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Abstract—The current availability of soil moisture data over
large areas comes from satellite remote sensing technologies (i.e.,
radar-based systems), but these data have coarse resolution and
often exhibit large spatial information gaps. Where data are too
coarse or sparse for a given need (e.g., precision farming), one can
leverage machine-learning techniques coupled with other sources
of environmental information (e.g., topography) to generate gap-
free information at a finer spatial resolution (i.e., increased
granularity). To this end, we develop a spatial inference engine
consisting of modular stages for processing spatial environmental
data, generating predictions with machine-learning techniques,
and analyzing these predictions. We demonstrate the functionality
of this approach and the effects of data processing choices via
multiple prediction maps over a United States ecological region
with a highly diverse soil moisture profile (i.e., the Middle
Atlantic Coastal Plains). The relevance of our work derives
from a pressing need to improve the spatial representation of
soil moisture for applications in environmental sciences (e.g.,
ecological niche modeling, carbon monitoring systems, and other
Earth system models) and precision farming (e.g., optimizing
irrigation practices and other land management decisions).

Index Terms—soil moisture, remote sensing, machine learning,
data-driven decisions

I. INTRODUCTION

Soil moisture is a critical variable that links climate dynam-
ics with water and food security. It regulates land-atmosphere
interactions (e.g., via evapotranspiration—the loss of water
from evaporation and plant transpiration to the atmosphere),
and it is directly linked with plant productivity and plant
survival [1]. Information on soil moisture is important to
design appropriate irrigation strategies to increase crop yield,
and long-term soil moisture coupled with climate information
provides insights into trends and potential agricultural thresh-
olds and risks [2]-[4]. Thus, information on soil moisture is
needed to assess the implications of environmental variabil-
ity and is consequently a key factor to inform and enable
precision farming. Currently, large areas of western states of
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the conterminous United States (CONUS) are experiencing an
exceptional drought, and most information on water limitation
has been derived from changes in precipitation patterns [5].
This is just one example of where soil moisture information
can be utilized in situations of critical importance.

The current availability in soil moisture data over large areas
comes from remote sensing (i.e., satellites with radar sensors),
which provides nearly global coverage of soil moisture at
spatial resolution of tens of kilometers [6], [7]. Recent efforts
have devoted to increase the spatial resolution of current
estimates [8]. Other efforts have focused on harmonizing
historical satellite soil moisture records for larger periods of
time and from several information sources [9]. Satellite soil
moisture data has two main shortcomings. First, although
satellites can provide daily global information, they are limited
to coarse spatial resolution (at the multi-kilometer scale).
Second, satellites are unable to measure soil moisture in areas
of dense vegetation, snow cover, or extremely dry surfaces;
this results in gaps in the data. Fig. 1 shows an example of
the monthly averages of daily soil moisture data for December
2000. The figure shows spatial information gaps across the
globe due to (a) dense vegetation over the Amazon or snow
and (b) ice cover across Greenland, for example. To use
the spatial representation of soil moisture for applications
in environmental sciences (e.g., ecological niche modeling,
carbon monitoring systems, and other Earth system models)
and precision farming (e.g., optimizing irrigation practices and
other land management decisions), we need to increase the
spatial resolution of information and predict values in areas
with missing data.

In this paper, we address the two shortcomings associated
with satellite data (i.e., coarse-grained resolution and spatial
information gaps) by providing a modular SOil MOisture
SPatial Inference Engine (SOMOSPIE). SOMOSPIE consists
of modular components including input of available data at its
native spatial resolution, selection of a geographic region of
interest, prediction of missing values across the entire region
of interest (i.e., gap-filling), analysis of generated predictions,
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Fig. 1: Monthly soil moisture (m®/m?) averages for December 2000 with gaps where data cannot be collected accurately
because of dense vegetation, snow cover, and extremely dry surfaces. Averaged from daily data from the ESA-CCI soil

moisture database [9].

and visualization of both predictions and analyses. To predict
soil moisture, our engine leverages hydrologically meaningful
terrain parameters (e.g., slope and topographic wetness index)
calculated using an open source platforms for standard terrain
analysis (i.e., SAGA-GIS or System for Automated GeoScien-
tific Analysis-Geographical Information System) and various
machine learning methods. The engine combines the publicly
available datasets of satellite-derived soil moisture measure-
ments from the European Space Agency (ESA) and generates
fine-grained, gap-free soil moisture predictions using three im-
plementations of machine learning algorithms: a kernel-based
approach (kernel-weighted k-nearest neighbors or KKNN),
the Hybrid Piecewise Polynomial approach (HYPPO), and a
tree-based approach (Random Forests or RF). Data processing
functionality of our engine includes selection of a region of
interest, which we demonstrate using ecoregions as defined
for North America by the Commission for Environmental
Cooperation [10]. We exhibit the full functionality of our
engine on the Middle Atlantic Coastal Plains in the eastern
United States, a region with a diverse soil moisture profile.

The main contributions of this paper are:

1) A spatial inferences engine (SOMOSPIE) and all the

data and components needed to generate viable soil
moisture predictions;
An empirical study of the engine’s functionality includ-
ing an assessment of data processing and fine-grained
predictions over a United States ecological region with
a highly diverse soil moisture profile (i.e., the Middle
Atlantic Coastal Plains).

The rest of the paper is structured as follows. Section II
describes the datasets used for this project. Section III consists
of a breakdown of the components of SOMOSPIE throughout
its three stages: data processing, prediction generation, and

2)

prediction analysis and visualization. Section IV contains
results, including soil moisture predictions that leverage var-
ious modular elements of SOMOSPIE and analyses thereof.
Section V describes the present research within the broader
context of related work. Section VI closes the paper with our
conclusion.

II. OUR DATASETS

Our work builds upon publicly available data collections
associated with remotely-sensed soil moisture information,
topographic characteristics derived from quantitative land sur-
face analysis, and eco-regionalization of North America. These
diverse datasets are cornerstones of SOMOSPIE: (a) moisture
records, (b) a digital surface model (DSM), and (c) boundaries
for ecoregions. Table I reports the data resolutions and sources.

Satellite-derived soil moisture data are downloaded from the
ESA-CCI soil moisture initiative [7], [11]-[13]. The ESA-CCI
soil moisture data are collected in a raster format and have an
original spatial resolution of 0.25 x 0.25 lat-lon degrees (about
27 x 27 km). Fig. 2 portrays a satellite collecting raster data.
Each pixel in the raster file corresponds to a square of land and
contains the satellite-derived soil moisture value for that land
surface. The value is a ratio (between 0 and 1), the number
of m> of water per m? of surface soil, where O indicates
dry soil and 1 indicates water-saturated soil. This dataset is
representative for the first 0 to 5 cm of soil surface [14]. The
original temporal scale of the ESA-CCI is daily, but for this
study we move from daily to monthly time steps by averaging
all daily values in a given pixel across an entire month.

Our topography dataset, consisting of multiple terrain pa-
rameters, is based on DSMs, which are available at several
resolutions and are useful to represent multiple terrain char-
acteristics [15]. Topography is an important factor affecting

TABLE I: List of datasets used in this study.

Dataset Spatial resolution | Temporal resolution Variable / Description Source

ESA-CCI 0.25 degrees Daily, 1978-2016 soil moisture (m3/m3) European Space Agency
DSM ~ 30 meters Static (‘Current’) Land surface characteristics The Japan Aerospace Exploration Agency
CEC n/a Static (‘Current’) Ecoregion boundaries Commission for Environmental Cooperation




water distribution in soils since it directly affects overland
flow and solar radiation rates [16]—[18]. DSMs are the main
inputs of geomorphometry, which is the science of quantitative
land-surface analysis [19]. The influence of topography on
soil moisture prompts its present inclusion in soil moisture
downscaling.

Fig. 2: Illustration of how satellites collect raster data across
the surface of the Earth [12], [20].

To define the spatial limits of our soil moisture prediction,
we use the 2011 update of the Commission for Environmen-
tal Cooperation (CEC) ecoregion dataset, developed jointly
by Mexico, the United States, and Canada and based on
the analysis of ecosystem elements such as geology, phys-
iography, vegetation, climate, soils, land use, wildlife, and
hydrology [10]. This approach divides North America into
polygon-based ecoregions at three levels, which range from
Level I (Fig. 3) to Level III and describe the similarity in the
type, quality, and quantity of environmental parameters within
the region. Level I regions are larger and more general and
Level III regions are smaller and more specific.

III. SOMOSPIE OVERVIEW

We present a modular SOil MOisture SPatial Inference
Engine (SOMOSPIE) for prediction of missing soil moisture
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information. SOMOSPIE includes three main stages, illus-
trated in Fig. 4: (1) data processing to select a region of
interest, incorporate predictive factors such as topographic
parameters, and reduce data redundancy for these new factors;
(2) soil moisture prediction with three different machine
learning methods (i.e., KKNN, RF, and HYPPO); and (3)
analysis and visualization of the prediction outputs.

A. Data and Data Preprocessing

With SOMOSPIE, data are separated into two independent
groups (i.e., observed data and evaluation data) to be fed
into one of our modeling approaches defined in Section III-B.
Observed data are represented as vectors, one for each pixel
in the satellite data. Each vector consists of the latitude and
longitude of the centroid of the pixel in the satellite data, an
average soil moisture ratio for that pixel, and (optionally) the
values of 15 topographic parameters from the digital surface
model (DSM) evaluated at that centroid. Additionally, a user
can specify a percentage of the observed data to be randomly
set aside as validation data. We discuss validation further in
Section III-C. The remainder of the observed data not used for
validation becomes our training data for generating models.
Evaluation data are represented as vectors in the same format
as observed data, except that the evaluation vectors do not
have a soil moisture ratio, as this value is unknown for the
corresponding pixel where a prediction is to be made. In this
study, our desired resolution for soil moisture prediction is the
1 x 1 km resolution of the DSM we are using.

Both climate and topography influence the spatial patterns
of soil moisture [21]. Our approach selects a specific ecore-
gion, with similar climatic characteristics, and predicts the
soil moisture profile at a fine-grain resolution for a region
of interest within that ecoregion. Our engine uses the Com-
mission for Environmental Cooperation (CEC) ecoregions as
masks to select ecoregion. Consequently, topography becomes
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Fig. 4: Overview of our modular SOil MOisture SPatial Inference Engine (SOMOSPIE) with its three stages: data preparation
(left), prediction with machine learning methods (middle), and analysis and visualization of predictions (right).

the driving factor in our predictions of soil moisture spatial
patterns. Specifically, our models use topography as the co-
variate space to downscale and gap-fill satellite-derived soil
moisture, leveraging attributes derived from the DSM, such
as the terrain slope or the aspect (i.e., the first and second
derivatives of elevation data). These terrain parameters are
surrogates of two main processes controlled by topography:
the overland flow of water and the potential incoming solar
radiation. Our topographic attributes are calculated using the
SAGA GIS basic terrain parameters module! [17], [22].
Because terrain attributes can have significant correlation,
SOMOSPIE allows users to apply Principal Component Anal-
ysis (PCA) to reduce the number of covariates. This transfor-
mation is relevant because the reduction in DSM topographic
parameters can reduce the time needed for prediction. To
perform this reduction on the data for the region of interest, the
engine uses the PCA implementation from the Python pack-
age sklearn®, and selects components whose corresponding
eigenvalues are at least one (a common convention [23]). Di-
mensional reduction of DSM data, when applied, is performed
identically on both the training and evaluation data.

B. Prediction Models

SOMOSPIE presently supports three key machine learning
modules for predictions of missing spatial soil moisture infor-
mation: kernel-weighted k-nearest neighbor (KKNN), Random
Forests (RF), and Hybrid Piecewise Polynomial (HYPPO).
The selected methods have distinct character, with different
assumptions about the model being generated. Yet they all
share built-in automated parameter tuning. KKNN tunes for
the kernel and number of neighbors, RF tunes for number of

Thttp://saga-gis.org/saga_tool_doc/2.1.3/ta_compound_0.html
2sklearn.decomposition.PCA

variables per tree level, and HYPPO tunes for local polynomial
degrees, all of which are explained below in the descriptions
of the respective models. Our implementations of all three
methods use 10-fold cross validation to accomplish the tuning.
This is a standard technique [24] which involves dividing
data into 10 roughly equal parts. For every possible parameter
value, 10 different models are generated; each model builds
from nine tenths of the data and is tested on the other tenth.
The parameter value that minimizes cumulative error across
all models is selected for generating a model with all the
data. For our implementations of KKNN and REF, this tuning
via cross-validation is performed with the R package caret.
Having described the commonality of the methods, we now
discuss the specific structure of each method in more detail.
The traditional k-nearest neighbor (KNN) regression tech-
nique builds many simple models from local data. Use of this
technique assumes that the k points nearest in the prediction
space to the data point one wishes to model are the most
relevant and that points farther away have less influence on the
point in question. The process begins with training data: points
(wd,. . 2t z0), . (xk 2l 2,), where (2} ..., 2d) are
coordinates in the d-dimensional prediction space and z; is
the corresponding soil moisture ratio. To predict soil moisture
ratios for a specific choice of (z!,...,2%), kNN selects the &
nearest neighbors of (!, ..., z%) in the training data and uses
the arithmetic mean of their associated soil moisture ratios.
A common generalization of kNN is to use a weighted mean
of the k nearest soil moisture ratios, where values from points
nearer to (x!,...,2%) are given higher weights. The variant
of kNN in our engine is kernel-weighted k-nearest neighbors
(KKNN) [25], implemented with the R package kknn. It uses
a kernel function (i.e., rectangular, triangular, Epanechnikov,
Gaussian, rank, or optimal) to compute neighbor weights



for the mean. Cross-validation is employed to determine the
number of neighbors and which weighting kernel to use.

Random Forests (RF) consist of an ensemble of decision
trees that are weighted via a statistical method called bagging.
Each tree is grown with a random subset of predictors and
of the training data. The tree’s weight is determined by its
“out-of-bag error”, which is computed by testing the tree
on the rest of the training data. To make a prediction at
a new point, all decision trees in the ensemble are queried
and their predictions are combined using weighted arithmetic
mean. Such techniques do not assume a particular functional
or geometric form of the model. Thus the techniques are
suitable to deal with sparse datasets (e.g., areas with large gaps
of soil moisture satellite estimates). SOMOSPIE employs the
R package quantregForest and has two main parameters: (1)
the number of trees to grow in the ensemble of regression
trees; and (2) the number of covariates randomly selected at
each level of tree growth. In the present study, we consider
a total of 500 trees for the first parameter. The second
parameter is bounded above by the total number of prediction
parameters (i.e., 17 in our case with 2 spatial coordinates and
15 topographic predictors) and automatically selected using
cross validation as described above.

The Hybrid Piecewise Polynomial (HYPPO) module builds
upon and extends traditional kNN in a different way to miti-
gating some of its limitations [26]. Contrary to kNN, HYPPO
allows local prediction models to be non-linear. In other words,
the polynomial degrees in HYPPO become a flexible feature
of the model. To build the prediction model with HYPPO,
we start with n training points, (1,91, 21)s .- -, (Tn, Yn, 2n)-
We want to predict the value of z (i.e., the soil moisture) for
a new, specified coordinate (z,y). Following the technique
of kNN, we first find the %k nearest neighbors of (z,y), then
using the data of the k nearest neighbors, HYPPO builds local
models using a polynomial whose degree is selected using
cross validation as described above.

The standard generation of a non-linear polynomial on a
large set of variables requires a large number of data points.
With 15 topographic parameters, the current implementation
of HYPPO would require a larger number of neighbors than
those always available in the regions of interest used in this
paper. Thus, the present study demonstrates HYPPO using
only latitude and longitude as parameters. Work in progress
tackles the challenge of tuning HYPPO to efficiently work
with a larger number of predictors.

C. Analysis and Visualization

Our engine supports analysis and visualization to assess
model output. As stated in Section III-A, a user can specify
a percentage of the observed data to split off as validation
data. All of the results in this paper are generated with 20%
of the observed data points randomly set aside as validation
data. After generating predictions, the engine compares the
predicted soil moisture values to those of the validation points.
In this study, we use the squared correlation coefficient (R?-
value) as explained variance between the validation data at the

coarse spatial resolution of 27 x 27 km (i.e., satellite-derived
soil moisture) and the prediction of soil moisture at 1 x 1
km resolution. To this end, we first harmonize the predicted
data with the validation data by computing the arithmetic
mean of all the predicted values for 1 x 1 km pixels that fall
within a cell of the original grid (27 x 27 km). To account
for the randomness of the subset selected for validation, every
execution of the workflow for this study is repeated 10 times.
For each execution, the resulting R?-value is stored (rounded
to two digits after the decimal); we give the arithmetic mean
of the ten stored values. The standard deviation for the set of
ten R2-values fell between 0.088 and 0.199 in every case.

The engine also provides a suite of visualization tools
for soil moisture predictions and evaluations. It uses R and
Python scripts to perform standard geographic information
system (GIS) tasks for both imagery and tabular forms of
data. The current study demonstrates the creation of heatmaps
for soil moisture predictions and scatter plots for comparisons
of predictions to validation data. In both cases, rather than
show all ten plots generated for every usage of the engine, we
select an instance whose corresponding R2-value is closest to
the mean value for that usage. For the selected instance, we
show the prediction heatmap as representative of the set of ten
predictions.
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Fig. 5: Selected Level III ecoregion for this study: the Middle
Atlantic Coastal Plains (8.5.1).

IV. PREDICTION RESULTS

For this study we select a small Commission for Envi-
ronmental Cooperation (CEC) ecoregion: the Middle Atlantic
Coastal Plains (Level III ecoregion 8.5.1, see Fig. 5). This
region has a broad range of moisture ratios with which to test
the capabilities of SOMOSPIE. The soil moisture ratios we use
for the observed data of all of these demonstrations are from
April 2016. For each latitude and longitude coordinate pair
in the satellite data, we take the average of all soil moisture
ratios available in that pixel that month.

SOMOSPIE can increase the granularity of soil moisture
information from coarse-grained satellite data using machine
learning techniques. Presently we downscale from the original
satellite-derived soil moisture native resolution (27 x 27 km)
to the 1 x 1 km resolution of our topographic predictors. In
Section IV-A, we demonstrate this with three machine learning
methods: KKNN, RF, and HYPPO. In Section IV-B, we take a



step back in the SOMOSPIE workflow and examine the effects
of data decisions on prediction. In particular, we generate
predictions for the same ecoregion (8.5.1) using KKNN and
RF, but with training data from a larger region and with PCA
reduction applied to the 15 topographic dimensions of the
training data.

A. Soil Moisture Predictions

We present soil moisture prediction on our local Level III
ecoregion (i.e., Middle Atlantic Coastal Plains) as heatmaps
with soil moisture ratios between 0.19 and 0.31. Fig. 6 shows
predictions generated by our engine with three supported
machine learning methods. Note the warmer colors in the
southern portion (in South Carolina) representing lower ratios
of moisture to land on the surface.

Qualitatively, the patterns of soil moisture trends show
agreement across model predictions. We observe a more noisy
prediction from KKNN, but unrealistic spatial artifacts (e.g.,
sharp jumps in North and South Carolina) from RF and, to a
lesser extent, HYPPO. We also observe the KKNN predictions
having fewer extreme values (blue for wetter and dark orange
for drier). Despite the spatial artifacts, RF and HYPPO do
not share this limitation in the range of soil moisture ratios
predicted for such a region as the Middle Atlantic Coastal
Plains. This is consistent with the claim in [26] that HYPPO
was “designed to effectively and accurately model non-smooth
[...] surfaces without the need for extensive sampling” since
“most traditional techniques are designed to produce smooth
models.”

Quantitatively, we investigate the relationship between the
predicted soil moisture data and the initial coarse-grained
observations (Fig. 7). We use explained variance (R2-value)
as an accuracy measure of the overall modeling performance,
calculated from the relationship of the validation subset of the
original satellite-based soil moisture data and the predicted

soil moisture estimates. The KKNN predictions show the
lowest explained variance (a mean R2-value of 0.296) between
observed and predicted satellite soil moisture ratios; RF and
HYPPO models have similar accuracy (with mean R2-values
of 0.575 and 0.557, respectively).

B. Impact of Data Processing Decisions

One of the features in our engine when selecting a region of
interest is the use of a larger region for model generation be-
yond the boundary of an ecoregion of interest. The assumption
is that between neighboring ecoregions there is not necessarily
a sharp separation but rather some sort of transition with
multiple ecological gradients that serves as a buffer. Buffer
selection can be useful for quantifying spatial gradients of
ecosystem functional diversity and soil moisture feedbacks at
the borders of ecological regions. Thus, the engine facilitates
predictions using a larger region in two ways: (1) users can
specify a buffer distance to be automatically added around
the region of interest; or (2) users can opt for prediction
to use the lower level (i.e., larger, less ecologically specific)
ecoregion containing the region of interest. To investigate the
effect of regional restrictions, we run the same prediction
methods (KKNN and RF) on three larger regions containing
ecoregion 8.5.1, the Middle Atlantic Coastal Plains. Two of the
three are ecoregion 8.5.1 with a fixed-width buffer, one with
a 50 km buffer and one with a 100 km buffer (Fig. 8a). The
third enlarged region is Level II ecoregion 8.5, the Mississippi
Alluvial and Southwest USA Coastal Plains (Fig. 8b).

The base results for comparison are from the predictions
already generated for the region of interest, ecoregion 8.5.1,
using KKNN (Fig. 9a) and RF (Fig. 10a). We generate models
on the three larger regions, then use the models to obtain soil
moisture ratios only for our region of interest. With KKNN,
when implementing a 50 km or 100 km buffer around the
Level III ecoregion (Fig. 9b and 9c), we observe slightly higher
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Fig. 6: Example of prediction maps (1 x 1 km resolution) for ecoregion 8.5.1 (i.e., the Middle Atlantic Coastal Plains) generated

by three different ML algorithms.
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Coastal Plains: Level III ecoregion 8.5.1 with a 100 km buffer
(a, left); and Level II ecoregion 8.5 (b, right).

(darker green and blue-green) predictions in the northern third
of the region (i.e., in Virginia, Maryland, and Delaware).
Despite this shift, the spatial patterns are visually preserved
across the KKNN predictions. With RF, when we add a 50 km
or 100 km buffer (Fig. 10b and 10c), we see the spatial
artifacts (e.g., sharp jumps in soil moisture ratios) become
more pronounced. When using training data from the entire
Level II ecoregion, KKNN appears to predict a narrower range
of values in southern part of the region (Fig. 9d) and RF still
exhibits sharp lines but with smaller value jumps across those
lines (Fig. 10d).

For these models generated on various supersets of the
region of interest, we now move from qualitative observations
to quantitative analyses. We find that using training data further
outside the region of interest sharply diminishes the explained
variance between the KKNN predictions and the satellite
observations. The original predictions had a mean R2-value
of 0.296, that dropped to 0.240 with a 50 km buffer, further
to 0.204 with a 100 km buffer, and even further to 0.099
using the Level II ecoregion 8.5. For RF predictions, the mean
R?-value is generally unaffected, with 0.575 for the original

region, 0.577 with a 50 km buffer, 0.600 with a 100 km buffer,
and 0.551 using the Level II ecoregion. This indicates that
KKNN is more prone than RF to be negatively effected by
extraneous data; yet our findings support the hypothesis that
restriction to a region of common ecological character may be
beneficial for some soil modeling efforts.

Another optional features in our engine is the use of
Principal Component Analysis (PCA) to reduce the number
of covariates from terrain attributes before running a machine
learning algorithm. We perform ten rounds of predictions with
KKNN and RF over the region of interest on 80% of the
observed data with PCA reduction applied to the 15 topo-
graphic dimensions. In nine of the rounds, six of the principal
components are used (having eigenvalues above the standard
threshold of one); seven principal components are used in the
other round. Fig. 11 demonstrates the consequence of using the
PCA dimension reduction on soil moisture prediction for the
Middle Atlantic Coastal Plains. Specifically, Fig. 11a and 11c
show predictions when using all 15 DSM predictors while
Fig. 11b and 11d show the predictions with the PCA-reduced
training data. In both cases, the use of PCA reduction appears
to cause sharper local contrasts.

To assess the accuracy of these predictions, we again
compare our findings with the validation subset of the observed
satellite soil moisture estimates. We find that the KKNN
model using all the topographic prediction factors shows
only a slightly higher explained variance with a mean R*-
value of 0.296 against the original product compared to the
predictions based on the PCA transformation with a mean R2-
value of 0.289. On the other hand, we see a distinct rise in
the mean explained variance for the RF predictions, which
produces a mean RZ-value of 0.575 with all the topographic
dimensions, yet a mean R2-value of 0.693 after leveraging
PCA. This indicates that a PCA dimension reduction can
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be useful to smooth out the data for modeling methods that
tend to overfit. Moreover, there is significant reduction to the
number of prediction factors (from 15 to 6 or 7), for this
input data. This indicates that PCA can be used to reduce the
computational demand for generating predictions at a finer
scale. Both the statistical and computational performance are
important considerations in data-driven modeling frameworks
in order to maximize accuracy of results while constraining
computation time.

Overall we observe how SOMOSPIE is able to perform
different methods for predicting the spatial pattern of soil
moisture across ecoregions with varying soil moisture profiles.
The use and assessment of various modeling approaches is
helpful to represent the complex variability of soil moisture
and its dynamics, as each method is able to capture distinct
elements of the soil moisture variability across the region of
interest. Moreover, the study on the impact of data processing
demonstrates how initial data processing decisions such as
region selection can impact the prediction output, even for
a fixed selection of machine learning model. Such decisions
cannot be arbitrary and must be motivated by established

scientific knowledge and by the accuracy of the predictions
in comparison to existing data.

V. RELATED WORK

Our work builds on recent technological advance in satellite-
derived soil moisture (European Space Agency Climate
Change Initiative [11]-[13]). Other satellite-derived datasets
of soil moisture can be used in our workflow such as AMSR-
E (Advanced Microwave Scanning Radiometer - Earth Ob-
serving System Sensor on the NASA Aqua Satellite [27]),
ASCAT (Advanced SCATterometer aboard the EUMETSAT
MetOp satellite [28]-[30]), and AQUARIUS (Satellite instru-
ment from NASA SMAP mission [31]). Despite technological
advances, satellite datasets still have coarse spatial resolution
and present temporal gaps making support tools such as SO-
MOSPIE useful to provide insights for research, environmental
management, and precision farming based on remote sensing
data.

Our work complements recent efforts [32], [33] and pro-
vides the building blocks for interdisciplinary work and soft-
ware development for soil moisture products. This project
builds on the increasing recognition of the importance of
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spatial and temporal dependency of environmental data [34]-
[36] and its application to precision farming [37]. We take
on the under-utilization of computer science techniques and
computational resources to downscale satellite-derived soil
moisture data, in order to describe trends in soil moisture
across CONUS. This project focuses on how topography and
environmental variability influence soil moisture [38] across
CONUS, and we postulate that our cyberinfrastructure tool has
worldwide applicability to predict and downscale soil moisture
from available coarse resolution satellite information.

VI. CONCLUSIONS

We develop the SOMOSPIE spatial inference engine for soil
moisture data. This suite of cyberinfrastructure tools tackles
the two main limitations of satellite-based soil moisture infor-
mation: coarse granularity and spatial gaps. We demonstrate
the potential of our engine by testing and comparing modeling
decisions to predict the spatial variability of soil moisture
across the Middle Atlantic Coastal Plains region of the United
States. The modeling functionalities of SOMOSPIE include
options for variable selection, data preprocessing, and method
selection. Along with satellite-based soil moisture information,
we integrate hydrologically meaningful prediction factors for
soil moisture based on topography. Data preprocessing ca-

pabilities include training domain selection and data dimen-
sion reduction. For modeling method selection, our inference
engine includes standard machine learning methods based
on kernels (i.e., KKNN) and regression trees (i.e., Random
Forests), and also integrates new modeling functionality with
novel methods, such as HYPPO, not previously used for
downscaling spatial data.

To assess modeling decisions, SOMOSPIE includes tools
to validate and visualize predictions. For our study region,
KKNN performs poorly with the 15 topographic covariates
(with a mean R2-value of 0.296 when predictions are com-
pared to the original satellite observations) as compared to
RF with the 15 topographic covariates and HYPPO without
(with means R? values of 0.575 and 0.557, respectively).
We additionally demonstrate preprocessing decisions suitable
for maximizing the effectiveness of data-driven soil moisture
inference. One preprocessing option is PCA dimension reduc-
tion, which we use on data fed to KKNN and RF. Validation
of the output indicates that PCA is a viable tool for lightening
computational load without significantly affecting the result.
Another option is to expand the area of training data beyond
our ecologically specific region of interest. This negatively
affects the prediction capabilities of KKNN, indicating both
the sensitivity of the particular method to the decision and the
importance of carefully choosing one’s training area within the
prediction domain. Overall, we demonstrate the functionality
of our tool to provide insights into where and why different
methods yield distinct predictions.

Motivation for the SOMOSPIE system derives from the
pressing need to improve spatial representation of soil moisture
across the world for several applications in environmental
sciences. Due to climate change (specifically, increasing tem-
peratures), arid environments are expected to increase and
ecosystem services (e.g., water and carbon cycling) across
these areas may be at risk. Therefore, accurate soil mois-
ture estimates are necessary to identify priority areas for
soil resource conservation efforts and improve management
decisions and Earth system models. Future work will consider
validation against field observations (e.g., from the American
Soil Moisture Database), comparison with other soil moisture
information sources (e.g., NASA-SMAP), and more in-depth
data-driven model tuning, with the ultimate goal to provide
accurate soil moisture estimates using a globally applicable
modeling framework.
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