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Abstract. Much research has recently been devoted to sparse signal recovery and image
reconstruction from multiple measurement vectors. The assumption that the underlying signals
or images have some common features with sparse representation suggests that using a joint sparsity
approach to recover each individual signal or image can be more effective than recovering each signal
or image separately using standard sparse recovery techniques. Joint sparsity reconstruction is typi-
cally performed using \ell 2,1-minimization, and although the process yields better results than separate
recoveries, the inherent coupling makes the algorithm computationally intensive, since it is difficult
to parallelize. In this investigation, we first observe that the elementwise variance of the signals con-
vey information about their shared support. This observation motivates us to introduce a weighted
\ell 1-joint sparsity algorithm, where the weights depend on the calculated variance. Specifically, the
\ell 1-minimization should be more heavily penalized in regions where the corresponding variance is
small, since it is likely there is no signal there. We demonstrate that our new method, which we refer
to as variance-based joint sparse recovery, is more accurate and cost efficient. Applications in sparse
signal recovery, parallel magnetic resonance imaging, and edge detection are considered.
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1. Introduction. Much research in recent years has been devoted to sparse sig-
nal and image recovery from multiple measurement vectors (MMV). While often the
vectors are considered to be duplicates of the same data modulo noise or some other
inconsistency, the MMV approach has been used to model various other data acqui-
sitions, including parallel magnetic resonance imaging (MRI), hyperspectral imaging,
and beyond. The assumption in all cases is that the underlying signals or images
have some features that have sparse representations that can be readily obtained
from each individual measurement vector. While they can be recovered separately
using standard sparse recovery techniques, in this paper we consider the joint sparsity
approach [2, 12, 10, 13]. In a nutshell, joint sparsity asserts that a set (or subset)
of images or signals have similar support in a common sparsity domain (e.g., dis-
crete gradient, wavelet transforms). Such information is exploited through additional
constraints leading to a more robust recovery for each individual image or signal.
Any subsequent joint processing of these individual recoveries is therefore greatly
improved. Joint sparsity exploitation can be accomplished in different ways, typi-
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cally via modifications of sparse recovery algorithms for single measurement vectors
(see [3, 16, 26, 32, 33, 29] and references therein). Among the most popular is \ell 2,1-
minimization [10, 12, 35, 13, 33]—a natural analogue of the popular \ell 1-minimization
procedure for sparse recovery of single vectors—which is widely used in practice. We
consider this procedure as the benchmark technique for the remainder of this paper.

While often effective, a singular drawback of most joint sparse recovery techniques
is that they are inherently coupled and therefore difficult to parallelize. For instance,
\ell 2,1-minimization requires solving a convex optimization problem of size N\times C, where
C is the number of signals and N is signal length (see section 2). When the num-
ber of signals is large, as is common in many applications, such approaches become
increasingly slow.

With this in mind, in this paper we consider a different approach. This approach
is based on the following observations, which will be further explained in section 2:

1. The supports of the signals to be recovered \bfitx 1, . . . ,\bfitx C \in C
N are similar.

2. The coefficients of signals are reasonably distinct.
We note that the first observation can be taken as the definition of joint sparsity (see
section 2). Furthermore, in practice it may not hold in the signal domain itself but
rather in a transform domain (e.g., wavelet or discrete gradient). This makes little
difference to the current discussion. The second observation is essentially a necessary
requirement to see benefits of joint sparsity. In the extreme case, if the signals are
identical, then there is no additional information conveyed by the MMV (note that
in this paper we consider the setting where the signals are measured with the same
measurement operator).

These two observations suggest that the elementwise variance of the signals

vi =
1

C

C\sum 

c=1

(xic)
2  - 
\Biggl( 

1

C

C\sum 

c=1

xic

\Biggr) 2

, i = 1, . . . , N,

should convey information about their shared support. Specifically, the variance vi
will be large when the index i belongs to this support, and vi \approx 0 otherwise. Hence, if
the variance vector \bfitv = (vi)

N
i=1 is known or has been computed, rather than recovering

each signal via \ell 1-minimization (which gives equal weighting to each index) one should
use this prior information to penalize indices unlikely to be in the support. This can
be achieved, for instance, via a weighted \ell 1 functional, that is, \| \bfitx \| 1,w =

\sum N
i=1 wi| xi| 

(see, for instance, [18]). The variance is used to compute the nonnegative weights in
[0, 1] and we choose wi \approx 0 for large variance and conversely wi \approx 1 when the variance
is close to zero.

Our method, referred to as variance-based joint sparse (VBJS) recovery, proceeds
in three steps:

(i) Compute approximations \̌bfitx c to the signals \bfitx c via \ell 1-minimization.
(ii) Compute the elementwise variance of the \̌bfitx c.
(iii) Compute approximations \̂bfitx c to the signals \bfitx c via weighted \ell 1-minimization.

Unlike \ell 2,1-minimization, VBJS is easily parallelized, since the expensive computa-
tions in steps (i) and (iii) can be solved separately. Using standard black-box opti-
mization solvers, our numerical results demonstrate a consistent reduction in compu-
tational time for VBJS over \ell 2,1-minimization. Furthermore, and perhaps surprisingly,
the VBJS method often gives a recovery error superior to \ell 2,1-minimization. We doc-
ument this observation on both synthetic experiments (i.e., phase transition curves)
and numerical examples from imaging applications. Interestingly, on synthetic exam-
ples at least, we see the phase transition of VBJS approaches the optimal theoretical

D
o

w
n
lo

ad
ed

 0
6
/1

3
/2

0
 t

o
 1

3
2
.1

7
4
.2

5
0
.1

9
4
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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limit as the number of signals C increases.
The rest of our paper is organized as follows. In section 2 we describe our VBJS

recovery algorithm. In section 3 we present a series of synthetic numerical experiments
based on phase transitions and comparisons to existing methods. We illustrate in this
section how our method yields both a greater probability of correct signal recovery
than \ell 2,1-minimization and improved computational efficiency. In sections 4 and 5
we consider the use of VBJS in two applications—parallel MRI and edge detection
from nonuniform Fourier data. In the former, we show how this new approach yields
a consistent performance gain over existing techniques. In the latter application,
only one set of data is acquired. However, it is processed in different ways, leading
naturally to an MMV problem for which VBJS is shown to yield benefits. Theoretical
discussion is provided in section 2.5, and we close with some concluding remarks in
section 6.

2. Variance-based joint sparse recovery.

2.1. Problem setup. Throughout this paper, we consider the recovery of C \geq 1
objects (e.g., signals or images) with certain common features. We consider a discrete
setup, where these objects are represented as complex vectors \bfitx 1, . . . ,\bfitx C \in C

N (an
extension of what follows to functions in Hilbert spaces can be developed along the
lines of [1]). Note that these could be either the images or signals themselves or their
coefficients in some orthogonal sparsifying transform. Whenever necessary we write

\bfitX = [\bfitx 1| \cdot \cdot \cdot | \bfitx C ] \in C
N\times C

for the corresponding matrix to be recovered.
We assume the sensing protocol (e.g., an MR scanner) produces linear measure-

ments of the vectors \bfitx 1, . . . ,\bfitx C . Specifically, we consider measurements of the form

(1) \bfity c = \bfitA c\bfitx c + \bfitn c, c = 1, . . . , C,

where \bfitn 1, . . . ,\bfitn C are noise vectors and \bfitA 1, . . . ,\bfitA C \in C
m\times N are measurement ma-

trices. Often it will be the case that

\bfitA = \bfitA 1 = \cdot \cdot \cdot = \bfitA C ,

although this condition is not necessary for the developments that follow. In this
latter case, note that we may rewrite (1) as

\bfitY = \bfitA \bfitX +\bfitN ,

where

\bfitY = [\bfity 1| \cdot \cdot \cdot | \bfity C ] \in C
m\times C , \bfitN = [\bfitn 1| \cdot \cdot \cdot | \bfitn C ] \in C

m\times C .

With this in hand, the objective throughout the vector is to recover \bfitx 1, . . . ,\bfitx C (or
equivalently \bfitX ) from the measurements \bfity 1, . . . ,\bfity C (or \bfitY ). Our focus in this paper is
on recovery of sparse objects, defined formally below. Hence, we usually consider the
undetermined setting where m (the number of measurements) is much smaller than
N (the signal dimension).

2.2. Further notation. We now introduce several additional pieces of notation.
We write \| \cdot \| p for the \ell p-norm on C

N , where 1 \leq p \leq \infty . As is conventional, we write

\| \cdot \| 0 for the \ell 0-“norm,” i.e.,

\| \bfitx \| 0 = | supp(\bfitx )| .
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JOINT SPARSE RECOVERY BASED ON VARIANCES A249

Here supp(\bfitx ) is the support of \bfitx = (xi)
N
i=1, defined by

supp(\bfitx ) = \{ i : xi \not = 0\} .

Given a vector \bfitw = (wi)
N
i=1 of positive weights, we define the weighted \ell 1w-norm as

\| \bfitx \| 1,w =

N\sum 

i=1

wi| xi| .

We note that it is also possible to define weighted \ell pw-norms for p \not = 1, but this is not
needed for the paper.

If \bfitX = (xic)
N,C
i,c=1 \in C

N\times C is a matrix, we define the \ell p,q-norms by

\| \bfitX \| p,q =

\left( 
 

N\sum 

i=1

\Biggl( 
C\sum 

c=1

| xic| p
\Biggr) q/p
\right) 
 

1/q

.

In particular, if p = q = 2, then

\| \bfitX \| 2,2 = \| \bfitX \| F =

\Biggl( 
N\sum 

i=1

C\sum 

c=1

| xic| 2
\Biggr) 1/2

is just the Frobenius norm of \bfitX . We will mainly focus on the case p = 2 and q = 1,
leading to the \ell 2,1-norm:

\| \bfitX \| 2,1 =

N\sum 

i=1

\Biggl( 
C\sum 

c=1

| xic| 2
\Biggr) 1/2

.

Finally, we define the \ell 2,0-“norm” as follows:

\| \bfitX \| 2,0 =

\bigm| \bigm| \bigm| \bigm| \bigm| 

\Biggl\{ 
i :

C\sum 

c=1

| xic| 2 \not = 0

\Biggr\} \bigm| \bigm| \bigm| \bigm| \bigm| .

2.3. Sparsity and joint sparsity. This paper concerns the recovery of sparse
vectors and joint sparse collections of vectors. We now define these terms.

Definition 1. A vector \bfitx \in C
N is s-sparse for some 1 \leq s \leq N if

\| \bfitx \| 0 = | supp(\bfitx )| \leq s.

A collections of vectors \bfitx 1, . . . ,\bfitx C \in C
N is s-joint sparse if

\| \bfitX \| 2,0 =

\bigm| \bigm| \bigm| \bigm| \bigm| 
C\bigcup 

c=1

supp (\bfitx c)

\bigm| \bigm| \bigm| \bigm| \bigm| \leq s,

where \bfitX = [\bfitx 1| \cdot \cdot \cdot | \bfitx C ].

Much as we refer to the support of supp(\bfitx ) of a single sparse vector \bfitx , we refer

to
\bigcup C

c=1 supp (\bfitx c) as the joint support of the vectors \bfitx 1, . . . ,\bfitx C .
A standard procedure for recovering a single sparse vector \bfitx from noisy measure-

ments \bfity = \bfitA \bfitx + \bfitn is to solve the \ell 1-minimization problem

min
z\in CN

\| \bfitz \| 1 subject to \| \bfitA \bfitz  - \bfity \| 2 \leq \eta .
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The field known as compressed sensing gives conditions of the measurement matrix
\bfitA under which this recovery is accurate and robust. See, for example, [11, 17].

Analogously, for a collection of C joint sparse vectors \bfitX = [\bfitx 1| . . . | \bfitx C ] a standard
procedure for recovery from the noisy measurements \bfitY = \bfitA \bfitX +\bfitN involves solving
the \ell 2,1-minimization problem

(2) min
Z\in CN×C

\| \bfitZ \| 2,1 subject to \| \bfitA \bfitZ  - \bfitY \| F \leq \eta .

For related compressed sensing-type recovery results for this procedure, we refer to
[4, 5, 14, 23].

2.4. The variance-based joint sparse recovery method. Let \bfitx 1, . . . ,\bfitx C \in 
C

N be the sequence of vectors to recover and

\bfity c = \bfitA c\bfitx c + \bfitn c, c = 1, . . . , C,

the vector of measurements. We shall assume the a priori noise bound

\| \bfitn c\| 2 \leq \eta c, c = 1, . . . , C,

for known noise levels \eta 1, . . . , \eta C .
We now make the following assumptions:
1. The supports of the vectors are similar, i.e., supp(\bfitx 1) \approx supp(\bfitx 2) \approx \cdot \cdot \cdot \approx 

supp(\bfitx C). Equivalently, the joint sparsity of \bfitx 1, . . . ,\bfitx C does not greatly
exceed the sparsity of each of the individual vectors.

2. The coefficients of the vectors are reasonably distinct. Specifically, the vector
\bfitv = (vi)

N
i=1 of elementwise variances

vi =
1

C

C\sum 

c=1

(xic)
2  - 
\Biggl( 

1

C

C\sum 

c=1

xic

\Biggr) 2

, i = 1, . . . , N,

is nonzero with supp(\bfitv ) \approx \bigcup C
c=1 supp(\bfitx c).

Both assumptions are reasonable in practice. We note in passing that VBJS will
not fail per se when either of these assumptions does not hold. Rather, it will just
not convey a substantial benefit over individual recovery of the \bfitx c. In fact, without
both of these assumptions no joint sparse recovery technique can expect to achieve a
significant performance gain over individual recovery of the vectors \bfitx c.

The VBJS method is now described in Algorithm 1. It first exploits the individual
sparsity of the vectors \bfitx c by solving C separate \ell 1-minimization problems (step 1).
This gives approximations \̌bfitx c \approx \bfitx c from which the elementwise variance \bfitv can be
estimated (step 2). Finally, this prior information is incorporated into a weighting
vector \bfitw (step 3) which is used in solving C weighted \ell 1-minimization problems to
get the final approximations \̂bfitx c \approx \bfitx c (step 4).

Remark 2. Observe that Algorithm 1 is easily parallelizable, since the compu-
tationally intensive steps (steps 1 and 4) each require the solution of C separate
(weighted) \ell 1-minimization problems. Steps 2 and 3 require communications between
cores but are extremely cheap in comparison.

Remark 3. In order to implement Algorithm 1, one needs to specify the weights\bfitw .
As noted, a weight wi should be small at an index i which is expected to be in the
support and large otherwise. Our primary choice of weights will be

(3) wi =
1

vi + \epsilon 
, i = 1, . . . , N,
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Algorithm 1. VBJS recovery.

1: Recover the vectors \bfitx c, c = 1, . . . , C, separately using standard \ell 1-minimization:

\̌bfitx c \in argmin
z\in CN

\| \bfitz \| 1 subject to \| \bfitA c\bfitz  - \bfity c\| 2 \leq \eta c, c = 1, . . . , C.

2: Compute the elementwise variance of the vectors \̌bfitx c = (x̌ic)
N
i=1, c = 1, . . . , C,

solved in the first step. That is, compute \bfitv = (v̌i)
N
i=1, where

vi =
1

C

C\sum 

c=1

(x̌ic)
2  - 
\Biggl( 

1

C

C\sum 

c=1

x̌ic

\Biggr) 2

, i = 1, . . . , N.

3: The two assumptions made above suggest that \bfitv should carry information about
the shared support of the \bfitx c. Specifically, v̌i should be large when the index i
belongs to this support, and v̌i \approx 0 otherwise. Hence we compute a vector of
nonnegative weights \bfitw = (wi)

N
i=1 based on this information, where 0 \leq wi \leq 1.

In particular, we choose wi \approx 0 when v̌i is large and wi \approx 1 when v̌i \approx 0. While
\bfitw may be tuned for a particular application (see, for example, section 5), we use
(3) to demonstrate the general use of the VBJS recovery method.

4: Solve C weighted \ell 1-minimization problems to get the final reconstruction of each
vector \bfitx c:

\̂bfitx c \in argmin
z\in CN

\| \bfitz \| 1,w subject to \| \bfitA c\bfitz  - \bfity c\| 2 \leq \eta c, c = 1, . . . , C.

a strategy inspired by [6]. In general the weights should adapt easily to differing scales
in the variance vector \bfitv . We shall see in section 3 that using (3) makes the VBJS
reasonably invariant to the specific choice of \epsilon , so that careful parameter tuning is
not required.

2.5. Theoretical discussion. A full theoretical analysis of VBJS and compar-
ison is outside the scope of this paper. However, let us now make several remarks.
First, existing theoretical results on so-called compressed sensing with partial sup-
port information (see [18] and references therein) have demonstrated the theoretical
benefits of recovering a single vector \bfitx from measurements \bfity = \bfitA \bfitx using weighted
\ell 1-minimization. Specifically, when a sufficiently good prior on its support is known,
the number of measurements required for weighted \ell 1-minimization with a suitable
choice of weights no longer exhibits a logarithmic growth in the ambient dimension
N , as is the case for unweighted \ell 1-minimization [27]. Note that in the setup of
VBJS, the existence of a good support estimate depends on (i) how well the variance
is estimated in step 1 of Algorithm 1 and (ii) how well the variance predicts the true
support. The latter is intrinsic to the signals being recovered—at the extreme end, if
the signals all happened to be identical, then \bfitv = 0, thus giving no information.

Second, we note there are a number of recovery guarantees for \ell 2,1-minimization
[5, 4, 14]. In order to enforce that the signals are sufficiently distinct, thus avoiding the
barrier discussed above when the signals are all equal, results of this type typically
assume a random model for the nonzero coefficients. With this assumption, the
recovery guarantee can be shown to improve, and in particular, the failure probability
decreases exponentially with the number of signals C.
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We expect a theoretical analysis of VBJS is possible (especially in the random
setting discussed previously), combining elements of [27] and [14]. This is left as
future work.

3. Numerical experiments. We now present several synthetic experiments to
illustrate the effectiveness of Algorithm 1. For comparison purposes, we also consider
(i) separate recovery of the C signals via \ell 1-minimization (equivalent to step 1 of
Algorithm 1) and (ii) joint sparse recovery via \ell 2,1-minimization (as in (2)). Our
comparison is done by analyzing the performance of each algorithm on randomly
generated sets of sparse vectors of a given size N . Specifically, for each fixed m
(number of measurements) and s (sparsity), we proceed as follows:

1. Fix a number of trials T . For each trial t = 1, . . . , T ,
(i) generate a support set S \subseteq \{ 1, . . . , N\} uniformly at random with size

| S| = s;
(ii) define vectors \bfitx 1, . . . ,\bfitx C such that supp(\bfitx 1) = \cdot \cdot \cdot = supp(\bfitx C) = S;

the nonzero entries xic, c = 1, . . . , C, i \in S, are drawn from the standard
normal distribution;

(iii) generate a measurement matrix \bfitA and compute measurements \bfity c =
\bfitA \bfitx c, c = 1, . . . , C;

(iv) compute the reconstructions \̂bfitx 1, . . . , \̂bfitx C using the desired algorithm
(\ell 1-minimization, VBJS or \ell 2,1-minimization);

(v) compute the normalized error Et =
\sqrt{} \sum C

c=1 \| \bfitx c  - \̂bfitx c\| 22
\big/ \sum C

c=1 \| \bfitx c\| 22
for each technique.

Finally, average the error Et over the trials, E = 1
T (E1 + \cdot \cdot \cdot + ET ).

2. Repeat step 1 for different values of s and m as required.
Note that it is possible to compute other quantities of interest, such as the com-
putational time, in a similar manner. We may also compute the empirical success
probability p, defined as the fraction of trials which successfully recover the vectors
\bfitx 1, . . . ,\bfitx C to within a given tolerance, i.e., Et < tol for some fixed tolerance tol.

There are various options for generating the measurement matrix in step (iii).
Since it frequently arises in applications, we choose \bfitA to be a subsampled discrete
Fourier transform (DFT). That is, we construct a set Ω \subseteq \{ 1, . . . , N\} of size m
uniformly at random and let

A =
1\surd 
m
PΩF,

where F \in C
N\times N is the DFT matrix and PΩ \in C

m\times N is the matrix that selects rows
of F corresponding to the indices in Ω. The factor 1\surd 

m
is a normalization constant and

ensures that E(A\ast A) = I. The above procedure also requires a number of parameters.
Throughout, we shall choose these as N = 256, T = 20, and tol = 10 - 3, which is
consistent with similar experiments performed in, for example, [30].

We also require a numerical solver for all three of the optimization problems con-
sidered: \ell 1-minimization, weighted \ell 1-minimization, and \ell 2,1-minimization. Unless
otherwise stated, we use the SPGL1 package [34] with its default parameter values,
except for the maximum number of iterations, which is set to 10,000. Since the data
in this experiment is noiseless, we solve equality-constrained minimization problems
(i.e., \eta = 0 or \eta c = 0, respectively).

3.1. The weighting parameter \bfitepsilon . Figure 1 plots the recovery error and success
probability versus m for a fixed sparsity s using VBJS with various different values
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Fig. 2. Comparison of \ell 1-minimization, two-step reweighted (rw) \ell 1-minimization, VBJS, and
\ell 2,1-minimization for sparsity s = 64. The rows show the error (top), success probability (middle),
and average time (bottom) versus m for each method. For this and the results shown in Tables 1
and 2 computations were performed on a cluster with 48 physical cores (96 logical cores), Intel Xeon
E5 - 4657L v2 processors, 2.90GHz, and 512GB of RAM memory.
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Fig. 3. Phase transition diagrams for \ell 1-minimization, two-step reweighted \ell 1-minimization,
VBJS, and \ell 2,1-minimization for C = 12 signals using T = 10 trials. The diagrams show the success
probability for values 1 \leq s \leq N and 1 \leq m \leq N .

and then \ell 2,1-minimization (one solve of size NC). VBJS also achieves the best phase
transition. For instance, with C = 24 signals, successful recovery requires only around
80 measurements per signal, in comparison to around 128 for \ell 2,1-minimization. In
other words, the \ell 2,1-minimization requires over 50% additional measurements to re-
cover the same signals. This is further illustrated in Figures 3 and 4, which show the
full phase transition plots and phase transition curves, respectively, for each method.
Interestingly, VBJS exhibits a phase transition curve which is close to the optimal
m = s line.

Up to this point we have used the SPGL1 package to solve the various optimization
problems. For completeness, in Figure 5 we repeat the results of Figure 2 using the
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Fig. 4. Phase transition curves for \ell 1-minimization, two-step reweighted \ell 1-minimization,
VBJS, and \ell 2,1-minimization using T = 10 trials. The curves show the phase transition from
successful recovery (below the line) to unsuccessful recovery (above the line). The criterion for
successful recovery used was an empirical success probability p > 0.75.
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Fig. 5. Comparison of \ell 1-minimization, two-step reweighted \ell 1-minimization, VBJS, and \ell 2,1-
minimization for sparsity s = 64 using CVX (top row), YALL1 (middle row), and SPGL1 (bottom
row). The plots show the success probability versus m for each method and package.

YALL1 [36] and CVX [22] packages. Similar results are produced by these packages,
with VBJS giving a consistently better phase transition than \ell 1-minimization or \ell 2,1-
minimization in all cases.

3.3. Signals with partially overlapping supports. Up to this point, the nu-
merical experiments have considered signals \bfitx c that are s-sparse and have a common
support S. In practice, it may be more realistic to assume that only a fraction of the
support is shared. We next present several experiments for this scenario.
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Fig. 7. Phase transition curves for \ell 1-minimization, two-step reweighted \ell 1-minimization,
VBJS, and \ell 2,1-minimization with \sigma = 10−2 for various \tau .

Unlike the previous weights, Algorithm 2 constructs a candidate support set T
that capture all but \delta of the norm of the variance vector and then uses a binary
weighting strategy based on whether an index i is inside or outside T . Note that a
similar approach has been used in, for instance, [18]. This strategy requires choosing
two parameters \delta and \sigma . However, as shown in Figure 6, the performance is fairly
insensitive to the choice of \sigma (further results, not shown, indicate similar behavior
with respect to the other parameter \delta ). Henceforth we use the values \delta = 0.05 and
\sigma = 10 - 2. Fianlly we note that it is still possible for T to be nonunique, for example,
if \bfitv i = \bfitv j for some i, j \in [1, N ]. This is generally unlikely to happen and most often
should affect only cases where there is very small overlap of support (i.e., \tau is small).

Figure 7 compares this approach with the other three methods for various dif-
ferent \tau . For larger \tau , VBJS offers the best performance. On the other hand,
as \tau decreases its performance in comparison to \ell 1-minimization and the two-step
reweighted \ell 1-minimization declines. This is to be expected: as the fraction of shared
support decreases, there is less benefit to promoting joint structure. Interestingly,
\ell 2,1-minimization offers very poor performance, even when \tau is close to one.

4. Application to parallel magnetic resonance imaging. In the final two
sections of this paper, we consider the use of VBJS in several imaging applications.
First, we consider parallel MRI. This is an example of a multisensor acquisition system
[7] in which multiple coils simultaneously acquire measurements of the image to be
recovered. A standard discrete model for parallel MRI is as follows (see, for example,
[8, 24]). Let \bfitx \in C

N be the (vectorized) image to recover, F \in C
N\times N be the DFT

matrix, and C be the number of coils. In the cth coil the measurements acquired a
given by

\bfity c = PΩFGc\bfitx + \bfitn c \in C
m,

where \bfitn c is noise, and PΩ is a sampling map that selects rows of F corresponding
to the frequencies Ω that are sampled. The matrix Gc = diag(\bfitg c) \in C

N\times N is a
diagonal matrix, intrinsic to the particular coil, and the vector \bfitg c \in C

N is the so-
called sensitivity profile. We define the coil images as

\bfitx c = Gc\bfitx ,

i.e., the overall image \bfitx multiplied by the sensitivity profile matrixGc, so that the mea-
surements in the cth coil can be interpreted as Fourier measurements \bfity c = PΩF\bfitx c+\bfitn c

of the coil image \bfitx c. Figure 8 shows typical sensitivity profiles and coil images.
Many techniques have been developed for sparse parallel MRI reconstruction. See,

for example, [8] and references therein. Here we focus primarily on the class of methods
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Coil c = 1 Coil c = 2 Coil c = 3 Coil c = 4

Coil Image c = 1 Coil Image c = 2 Coil Image c = 3 Coil Image c = 4

Fig. 8. Complex sensitivity profiles (top) and coil images (bottom). The phase is color coded.

known as coil-by-coil techniques. In these techniques, one first computes approximate
coil images \̂bfitx 1, . . . , \̂bfitx C and then combines them to compute an approximation \̂bfitx to the
overall image \bfitx . The first stage can be performed using \ell 2,1-minimization, a technique
first introduced in the parallel MRI context in [25] and known as calibration-less multi-
coil (CaLM) MR reconstruction. We shall compare this with the VBJS procedure
introduced in this paper.

An advantage of coil-by-coil recovery techniques is that they can avoid calibration
of the sensitivity profiles Gc. Typically, this calibration step requires an additional
prescan, which can be time-consuming. To avoid this, the second stage (recovery of
\bfitx from the recovered coil images) is performed using a sum-of-squares procedure:

(4) x̂i =

\sqrt{}    
C\sum 

c=1

| x̂ic| 2, i = 1, . . . , N.

Unfortunately, this procedure can introduce additional inhomogeneity artifacts to the
reconstruction for typical coil geometries. Since our main objective in this section is
to compare methods for recovering the coil images, we shall avoid the sum-of-squares
procedure and instead use the least-squares fit

(5) \̂bfitx = argmin
z\in CN

C\sum 

c=1

\| Gc\bfitz  - \̂bfitx c\| 22.

Note that since matrices Gc are diagonal, this can be conveniently expressed as

x̂i =

\sum C
c=1 x̂icgic\sum C
c=1 | gic| 2

, i = 1, . . . , N,

where \bfitg c = (gic)
N
i=1. This avoids the inhomogeneity artifacts in the former procedure,

at the expense of having to know (or precompute) the sensitivity profiles.

Remark 4. We refer readers to [8] for other types of coil-by-coil methods. We do
not use them for comparison purposes here since they either (i) use a fundamentally
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Fig. 9. 256\times 256 phantom image (left) and radial sampling map (right).

different approach to recover the coil images (e.g., low-rank matrix completion rather
than \ell 2,1-minimization) or (ii) consider on-the-fly calibration procedures to estimate
the sensitivity profiles at the same time as recovering the coil images. Hence, none
of these procedures (including CaLM) is as easily parallelized as VBJS introduced in
Algorithm 1, which is the main objective of the current comparison.

In the following experiment, we compare the recovery of the analytical phantom
image shown in Figure 9 (due to [24]) using \ell 2,1-minimization and VBJS, respectively,
followed in both cases by the least-squares fit (5). We use the same data for each
method, taken as radial line sampling in Fourier space (see Figure 9). This is a
typical sampling procedure for parallel MRI reconstruction. The number of lines is
varied from 37 (corresponding to 29.7% sampling of k-space) to 93 (corresponding to
64.6% sampling). As is standard in sparse MRI reconstruction, DB4 wavelets are used
in both cases as the sparsifying transform. The sensitivity profiles are generated using
the Biot–Savart law, as described in [24]. Gaussian random noise with variance 10 - 3

was added to the data. The same value was used for the regularization parameter
\eta in the various optimization problems. For the VBJS method we use the weights
(3), which we have found to give slightly better reconstruction error than the weights
introduced in section 3.3.

Tables 1 and 2 show the signal-to-error ratio (SER) and computational time for
both procedures. In the same manner as the experiments in the previous section,
VBJS both requires less time to compute the reconstruction and achieves a consis-
tently higher SER. In particular, for large numbers of coils and radial lines, the time
saving is by a factor of between 2 and 4.

5. Application to edge detection. We now use the VBJS approach to detect
edges from (nonuniform) Fourier measurements. Detecting edges from Fourier data is
a well-studied problem (see, e.g., [15, 19, 20, 21, 28]) and is often used in conjunction
with segmentation, feature identification, and extraction, or other postprocessing op-
erations. It is inherently difficult since Fourier data are global measurements while
edges are local features. For ease of notation we use one-dimensional functions to
describe the process. Later we extend the results to two dimensions.

Let f be a piecewise continuous function supported on [ - 1, 1]. We define the
corresponding jump function as
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Table 1

SER  - 20 log10
\bigl( 

\| x - x̂\| 2/\| x\| 2
\bigr) 

in dB for each method, where x̂ is the recovered image and C
is the number of coils.

C = 8

No. of lines 37 45 53 61 69 77 85 93
VBJS SER 21.32 23.54 25.95 28.48 30.93 33.70 36.58 39.32

\ell 2,1 min SER 20.77 22.93 25.08 27.43 29.66 32.32 35.08 37.73

C = 16

No. of lines 37 45 53 61 69 77 85 93
VBJS SER 21.20 23.41 25.73 28.19 30.59 33.31 36.14 38.81

\ell 2,1 min SER 20.76 22.94 25.08 27.40 29.69 32.38 35.09 37.55

C = 32

No. of lines 37 45 53 61 69 77 85 93
VBJS SER 21.20 23.41 25.73 28.19 30.58 33.29 36.16 38.81

\ell 2,1 min SER 20.75 22.87 25.06 27.45 29.67 32.32 35.09 37.5963

Table 2

Computational time (in seconds) for each method, where C is the number of coils.

C = 8

No. of lines 37 45 53 61 69 77 85 93
VBJS time 113.10 55.96 48.20 42.44 39.87 28.95 32.92 25.64

\ell 2,1 min time 70.81 83.03 71.38 81.20 34.91 49.47 42.25 39.17

C = 16

No. of lines 37 45 53 61 69 77 85 93
VBJS time 56.59 40.79 34.98 35.19 30.53 27.57 27.86 21.38

\ell 2,1 min time 67.87 142.70 81.64 68.70 82.22 78.63 51.58 60.94

C = 32

No. of lines 37 45 53 61 69 77 85 93
VBJS time 67.35 65.32 49.67 46.80 36.21 27.58 29.95 25.92

\ell 2,1 min time 101.89 103.95 103.99 154.28 83.43 100.08 110.93 77.3205

[f ](x) = f(x+) - f(x - ), x \in [ - 1, 1].

If f has a finite number of edges (jump discontinuities) given at locations \xi 1, \xi 2, . . . , \xi K ,
we can write

[f ](x) =

K\sum 

k=1

[f ](\xi k)\chi ξk(x), x \in [ - 1, 1],

where the indicator function \chi ξj (x) is 1 if x = \xi j and 0 otherwise. Suppose we are
given the Fourier measurements

f̂(\lambda j) = \langle f, \varphi j\rangle =
\int 1

 - 1

f(x)e - πixλjdx,  - m \leq j \leq m,(6)

where \varphi j(x) = eπiλjx and \{ \lambda j :  - m \leq j \leq m\} are nonuniformly sampled frequencies
in R. For a given set of grid points \bfitx = (xl : 1 \leq l \leq N) in [ - 1, 1], we wish to obtain
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Algorithm 3. VBJS method for edge detection from Fourier data.

1: Compute a set of edge detection vectors \bfity c, 1 \leq c \leq C from the Fourier measure-
ments in (6).

2: Compute the elementwise variance \bfitv = (v̌i)
N
i=1 of the vectors \bfity c = (yic)

N
i=1 as

v̌i =
1

C

C\sum 

c=1

(yic)
2  - 
\Biggl( 

1

C

C\sum 

c=1

yic

\Biggr) 2

, i = 1, . . . , N.

3: Determine the weight vector \bfitw using (10).
4: Solve C weighted \ell 1-minimization problems to get the refined approximation:

\̂bfitx c \in argmin
z\in CN

\| \bfitz \| 1,w subject to \| \bfitz  - \bfity c\| 2 \leq \eta c, c = 1, . . . , C.

5: Combine all refined approximations \̂bfitx c to obtain the final edge vector approxima-
tion. For example,

y =
1

C

C\sum 

c=1

\̂bfitx c.

a corresponding vector \bfity \in R
N of edges. More realistically, as will be explained in

more detail below, y has “sharp peaks” around the edges, that is, | yl| is large when
xl is very near an edge and small if it is not.

Let \bfity c, c = 1, . . . , C, be a set of edge approximation vectors for a piecewise
smooth function f(x). That is, each \bfity c approximates [f ](x) at a set of grid points
xi, i = 1, . . . , N . The VBJS method can be applied to this set of vectors to obtain a
more accurate edge detection approximation. The measurement matrix in (1) is given
by \bfitA c = \bfitI , the identity matrix, for 1 \leq c \leq C. The specific use of Algorithm 1 for
detecting edges from the given Fourier data in (6) is provided in Algorithm 3.

Before implementing Algorithm 3, we briefly describe the concentration factor
edge detection method [21, 20], which will be used to construct each measurement
vector of edges, yc, c = 1, . . . , C. To simplify the description, we assume that f has
only one jump discontinuity in ( - 1, 1), that is,

[f ](x) = [f ](\xi )\chi ξ(x), x \in [ - 1, 1],

where the indicator function \chi ξ(x) is 1 if x = \xi and 0 otherwise, and note that the
technique works for multiple jumps presuming they are adequately separated [20].
Since \chi ξ(x) is not smooth, we first approximate it using h(x - ξ

σ ), \sigma > 0, which is
the scaled bell-shape function approximation around h(0) = 1. When the scaling
parameter \sigma is small, h( xσ ) is narrow and closely approximates the indicator function.
Thus we write

[f ](x) \approx [f ](\xi )h

\biggl( 
x - \xi 

\sigma 

\biggr) 
, x \in [ - 1, 1].

Observe that the Fourier measurements for the approximate jump function are given by

\widehat [f ](\lambda j) =
\biggl\langle 
[f ](\xi )h

\biggl( 
x - \xi 

\sigma 

\biggr) 
, \psi j

\biggr\rangle 
= [f ](\xi )e - πiλjξ\sigma ĥ(\lambda j\sigma ).
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Fig. 10. One-dimensional sparse nonuniform frequencies.

Moreover, a first order approximation of f̂(\lambda j) obtained through integration by parts is

f̂(\lambda j) \approx 
1

\pi i\lambda j
[f ](\xi )e - πiλjξ,

implying

\widehat [f ](\lambda j) \approx \pi i\lambda j f̂(\lambda j)\sigma ĥ(\lambda j\sigma ).(7)

Combining this approximation with the approximation of the canonical dual frame
[31] yields the jump function approximation given by

[f ](x) \approx 
\sum 

| j| \leq m

\pi i\lambda j f̂(\lambda j)\sigma ĥ(\lambda j\sigma )
\sum 

| l| \leq m

bl,j\phi l(x), x \in [ - 1, 1],(8)

where \phi l(x) = eπilx and \bfitB = [bl,j ]
m,m
l= - m,j= - m is the Moore–Penrose pseudoinverse of\bigl[ 

\langle \psi j , \phi l\rangle 
\bigr] m,m

j= - m,l= - m
.1

We now choose various bell-shape functions hc for (8) and evaluate it on a fixed
grid \{ x1, x2, . . . , xN\} \subseteq [ - 1, 1] to construct the (approximated) edge vectors, \bfity c,
c = 1, . . . , C, where each element \bfity tc is given by

(9) \bfity tc =
\sum 

| j| \leq m

\pi i\lambda j f̂(\lambda j)\sigma \widehat hc(\lambda j\sigma )
\sum 

| l| \leq m

bl,j\phi l(xt), 1 \leq t \leq N.

Numerical experiments for one-dimensional edge detection. For our nu-
merical experiments in one-dimensional edge detection, we assume we are given a
set of Fourier data f̂(\lambda j), j =  - m, . . . ,m, which we generate by randomly selecting
(subsampling) 70 points from the jittered nonuniform frequencies

\lambda j = j + \delta j ,  - 64 \leq j \leq 64.

Here \delta j is a random perturbation uniformly sampled in [ - 1/4, 1/4]. The set of non-
uniform frequencies used in our experiments is displayed in Figure 10.

We then construct \bfity c, c = 1, . . . , C, using the following choices for hc (and scaling

parameter \sigma = .05 in hc(
(x - ξ)

σ )):
1. h1(x) = \chi [ - 1,1](x);
2. h2(x) = 1 - | x| ;
3. h3(x) = 1 - x2;
4. h4(x) = (1 - x2)2;
5. h5(x) = (1 - x2)3;

6. h6(x) = e - 5x2

.

1The approximation (8) for uniform coefficients was coined the “concentration factor” edge de-
tection method in [21].
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We test Algorithm 3 on the piecewise continuous function given by

f(x) =

\left\{ 
  
  

 - 1/2(1 - x2)2, x \leq  - 1/2,

cos(4\pi x),  - 1/2 < x < 1/2,

(1 - x2)4, x \geq 1/2,

which has edges at \xi = \pm 1
2 . The weights in the fourth step are given as

wi =
1
C

\sum C
c=1 | yi,c| + \epsilon 

vi + \epsilon 
, i = 1, . . . , N.(10)

Here \epsilon = 10 - 6 so that wi \not = 0 and wi \not = \infty . Step 4 in Algorithm 3 was accomplished
using the regularized unconstrained optimization

\̂bfitx c = argmin
z\in CN

1

2
\| \bfitz  - \bfity c\| 22 + \mu \| \bfitz \| 1,w, c = 1, . . . , C,(11)

where the regularization parameter is set to be \mu = .01 in our numerical experiments.
The minimization problem (11) has a closed form solution given by [9]

\̂bfitx c = max\{ | \bfity c|  - \mu \bfitw , 0\} sgn(\bfity c),

where the absolute value, max function, and sgn function are each evaluated in a
componentwise manner.

We note that the weighting parameter in (10) is modified from the previous choice
in (3), as it is designed to detect multiple edges with different jump heights. In
particular, numerical experiments suggest that the variance surrounding edges with
large magnitudes tend to dominate the variance around other smaller-in-magnitude
edges. Consequently, when using the weight in (3), the smaller magnitude edges may
be seen as part of smooth regions. By observing that the variance of a scaled random
variable corresponds with its square, the weights in (10) are constructed with the
idea that the variance is roughly proportional to the square of the jump heights. By
defining our weights in this way, we can somewhat alleviate the problem caused by
the dominance of the large magnitude edges. A more thorough analysis of scaling for
weights and parameter selection will be discussed in future work.

Figure 11 compares the individual measurement vectors, \bfity c, c = 1, . . . , 6, to
the results when Algorithm 3 is used. The variance of these vectors is shown in the
bottom left. We also display the result of the regular \ell 1 penalty (that is, with constant
weights) in the bottom middle. The VBJS method yields the closest approximation
to the true edge locations and is significantly better than any of the individual edge
detection results. It is important to note that in this example, only one measurement
vector is collected. However, by processing this data in multiple ways, we are better
able to tease out important information of the underlying signal. Moreover, the
method is easily parallelizable for constructing each \bfity c.

Numerical experiments for two-dimensional edge detection. We now
consider detecting edges for a two-dimensional image from nonuniform Fourier data.
Suppose we are given the Fourier coefficients f̂(\bfitlambda )j for \bfitlambda j = (\lambda j1, \lambda j2) for piecewise
smooth function f : [ - 1, 1]2 \rightarrow R with a smooth edge curve. As in the one-dimensional
problem, we seek to recover the edge function [f ](x, y)\chi Γ(x, y), where [f ](x, y) is the
jump height and \chi Γ(x, y) is the indicator function. We parameterize the edge Γ as

x = u(s), y = v(s), s \in [a, b],
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Fig. 11. CF1–CF6 are the edge detectors yc, 1 \leq c \leq 6 (step 1 in Algorithm 3), computed
using the concentration factor method in (9). The variance (step 2 in Algorithm 3) is shown in the
bottom left. The final two pictures compare the results for the standard \ell 1 regularization and the
VBJS algorithm.

where u and v are smooth functions. Now let \theta (s) be its normal direction. As before,
we devise a strategy to recover a regularized edge function. Therefore we describe the
parameterized edge curve as

x = u(s) + r cos \theta (s), y = v(s) + r sin \theta (s), r \in [ - \sigma , \sigma ],

for some small \sigma . We now define the regularized edge function as

J(x, y) = h
\Bigl( r
\sigma 

\Bigr) 
[f ](s),

where [f ](s) = [f ](u(s), v(s)). In this case we only consider the bell-shaped regu-

larization function, h(z) = e - 5z2

, although other regularization functions are also
suitable.

To generate multiple data sets, we will use different rotation angles

\theta c := \pi c/C(12)

for the construction of each edge detection approximation vector \bfity c, c = 1, . . . , C. We
will then combine the results to produce a final edge map. We note that a similar
approach was used in [28]. To simplify notation, below we describe the rotation
algorithm for uniform Fourier data, i.e., (\lambda j1, \lambda j2) = (j, l),  - N \leq j, l \leq N . However,
for our numerical results we will apply the rotation technique to nonuniform Fourier
data, as shown in (16).
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Observe that
J(x, y) =

\sum 

j,l

Ĵ(j, l)eπi(jx+ly).

After eliminating the higher order terms (as in the one-dimensional case), in the new

coordinate system f̂(j, l) can be approximated as

f̂(j, l) \approx 
\int b

a

[f ](s)

\pi i(j cos \theta (s) + l sin \theta (s))
e - πi(ju+lv)(v\prime cos \theta (s) - u\prime sin \theta (s))ds,(13)

while

Ĵ(j, l) \approx 
\int b

a

[f ](s)\sigma ĥ (\sigma (j cos \theta (s) + l sin \theta (s))) e - πi(ju+lv)(v\prime cos \theta (s) - u\prime sin \theta (s))ds.

(14)

Unlike in the one-dimensional case, here there is no linear relationship between f̂(j, l)
and Ĵ(j, l) since \theta = \theta (s). However, if we fix \theta as in (12), then for \theta = \theta c we have

Ĵθ(j, l) = \pi i(j cos \theta + l sin \theta )\sigma ĥ(\sigma (j cos \theta + l sin \theta )f̂(j, l),(15)

which is comparable to what we see in (7). For c = 1, . . . , C we now have

Jθc(x, y) \approx 
N\sum 

j= - N

N\sum 

l= - N

Ĵθ(j, l)e
πi(jx+ly).

We now follow the one-dimensional approach for nonuniform Fourier data. In partic-
ular, we extend (9) to two dimensions and calculate the components of each vector in
step 1 of Algorithm 3 as

\bfity tc =
\sum 

| j| \leq m

\pi i(\lambda j1 cos \theta c + \lambda j2 sin \theta c)\sigma ĥ((\lambda j1 cos \theta c + \lambda j2 sin \theta c)\sigma )f̂(\lambda j)
\sum 

| l| \leq m

bl,j\phi l(xt),

(16)

where \{ xt = (xt1, xt2) : 1 \leq t \leq N\} in [ - 1, 1]2. Here \psi j(x) = eπi(λj1
x1+λj2

x2),
\phi l(x) = eπi(l1x1+l2x2), \bfitB = [bl,j ]| l| \leq m,| j| \leq m is the Moore–Penrose pseudoinverse of\bigl[ 
\langle \psi j , \phi l\rangle 

\bigr] 
| l| \leq m,| j| \leq m

, and once again \sigma is the scaling parameter of h.

Algorithm 3 is tested on the simulated phantom displayed in Figure 12 (left). The
Fourier data are generated by randomly selecting 25% points from the jittered grid
points

\lambda j = (j1, j2) + (\delta j1, \delta j2),  - 32 \leq j1, j2 \leq 32,

where both \delta j1 and \delta j2 are random perturbations uniformly sampled in [ - 1/4, 1/4].
The nonuniform frequencies used in our experiment are shown in Figure 12 (right).
The scaling parameter is \sigma = .05 and the weights are given in (10). The number of
different rotation angles is set at C = 20.

As before we compute \bfity c for c = 1, . . . , C separately and then use Algorithm 3
to construct the VBJS approximation. The results are displayed in Figure 13, where
it is evident that combining each individual result using VBJS yields better results
than averaging across each edge detection approximation.
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Fig. 12. A two-dimensional phantom (left) and two-dimensional nonuniform sampling frequen-
cies (right).
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Fig. 13. Two-dimensional edge detection: the average edge vector (left) and the VBJS edge
vector (right).

6. Conclusions. In this paper we presented a simple procedure for exploiting
joint sparsity using variances. Unlike more standard approaches, it is easily paral-
lelizable requiring just two steps of C parallel \ell 1-minimization solves. Furthermore, it
often achieves a better overall reconstruction, as was demonstrated both in synthetic
phase transition experiments on randomly generated sparse vectors and in the two
imaging applications provided.

There are several areas for future work. First, we have only considered variance-
based approaches in the context of \ell 1-minimization/\ell 2,1-minimization for sparse re-
covery. Greedy or thresholding algorithms such as orthogonal matching pursuit and
iterative hard thresholding, and their various generalizations, also have variations akin
to \ell 2,1-minimization for the MMV problem [3, 16, 32]. Developing variance-based ver-
sions of these algorithms is an objective for future work. Theoretical analysis of such
approaches, as well as VBJS introduced in this paper, is another topic for future
investigation.

Other weighting choices should also be explored, with optimal choices likely being
signal dependent. In particular, there is no need to use the same weight vector for
every signal in the second stage of the VBJS procedure. Moreover, an effective choice
of weights should further increase the robustness of regularization parameter selection
(e.g., \mu in (11)).

The VBJS algorithm may also help to reduce the effects of bad information,
since variance-based weighting means that locations where data measurements do not
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agree are deemed less significant. This is important in applications such as synthetic
aperture radar, where sometimes shadowing and adjacency cause some measurements
to be highly prone to errors. Measurements may also intentionally be false or mis-
leading. Other areas of potential impact include multiple source information, that
is, when different measurement matrices are used. In this case the VBJS algorithm
should adapt in a straightforward manner. Such situations will be considered in future
investigations.
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