e-3 6.4e-3 6.4e-3

4 3.9e-5 3.9e-5 3.9e-5 4.9e-5 4.9e-5 4.9e-5 6.8e-5 6.8e-5 6.8e-5
8 3.9e-6 3.9e-6 3.9e-6 5.0e-6 5.0e-6 5.0e-6 4.1e-6 4.1e-6 4.1e-6

16 4.9e-7 4.9e-7 4.9e-7 6.3e-7 6.3e-7 6.3e-7 4.9e-7 4.9e-7 4.9e-7

in the domain Ω = [0, 2]. System (4.7) originates from a truncated polynomial chaos
approach for Burgers’ equation with uncertain initial condition [51, 54, 55]. In this
context, u0 models the expected value of the numerical solution while u2

1 approximates
the variance. For the spatial semidiscretization of (4.7) we follow [51, 58], where a
skew-symmetric formulation

u̇k =−
1

3

1
∑

i,j=0

〈ϕiϕjϕk〉

(

Duiuj + uj
∗Dui

)

−M−1RTB



fk
num −

1
∑

i,j=0

〈ϕiϕjϕk〉

(

1

3
Ruiuj +

1

6

(

Rui

)

◦
(

Ruj

)

)





(4.8)

was proposed. Here 〈ϕiϕjϕk〉 denotes the triple product
∫

ϕi(ξ)ϕj(ξ)ϕk(ξ)ω(ξ) dξ, ◦
denotes the componentwise (Hadamard) product of two vectors, and {ϕk} is a set of
orthogonal polynomials (typically Hermite polynomials are used).

It was further proved in [51] that (4.8) yields an entropy conservative semi-
discretization when combined with the entropy conservative flux fk

num presented
in [51]. An entropy stable semidiscretization is thus obtained by adding a dissipative
term −Q(uk+

− uk−
) to the entropy conservative flux. Here we simply use a local

Lax–Friedrichs type dissipation matrix

Q =
α

2
I with α = max

{

∣

∣α(−)
∣

∣ ,
∣

∣α(+)
∣

∣

}

,(4.9)

where
∣

∣α(±)
∣

∣ is the largest absolute value of all eigenvalues of the Jacobian f ′(u(±)).
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Even though the skew-symmetric formulation (4.8) combined with an appropri-
ate numerical flux yields an entropy stable scheme, this test case demonstrates that
additional regularization is still necessary to obtain reasonable numerical solutions.
This was, for instance, stressed in [58]. Here we demonstrate how `1 regularization
enhances the numerical solution for the nonlinear system (4.7) with periodic boundary
conditions and initial condition

u0(x, 0) = 1 +







e · exp
(

− r2

r2−(x−0.5)2

)

if |x− 0.5| < r,

0 if |x− 0.5| ≥ r,
(4.10)

u1(x, 0) =







e · exp
(

− r2

r2−(x−0.5)2

)

if |x− 0.5| < r,

0 if |x− 0.5| ≥ r,
(4.11)

where r = 0.5.
For the more general case of systems of conservation laws, we propose a straight-

forward extension of our `1 regularization technique. Specifically, the PA sensor (3.5)
is applied to every conserved variable uk separately and, once a discontinuity is de-
tected, `1 regularization (3.2) is performed for the respective variable. For this test
case, the ramp parameter in (3.6) has been chosen as κ = 0.9.

Figure 7 illustrates the results of `1 regularization (with and without mass correc-
tion) for the above described test case and for an entropy stable numerical flux. In all
subsequent tests I = 100 equidistant elements and a polynomial basis of degree p = 6
have been used. Further, for the `1 regularization, the same parameters as before
have been used, i.e., λmax = 4 · 102, K = 400, β = 20, α = 0.0001, and tol = 0.001.

Note that while the numerical solution without `1 regularization shows heavy
oscillations in both components, the numerical solution with `1 regularization provides
a significantly sharper profile. Further, by consulting Figures 7(d) and 7(e), it should
be stressed that only `1 regularization with additional mass correction is able to
capture the exact shock location. Due to missing conservation, `1 regularization
without mass correction results in a slightly wrong location for the shock. Finally,
Figures 7(c) and 7(f) illustrate the energy of the different methods over time. We note
from these figures that `1 regularization (with and without mass correction) slightly
increase the energy in this test case.

In order to further emphasize the effect of `1 regularization (with and without
mass correction), similar results using an entropy conservative numerical flux at the
interfaces between elements are shown in Figure 8. Once again, `1 regularization is
demonstrated to improve the numerical solution. The best results are obtained when
`1 regularization is combined with mass correction. In particular, only `1 regulariza-
tion with additional mass correction is able to accurately capture the shock at the
right location. Finally, consulting Figures 8(c) and 8(f), `1 regularization decreases
the energy overall. Yet, it is demonstrated once more that an entropy inequality is
not satisfied by `1 regularization, i.e., the energy might increase as well as decrease
by utilizing `1 regularization. Thus, future work will focus on incorporating energy
stability (as well as other properties like TVD or positivity) by additional constraints
in the minimization problem (3.1).

5. Concluding remarks. We have presented a novel approach to shock captur-
ing by `1 regularization using SE approximations. Our work not only is distinguished
from previous studies [30, 36, 46, 47, 62] by focusing on discontinuous solutions but
further by promoting sparsity of the jump function instead of the numerical solution
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itself. By approximating the jump function with the (high order) PA operator, we
help to eliminate the staircase effect that arises for classical TV operators. Our results
demonstrate that it is possible to efficiently implement a method that yields increased
accuracy and better resolves (shock) discontinuities. In particular, no additional time
step restrictions are introduced, in contrast to artificial viscosity methods when no
care is taken in their construction. This approach for solving numerical conservation
laws was first used in [61], where the Lax–Wendroff scheme and Chebyshev and Fourier
spectral methods were used as the numerical PDE solver. Our method improves upon
the approach in [61] in two ways. First, we employ the SE approximation for solving
the conservation law, which allows element-to-element variations in the optimization
problem. In particular, `1 regularization is only activated in troubled elements, which
enhances accuracy and efficiency of the method. Second, in the process we proposed
a novel discontinuity sensor based on PA operators of increasing orders, which is able
to flag troubled elements as well as to steer the amount of regularization introduced
by the sparse reconstruction.

Numerical tests demonstrate the method using a nodal collocation-type discon-
tinuous Galerkin method for the inviscid Burgers’ equation, the linear advection equa-
tion, and a nonlinear system of conservation laws. Our results show that the method
yields improved accuracy and robustness.

No effort was made in our study to optimize any of the parameters involved
in solving the optimization problem. This will be addressed in future work, along
with the possibility to include additional constraints (e.g., for entropy, TVD, and
positivity constraints), since preliminary results presented here are encouraging. The
generalization of the approach itself to higher dimensions is straightforward and has
already been demonstrated in [61]. Of interest, however, would be the extension of
the proposed approach to other classes of methods, such as finite volume methods.
We believe `1 regularization might be an important ingredient to make high order
methods viable in several research applications.
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