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ABSTRACT: Motivated by recent achievements in the synthesis of
interlocking polymers, the structural features of poly[n]catenanes, polymers
composed entirely of interlocking rings (or macrocycles), are studied by
extensive molecular dynamics simulations in the melt state. The degree of
polymerization (number of links) is varied from n = 1−25 and the number of
beads per macrocycle is varied from m = 15−50; the results are compared to
linear chains of degrees of polymerization N = 15−175. The mechanical
bonds in the system cause significant topological contributions to the
pressure and potential energy density not seen in other polymer systems. The
polymers themselves possess many unusual structural features at short and intermediate length scales, which can be attributed to
density inhomogeneities along the polymer contour. Furthermore, the conformations of the individual macrocycles within
poly[n]catenanes are quite different from those of ordinary ring polymers and depend on the topology of the macrocycle, that is,
whether it is threaded by one ring (chain end) or two (chain center). At larger length scales, the poly[n]catenanes are
conformationally similar to ideal linear chains, but unlike traditional (covalent) polymers, they are highly globular at low degrees of
polymerization and are extremely flexible relative to their size, which inhibits interchain entanglement. Implications for
poly[n]catenane material properties and synthesis are discussed.

1. INTRODUCTION
Polymer liquids are often dominated by topological inter-
actions, which arise because chains cannot pass through one
another.1 These topological constraints do not greatly affect
small chains since the interactions are transient and the
relevant time and length scales are quite short. However, for
systems of long chains, the polymers are severely restricted in
their motion by the neighboring chains. These restrictions
greatly increase polymer relaxation times and dramatically alter
diffusion and rheological behavior.1,2 Over the past few
decades, many theories have attempted to explain and predict
the effects of topological interactions in linear polymer
systems, for instance, the phenomenological tube/reptation,3−8

and slip-link9−14 models, or more fundamental force-level
theories.15−18 Despite these impressive effects on dynamical
behavior, linear polymers do not show any meaningful changes
in melt structure or chain conformations associated with the
onset of entanglement, either at the intra- or intermolecular
level, as shown by experiment19−21 and simulation.2,22,23 Thus,
the topological interactions do not disallow any chain or
system configurations but instead prevent certain dynamical
paths between them. To connect structure and dynamics,
authors have attempted to formulate microscopic definitions of
an “entanglement” so that molecular simulations could be used
to unambiguously identify such topological interactions and
analyze their statistics and dynamics.24−33 However, research-
ers have yet to reach consensus about how entanglements
should be defined and what kinds of relative chain

conformations constitute them. On account of these
challenges, linear polymers and their topological interactions
remain an active subject of research.
Nonconcatenated (unlinked) ring polymers present an

entirely distinct challenge since topological interactions
manifest themselves very differently in these systems. For
example, linear polymers do not show changes in structural
features, including scaling of radius of gyration, Rg, due to
entanglement, as mentioned above. However, at intermediate
molecular weight, ring polymers in the melt appeared to scale
in size according to Rg ∼ N2/5 owing to the topological
interactions in early work,34−40 although more recent studies
have demonstrated that this is not a true scaling regime but
rather a crossover between ideal scaling at small N and
collapsed, globule-like scaling at large N, Rg ∼ N1/3.38,41−43 The
topological interactions also affect the dynamics in a unique
way in ring polymer melts. Although the diffusion constants
scale similarly to those of entangled linear polymers: D ∼ N−a

with a ≈ 1.9−2.3 (a major puzzle),39,41,42,44 the stress
relaxation modulus shows no rubbery plateau and polymer
relaxation times scale much more slowly than those of
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entangled linear polymers, suggesting a decoupling of internal
and center-of-mass dynamics.43−48 These differences between
linear and ring polymer systems can be attributed to the fact
that the topological interactions are quite different in the two
systems. While linear polymers can interpenetrate each other
freely, ring polymers cannot, as they must remain non-
concatenated, prohibiting certain configurations. As a result,
the topological interactions affect both structure and dynamics
in ring polymer systems, as opposed to linear polymer systems
in which only dynamics are impacted. This kind of non-
concatenation constraint has been studied theoretically for
quite a long time using topological invariants such as the Gauss
linking number.49,50 For instance, these constraints are known
to lead to a positive second virial coefficient, even when
excluded volume interactions disappear.51−53 On the basis of
this observation, ring polymer melts should exhibit topological
contributions to thermodynamic quantities such as the
pressure, but these effects have not yet been observed.38

Taking polymer architecture a step further, mechanically
interlocking polymers (MIPs) have seen enormous growth in
preparation and study over the last few decades. Unlike the
linear and ring polymers discussed above, these systems
possess permanent topological interactions in the form of
mechanical bonds. Such mechanically bound polymers contain
components that are not covalently bound but cannot be
separated without breaking a covalent bond.54,55 The precise
topological character of the mechanical bond can take many
forms, for instance, Hopf56 or Solomon57−59 links or
Borromean rings.60,61 The most commonly synthesized MIPs
are polyrotaxanes and polycatenanes,62,63 and such polymers
have been applied as high-performance materials and
molecular machines.64,65 Because of the mechanical bonds
within these polymers, such systems may also serve as model
systems for studying the effects of specific kinds of topological
interactions. Among the most intriguing of these systems are
poly[n]catenanes, which were recently synthesized for the first
time.66 These polymers are composed solely of interlocking
ring molecules (or macrocycles) arranged in a linear fashion
and are therefore dominated by mechanical bonds (Figure 1).
For many decades, researchers have speculated that poly[n]-

catenanes would exhibit a variety of unusual behaviors.54,63,65

In particular, it has been suggested that polycatenanes could
exhibit “high loss modulus, rapid stress relaxation, and low
activation energy for viscous flow”.54 While such potential
properties have motivated many chemists to target poly-
catenanes synthetically,65,66 to date no rheological studies have
been carried out to confirm such claims, and only a few
theoretical or computational studies have been con-
ducted.67−69 As a result, the static and dynamic properties of
poly[n]catenanes are not well understood at this time. As
poly[n]catenane synthesis remains an active area of research, a
better understanding of the melt state properties of these
polymers will help chemists design and target the most
promising candidates for new materials. Reported herein are
computational studies focused on the thermodynamics and
structural properties of model poly[n]catenane systems in the
liquid state.
There are a limited number of computational/theoretical

studies on poly[n]catenanes, and all of them have focused on
simulating isolated molecules under conditions akin to dilute
solution in good solvent. The polymers were first studied using
an athermal lattice-based Monte Carlo method, examining a
variety of ring sizes and chain lengths.67 The polymer radius of
gyration and end-to-end distance obeyed the same scaling
relations, Rg ∼ Re ∼ Nν, as ordinary linear polymers in good
solvent (ν ≈ 3/5) and the data collapsed to a master curve
when normalized by the size of the individual rings, suggesting
that poly[n]catenanes could be renormalized to linear
polymers at large length scales, which was also suggested by
later theoretical work.69 The polymers also exhibited highly
complex single-chain structure factors and unusual dynamics.
However, for the smaller ring sizes in the study, the mechanical
bonds were comparable in length to the lattice spacing, which
may artificially limit the available conformations, introducing
artifacts, particularly with regards to the dynamics. Indeed, an
early study of [2]catenanes using another lattice model pointed
out such difficulties.70 To circumvent these issues, we recently
conducted molecular dynamics (MD) simulations of isolated
poly[n]catenanes using the Kremer-Grest (KG) model.68 Our
results agree with the earlier work at large length scales and
furthermore indicate that larger ring sizes lead to more flexible
catenanes, relative to the length of the mechanical bond.
However, at short length scales, the conformations of the rings
within catenanes are strongly affected by the mechanical
bonds, which are quantified in terms of the Rouse mode
amplitudes.71,72 More specifically, the rings are expanded at
large length scales but compressed at smaller ones compared to
rings without threadings. Since then, additional simulations
were conducted by other researchers73 also using the KG
model, extending the chain lengths up to n = 100 rings. These
extremely long poly[n]catenanes showed highly unusual
structural properties including unexpected scaling behavior
and large, long-lived orientational correlations along the chain.
However, the simulation times appear to be short relative to
the relaxation times of the polymers (and in some cases only
half as long) so the results may be complicated by inadequate
sampling.
In the dense melt state, poly[n]catenanes are completely

unstudied. However, the behavior of linear and ring polymers
in the melt combined with the properties of these polymers in
good solvent conditions suggests a number of questions: (1)
does the mechanical bond contribute to the stress/pressure
and other thermodynamic quantities?, (2) is it possible to

Figure 1. Visualization of a poly[n]catenane. For clarity, each ring is
colored differently. The variable m indicates the number of beads per
ring, while n denotes the number of rings per chain, as shown. For this
molecule, n = 10 and m = 50. Note that this configuration was
obtained during system preparation at very low density, similar to
good solvent conditions, so that the interlocking structure can be
more clearly observed; poly[n]catenanes in the melt are much more
collapsed/globular (Figure 9b).
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further quantify how the topological bond impacts macrocycle
conformations?, (3) how does ring size affect the conformation
and scaling of catenanes?, (4) how do intermolecular
interactions and the unusual intramolecular conformational
structure affect poly[n]catenane melt packing correlations?, (5)
what is the interplay between intra- and intermolecular
topological interactions?, and (6) at what point is interchain
entanglement important in poly[n]catenane systems? This
study aims to answer the above questions (and others) by
performing extensive molecular dynamics simulations of
poly[n]catenane melts. Both the degree of polymerization
(i.e., the number of links), n, and the ring size, m, are varied,
and the results are compared to linear polymer and unlinked
ring (n = 1) melts. As many different systems have been
simulated, it is a challenge to present the entirety of the data in
a clear and concise manner. Therefore, this paper will be
representative and illustrative rather than exhaustive.

2. SIMULATION METHODS
As in our previous work,68 the Kremer-Grest (KG) model2 is
employed. All macrocycles in all catenanes are composed of identical
beads of mass μ, which interact with one another via a shifted
Lennard-Jones (LJ) potential:

σ σ σ
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where parameter values of k = 30ε/σ2 and R0 = 1.5σ are chosen. No
bond angle bending potential is applied, so the ring molecules are
fully flexible. These interaction potentials along with the indicated
parameters have been shown to prevent chain crossings,2 which is
crucial for the simulation of interlocking polymers. The poly[n]-
catenanes are held together only by the topological linking, which is
specified entirely by the initial configurations of the beads and
maintained only by the interaction potentials in eqs 1 and 2. The
velocity-Verlet algorithm was used to integrate the equations of
motion with a time step of δt = 0.01τ where τ = (μσ2/ε)1/2 is the LJ
unit of time. The simulations are conducted at a number density of ρ
= 0.85σ−3 and a temperature of T = 1.0ε/kB, maintained via a
Langevin thermostat with a drag coefficient of Γ = 0.5μ/τ. All results
are reported in reduced LJ units. Simulations were conducted with the
GPU-accelerated MD engine DASH.74

The systems studied here contain a total number of poly[n]-
catenane molecules of 5 = 100−500, with the number of rings in
each polymer, n, varied between n = 1, 2, 3, 5, 7, 10, 15, 20, and 25.
For each chain length, catenanes with a number of beads-per-ring, m,
varied between m = 15, 20, 30, and 50, are considered. Thus, the total
molecular weight, N = nm, ranges from 15 to 1250. Note that these
ring sizes are considerably smaller than the entanglement length of the
KG model (Ne ≈ 85),26 so no significant intermolecular topological
compression is expected between the rings.38,44 A poly[n]catenane
with n = 10 and m = 50 is depicted in Figure 1. Linear polymer
systems with 5 = 500 and degree of polymerization N varying
between N = 15, 20, 30, 45, 60, 80, 100, 150, and 175 have also been
simulated for comparison. For statistical analysis, five independent
simulations of each system were conducted. Production simulations
were run for 106−107 τ, depending on polymer size. More details
concerning the poly[n]catenane and linear polymer systems and the
simulation preparation procedures may be found in Appendix A,
along with quantitative analysis confirming system equilibration.

3. THERMODYNAMIC PROPERTIES

Topological interactions can affect the pressure in certain
polymer systems. For example, in unlinked ring polymers, the
topological interactions cause the chains to repel each other
weakly.51−53,75 In the melt, these interactions should increase
the pressure relative to linear polymers, but such an increase
has not been observed in simulations of high-MW ring
polymer melts,38 likely because such effects are more subtle for
these systems. Nevertheless, topological effects may also
contribute to the pressure in poly[n]catenane melts, but in
the opposite manner. The rings must be linked and are
therefore prevented from separating from one another, so they
effectively attract each other. Thus, the pressure should
decrease as the number (or concentration) of mechanical
bonds increases, even if the concentration of covalent bonds

does not change. Figure 2a shows the pressure as a function of
the number density of mechanical bonds, defined as

ρ ρ≡ − = −n
V

n
nm

( 1) 1
b

5
(3)

recalling that ρ is the number density of beads in the melt. The
pressure is calculated according to the virial theorem:

Figure 2. (a) Pressure and (b) potential energy per particle as a
function of the density of mechanical bonds (eq 3) for poly[n]-
catenanes with various m. The statistical errors are approximately
equal to the size of the data points. Note that in panel b, a common
factor has been subtracted from the values to more clearly visualize
the trend; also the spacing between tick marks on the vertical axis is
only 10−3ε, so the differences in energy are quite small.
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where V is the system volume, Fij is the force exerted on
particle i by particle j, rij = rj − ri is the vector between the
particle positions, and the sum runs over all pairs of particles in
the system. As expected, the pressure decreases as ρb increases,
reaching values up to 5% lower than those of ring polymers. In
analogy with the virial pressure given above (eq 4), such
decreases typically indicate that more attractive forces are
present within the system. The only attractive forces that are
specified by the molecular model are the covalent bonds (eq
2). However, in all cases, each Lennard-Jones bead is bonded
to exactly two others, so the concentration of such bonds is
constant, irrespective of ρb. Also, the beads only interact
repulsively via a truncated LJ potential (eq 1) and therefore
cannot lower the pressure unless the particle density is also
reduced (and it is not). In general, the Hamiltonian is the same
for all systems along with the density and temperature, so any
changes in the pressure must be related to changes in the
integration limits (rather than the statistical weights) of the
partition function, that is, they must be caused by the
topological constraints/bonds. In other words, the mechanical
bonds introduce effective (topological) attractions between
linked rings, even though the actual forces are purely repulsive;
these attractions in turn modify the pressure. Evidently, the
topological attraction between linked rings is much stronger
than the topological repulsions between nonconcatenated rings
since pressure increases have not been observed in simulations
of nonconcatenated ring polymer melts.38 In any case, such
repulsions should not be important for the small rings
considered here compared to ordinary excluded volume (i.e.,
that arising from the finite volume of the beads) since the rings
are much smaller than the entanglement length of the KG
model, m < Ne. For n > 2, the pressure decreases linearly with
ρb, with the largest effects observed for the smallest rings. The
dependence on ring size may be related to the fact that the
bond length distributions for small rings are more sharply
peaked, which would typically lead to stronger effective forces
between the macrocycles. However, these distributions lead to

potentials of mean force, which are highly anharmonic (not
shown), precluding any simple interpretation. Since a constant
slope is only observed when n > 2, the doubly threaded rings
apparently contribute more strongly to the pressure than the
singly threaded ones.
The potential energy per particle, ≡u U N/5 , also

decreases linearly with ρb, as shown in Figure 2b, but the
differences are much smaller than those seen in the pressure,
being less than 1% of the value (but still larger than statistical
uncertainty). The potential energy is obtained by time-
averaging the instantaneous potential energy of the system
calculated at regular intervals. In contrast to the pressure, u
does not depend strongly on m, which can be rationalized in
terms of an equipartition theorem. In a crude sense, the
mechanical bond forces the centers-of-mass of two rings to
remain close to each other, removing a degree of freedom
(without actually altering the Hamiltonian). On average, this
degree of freedom will be associated with some potential
energy, which depends on the temperature, and if the internal
degrees of freedom of the rings are not affected, then this
energy will not depend on m. Denoting this energy by A(T)
and assuming that these degrees of freedom are independent,
the change in potential energy associated with adding
mechanical bonds to the system, ΔU, will be proportional to
the number of mechanical bonds: Δ ≈ −U A T n( ) ( 1)5 .
Dividing this quantity by N5 , the total number of particles,
leads to a linear relation between the potential energy and the
concentration of mechanical bonds,

ρ ρΔ ≈ − =u A T n nm A T( )( 1)/ ( ) /b

The total system potential energy has both intra- and
intermolecular contributions, which can be related to the
appropriate site−site pair correlation function. Thus, the small
changes in per-particle potential energy (Figure 2b) must be
accompanied by small changes in the fluid structure. Indeed,
the site−site correlation function can be used to numerically
obtain energy differences in agreement with those of Figure 2
(not shown). However, the actual correlation functions
themselves are indistinguishable to the eye, which is
unsurprising given the smallness of the energy differences.
Moreover, these correlation functions agree quantitatively with

Table 1. Structural Properties of Macrocyclesa

M Rg,r
2 vg,r(m) Rd

2 vd(m) α ⟨λ1 ⟩:⟨λ2 ⟩:⟨λ3 ⟩

free rings 15 2.06 6.93 −0.18 1.0:2.7:6.5
20 2.77 0.51 9.15 0.48 −0.15 1.0:2.5:6.3
30 4.14 0.50 13.26 0.46 −0.11 1.0:2.4:6.2
50 6.75 0.48 21.0 0.45 −0.08 1.0:2.3:6.1

chain ends 15 2.54 9.06 −0.28 1.0:4.4:8.5
20 3.31 0.46 11.6 0.42 −0.24 1.0:3.5:7.5
30 4.77 0.45 15.9 0.40 −0.18 1.0:2.8:6.8
50 7.49 0.44 23.8 0.40 −0.12 1.0:2.5:6.3

chain centers 15 3.01 11.14 −0.32 1.0:6.4:11.5
20 3.89 0.45 14.1 0.42 −0.28 1.0:4.7:9.3
30 5.53 0.43 19.1 0.38 −0.22 1.0:3.5:7.7
50 8.50 0.42 27.9 0.37 −0.15 1.0:2.8:6.8

aData taken from poly[n]catenanes (n = 7) and free rings (n = 1). Mean square radius of gyration (Rg,r
2), apparent scaling exponent (calculated

from the radius of gyration via finite difference, vg,r), mean square diameter vector (Rd
2), apparent scaling exponent (calculated from the diameter

vector via finite difference, vd), non-Gaussian parameter of the diameter vector distribution (α, see eq 5), and ratio of average gyration tensor
eigenvalues (⟨λ1 ⟩:⟨λ2 ⟩:⟨λ3 ⟩). Statistical uncertainties occur in the decimal places after those reported.
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those of linear polymers of high-MW where chain ends effects
become negligible. For very small ring sizes (not discussed
here), the fluid structure can indeed be significantly affected by
chain length, n, which introduces a number of unusual static
and dynamic properties. Such systems will be discussed in a
separate work.
The results presented in this section represent some of the

largest topological effects yet observed in bulk thermodynamic
properties of polymer systems. In particular, the system
pressure shows a strong dependence on the ring size, m,
suggesting that topological effects in poly[n]catenanes will be
most prevalent for smaller ring sizes. In other words, the
concatenation between rings may restrict the available ring
conformations more severely for smaller rings. There is also a
strong dependence on the number of rings in each catenane, n,
which modifies the number of mechanical bonds (i.e.,
concatenation constraints). To more fully understand poly-
[n]catenane systems, it is therefore necessary to study the
conformational properties of the polymers both in terms of
individual rings and at the level of the overall chain. These
properties are the subject of the next two sections.

4. RING CONFORMATION
When studying the conformations of individual macrocycles
within poly[n]catenanes, chain centers and chain ends must be
handled separately since the former are threaded by two rings
while the latter are threaded by only one; these rings should
also be compared with free ring polymers (n = 1), which are
not threaded by any other rings. It was found that the ring
conformations do not depend on n for catenanes of n ≥ 5, and
all quantities are therefore calculated from chains of length n =
7 for simplicity. Table 1 displays some structural properties of
the rings. As expected, mechanical bonds increase the single
macrocycle size relative to that of free rings for all values of m,
as measured by both the mean squared radius of gyration, Rg,r

2

(the second subscript “r” indicating that this quantity applies to
individual rings), and the mean squared diameter vector, Rd

2.
The ratio Rg,r

2/Rd
2 should equal 1/3 for ideal Gaussian ring

polymers and 1/4 for perfectly rigid circles. The observed
ratios are indeed close to the Gaussian value for free ring
polymers, with larger rings having more ideal conformations
and smaller ones deviating slightly. Chain ends and chain
centers deviate more strongly from ideal behavior with ratios as
small as 0.27 observed for the smallest rings, suggesting that
the mechanical bond leads to effectively stiffer polymer
segments and more circular conformations.
Ideal (phantom) ring polymers without topological

restrictions have a Gaussian-distributed diameter vector,71,76

and real ring polymers in the melt generally obey such a
distribution, even when topological interactions cause nonideal
scaling of the ring size.38 However, this distribution may be
affected by the mechanical bonds in poly[n]catenanes for the
small ring sizes studied here. This effect can be quantified by a
non-Gaussian parameter:

α ≡ ⟨ ⟩
⟨ ⟩

−R
R

3
5

1d

d

4

2 2
(5)

, which takes on a value of zero if the diameter vector is
Gaussian-distributed and −0.4 if it is delta-function distributed.
All systems exhibit negative parameters, but the values tend
toward zero with increasing ring size m, achieving nearly ideal
statistics for the largest free rings (m = 50, Table 1). At small

m, the negative values of α suggest that the conformational
freedom of the rings is limited by the topological restriction
that the loop be closed. In general, the mechanical bonds
further reduce the non-Gaussian parameters, again indicating
stiffer polymers, which is consistent with the larger ring sizes
discussed above.
The mechanical bonds also affect the shape of the rings,

which can be determined by the ratio of the eigenvalues of the
gyration tensor, also shown in Table 1. As expected,
unthreaded rings show very similar shape for all m since they
are nearly ideal ring polymers. Threaded rings, however, are
highly distorted by the mechanical bonds, particularly at small
m, where they adopt nearly two-dimensional shapes as
indicated by the large increases in the eigenvalue ratios.
These shape changes are also observed in the ring density
profiles as a function of the distance from the center-of-mass,
shown in Figure 3. While the unthreaded rings show (nearly)

monotonically decreasing density profiles for all ring sizes, the
threaded rings exhibit large depletions near the center of mass
and form toroidal shapes. As expected, the magnitude of this
effect decreases as the ring size m increases.
As discussed in the Introduction, the size of ring polymers

scales more slowly with molecular weight in the melt compared
to linear polymers or ideal Gaussian rings. Since this unusual
scaling is driven by topological interactions, the mechanical
bonds are expected to alter the scaling of ring size within the
poly[n]catenanes. Of course, the rings considered here are
rather small, with ring size, m, being considerably less than the
typical (linear) entanglement molecular weight for the KG
model, so the quantities reported here are only apparent or
crossover scaling exponents. Nevertheless, the exponent values
and trends will prove insightful in understanding the effect of
the mechanical bond on ring conformations. The m-dependent
apparent scaling exponents, vg,r(m) and vd(m), are calculated
from Rg,r

2 and Rd
2, respectively, by finite difference, and are

presented in Table 1 for various ring topologies. Free rings
scale nearly ideally at small m, with exponents decreasing
modestly as m increases, consistent with other simulations of
ring polymer melts.35,38,41−43,77 For the threaded rings, the
scaling exponents also decrease as m increases, but the values

Figure 3. Ring density profile as a function of distance from
macrocycle center-of-mass for poly[n]catenanes and ring polymers.
Note that the legend in the lower right pane applies to all graphs.
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are much smaller overall, as low as 0.37 for the largest ring
sizes. These results lead to an apparent “paradox”: such small
scaling exponents typically indicate topological compression of
rings, leading to smaller polymers, but the mechanical bonds
actually expand the rings (Table 1). Perhaps the unusually
small scaling exponents arise because the dimensions of the
threaded rings are converging toward those of the unthreaded
ones as m increases; this convergence would naturally lead to
smaller apparent scaling exponents. Indeed, the results shown
in Table 1 indicate that rings tend to become more ideal as m
increases for all topologies (i.e., number of threadings). This
picture is also supported by the density profiles in Figure 3: the
qualitative differences between the profiles of chain centers and
free rings are considerably reduced at large ring sizes. However,
this does not appear to be the case in dilute solution conditions
as revealed by recent Monte Carlo simulations of linked and
unlinked rings, which do not exhibit the “paradox” mentioned
above. Indeed, linked rings are still considerably larger than
unlinked ones in dilute solution conditions, even for very large
polymers,78 and show nearly identical scaling behavior.75,78,79

The primary difference between these two scenarios is the
presence of intermolecular (interchain) interactions. These
observations suggest an interplay of two effects in poly[n]-
catenane melts: the mechanical bonds increase the ring size
and change the ring shape (Table 1), thus altering the inter
molecular interactions with other rings in the melt, affecting
the scaling of the ring size with increasing m. In summary, ring
dimensions in poly[n]catenanes appear to be significantly
affected by both the mechanical bonds and the intermolecular
interactions.
Thus far, only the overall size and shape of the rings have

been considered; now the specific conformations of the
macrocycles are studied. These conformations may be
quantitatively analyzed in terms of the Rouse modes, which
are essentially Fourier modes of the chain.72 For ring
polymers,71 these modes are written:

∑ π=
=

ikjjj y{zzzX R
qi
m

cosq
i

m

i
1 (6)

where Ri is the position of bead i, and q is the mode number.
For ring polymers, only even mode numbers q are allowed.
These modes are associated with a set of eigenvalues:

λ π= ikjjj y{zzzq
m

4 sin
2q

2

(7)

The mean-squared mode amplitudes ⟨Xq
2⟩ contain information

about the conformation of the polymer at length scales of m/q
along the chain contour, and their sum is proportional to Rg,r

2.
When scaled by the eigenvalues, the amplitudes represents
effective bond lengths (squared) at the corresponding length
scale. For ideal Gaussian chains, these bond lengths are
constant for all length scales; in reality, the bond lengths
typically increase toward a plateau at large length scales (m/q)
because of local chain stiffness effects. These effective bond
lengths are plotted as a function of length scale in Figure 4 for
all ring sizes and topologies (sets of curves for different m have
been shifted vertically for clarity). At the longest length scales,
the rings are expanded by the mechanical bonds, in agreement
with the previously discussed results on ring dimensions.
However, at all shorter length scales, the mode amplitudes for
the threaded macrocycles are smaller than those of the free
rings, indicating that the mechanical bond effectively

compresses the segments locally compared to free rings, with
doubly threaded rings being the most affected. As is the case
for other structural properties, the size of these effects is
diminished as m increases. Since these two effects were also
observed in dilute solution conditions,68 they are likely related
to the mechanical bonds alone, rather than intermolecular
interactions.
The single-ring structure factor also shows some signatures

of the mechanical bond. The single ring structure factor is
defined as

∑=
=

S k
m

kr
kr

( ) 1 sin

i j

m
ij

ij, 1 (8)

where rij is the distance between beads i and j within the same
ring, and the angled brackets denote an ensemble average over
all rings of the same topology, that is, all chain center or chain
end macrocycles in poly[n]catenanes, or all rings in ring
polymer melts. This function provides information on polymer
conformation and statistics in reciprocal space and can be
obtained experimentally via neutron scattering. As expected, all
systems show a Guinier regime at low-k and peaks at high-k,
the latter being caused by the covalent connectivity between
beads. However, for threaded rings, the structure factor also
exhibits a pronounced shoulder at kRg,r ≈ 4, as shown in Figure
5a. This feature appears at the same value of kRg,r for all ring
sizes, indicating that it is not caused by bead connectivity but is
instead related to the structure of rings at the segmental level.
This shoulder is absent for free rings, as shown in Figure 5b,
indicating that it is a feature unique to the mechanical bond. As
with other features, the size of the effect is reduced as m is
increased. This distinctive feature may be related to the peaked
density profiles seen in Figure 3. However, the connection
between the two observations is not entirely clear. For
instance, free rings also show a maximum in the density
profile for m = 15, but this system does not show any
additional shoulder in the structure factor. Furthermore, the
position of the peak in the density shifts to lower values of r/
Rg,r as m is increased, while the position of the peak/shoulder
in the structure factor is virtually constant for all m. Ultimately,
these two quantities probe the structure in different ways, so
no immediate connection between them is available.

Figure 4. Mean squared amplitudes of the Rouse modes for rings (eq
6) within poly[n]catenanes. Sets of curves for each m have been
shifted vertically for clarity.
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5. CHAIN CONFORMATION
As poly[n]catenanes have an overall linear structure, their
properties can be conveniently studied by coarse-graining them
into simple linear polymers. Following previous work,68 each
ring is defined as an effective monomer with its position given
by the ring center-of-mass; the conformations of the chains are
examined in terms of these effective monomers. First,
structural properties that do not depend on chain length, n,
are considered; among these are the mechanical bond lengths
at the chain end, be, and chain center, bc, defined as the
separation distance between ring centers-of-mass at these
points in the chain. These quantities are shown in Table 2;
since they have essentially no dependence on n (see Appendix
A, Figure A1b), they are calculated from the systems with n =
25 for simplicity. The bond lengths are somewhat smaller at
the chain ends compared to chain centers, consistent with the
previous observation that the rings are smaller at the chain
ends (Table 1). One would expect that these bond lengths

scale with m in a manner similar to the ring size (Rg,r or Rd).
Although these apparent scaling exponents, vb, are indeed in
the range 0.4−0.5 for the chain center bonds (Table 2), the
exponents actually increase with m, in contrast to the ring size
scaling exponents, which decrease with m (Table 1). The
reason for this discrepancy is unclear but may be related to the
interplay of the mechanical bonds and intermolecular
interactions mentioned in the previous section; further study
is required to clarify the situation.
The effective bond length, beff, measures the polymer

stiffness and is defined in terms of the end-to-end distance
as Re

2 = (n − 1)beff2; note that Re
2 is the mean-squared distance

between the centers-of-mass of the chain-end macrocycles and
will be discussed later. Consistent with the results of Wittmer
et al.,80,81 the quantity Re

2/(n −1) depends linearly on n1/ ,
so a simple linear regression can be used to estimate beff2 in the
asymptotic limit (n → ∞); these data and their apparent
scaling exponents with m, denoted vb,eff, are shown in Table 2.
As expected, the effective bond lengths increase with m,
reflecting the larger size of the elementary macrocycles. Similar
to the mean bond lengths discussed above, the apparent scaling
exponents of effective bond lengths increase with m. However,
the actual values of the exponents are considerably smaller: in
the range of 0.29−0.34. Essentially, the effective bond lengths
increase with m more slowly that the true bond lengths. The
ratio of these two values, beff/bc is simply the square root of the
characteristic ratio and therefore measures the effective
stiffness of the polymer; this value (also shown in Table 2)
decreases with m, indicating that poly[n]catenanes with larger
rings are more flexible, in a relative sense. This result agrees
with our previous work on isolated chains.68 Finally, the
persistence length is calculated in two ways: (1) direct
calculation using the polymer radius of gyration82 and
subsequent normalization by bc, and (2) by fitting the bond
vector orientational correlation function to an exponential
decay. The first method includes information about all beads
within the polymer since Rg is calculated using every bead; the
second method only accounts for interactions at the macro-
cycle center-of-mass level. Because of this, the numerical values
are quite different. In general, these two measures of
persistence length do not agree with each other for “thick”
macromolecules,83−85 so the result is not surprising. Never-
theless, both measures of persistence length follow the same
trend as the normalized effective bond lengths: larger rings lead
to more flexible poly[n]catenanes.
The observations above can be explained qualitatively with a

simple excluded volume argument. Because the melt has finite
compressibility, segments (i.e., rings) within the same polymer
chain repel each other at short distances due to unscreened
excluded volume. In turn, this excluded volume should be

Figure 5. (a) Chain center single-ring structure factor for various m.
(b) Structure factor for all ring topologies for smallest and largest m
values. Note that the k-values have been scaled by the radius of
gyration of each ring. These data were taken from systems with n = 7
but are in quantitative agreement with other values of n.

Table 2. Structural Properties of Poly[n]catenanesa

m bc vb be beff vb,eff beff/bc lpg lpe ne
15 1.98 1.75 3.24 1.64 1.48 1.12 43
20 2.23 0.41 2.01 3.52 0.29 1.58 1.38 1.01 45
30 2.69 0.46 2.47 4.02 0.33 1.49 1.23 0.84 45
50 3.46 0.49 3.23 4.79 0.34 1.38 1.07 0.66 42

aIntrinsic structural properties of poly[n]catenanes: chain center bond length (bc), apparent scaling of bc with m (vb, calculated by finite difference),
chain end bond length (be), effective bond length (beff), apparent scaling of beff with m (vb,eff, calculated by finite difference) and normalized effective
bond length (beff/bc), persistence length from radius of gyration (lp

g), persistence length from bond vector correlations (lp
e), estimated

entanglement length (ne, see Section 6 for details and discussion). See main text for additional details.
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related to the local bead density within the segments. For
poly[n]catenane macrocycles, this bead density decreases as m
increases; this is true for any molecule that is not completely
globular, that is, R ∼ N1/3. Therefore, poly[n]catenanes with
larger rings experience less intrachain repulsion between
macrocycles, which makes the chains more flexible compared
to those with smaller rings. Of course, the rings will also exhibit
some topological excluded volume,51 which is expected to
grow with m,86 but such effects should be negligible compared
to the molecular (bead) excluded volume for the small rings
considered here.
The apparent scaling of poly[n]catenane size with n depends

strongly on the particular measure: end-to-end distance, Re, or
radius of gyration, Rg. The former is calculated as the distance
between the centers-of-mass of the chain-end macrocycles,
while the latter includes contributions from all beads in the
system. In Appendix B, it is shown that the two quantities may
be estimated in terms of the radius of gyration of the rings, Rg,r,
and the effective bond length, beff, by the relations:

= − ≈R n b nb( 1)e
2

eff
2

eff
2

(9)

≈ + +R
nb

R
b
n6 6g g r

2 eff
2

,
2 eff

2

(10)

Note that quantitative agreement with eqs 9 and 10 is not
expected as a variety of approximations have been employed.
Nevertheless, the same qualitative trends should be apparent in
simulation data. For large values of n, eqs 9 and 10 indicate
that both Re and Rg approach ideal scaling, Re ∼ Rg ∼ n1/2; this
result is confirmed in Figure 6 for all poly[n]catenane systems.

Furthermore, the distribution of end-to-end vectors becomes
more Gaussian (ideal) for large n as determined by a non-
Gaussian parameter similar to eq 5 (Figure 6 inset). These
results demonstrate that poly[n]catenanes are similar to linear
polymers at long length scales. The fact that the ratio Re

2/Rg
2 is

nearly equal to the ideal chain value of six at large n further

supports this conclusion. However, the apparent exponents of
Re and Rg in the low-n crossover regime approach the ideal
limit from different directions, as shown in Figure 7 (calculated

by finite difference). The apparent scaling exponents of Re are
much larger than 1/2 at small n and slowly decrease toward the
ideal value, while the apparent scaling exponents of Rg are
considerably lower than 1/2 at small n, with values as small as
0.2 observed for the largest ring sizes. The rapid apparent
scaling of Re is typical for linear polymers and is caused by local
stiffness of the chain and unscreened excluded volume effects.
On the other hand, the apparent scaling of Rg is quite unusual:
such exceptionally small exponents indicate highly compact
conformations which slowly relax to ideal coils at large n. This
result can be understood in terms of eq 10, which contains
three terms: an ideal chain contribution (first term), an
additive correction that is independent of n (second term), and
a higher order correction that decays quickly with n (third
term), which can be neglected in the present analysis. The
second term arises from the detailed local structure of the
polymer, that is, the macrocycles, and causes reductions in the
apparent scaling with n. In fact, from eq 10, the apparent
scaling exponent can be approximated as ν ≈ 1/2 − 3Rg,r

2/Re
2

(see Appendix B) so that corrections to the ideal chain value
are related to the relative size of the macrocycles and the
overall polymer. For larger rings or shorter chains, these
corrections lead to smaller effective scaling exponents; both of
these trends can be clearly seen in Figure 7. At large length
scales, the details of the underlying ring structure become less
important, and the poly[n]catenanes are dominated by their
overall linear architecture, at which point the ideal scaling
exponent of 1/2 is recovered.
The m-dependence of Re and Rg can also be understood in

terms of eqs 9 and 10. In particular, eq 9 indicates that Re
should depend on m only through the effective bond length,
beff (neglecting chain end effects). The behavior in eq 10 is
richer, as two m-dependent quantities are found: the effective
bond length, beff, and the ring radius of gyration, Rg,r. As a
result, no power-law behavior is expected except when the
second and third terms of eq 10 can be ignored (i.e., for large
n) or when both beff and Rg,r have the same power-law
dependence on m. However, the latter scenario is not observed

Figure 6. Mean-squared end-to-end distance and radius of gyration
for poly[n]catenanes as a function of the number of rings per chain.
Inset: non-Gaussian parameter for the distribution of end-to-end
distances.

Figure 7. n-dependent apparent scaling exponents, v, for end-to-end
distance, Rg, and radius of gyration, Rg, of poly[n]catenanes calculated
by finite difference. The dashed black line indicates the ideal
(Gaussian) limit.
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in the simulation data as discussed above (cf. Tables 1 and 2):
even for chain centers, Rg,r increases considerably faster with m
than does beff. As a result, the apparent scaling exponents of Rg
with m systematically decrease with n from the free ring
polymer values (roughly 1/2, see Table 1) at small n to the
effective bond length values (roughly 1/3, see Table 2) at large
n. In light of these observations, it is only useful to consider
scaling behavior in the asymptotic limit of large n, where only
the first term in eq 10 is important. In this scenario, Re and Rg
will have the same m-dependence, which, as mentioned above,
enters through beff; this dependence was discussed above near
the beginning of this section. To restate the main points, beff
(and therefore Re and Rg) grows very slowly with m owing to a
reduction in effective chain stiffness. However, the rings
studied here are not large enough to reach any asymptotic
limit.
The shape of poly[n]catenanes can be characterized in more

detail by the ratios of the gyration tensor eigenvalues, shown in
Figure 8. For n = 2, these ratios are smallest, indicating a more

spherical shape. At larger n, the ratios increase to values
comparable to those of ordinary linear polymers (λ2/λ1 ≈ 2.6,

λ3/λ1 ≈ 10.7),2 suggesting a transition from globular to ideal
coil conformations. Note that for linear polymers, the
eigenvalue ratios are larger for smaller N because of local
chain stiffness. In a similar manner, the ratios for n = 1 (i.e.,
ring polymers) are greater than those for n = 2.
Even at the largest values of n, poly[n]catenanes appear

highly globular in the melt compared to dilute solution. A
visualization of the molecule in the two contrasting conditions
is shown in Figure 9. In good solvent conditions, the rings are
expanded, along with the chain as a whole. However, once
intermolecular effects are introduced in the melt, the polymer−
polymer interactions compress the macromolecules drastically,
transforming them into dense globule-like structures with just a
few small protruding segments. These configurations are
somewhat similar to those found in ring polymer melts,
which is indeed expected since the lack of (covalent) chain
ends in both systems requires that any interpenetrating
segments must be loops.37,38,43 Similar conformations
involving segregated territories are also observed in cellular
chromatin and imply considerable density inhomogeneities
within single chains.75,87 When the polymer is examined in
terms of the ring COMs, the details of the globular structure
are lost and the resulting linear polymer appears quite ordinary.
Because of these observations, complex features are expected
in the single-chain structure factor.
The single chain structure factor is calculated according to

eq 8, except all pairs of beads on the same catenane (or linear
chain) are included in the sum, and the average is taken over
all chains in the system. For traditional linear polymers, the
structure factors exhibit a large intermediate region where S(k)
∼ k−2 since polymers are statistically fractal objects, specifically
ideal random walks in the melt.88,89 At larger k, the structure
factor oscillates because of local connectivity constraints at the
bead level.23 Meanwhile, for ring polymers, an additional
region of S(k) ∼ k−3 has been observed at low-k for high-MW
melts corresponding to a collapsed globule structure at large
length scales.38,90 For poly[n]catenanes, several distinct regions
are observed, although they are narrow in wavevector range
and therefore not well-developed, as shown in Figure 10. At
low-k, the polymers exhibit a Guinier regime, as expected. At
higher-k, a regime of ideal statistics with S(k) ∼ k−2 is expected
for large n since the polymers are linear-like at large length
scales, as previously discussed. However, no such regime is

Figure 8. Ratio between average gyration tensor eigenvalues for
poly[n]catenanes. The values for large n are close to the limiting
values for linear polymers. However, the ratios for linear polymers
approach this limit from above, rather than below.

Figure 9. Visualizations of poly[n]catenanes with n = 25 and m = 50 in (a) good solvent conditions and (b) the melt state. Alternating rings are
colored differently for visual clarity. Also shown in panel b are the ring COMs of the configuration (green) with the mechanical bonds represented
by connections between the beads. The structure in the melt state shows several segregated territories, similar to those seen in nonconcatenated
ring polymers and cellular chromatin.
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easily distinguished in the structure factor. To more closely
examine the behavior, it is helpful to study the differential
apparent fractal dimension, defined as

= −d k
d S k
d k

( )
log ( )
logf

(11)

These functions are shown in Figure 11 for various systems. In
the low-k range (∼0.1−0.5), the fractal dimensions exhibit a
small shoulder in the neighborhood of df = 2, which slowly
grows toward a quasi-plateau as n increases. Its value is
consistent with Gaussian chain statistics, and the smallness of
the regime suggests that the largest poly[n]catenanes are only
just beginning to display ideal chain behavior.
Next a small apparent regime of S(k) ∼ k−4 is observed at

intermediate k-values. This Porod-like behavior is typically
associated with scattering from interfaces and other systems
with density inhomogeneities. As we have pointed out above,
poly[n]catenanes form segregated territories in the melt
(Figure 9b), and the scattering from these regions (and their
boundaries) may explain this regime. This will be discussed
further below.
At even higher k-values, a third regime is observed with a

power-law slope that depends on m, with smaller rings showing
“flatter” curves in this region. This feature appears as a small
shoulder in the differential fractal dimension, with the value of
df depending strongly on m. For m = 15, this “shoulder” is
actually a small peak. These features are strikingly similar to
the signatures of the mechanical bond in the single-ring
structure factor discussed in Section 4. In fact, both these
features appear at the same k-values (see Figure 10), suggesting

that they are the same phenomenon manifested in two
different scattering functions. After this regime, the structure
factor is dominated by local bead connectivity constraints.
To separate out the chain and ring structural contributions,

the single polymer total intramolecular structure factor is
computed at the coarse-grained level, considering only the
macrocycle centers-of-mass as the scattering bodies. This
function is compared to the full chain structure factor in Figure
12. At the coarsened resolution, the polymers are nearly ideal,
and the structure factors agree quantitatively with the full
structure factor at large length scales (low-k). However, most
of the features in the higher-k regions are absent, indicating

Figure 10. Single-chain structure factor for poly[n]catenanes of
various n and (a) m = 15 or (b) m = 50. The dashed black curves
show the single-ring structure factor for poly[n]catenane chain centers
(cf. Figure 5a). The legend in panel b applies to both graphs.

Figure 11. Differential fractal dimension for poly[n]catenanes of
various n and (a) m = 15 or (b) m = 50. At low k-values (0.1−0.5), a
small plateau develops in the neighborhood of df = 2, suggesting a
slow approach toward ideal chain statistics.

Figure 12. Single chain structure factor for poly[n]catenanes of
various m at the coarse level compared with the fully detailed level.
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that all of these more unusual phenomena are intimately
related to the underling structure of the rings. At high-k, the
structure factor does oscillate very slightly (owing to the
macrocycle connectivity), but this effect is very small and
decays quickly.
Although the high-k regime can be easily interpreted as

single-ring structure, the intermediate S(k) ∼ k−4 regime is
quite unusual. Such scaling exponents are more typical of
phase-separated systems in which the interface contributes
strongly to the scattering.91−93 However, the poly[n]catenanes
considered here are neutral homopolymers, so there can be no
phase separation in the ordinary sense. Nevertheless, such
scaling implies density inhomogeneities along the chain, which
are clearly visible in Figure 9b in the form of ring segments
protruding from a globular-like core. To quantify these
inhomogeneities, the average single-chain bead density is
calculated as a function of the contour position using the
following procedure. The ring center-of-mass positions of a
given polymer are interpolated by a cubic spline function, and
20 equidistant points are placed between each center-of-mass.
The local density of a single chain at a given point is then
determined by the number of beads (in the same catenane)
within a given distance of the point. Because each polymer is
considered individually and only the single-chain densities are
calculated, the resulting values may differ from the overall
system density. To resolve differences in density at the
appropriate length scales, the cutoff distance is taken to be one-
half the radius-of-gyration of the chain-center macrocycles
(Rg,r); other choices are also possible but give qualitatively
similar results so long as the cutoff is not too large. These data
are averaged over all polymers in the melt and multiple
configurations for improved statistics. The resulting density
profiles (denoted ρc) are shown as a function of contour
position (denoted s) in Figure 13 for poly[n]catenanes with n

= 10 and various m. For all m, these profiles show small but
clear oscillations with a period of one mechanical bond in the
chain contour space, indicating a “beads-on-a-string” structure.
Interestingly, the maxima of the density occur at half-integer
values of s, indicating that the highest densities are found at the
“linked portion” of the macrocycles.33 For the smallest rings,
there is a smaller maximum found at whole integer values of s,

which is likely caused by the threading segments being forced
close to the ring center-of-mass by the small ring size; for larger
m, this feature disappears. Different values of n yield
quantitatively similar results. The length scale of the density
oscillations in real space will be dominated by the separation of
nearest-neighbor high-density regions. Since this separation is
one mechanical bond in chain contour space, the separation in
real space should be related to the mechanical bond length, bc,
and should therefore vary with m. If these oscillations cause the
k−4 scaling in the structure factor, then the length scale of
interest is determined by the position of the maximum in the
differential fractal dimension: d = 2π/kmax. As expected, these
length scales do in fact increase with m, and although they are
considerably larger than the bond lengths, bc, the ratio d/bc ≈
2.28 is fairly constant for all ring sizes. These observations
suggest that the unusually fast decay in the single-chain
structure factor is related to the density variations associated
with the linked portions of the macrocycles. Nevertheless, the
quantitative differences in bond length and Porod-like length
scales demand further study to better understand the territorial
segregation observed in these polymers. In particular, it is not
clear why the length scale d is so large, even larger than beff, so
it is possible that there are multiple length scales associated
with the density fluctuations in the polymers.

6. INTERMOLECULAR STRUCTURE
In the melt, high-MW linear and ring polymers interact
strongly with neighboring chains, and these interactions can
greatly affect both structure and dynamics. In particular, the
interpolymer packing correlations are a functional of polymer
conformation via the intramolecular structure factor examined
in the previous section and the two functions are self-
consistently coupled. Given the unusual intramolecular
correlations studied earlier, it is expected that intermolecular
structure may also show signatures of the complex poly[n]-
catenane architecture. A key quantity is the intermolecular
site−site correlation function, g(r). Results are shown in Figure
14 for catenanes of n = 25 and various ring sizes. Like linear
polymers, a pronounced correlation hole effect88 is observed,
which is nearly independent of ring size. For large n, the
correlated part of g(r) (defined as h(r) = g(r) − 1) exhibits an

Figure 13. Single-chain density as a function of chain contour
position for poly[n]catenanes of n = 10 and various m and companion
illustration. See main text for details of the calculation. The maxima
occur at approximately half-integer values of s, which correspond to
the linked portions of the rings (red shaded areas), while the minima
correspond to the chain centers (green shaded areas). For m = 15, the
smaller maxima are caused by the close interaction of linked segments
of next-nearest neighbor rings.

Figure 14. Intermolecular bead−bead correlation function for
poly[n]catenanes of various m. Normalizing the distances by the
polymer Rg results in collapse to a master curve for a given n. Inset:
the logarithm of the nonrandom part of the correlation function. The
linear dependence indicates exponential decay.
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exponential decay beyond very local length scales (Figure 14
inset), with a decay length of order the chain Rg. This feature is
qualitatively the same as for melts of random coil chains;
however, the form of the correlation for those systems is
Yukawa, h(r) ∼ (1/r) exp(−r/Rg). For a fixed value of m, the
depth/width of the correlation hole increases with n as
expected, as shown in Figure 15a. However, when normalized

by Rg, the width of the correlation hole actually decreases with
n (Figure 15a inset), indicating that larger poly[n]catenanes
exclude each other less strongly, similar to linear polymers
(Figure 15b).
The dynamics of a tagged polymer in a dense liquid is often

intimately related to the number of neighboring polymers it
interacts with; this is true for linear chains, and ring
polymers,38 and is likely important for other complex
architectures. Here, the number of neighbors, np, is calculated
using both a direct and indirect method, which reveal different
aspects of the interpenetrating melt structure. In the direct
method, the intermolecular pair correlation function of the
poly[n]catenane centers-of-mass is calculated and then
integrated to a separation of Rg.

38 In the indirect method,
the intermolecular site−site correlation function, g(r), is
integrated to Rg and then divided by N.90 The direct method
focuses on a coordination number at a coarse grained center-
of-mass level in the spirit of polymers as soft particles, while
the indirect method is the more local bead level analog. The
results are shown in Figure 16. For linear polymers, the two

methods give similar numerical values (Figure 16a), which
scale nearly ideally with degree of polymerization, np ∼ N1/2.
On the other hand, unlinked ring polymers have far fewer
neighbors than linear chains, and the two methods disagree
significantly, with the direct method giving values more than an
order of magnitude smaller than the indirect one for small N.
The small values of the direct method indicate that ring
centers-of-mass cannot easily approach each other, while the
larger values based on the indirect method reflect bead−bead
contacts in the surface region of two partially overlapping
macromolecules. This interpretation is supported by previous
simulation results.38,90 For poly[n]catenanes (Figure 16b), the
indirect method yields np ∼ n1/2, as expected for ideal
polymers. The quantitative values increase with as m increases,
suggesting that larger rings allow for more interpenetration and
more neighbors. However, for small n, the direct method gives
values that are several orders of magnitude smaller, indicating
that poly[n]catenane centers-of-mass cannot easily approach
each other. The values do increase for larger m but are still far
smaller than those of the indirect method. These results are
qualitatively similar to those of unlinked ring polymers,
indicating that short poly[n]catenanes primarily interact with
their neighbors at the surface of the polymers and inter-
penetrate each other only weakly, consistent with the globular
conformations at small n. At larger values of n, the results of
the two methods approach each other, indicating a transition
to more ideal chain behavior. For the KG model considered
here, the entanglement length for linear chains is approx-

Figure 15. Intermolecular bead−bead correlation function for (a)
poly[n]catenanes of m = 30 and variable n, and (b) linear polymers of
variable N. The depth and width of the correlation hole effect
increases with n and N, although the size of the effect is much larger
for poly[n]catenanes. Inset: the same data with distance normalized
by Rg. For clarity, only the data beyond the third solvation shell are
displayed in the inset of panel b. The two systems are qualitatively
similar, suggesting that poly[n]catenanes are comparable to linear
polymers at long length scales.

Figure 16. Average number of neighboring chains as calculated by the
direct and indirect methods (see main text) for (a) linear and ring
polymers as a function of N, and (b) poly[n]catenanes of various m as
a function of n. Note that the scale bars for the two graphs are
different: the poly[n]catenane values vary over a much larger range
and are generally smaller than those of linear polymers.
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imately Ne ≈ 85,26 at which point np ≈ 4; this value is
considerably larger than that of the longest poly[n]catenanes
studied here, which have np < 2. As a result, it is unlikely that
poly[n]catenanes of this length will be able to entangle in a
meaningful way. Of course, the specific values reported in
Figure 16 could be altered by adjusting the integration cut off
for the two methods, but the same general trends are observed.
The density profiles of individual rings as a function of their

distance from the overall polymer center of mass, also known
as the self-densities, also provide information on polymer
structure and interpenetration. The results for the smallest and
largest poly[n]catenanes are shown in Figure 17 along with

data for linear and ring polymers for comparison. For
poly[n]catenanes with small rings, the profile shows distinct
peaks/humps, which likely arise because of conformational
restrictions imposed by the fluid structure, that is, the
molecules are small enough that the solvation shells still
influence the structure significantly; these features disappear as
the molecular weights (and therefore polymer sizes) increase.
For all ring sizes, as n increases, the density profiles become
broader and the density at r = 0 decreases, indicating improved
chain interpenetration. In general, the self-densities near r = 0
tend to be larger for poly[n]catenanes and ring polymers
compared to linear chains. For ideal linear polymers, the self-
density in this limit scales as N−1/2, per the correlation hole
effect. Figure 18a shows these data as a function of N for linear
and ring polymers. The linear polymers obey ideal scaling,
while the self-density of ring polymers is nearly independent of
N, in agreement with previous simulations.38 The same data
for poly[n]catenanes are displayed in Figure 18b, which shows
two distinct regimes. At small n, the self-density at the origin is
nearly constant and quite large (note the total density is 0.85),
similar to the behavior of ring polymers. In this region, the
polymers strongly exclude their neighbors due to their globular
shape, and interpenetration is limited. As n increases, the self-
density then begins to decay according to the ideal scaling law
∼n1/2, similar to linear polymers. The two regimes are quite
sharply separated at n = 10, suggesting that there is a critical
threshold above which poly[n]catenanes cross over from a

globule-like conformation to an ideal chain conformation,
although no such sharp transition is observed in the single-
chain conformational properties (Section 5).
Finally, we consider the question of interchain entanglement

of the polymers, which has important implications for the
dynamics of these systems. For linear polymers, entanglements
may be defined, identified, and quantified in many ways.24−33

However, these methods cannot be directly applied to
poly[n]catenanes since they do not have continuous (covalent)
contours. Furthermore, any attempt to generate an equivalent
linear polymer from a poly[n]catenane would necessarily lose
information concerning local ring conformations. To keep the
analysis simple, an estimate for the number of rings between
entanglements, ne, is calculated using the overlap parameter:

ρ ρ ρ= = =O
R
N

nb
nm

n b
m

( )e
3

eff
2 3/2 1/2

eff
3

(12)

Linear polymers typically become entangled when O ≈ 10−20;
for instance, the linear polymers systems studied here have Ne
≈ 85, which corresponds to O ≈ 18. Therefore, ne is estimated
conservatively by setting O = 10 in eq 12 and solving for n. Of
course, this analysis is highly simplified, as eq 12 is empirical
and generally not applicable for cyclic or topologically complex
polymers. Nevertheless, it provides a useful starting point for
studying the entanglement properties of these polymers as
their overall architecture is linear at long length scales and

Figure 17. Single-chain bead density profiles as a function of distance
from polymer center of mass for poly[n]catenanes with various m and
n = 2−25 (left), compared with profiles for linear polymers of N =
15−175 and ring polymers of N = 15−50. The arrows indicate
increasing molecular weight (n or N).

Figure 18. Single chain bead density at the polymer center of mass
(also known as the self-density) for (a) linear and ring polymers as a
function of N and (b) poly[n]catenanes of various m as a function of
n. The dashed lines indicate the ideal linear polymer scaling laws. The
error bars for the linear and ring polymer data are approximately the
size of the data points and are therefore omitted for clarity. The
wayward data point at n = 2 for m = 15 in panel b is caused by local
bead packing effects.
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interchain entanglement is fundamentally a large-length scale
phenomenon. The results of the calculation are shown in Table
2. The values are all roughly ne ≈ 45, independent of m, and
much larger than the longest chains studied (n = 25). The large
estimates of ne agree well with the earlier observation that these
polymers and their rings do not interpenetrate each other
strongly. The lack of dependence on m is somewhat
unexpected since an idealized poly[n]catenane would have
an effective bond length proportional to ring size beff ∼ m1/2

and therefore ne ∼ m−1 by eq 12. However, as discussed
previously, the effective bond lengths grow slowly with m,
leading to greater relative flexibility and therefore modifying
the scaling of ne with ring size. On the basis of these results,
interchain entanglement should not affect the dynamics of the
poly[n]catenanes studied here, which will be discussed in a
later publication.

7. CONCLUSIONS
The static properties of poly[n]catenane melts have been
systematically studied by molecular dynamics simulations and
the key features that distinguish these unusual polymers from
their linear (and cyclic) counterparts identified. The
mechanical bonds significantly perturb the thermodynamics
of the system, with large deviations in pressure observed as a
consequence of the topological attraction between linked rings.
These same mechanical bonds alter the conformations of the
rings within catenanes and lead to nontrivial scaling with ring
size. The polymers possess complicated intramolecular
scattering functions that exhibit many more features than
linear polymers, including unusual scaling relationships, which
can be attributed to density inhomogeneities along the
poly[n]catenane chain contour arising from the mechanical
bonds and intermolecular topological effects. For relatively
small degrees of polymerization, the poly[n]catenanes are
highly globular and interact with their neighbors only at the
surface of the polymer. As the number of rings increases, the
conformations of poly[n]catenanes begin to resemble those of
ideal chains with the number of neighboring chains following
the expected scaling.
For the current synthetically accessible chain lengths studied

here (n < 25), there is no indication that interchain
entanglement plays a significant role. In fact, the large ne
values of poly[n]catenanes may explain some of the properties
observed experimentally.66 In particular, these polymers form
powders, while chemically similar linear polymers of
comparable molecular weight, can be processed into stable
films. This difference may be caused by the intermolecular
interactions: these molecules contain many rigid aromatic
groups (necessary for the metal-templating synthesis), which
can result in pervasive π−π stacking interactions between the
polymers. Such interactions are probably somewhat inhibited
by the interlocking structure, reducing the cohesive energy
density. However, based on the results presented here,
interchain entanglement is likely also a factor. Since linear
polymers entangle at much lower molecular weights than
poly[n]catenanes, the stable films obtained experimentally
from linear polymers of similar chemistries are likely entangled,
improving stability below the glass transition temperature.
Experimental linear poly[n]catenanes prepared to date have
average degrees of polymerization (n) of 10−15, far too small
to entangle according to our simulations, which suggest that at
least an n of 45 is required to access poly[n]catenane materials
suitable for rheological testing. Note, however, that the model

poly[n]catenanes studied here are composed of fully flexible
segments with no complex chemical motifs present, so the
results here may not be immediately applicable to synthetically
realizable systems. More generally, the results presented here
suggest that macrocycle size is a key design parameter for
poly[n]catenane systems. The ring size not only influences the
polymer contour length but also alters its flexibility and may
enhance or inhibit interchain entanglement at large n. More
interestingly, catenanes are typically stimuli-responsive moi-
eties, with dynamical motions that may be switched on or off
by the appropriate stimulus,55 and poly[n]catenanes are no
exception.66 The ring size will control the length scale
associated with such switching behavior and how its effects
are propagated along the chain.

■ APPENDIX A: SYSTEM PREPARATION
Because of very long relaxation times, simulations of high-MW
linear polymers require sophisticated techniques for efficient
and proper equilibration.94−97 Unfortunately, many of these
methods allow for chain crossings or otherwise alter the
molecular topology and therefore cannot be applied to
poly[n]catenanes; brute force equilibration must therefore be
used. The systems studied here were prepared by a multistep
process:
(a) A single, isolated poly[n]catenane was constructed as in

previous work68 and simulated for 5 × 105τ to achieve
an equilibrium conformation. Note that this time period
is many-times the longest relaxation time of the isolated
molecule (even for the largest n and m values).

(b) The molecule was duplicated and placed with random
orientation at the vertices of a large cubic lattice while
ensuring that no two molecules were overlapping.

(c) The system was evolved according to the production
parameters given in the main text under the additional
influence of a Berendsen barostat98 with a time constant
of 2τ and a pressure of 5 ε/σ3 to compress it while
recording particle coordinates periodically.

(d) A configuration with density close to the target value was
selected, and box dimensions were adjusted to precisely
match the desired density.

(e) The system was equilibrated for 106−107 τ, depending
on its size (see Table A1 for details, “Equilibration #1”).

Table A1. Poly[n]catenane System Detailsa

5 n m
equilibration

#1 (τ)
equilibration

#2 (τ)
production

(τ)

500 1 15,20,30,50 106 106 106

250 2 15,20,30,50 106 106 106

250 3 15,20,30,50 106 106 106

200 5 15,20,30,50 106 106 106

200 7 15,20,30,50 106 106 106

200 10 15,20,30 106 106 106

200 10 50 5 × 106 106 5 × 106

150 15 15,20,30 5 × 106 106 2 × 106

150 15 50 5 × 106 106 5 × 106

100 20 15,20,30 5 × 106 106 3.5 × 106

100 20 50 5 × 106 2.5 × 106 5 × 106

100 25 15,20,30 5 × 106 106 5 × 106

100 25 50 107 2.5 × 106 107

aSummary of poly[n]catenane systems studied and the equilibration/
production simulation times.

Macromolecules pubs.acs.org/Macromolecules Article

https://dx.doi.org/10.1021/acs.macromol.9b02706
Macromolecules 2020, 53, 3390−3408

3403



(f) To generate independent realizations for statistical
analysis, the final configuration from Step e was given
new particle velocities (drawn from a Boltzmann
distribution) and evolved for an additional 106 −5 ×
106 τ, depending on the system size (Table A1,
“Equilibration #2”). The process was repeated to
generate five independent realizations of the system.
The resulting configurations were used as the starting
points for production simulations.

After this procedure, the systems are well-equilibrated by
several common measures. During Step e above, it is observed
that the poly[n]catenane center-of-mass mean-squared-dis-
placement reaches values several-times larger than the polymer
size and that the average end-to-end vector autocorrelation
function completely decays well before the end of the
equilibration period (note that the end-to-end vector is
defined by the centers-of-mass of the chain end macrocycles
as discussed in the main text). Furthermore, both equilibration
periods are much longer than the longest relaxation times of
the polymers, which will be discussed in a future paper on
dynamics.
Equilibration was also confirmed by examining polymer

conformations directly. For linear polymer melts, the reduced
mean squared internal distances are often used to assess
equilibration:95

= ⟨ − ⟩+R R
R l l

l
( )/

( )i i l2
2

(A1)

where Ri is the position of monomer i on a given chain and the
angled brackets indicate an ensemble average over all pairs of
monomers separated by l bonds along the chain as well as all
5 chains in the system. This function increases smoothly with
l to a plateau value which is roughly independent of N (and l)
since linear polymers are approximately ideal in the melt. The
values in eq A1 can be obtained directly from simulation
trajectories and then used to assess system equilibration for
any N. As the conformations of poly[n]catenanes are
qualitatively similar to those of linear polymers at large length
scales,67−69 a similar measure may be employed for these
systems. The function of eq A1 is modified by replacing the
monomer position Ri with the position of the center-of-mass of
ring i in the catenane. In analogy with linear polymers, this
objective function should be independent of n and l for large l.
Systems of long poly[n]catenanes are evaluated by comparing
the mean squared internal distances to those of a slightly
shorter polymers; n is built up gradually from n = 1 to 25,
ensuring proper equilibration along the way. The reduced
mean squared internal distances are shown in Figure A1a for
poly[n]catenane systems with n > 3. The data are averaged
over the final 10−50% of the first equilibration period (Step e,
above). For each value of m, the data for all n and l are in
excellent quantitative agreement, indicating well-equilibrated
chain structures. At large l, the values decrease slightly,
diverging from the apparent master curves. These deviations
are caused by shortened mechanical bond lengths at the chain
ends (Figure A1b). The chain ends contribute more strongly
to eq A1 at larger l, thus lowering the reduced internal
distances. In Figure A1a and b, the data sets achieve plateau
values at large distances. These plateau values are related to the
squared effective bond length, beff2, and the central bond
length, bc, of the polymers (Table 2), respectively, and are
discussed in Section 5.

Linear polymer systems were equilibrated by the DPD push
off method,96 followed by an additional equilibration period of
106 τ. To generate independent samples for statistical analysis,
the particles were given new velocities and equilibrated for a
further 106 τ to generate five independent realizations of each
system to use as starting points for production simulations. See
Table A2 for details of the linear systems studied in this work.
Eq A1 was used to validate the systems, and the results agree
quantitatively with the existing literature.95

Figure A1. (a) Reduced mean-squared internal distances for
poly[n]catenanes of various ring sizes, m (eq A1). (b) Mechanical
bond length as a function of the number of bonds away from the
catenane chain end. The different symbols indicate different values of
n: 5 (pentagons), 7 (triangles), 10 (diamonds), 15 (downward
triangles), 20 (squares), and 25 (circles).

Table A2. Linear Polymer System Detailsa

5 N production (τ)

500 15 106

500 20 106

500 30 106

500 45 106

500 60 106

500 80 106

500 100 106

500 150 3 × 106

500 175 5 × 106

aSummary of linear polymer systems studied and the production
simulation times.
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■ APPENDIX B: POLY[N]CATENANE DIMENSIONS
The mean-squared radius of gyration of a poly[n]catenane can
be calculated from the average distance between all pairs of
beads in the polymer according to the formula:

∑= ⟨ ⟩
=

R
N

x1
2g

i j

N

ij
2

2
, 1

2

(B1)

where N = nm, and ⟨xij2⟩ is the mean-squared distance between
beads i and j. Rg

2 is therefore calculated by evaluating each of
the terms in the symmetric N × N matrix ⟨xij2⟩. It is
convenient to break up this matrix into blocks of size m × m
such that the diagonal blocks represent the distances between
beads on the same ring and off-diagonal ones represent the
distances between beads on different rings. Making the
approximation that all n rings are statistically identical and
ignoring chain end effects, eq B1 can be rewritten as

∑ ∑ ∑≈ ⟨ ⟩ + − ⟨ ⟩α α α α
= =

−

=
+

Ä
Ç
ÅÅÅÅÅÅÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑÑÑÑÑÑÑR

N
n x n k x1

2
2( )g

i j

m

i j
k

n

i j

m

i k j
2

2
, 1

,
2

1

1

, 1
,( )

2

(B2)

where ⟨xαi,βj2 ⟩ represents the mean-squared distance between
bead i on ring α and bead j on ring β. The first term in brackets
represents the diagonal blocks of the matrix ⟨xij2⟩, while the
second term represents the off-diagonal ones. The diagonal
blocks are evaluated directly using eq B1 applied to individual
macrocycles:
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By rearranging eq B3 and substituting into the first term in
brackets in eq B2, one finds:
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The off-diagonal components (second term in brackets in eq
B4) can also be computed under certain approximations. To
do so, ⟨xαi,βj2 ⟩ is expressed as the sum of a series of vectors:

⟨ ⟩ = ⟨[ − + − − − ] ⟩α β α α α β β βR R R R R Rx ( ) ( ) ( )i j i j,
2

,cm ,cm ,cm ,cm
2

(B5)

where Rαi is the position of bead i on ring α, and Rα,cm is the
position of the center-of-mass of ring α. The three vectors in
eq B5 are approximated as statistically independent, which is
not the case for neighboring (i.e., linked) rings especially at
small m but should be fairly accurate for separations greater
than the Kuhn length and therefore suffice for a first
approximation. Expanding the square and evaluating the
average, all cross terms disappear:

⟨ ⟩ ≈ ⟨ − + − − − ⟩α β α α α β β βR R R R R Rx ( ) ( ) ( )i j i j,
2

,cm
2

,cm ,cm
2

,cm
2

(B6)

It is now helpful to recall that the radius of gyration of a
polymer of N segments can also be expressed as the average
mean squared distance between each particle and the polymer
center-of-mass, denoted Rcm:
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By summing eq 6 over all i and j, substituting Eq B7 and
assuming Gaussian statistics for the ring center of mass
separations, we find:
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This expression is substituted into eq B4 to obtain
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The sum may now be evaluated directly and the prefactor
distributed among each of the terms. Making the substitution
N = nm, the result reads:
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To estimate the effective scaling of eq B10 with n, the
logarithmic derivative is calculated:
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Evaluating eq B11 up to order n−1, the result after some
manipulation is

ν = − ≈ −
R

nb

R

R
1
2

3 1
2

3g r g r

e

,
2

eff
2

,
2

2
(B12)

where Rg
2 = (n − 1)beff2 is the end-to-end distance squared,

defined as the mean squared distance between the centers-of-
mass of chain end macrocycles. The latter follows from the
assumption of Gaussian statistics for the ring center-of-mass
separations invoked prior to eq B8.
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