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Abstract

In recent investigations, the problem of detecting edges given non-uniform Fourier data was

reformulated as a sparse signal recovery problem with an �1-regularized least squares cost

function. This result can also be derived by employing a Bayesian formulation. Specifically,

reconstruction of an edge map using �1 regularization corresponds to a so-called type-I

(maximum a posteriori) Bayesian estimate. In this paper, we use the Bayesian framework

to design an improved algorithm for detecting edges from non-uniform Fourier data. In

particular, we employ what is known as type-II Bayesian estimation, specifically a method

called sparse Bayesian learning. We also show that our new edge detection method can be

used to improve downstream processes that rely on accurate edge information like image

reconstruction, especially with regards to compressed sensing techniques.

Keywords Edge detection · Non-uniform Fourier data · Sparse Bayesian learning · Signal

reconstruction · Regularization

Mathematics Subject Classification 94A12 · 62F15 · 62J05 · 65F22

1 Introduction

Edge detection is an important tool in identifying physical structures and regions of interest

in signals and images. In magnetic resonance imaging (MRI), edge detection helps tissue

boundary identification [26,29]. In synthetic aperture radar (SAR), it can improve target iden-

tification. In both of these applications, data are collected as non-uniform Fourier samples.

Detecting edges specifically from non-uniform1 Fourier data has been explored in [16,18,27].

Most recently, the fact that the edges of many signals and images are sparse was utilized to
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reformulate edge detection from non-uniform Fourier data as a sparse signal recovery (SSR)

problem [18]. Groundwork for that reformulation was laid in [16,27,31,37]. The technique

in [18] used Fourier frames to construct a forward model for edge detection from given non-

uniform Fourier data. An edge map of a piecewise smooth function was then reconstructed

using an �1-norm regularization optimization procedure which is known to encourage sparsity

[11,33].2 For a variety of reasons including noise, non-uniform sampling, and the magnitude

dependence of the �1 norm, the solution via �1 regularization to SSR is sometimes not as

sparse as desired. Specifically regarding magnitude dependence, because it simply sums the

absolute values of a sparse signal, the �1 norm is not as sensitive in penalizing small spikes

when signals contain both small and large spikes. While the edge reconstructions in [18] may

be suboptimal due to these downsides of �1 regularization, it was indeed a key development

of [18], although not explicitly addressed, to view edge detection as SSR. We note that edge

detection was also formulated as SSR in [24,32], albeit in different settings. With that door

open, in this paper we explore another algorithm that has both empirically and theoretically

outperformed �1 regularization for SSR.

Capturing the sparsity of solutions more accurately in the SSR problem has been widely

studied [4,8–10,21,25,34,38]. More recently, there has been increased interest in Bayesian

probabilistic approaches to SSR [4,21,25,34,38]. Within the probabilistic approaches there

are two categories. The first is type-I, or maximum a posteriori (MAP) Bayesian estimation

which uses a fixed prior. The most popular examples of type-I methods for SSR are �1

regularization [11,33], iteratively reweighted �1 regularization [9], and iteratively reweighted

�2 regularization [10]. The second category is type-II, or evidence maximization Bayesian

estimation which employs a hierarchical, flexible parametrized prior that is learned from the

given data. For SSR [21] provides the most general and comprehensive comparison of type-I

and type-II methods, and in particular it is shown there through extensive empirical results that

type-II estimates outperform corresponding type-I estimates in terms of accuracy. In addition,

type-II methods have the ability to retrieve a full posterior distribution for the solution rather

than just a point estimate as in type-I. Also advantageous is the automatic estimation of the

crucial regularization parameter, the choice of which is typically difficult and subjective in

MAP schemes. In this paper we focus our efforts on a particular type-II method called sparse

Bayesian learning (SBL), also called the relevance vector machine (RVM) [34]. In [21],

SBL typically outperformed all other methods including �1 regularization [8], iteratively

reweighted �1 [9], and iteratively reweighted �2 regularization methods [10], as well as a

variety of type-II methods for SSR. The strength of SBL is also supported by evidence from

[25], which looked at SBL from the perspective of compressed sensing [8,14], and showed

that SBL could recover a sparse signal with better accuracy than �1 regularization using the

same amount of data. There are also theoretical results from [28,39] that show that SBL is

a closer surrogate to the �0 norm than �1 regularization, and proved that even in the worst

case SBL still outperforms the most widely employed algorithms from compressed sensing.

In [38], for the noiseless case, it is proved that the global minimum of the SBL cost function

is achieved at a solution such that the posterior mean equals the maximally sparse solution.

Furthermore, it was shown that local minima are achieved at sparse solutions, regardless

of noise [38]. SBL employs the expectation–maximization (EM) algorithm [13]. Due to

properties of the EM algorithm, SBL is globally convergent [38].

2 Although ideally the �0 semi-norm should be used to regularize this problem, the resulting optimization

problem is NP-hard. Hence the �1 norm has become a popular convex surrogate that makes the problem

computationally tractable and also offers theoretical guarantees for exact reconstruction [8], as well as a

variety of other benefits related to compressed sensing [14].

123



764 Journal of Scientific Computing (2019) 80:762–783

This paper adapts and implements the SBL algorithm from [34] for the non-uniform

Fourier edge detection problem using the SSR formulation from [18]. We demonstrate

improved accuracy compared with the results of [18] that used �1 regularization in both

noise-free and noisy scenarios. The organization of the paper is as follows. In Sect. 2, we

set up the problem of edge detection from non-uniform Fourier data. In Sect. 3, we describe

the reformulation of the problem as SSR and reproduce the edge detection results from [18].

Section 4 introduces the probabilistic approach, adapts SBL for the edge detection problem,

and explains the resulting algorithm. We also look at numerical results for the new SBL

technique, comparing with the results of Sect. 3. Edge detection is not only useful in and

of itself, but can be used to improve signal and image reconstruction as well. In Sect. 5,

we use our new edge detection algorithm to create a weighting matrix in order to apply �2

regularization away from edges to achieve full image reconstruction results. This is so-called

edge-adaptive �2 regularization [12]. Finally in Sect. 6, we summarize this work and look at

future directions for our research.

2 Problem Setup

We consider a one-dimensional periodic piecewise smooth function f : [− 1, 1] → R. We

define the jump function, [ f ], of f as the difference between the left- and right-hand limits

of the function:

[ f ](x) = f (x+) − f (x−). (1)

In smooth regions, [ f ](x) = 0. At a discontinuity, [ f ](x) is equal to the height of the

jump. Suppose we use 2J + 1 grid points, x j = j
J

for j = − J , . . . , J . Assuming that the

discontinuities of f are separated such that there is at most one jump per cell I j = [x j , x j+1),

we can write

[ f ](x) =
J−1∑

j=−J

[ f ](x j )δx j
(x). (2)

where the coefficient [ f ](x j ) is the jump value in I j and δx j
(x) is the indicator function with

δx j
(x) =

{
1 x = x j

0 x �= x j
. (3)

Suppose we are given a finite sequence of non-uniform Fourier samples of f ,

f̂ (λk) = 1

2

∫ 1

−1

f (x)e−iπλk x dx, (4)

where λk ∈ R and k = − M, . . . , M . Note here that we are considering continuous Fourier

samples, as generating data via the same model we use to solve the inverse problem commits

the inverse crime. Specifically, we look at three types of non-uniform sampling that were

considered in [18]. The first is jittered sampling, defined by

λk = k −
⌊

2M + 1

2

⌋
− 1 + 1 − 2ξk

4
(5)
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Fig. 1 Modes λk (M = 10) given by (top) jittered; (middle) quadratic; and (bottom) logarithmic sampling

where ξk ∼ U ([0, 1]). Jittered sampling imitates Cartesian grid sampling with small errors

that often occur in imaging systems. The next is quadratic sampling, defined by

λk = sign(k)k2

M
. (6)

This pattern simulates a cross-section of a non-Cartesian sampling pattern that undersamples

high frequencies and oversamples low frequencies. Lastly, we consider logarithmic sampling,

which oversamples low frequencies and, even more sparsely than quadratic, undersamples

high frequencies. In particular, log |λk | is evenly distributed between −v and log M with

v > 0 and 2M + 1 being the total number of samples. Figure 1 gives a visualization of these

three sampling types. We will also consider the case where the underlying Fourier data in (4)

are noisy, given by

f̂ η(λk) = f̂ (λk) + ηk, (7)

for k = − M, . . . , M . Here ηk ∼ CN (0, σ 2), meaning ηk is a complex Gaussian random

variable with mean 0 and variance σ 2.

From data given by (4) or (7), our goal is to accurately reconstruct the edge function

[ f ](x) defined in (1). In the following section, we review the method of [18], which shows

how non-uniform Fourier edge detection can be formulated as SSR. Later, we see the same

formulation in probabilistic terms, and then go further into the SBL framework to achieve

superior results.

3 Formulating Edge Detection as SSR

In [18], the authors solve an optimization problem to choose a concentration factor [19], fol-

lowed by a reconstruction via optimizing an �1-regularized cost function. The �1 regularized

edge detection method described below follows the derivation in [18].
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3.1 Concentration Factor Edge Detection for Uniform Fourier Data

The concentration factor edge detection method, originally developed in [19], approximates

(2) from 2M + 1 uniform Fourier coefficients given in (4) where λk = k as

Sσ
M [ f ](x) = i

M∑

k=−M

f̂ (k)sgn(k)σ

( |k|
M

)
eπ ikx . (8)

Here σ , coined the concentration factor in [19], satisfies certain admissibility conditions

1.
∑M

k=1 σ
(

|k|
M

)
sin(kπx) is odd

2. σ(u)
u

∈ C2(0, 1)

3.
∫ 1
ν

σ(u)
u

du → −1, ν = ν(M) > 0 being small.

If all three conditions are satisfied, Sσ
M [ f ] concentrates at the singular support of f and the

jump function approximation observes the concentration property

Sσ
M [ f ](x) = [ f ](x) +

⎧
⎨
⎩

O

(
log M

M

)
d(x) ≤ log M

M

O

(
log M

(Md(x))s

)
d(x) � 1

M

(9)

where d(x) is the distance between a point in the domain and the nearest discontinuity, and

s > 0 depends on σ . Generally, the convergence of (8) depends on the particular choice of

σ .

3.2 Fourier Frame Approximation

The concentration factor method cannot be extended directly to non-uniform Fourier coeffi-

cients because {eiπλk x }M
k=−M is generally not an orthogonal basis. However, it can be adapted

by using the finite Fourier frame approximation [18,30]. We will employ the Fourier frame

framework for our new edge detection method. The technique in [18] is briefly described

below.

We require the following two definitions:

Definition 1 A frame for a Hilbert space H is a sequence of vectors {ϕk : k ∈ Z} ⊆ H for

which there exists constants 0 < A ≤ B < ∞ such that, for every f ∈ H, we have

A|| f ||2 ≤
∑

k∈Z

|〈 f , ϕk〉|2 ≤ B|| f ||2. (10)

Definition 2 If {ϕk : k ∈ Z} ⊆ H is a frame for H then the associated frame operator

S : H → H is defined as

S f =
∑

k∈Z

〈 f , ϕk〉ϕk . (11)

Frame elements span H but are not necessarily linearly independent. The frame operator

is bounded, invertible, positive, and self-adjoint. In this investigation we consider H =
L2(−1, 1) and ϕk(x) = eiπλk x . Hence we can reconstruct f via

f = S−1S f =
∑

k∈Z

〈 f , ϕk〉S−1ϕk =
∑

k∈Z

f̂ (λk)ϕ̃k, (12)
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where ϕ̃k = S−1ϕk for k ∈ Z is the canonical dual frame and f̂ (λk) is the given non-uniform

Fourier data as in (4). In general there is no closed form of S−1. Various algorithms con-

struct (finite-dimensional) approximations to S−1. Here we use the admissible frame method

developed in [30], which obtains a finite-dimensional approximation of ϕ̃k by projecting

{ϕk : k ∈ Z} onto an admissible frame {ψl : l ∈ Z} defined as

Definition 3 A frame {ψl : l ∈ Z} is admissible with respect to the frame {ϕk : k ∈ Z} if the

following two conditions hold:

1. It is intrinsically self-localized, that is, there exists c0 ∈ R
+ and t > 1 such that

|〈ψk, ψl〉| ≤ c0(1 + |k − l|)−t .

2. There exists c1 ∈ R
+ and s > 1/2 such that

|〈ϕk, ψl〉| ≤ c1(1 + |k − l|)−s .

If {ψl : l ∈ Z} is admissible with respect to {ϕk : k ∈ Z}, then {ϕ̃k : k ∈ Z} can be

approximated by

ϕ̃k ≈
N∑

l=−N

bl,kψl =: ϕ̃N ,k, (13)

where {bl,k}N ,M
l=−N ,k=−M are the entries of B = Ψ †. That is, B is the Moore–Penrose pseu-

doinverse of Ψ where

Ψk,l = [〈ϕk, ψl〉] k = − M, . . . , M, l = − N , . . . , N . (14)

Since in this investigation ϕk(x) = eiπλk x , as shown in [30], a practical admissible frame is

ψl(x) = eiπlx , yielding the sinc approximation

〈ϕk, ψl〉 = 2
sin(π(λk − l))

π(λk − l)
. (15)

Remark 1 We note that except for the case of jittered sampling in (5), {ϕk} may not actually

constitute a frame except for its finite span. Nevertheless, as discussed in [17], the admissible

frame approach is still effective.

Since the conditioning of (14) depends on the difference λk − l, more uniformly spaced

samples yield better conditioning. To complete the reconstruction of f , we plug in the approx-

imation of ϕ̃k in (13) into (12) to get

TM f =
N∑

l=−N

M∑

k=−M

f̂ (λk)bl,kψl =
M∑

k=−M

f̂ (λk)ϕ̃N ,k(x). (16)

3.3 Concentration Factor Design

Returning to detecting edges from non-uniform Fourier data, since we cannot use (8), we

instead use (16) to approximate (2) by

T σ
M f (x) =

M∑

k=−M

σk f̂ (λk)ϕ̃N ,k(x). (17)
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The problem of choosing a concentration factor still remains. We need σ ∈ C
2M+1 so that

for each reconstruction point x j = j
J

, j = − J , . . . , J , we have

T σ
M f (x j ) =

M∑

k=−M

σk f̂ (λk)ϕ̃N ,k(x j ) ≈ [ f ](ξ)δξ (x j ). (18)

An optimization problem for determining the concentration factor {σk}M
k=−M is developed

in [18], which is reviewed below for the case when f has a single jump discontinuity at

x = ξ ∈ (−1, 1). Since (18) is linear with respect to the Fourier data, these results also hold

for functions with multiple jumps.

To proceed, we first approximate f as a superposition of scaled and shifted ramp functions,

r : [− 1, 1] → R, defined by

r(x) =
{

− x+1
2

if x ≤ 0

− x−1
2

if x > 0
. (19)

Observe that the jump function for rξ (x) = r(x − ξ) is

[rξ ](x) =
{

1 if x = ξ

0 if x �= ξ
. (20)

While f (x) is only approximated to first order by

f (x) ≈ arξ (x), (21)

where a is the corresponding jump height, the jump function is exactly [ f ](x) = a[rξ ](x).3

Substituting (21) into (18), translating ξ to 0, and canceling a, leads to

T σ
Mr(x j ) =

M∑

k=−M

σk r̂(λk)ϕ̃N ,k(x j ) ≈ δ0(x j ). (22)

Here r̂(λk) are the Fourier coefficients for r(x) given by

r̂(λk) =
{

0 λk = 0
(sin(πλk )−πλk )i

(πλk )2 λk �= 0.
(23)

Because δξ (x) has a trivial Fourier expansion, we consider a regularized approximation of

δξ (x),

hξ (x) = h

(
x − ξ

ε

)
≈ δξ (x), ε > 0,

for some h that is (essentially) compactly supported in [ξ − ε, ξ + ε] with hξ (ξ) = 1. As the

parameter ε increases the approximation is more regularized, but the edges are not as well

localized. The authors of [18] suggest using ε = 0.07. Replacing δ0(x) in (22) gives

M∑

k=−M

σk r̂(λk)ϕ̃N ,k(x j ) ≈ h0(x j ) ≈
M∑

k=−M

ĥ0(λk)ϕ̃N ,k(x j ). (24)

3 A complete derivation explaining how approximating periodic piecewise smooth functions as sums of

scaled and shifted ramp functions can be effectively used to design concentration factors from uniform Fourier

coefficients can be found in [36].
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Hence

σk = ĥ0(λk)

r̂(λk)
, k = − M, . . . , M . (25)

Now we know how to compute σ , but the problem of choosing an optimal h still remains.

In many cases, f is in a more restrictive class of functions like piecewise polynomials or

piecewise trigonometric polynomials. Assuming f has just one edge at x = ξ ,

f (x) = s(x) + [ f ](ξ)rξ (x) (26)

where s(x) is the continuous part of f . By adding the constraint

T σ
M s(x j ) ≈ 0

for all x j ∈ (−1, 1), we are requiring that smooth regions of f be drawn to zero in the

approximation of [ f ](x). With these tools in hand, we can now develop an algorithm to

construct an optimal ĥ = {ĥ0(λk)}M
k=−M by formulating an optimization problem rather than

using a pre-determined regularization that makes no assumption on s(x). Specifically, we

determine that ĥ must satisfy two contraints

M∑

k=−M

ĥ(λk)

r̂(λk)
ŝ(λk)ϕ̃N ,k(x j ) ≈ 0 and

M∑

k=−M

ĥ(λk)ϕ̃N ,k(x j ) ≈ δ0(x j ). (27)

Algorithm 1 Concentration factor design for non-uniform Fourier data

1: Given 2M + 1 Fourier coefficients, f̂ (λk ), of a piecewise smooth function, f , as in (4).

2: Choose s(x) to be consistent with f (x) = s(x) + [ f ](ξ)rξ (x) and define

F =
[
ϕ̃N ,k (x j )

]J ,M
j=−J ,k=−M

and S =
[

ŝ(λk )

r̂(λk )
ϕ̃N ,k (x j )

]J ,M

j=−J ,k=−M

. (28)

3: Determine ĥ as the minimizer of

min
ĥ∈R2M+1

||Fĥ||1 + μ||Sĥ||1 subject to h(0) = 1 (29)

for x j = j
J

, j = − J , . . . , J , and μ > 0.

4: Define σk = ĥk
r̂(λk )

, k = − M, . . . , M .

Per [18], we choose μ = 1000 for Algorithm 1. We still have to choose s(x), though,

which depends on prior information about f . For example, if f has discontinuities in its

derivative as well, we may choose a hat function

s1(x) =
{

− x+1
2

if − 1 ≤ x ≤ 0
x−1

2
if 0 < x ≤ 1

. (30)

On the other hand if f is essentially piecewise constant or linear with smooth variation

between jumps, a smooth varying function like

s2(x) =
{

− (x+1)3

12
if − 1 ≤ x ≤ 0

(x−1)3

12
− 1

6
if 0 < x ≤ 1

, (31)

is more appropriate.
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3.4 Sparsity Model for Edge Detection

We now develop a method for reconstructing the edge function [ f ](x) using Algorithm 1

that takes advantage of our assumption that [ f ](x) is sparse. We seek a solution [ f ](x) that

most closely matches the projection of
∑L

l=1[ f ](ξl)hξl
(x) where L is the number of edges

onto the space spanned by the Fourier frame elements given by (18). To this end, we adopt

the waveform matching idea developed in [31] for uniform Fourier data. As will be evident

in what follows, this approach allows us to build a forward model for reconstructing [ f ](x).

We start by defining the waveform kernel as the partial Fourier sum approximation of h0(x)

given by

W σ
M (x) = 1

γ σ
M

M∑

k=−M

σk

cos kx

k
, (32)

where σ is the concentration factor vector found using Algorithm 1 and γ σ
M is a normalization

constant. We can then approximate

W σ
M ∗ [ f ] ≈ Sσ

M ( f ), (33)

where Sσ
M ( f ) is defined in (8) for some admissible σ . For non-uniform Fourier data, the

corresponding waveform kernel is given by

W σ
N (M)(x) = 1

γ σ
N (M)

M∑

k=−M

σk r̂(λk)ϕ̃N ,k(x) = 1

γ σ
N (M)

M∑

k=−M

N∑

l=−N

σk r̂(λk)bl,keiπlx ,

(34)

where

γ σ
N (M) =

M∑

k=−M

N∑

l=−N

bl,kσk r̂(λk)

is the normalization constant. Analogous to (33) we now have

W σ
N (M) ∗ [ f ] ≈ T σ

M ( f ), (35)

which is satisfied by requiring

1

γ σ
N (M)

M∑

k=−M

bl,kσk r̂(λk)[̂ f ](l) ≈
M∑

k=−M

bl,kσk f̂ (λk) l = − N , . . . , N . (36)

Hence we see that using the waveform kernel approach allows us to construct the model

1

γ σ
N (M)

(B(σ · r̂)) · (F[ f ]) ≈ B(σ · f̂) (37)

where · denotes elementwise multiplication and F is the Fourier transform. We simplify the

model as

Θ[ f ] ≈ y (38)

where

Θ = 1

γ σ
N (M)

diag
[
B(σ · r̂)

]
F and y = B(σ · f̂). (39)
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Algorithm 2 combines (38) with �1 regularization, used because of our assumption that

the edges are sparse, to construct an approximation to [ f ](x) at a set of grid points x j , j =
− J , . . . , J . As in [18], we choose λ = 0.01 for Algorithm 2 when starting from noise-free

data, and λ = 0.025 when starting from noisy data, reflecting the fact that in the noisy case we

have less confidence in the fidelity term. We also consider the same three examples given there

to compare our methods, given in Examples 1–3 below, and shown in Fig. 2. The results using

M = 100 displayed in Figs. 3, 4, and 5, show generally good results for the jittered sampling

case, but spurious oscillations appear for both quadratic and logarithmic sampling. Thus we

see that the solutions are not sufficiently sparse, which may have undesirable consequences

in downstream processing such as reconstruction. Furthermore, as displayed in Fig. 6, the

results clearly deteriorate when Gaussian noise with mean 0 and standard deviation 0.02 is

added to the given Fourier data. Note that throughout this paper to compare results we use

the relative error defined by

RE(g) = ||g − [f]||2
||[f]||2

, (40)

where [f] is the discretized true edge function.

Algorithm 2 Reconstruction of [ f ](x) from non-uniform Fourier data via �1 regularization

1: Given 2M + 1 Fourier coefficients, f̂ (λk ), of a piecewise smooth function, f , as in (4).

2: Determine σ from Algorithm 1.

3: Reconstruct the jump function [ f ] on gridpoints as

g∗ = arg min
g

||Θg − y||2 + λ||g||1. (41)

Example 1

f1(x) =
{

cos
(
πx − πx

2
sign(−x − 1/2)

)
−1 ≤ x ≤ 0

cos
(

5πx
2

+ πx sign(x − 1/2)
)

0 < x ≤ 1
(42)

Fig. 2 (left) f1(x), (center) f2(x), and (right) f3(x)

Fig. 3 [ f1] reconstructed via Algorithm 2 using (left) jittered; (center) quadratic; and (right) logarithmic

sampling
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Fig. 4 [ f2] reconstructed via Algorithm 2 using (left) jittered; (center) quadratic; and (right) logarithmic

sampling

Fig. 5 [ f3] reconstructed via Algorithm 2 using (left) jittered; (center) quadratic; and (right) logarithmic

sampling

with

[ f1](x) =

⎧
⎨
⎩

−
√

2 x = −1/2√
2 x = 1/2

0 |x | �= 1/2

. (43)

Example 2

f2(x) =

⎧
⎨
⎩

− 1
2
(1 − x2)2 −1 ≤ x ≤ −1/2

cos(4πx) |x | < 1/2

(1 − x2)4 1/2 ≤ x ≤ 1

(44)

with

[ f2](x) =

⎧
⎨
⎩

42
31

x = −1/2

− 175
256

x = 1/2

0 |x | �= 1/2

. (45)

Example 3

f3(x) =
{

π(1 − x2)2 1/2 ≤ |x | ≤ 1

− 1
6

sin(6πx) |x | < 1/2
(46)

with

[ f3](x) =

⎧
⎨
⎩

− 9
16

π x = −1/2
9

16
π x = 1/2

0 |x | �= 1/2

. (47)

4 Probabilistic Approach

As Figs. 3, 4 and 5 demonstrate, Algorithm 2 is somewhat effective in recovering edges of

piecewise smooth functions from non-uniform Fourier data in cases without noise. However,
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Fig. 6 Reconstructions with Algorithm 2 from non-uniform Fourier data with zero-mean Gaussian noise with

0.02 standard deviation. (left)[ f1] from logarithmic sampling; (center) [ f2] from quadratic sampling; and

(right) [ f3] from jittered sampling. The relative errors left to right are 0.295, 0.364, and 0.472. Because of the

as Fig. 6 shows, the quality of the edge approximation deteriorates as noise is introduced.

While this suggests that the �1 regularization term is no longer mitigating the poor fidelity,

it is also apparent that as more noise is introduced, it is more difficult to obtain a truly sparse

approximation. Hence choosing the regularization parameter λ a-priori and without oracle

knowledge becomes more challenging. As mentioned in the introduction, one way to address

this problem is to use the sparse Bayesian learning (SBL) approach, which we describe

below.

Following (38), we now assume that the recovery of the presumably sparse edge map g

can be modeled as

y = Θg + n. (48)

Here y is a transformation of the acquired Fourier data from (4), Θ is the forward model

described in Sect. 3.4, and n is added noise, assumed zero-mean complex Gaussian with

unknown variance ν2. Rather than using the strategy in Algorithm 2, where we find edges

by minimizing an explicit �1-regularized least squares cost function to enforce sparsity, we

now consider the inversion of (48) from a probabilistic perspective. In particular, we use the

assumption that the edge function g is sparse as a prior. There has been increased interest

in Bayesian probabilistic approaches to sparse signal recovery (SSR) problems [4,21,25,34,

38]. There are two categories of Bayesian probabilistic methods for SSR that encompass

many well-known recovery algorithms in practice [21]. The first is type-I, or maximum a

posteriori (MAP) Bayesian estimation which uses a fixed prior. Type-I includes the most

popular methods for SSR from compressed sensing including �1 regularization [11,33],

iteratively reweighted �1 regularization [9], and iteratively reweighted �2 regularization [10].

On the other hand, Type-II, or evidence maximization Bayesian estimation employs a flexible

parametrized prior that is learned from the given data. In addition to the accuracy advantages

mentioned in Sect. 1 [21,25], SBL can also provide the added benefit of a full posterior density

function, as well as automatic data-driven estimation of hyper-parameters that correspond

to the regularization parameter in the MAP method, (41). Below we describe how the SBL

approach can be used to improve edge detection given non-uniform Fourier data.

4.1 �1 Regularization as a Type-I (MAP) Estimate

We begin by examining �1 regularization for SSR from a probabilistic perspective as a type-I

(MAP) Bayesian estimate. To develop our technique, as in [25], we will assume that the
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entries of y are independent.4 The likelihood of the data given an edge function, g, and added

noise variance, ν2, can be written as the Gaussian likelihood model

p(y|g, ν2) = (2πν2)−(2N+1)/2 exp

(
− 1

2ν2
||Θg − y||22

)
. (49)

We now formulate the assumption that the edge function g is sparse by using a sparsity-

encouraging prior on g. One widely used sparsity-encouraging prior is the Laplace density

function, given by

p(g|μ) =
(μ

2

)2J+1
exp (−μ||g||1) . (50)

For given μ, ν2, using Bayes’ theorem yields

gM AP = arg max
g

p(g|y) = arg max
g

p(y|g, ν2)p(g|μ) (51)

= arg min
g

{
||Θg − y||22 + 2ν2μ||g||1

}
, (52)

which is equivalent to (41) where the regularization parameter is λ = 2ν2μ. Thus we see

the connection between the typical inversion process via �1 regularization as in [8,14] and

a MAP approximation to a Bayesian linear regression analysis with a sparsity-encouraging

Laplace prior on g, (51). As it is equivalent to the solution proposed in [18], this particular

MAP estimate falls victim to the same problems as Algorithm 2.

In general, there are many sparsity-encouraging priors that can be used to regularize in

this context. Functions of this type are sometimes referred to as super-Gaussians as they are

characterized by fat tails and a sharp peak at zero. However, as will be seen in what follows,

using empirical priors characterized by flexible parameters that are estimated explicitly from

the data are more often accurate than type-I estimates.

4.2 Sparse Bayesian Learning (SBL)

In the previous section we demonstrated that the �1-regularized least squares method of [18]

was equivalent to that of a MAP estimate using a fixed sparsity-encouraging Laplace prior,

which may not yield satisfactory results, especially when noise is present as is evident in

Fig. 6. Further, given the probabilistic formulation in Sect. 4.1, we hope to carry Bayesian

analysis further and obtain a full posterior distribution on g. This cannot be done using the

Laplace prior because it is not conjugate to the Gaussian likelihood model. Conjugate priors

[5], would allow us to maintain the same functional form for the prior and posterior while only

updating the parameters [3]. Without conjugacy, the associated Bayesian inference cannot be

done in closed form [6,20]. Sparse Bayesian learning (SBL), also referred to as the relevance

vector machine (RVM) [34], solves this problem by using a hierarchical parametrized prior

with similar properties to the Laplace prior. The SBL method derived below closely follows

[25,34].

4 This is not generally the case given the definition of y in (38). However by construction of (14), if λk is

close to k, that is, our samples are nearly uniform in the Fourier domain, B will be diagonally dominant.

Hence adopting the probabilistic approach seems reasonable. We also note that it is discussed in [25] that this

assumption may not hold. Future investigations will consider the covariance structure in y.
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First, define a zero-mean Gaussian prior on each element of g as

p(g|a) =
J∏

i=−J

N (gi |0, a−1
i ) (53)

where the hyper-parameter ai is the inverse variance of a zero-mean Gaussian density function

for each i = − J , . . . , J . This hyper-parameter will be estimated from the data to determine

to the spread of this Gaussian and hence the sparsity of g. We consider a non-informative

Gamma prior over each element of a, given by

p(a|a, b) =
J∏

i=−J

Γ (ai |a, b).

We then marginalize over the hyper-parameters a to obtain the overall prior on g as

p(g|a, b) =
J∏

i=−J

∫ ∞

0

N (gi |0, a−1
i )Γ (ai |a, b)dai . (54)

Each integral being multiplied in (54) is distributed via the Student’s t-distribution, which,

for appropriate a and b, is strongly peaked at gi = 0. Therefore this prior favors gi being zero,

and hence is sparsity-encouraging, similar to the Laplace prior. A Gamma prior Γ (β|c, d) is

also introduced on β = 1
ν2 .

The posterior for the edge function g can be solved for analytically as a multivariate

Gaussian distribution

p(g|y, a, β) = N (g|m,Σ). (55)

with mean and covariance matrix given by

m = βΣΘT y, (56)

Σ = (βΘT Θ + A)−1, (57)

where A = diag(a) [7]. If n = 0, i.e. there is no added noise, we want to let ν2 → 0. In [38],

the authors derive the following expressions for m and Σ in this case as

m = A−1/2(ΘA−1/2)†y, (58)

Σ = (I − A−1/2(ΘA−1/2)†Θ)A−1, (59)

where † is Moore–Penrose pseudoinverse. We now have the full posterior, so we just need to

learn (estimate) hyper-parameters a and β from the given data. By marginalizing over g, the

marginal log-likelihood for a and β is

L(a, β) = log p(y|a, β)

= log

∫
p(y|g, β)p(g|a)dg

= −1

2

(
(2N + 1) log 2π + log |C| + yt C−1y

)
, (60)

with C = β−1I + ΘA−1ΘT [7]. In [25,34], a type-II maximum likelihood approxima-

tion is used which utilizes the point estimates for a and β to maximize L in (60), and
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can be implemented via the expectation–maximization (EM) algorithm [13], to obtain the

update

a
(new)
i = γi

m2
i

(61)

for i = − J , . . . , J , where mi is the i th posterior mean weight from (56) and γi = 1−aiΣi i

with Σ from (57). For β, we obtain the update

β(new) = 2M + 1 −
∑

i γi

||y − Θm||22
. (62)

Derivation details for (61) and (62) can be found in Appendix A of [34]. We have that

a(new) and β(new) are functions of m and Σ , and vise versa, such that the EM algorithm

for recovering the posterior for g iterates between (56) and (57), and (61) and (62) until a

convergence criterion is satisfied. Due to the properties of the EM algorithm, SBL is globally

convergent, meaning each iteration is guaranteed to reduce the cost function until a fixed

point is achieved [38]. In particular, it has been observed that ai → ∞ for gi ≈ 0. Also note

that since we seek the point estimates of a and β, and not their posterior densities, we do

not need to rigorously choose parameters a, b, c, d on the Gamma hyper-priors. Therefore

we simply set all of them to 0, implying uniform hyper-priors (over a logarithmic scale) on

a and β [34]. The resulting algorithm is provided in Algorithm 3.

Algorithm 3 Reconstruction of [ f ](x) from non-uniform Fourier data via sparse Bayesian

learning

1: Given 2M + 1 Fourier coefficients, f̂ (λk ), of a piecewise smooth function, f , as in (4).

2: Determine σ from Algorithm 1.

3: Construct Θ and y.

4: Initialize hyper-parameters a and β, e.g. ai = 1 for all i or non-negative random initialization.

5: Compute m and Σ via (56) and (57).

6: Update a and β using (61) and (62).

7: Repeat steps 5 and 6 until convergence to a fixed point a∗.

8: The point estimate for g is the mean computed with a∗, m∗ = m(a∗).

Figures 7, 8, and 9 show the results using M = 100 for Examples 1–3, with jittered,

quadratic, and logarithmic sampling, respectively. In addition to the visual comparison,

Table 1 below highlights the dramatic improvements over Algorithm 2 in terms of rela-

tive error. When Gaussian noise with mean 0 and standard deviation 0.02 is added to the

given Fourier data, we retrieve the results shown in Fig. 10. Notice the significant improve-

ment over Fig. 6 both visually in the ease of identifying true jump locations and in terms of

relative error which focuses more on accurately estimating the height of the jump. Figure 11

Fig. 7 [ f1] reconstructed via Algorithm 3 using (left) jittered; (center) quadratic; and (right) logarithmic

sampling
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Fig. 8 [ f2] reconstructed via Algorithm 3 using (left) jittered; (center) quadratic; and (right) logarithmic

sampling

Fig. 9 [ f3] reconstructed via Algorithm 3 using (left) jittered; (center) quadratic; and (right) logarithmic

sampling

Table 1 Comparison of relative errors from Algorithms 2 and 3 over example functions f1, f2, and f3 using

jittered, quadratic, and logarithmic sampling in the noise-free case

Jittered Quadratic Logarithmic

f1 with Algorithm 2 0.0381 0.2475 0.3072

f1 with Algorithm 3 0.0018 0.0229 0.0515

f2 with Algorithm 2 0.0485 0.0856 0.2978

f2 with Algorithm 3 0.0466 0.0277 0.0158

f3 with Algorithm 2 0.0156 0.1513 0.2884

f3 with Algorithm 3 5.4364 × 10−4 0.011 0.034

Fig. 10 Reconstructions with Algorithm 3 from non-uniform Fourier data with zero-mean Gaussian noise

with 0.02 standard deviation. (left) [ f1] from logarithmic sampling; (center) [ f2] from quadratic sampling;

and (right) [ f3] from jittered sampling. The relative errors left to right are 0.024, 0.053, and 0.398

Fig. 11 Reconstructions of [ f1], given (left) logarithmically sampled non-uniform Fourier data with zero-

mean Gaussian noise with 0.08 standard deviation, via (center) Algorithm 2 and (right) Algorithm 3. The

relative error in the center is 0.753 and on the right is 0.029
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Fig. 12 Plot of number of grid points J versus relative error. The relative reconstruction error decreases as the

number of grid points increases. Each plotted point represents a reconstruction of [ f3] via Algorithm 3 from

jittered Fourier data with added zero-mean Gaussian noise with 0.02 standard deviation

Fig. 13 Detection comparison of Algorithms 2 and 3 based on number of jumps detected for a given threshold.

This plot is derived from the reconstruction of [ f1] from logarithmic sampling with zero-mean Gaussian noise

with 0.02 standard deviation

shows another example using even more noise. Finally, Fig. 12 demonstrates that the error

depends on the ratio of jumps to grid points in the reconstruction domain. In that example,

we see that as the number of grid points increases, the relative reconstruction error decreases

as well.

We note that it is possible to further improve these results by non-linearly post-processing

the results of Algorithm 3. For example, the algorithm can run multiple times with different

concentration factors. Points that differ in sign between the two runs indicate an oscillatory

response—not a true edge—and are set to zero. Assuming an appropriate choice for each of

the concentration factors, this will only affect falsely identified jumps, further refining the

accuracy result in the noisy case.

To summarize the superior performance of Algorithms 2 and 3, we consider a detection

scenario where we would like to be able to distinguish true jumps from false jumps that are

either artifacts of the edge detection process or misclassified due to noise. In this scenario, a

grid point will be classified as a jump if the value at that grid point is above a certain threshold.

For a particular example, Fig. 13 shows the number of jumps identified for many thresholds.

We see that Algorithm 3 correctly identifies the two correct jumps (we verified they are indeed
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at the correct locations) and only those two for a much wider range of threshold values than

the �1 edge detection method.

4.3 Discussion

Our numerical experiments clearly demonstrate that Algorithm 3 yields better accuracy than

�1 regularization (Algorithm 2) for both the noiseless and noisy cases. The SBL results are

better both in terms of damping down false edges as well as more accurately estimating

jump height. The Bayesian formulation also provides advantages over other formulations

not readily apparent in the figures above. Namely it allows for automatic estimation of model

parameters [4]. Choosing parameters in �1-regularized formulations is problem dependent,

and often by trial and error, sometimes requiring fine tuning. In SBL, the analog of the

regularization parameter λ as in (41) are the hyper-parameters a and β [38], both of which

are estimated directly from the data. This removes user input from the process, which is a

common complaint from practitioners regarding �1 regularization, since it means that the

methods are neither automated nor robust to perturbations in the data. That being said, in

very noisy scenarios β can still be chosen beforehand instead of estimated, in particular when

the point estimate is really the goal. Also not apparent in our numerical experiments is the

fact that we have obtained a full density on the edge map g, where only a point estimate

is available when using the type-I MAP method. That is, while type-I methods return only

a vector estimate of the signal, SBL returns a full multivariate Gaussian density to better

quantify the uncertainty. The mean vector of this distribution serves as the de facto point

estimate, and the covariance matrix indicates how certain we can be about this estimate.

This will be particularly useful in downstream processes where a probability distribution on

each gridpoint’s value is required. Moreover, because of our accurate estimation of Θ in

(38) with regard to the non-uniform Fourier data acquisition, we are better able to capture

different magnitudes of edges, which can be useful in classifying a variety of targets. As was

pointed out in [27], determining an edge map directly from the (non-uniform) Fourier data,

as opposed to first reconstructing an image (e.g. via non-uniform FFT) and then using an

image based edge detection method (such as Canny edge detection), always yields improved

fidelity, especially when the data are highly non-uniform or noise is present. This is because

important edge information is not lost (filtered) in the image reconstruction process.

SBL is not without its own problems, however. While the iterative algorithm described

above has been demonstrated to yield highly accurate sparse solutions [21], with theoretical

guarantees [28,38,39], Algorithm 3 requires the inversion of the (2J+1)×(2J+1) covariance

matrix Σ in (57), an O((2J +1)3) operation, at each step. This can be slow as the signal size

grows. To mitigate this problem, a workaround was suggested in [38] using the following

simplification:

Σ = (βΘT Θ + A)−1

= A−1 − A−1ΘT (β−1I + ΘA−1ΘT )−1ΘA−1

= A−1 − A−1ΘT C−1ΘA−1. (63)

Now the computation of Σ only requires inverting the (2N +1)×(2N +1) matrix C, reducing

the complexity to O((2N + 1)3), which is much faster for N < J . In our experiments

this acceleration resulted in a slightly faster solve for Algorithm 3 than for Algorithm 2.

Specifically, on average for the experiments shown in Figs. 3, 4, 5 and 6, using CVX [22,23],

to solve (41) took 0.65 s. Meanwhile, using the acceleration in (63) with Algorithm 3 for the
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analogous Figs. 7, 8, 9 and 10 took on average 0.45 s to converge.5 Other fast algorithms to

consider for optimal implementation include those in [15,25,35].

We also want to address other type-II methods. Another hierarchical parametrized prior-

based estimation technique to consider is the so-called type-II �1 method [4,21]. Effectively,

this prior uses the same hierarchical structure but slightly different update rules than those

prescribed in (61) and (62). In [4], empirical evidence supports the idea that using the same

number of measurements, type-II �1 consistently produced lower reconstruction error than

SBL. However, in [21] it was empirically shown that using the same number of measure-

ments, for a signal with the same number of nonzero entries, SBL consistently had a higher

probability of successfully reconstructing the signal. Our goal in this current investigation is

to develop an algorithm for edge detection using SBL and provide some numerical results.

The alternative constructions described here may be effective modifications to our basic

algorithm, and will be explored in future work.

5 Applications of Edge Detection via SBL

As noted in the introduction, edge detection is not only useful in and of itself, but can be used

for downstream processing such as signal recovery and image reconstruction, which can in

turn be used for classification, target identification, and change detection. There are two main

advantages to employing Algorithm 3 over classical forms of �1 regularization. First, due to

the construction of Θ in [18], we achieve better accuracy to the magnitude of the edges in

the sparse signal recovery. Second, while Algorithm 3 is designed to recover the mean of the

solution, it is straightforward to recover the full posterior distribution described in (55)–(57).

In what follows we demonstrate how SBL improves image reconstruction. Other applications

using our SBL approach will be the subject of future investigations.

Since edges represent sparse features in an image, edge detection methods are often

employed to aid in full piecewise-smooth signal reconstruction [1,9,10,12]. For example, the

methods in [9,10,12] are designed to apply the regularization more strongly away from the

edges. As noted in the introduction, typical �1 regularization, which can be considered as a

type I MAP estimate, has been enhanced by using iterative reweighting techniques, both for

�1 and for �2 regularization. Such methods are particularly effective when the edges are well

separated, that is, when there is sufficient resolution in the acquired data, as well as limited

noise. The performance of iterative reweighting schemes deteriorate when this is not the case,

mainly because of the propagation and enhancement of false edges caused by the reweighting

process. These issues inspired the development of the edge adaptive �2 regularization method

in [12], which is particularly appealing because it overcomes the magnitude dependence of �1

norm regularization by directly identifying edges in one initial step. The procedure begins by

creating a binary weighting matrix, or mask, based on the edge locations found using an (any)

edge detection algorithm. A weighted �2-regularized optimization problem is then solved to

achieve the full signal reconstruction. Since the vector inside the regularization term should

now be identically zero instead of sparse, it is appropriate and computationally advantageous

to regularize using the �2 norm. The effect is similar to that of skipping to the final iteration

of an iteratively reweighted �2 scheme [10]. The full procedure is described in Algorithm 4.

In [12], this method was demonstrated to have potential use in SAR image reconstruction.

Here we simply demonstrate its compatibility and effectiveness with this SBL edge detection

5 All computations were performed on a MacBook Air with a 1.7 GHz Intel Core i5 processor and 4 GB of

memory.
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Fig. 14 (top row) Noisy signal reconstructions via Algorithm 4 comparing �1 and SBL edge detection for

development of the mask with (bottom row) log error for (left) f1 from logarithmic sampling with m = 2 with

relative error 0.1496 and 0.0823; (center) f2 from quadratic sampling and m = 3 with relative error 0.1912

and 0.1015; and (right) f3 from jittered sampling and m = 1 with relative error 0.1683 and 0.1527

method starting from non-uniform Fourier data on piecewise smooth functions f1, f2, and

f3 given in Examples 1–3 respectively. Figure 14 shows full signal reconstructions of these

examples using a variety of sampling patterns when zero-mean Gaussian noise with standard

deviation 0.02 is added to the given Fourier data. We use the polynomial annihilation method

[1,2], of various orders to ensure sparsity of the corresponding jump function [ f ]. Other

operators, e.g. wavelets, may also be used.

Note that in Algorithm 4 we introduce the parameter τ , but in the experiments shown

simply set τ = 1
2J+1

, which is consistent with the grid resolution. Figure 13 also shows that

our method performs well for a broad range of τ .

Algorithm 4 Edge-adaptive �2-regularized image reconstruction

1: Reconstruct the jump function, [ f ], using Algorithm 2 or 3 as g∗.

2: For each index j = − J , . . . , J such that |Lmg∗
j
| > τ , set y j = 0. Else, y j = 1. Here τ is a user-defined

thresholding parameter. The mask is M = diag(y), and Lm is the mth order polynomial annihilation

operator [2], similar to a high order total variation operator. It is necessary to apply Lm so that the stencil

of the sparsity operator is accounted for in the mask.

3: The edge-adaptive �2 regularization image reconstruction is the solution to the optimization problem,

f∗ = arg min
f

{
||Ff − f̂ ||22 + λ||MLm f ||22

}
, (64)

where F is the non-uniform Fourier measurement matrix, f̂ is the vector of collectedFourier coefficients,

and λ > 0 is the regularization parameter.

6 Conclusion

The SBL edge detection method given non-uniform Fourier data developed here compares

favorably to typical �1-regularized sparse signal recovery methods. This is true even when

the data are explicitly considered in the recovery method, as in [18]. Moreover, this type-II

approach is more robust than typical type-I MAP estimates, which can be viewed as stan-

dard �1 regularization methods, since the regularization parameters are estimated directly
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from the data and modified accordingly. The lack of automation in standard �1 regulariza-

tion methods is considered highly unfavorable by most practitioners. Our method can also

be used to reconstruct a piecewise smooth signal as a pre-processing step for the edge-

adaptive reconstruction [12]. Our numerical experiments demonstrate that both the edge

detection and resulting reconstruction are robust with respect to noise and signal type, with

our method consistently outperforming the one in [18]. Future investigations will include

further development of Algorithms 2 and 3 for two-dimensional signals. While theoretically

the one-dimensional acceleration in (63) combined with our method expands to multiple

dimensions in a dimension-by-dimension manner, our early explorations indicate it is still

cost prohibitive for detecting edges in images. Some of the ideas discussed in Sect. 4.3 will be

used to improve the efficiency of Algorithm 3, which will be important for higher dimensional

reconstructions and larger signals in general.
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