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Abstract: We consider settings for which one needs to perform multiple flow simulations based on the
Navier-Stokes equations, each having different initial condition data, boundary conditions data, forcing
functions, and/or coefficients such as the viscosity. For such settings, we propose a second-order time
accurate ensemble-based method that to simulate the whole set of solutions, requires, at each time step, the
solution of only a single linear system with multiple right-hand-side vectors. Rigorous analyses are given
proving the conditional stability and establishing error estimates for the proposed algorithm. Numerical
experiments are provided that illustrate the analyses.
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1 Introduction
Many computational fluid dynamics applications require multiple simulations of a flow under different input
conditions. For example, the ensemble Kalman filter approach used in data assimilation first simulates a
forward model a large number of times by perturbing either the initial condition data, boundary condition
data, or uncertain parameters, then corrects the model based on the model forecasts and observational data.
A second example is the construction of low-dimensional surrogates for partial differential equation (PDE)
solutions such as sparse-grid interpolants or proper orthogonal decomposition approximations, for which
one has to first obtain expensive approximations of solutions corresponding to several parameter samples.
Another example is sensitivity analyses of solutions for which one often has to determine approximate
solutions for a number of perturbed inputs such as the values of certain physical parameters. In this paper,
we consider such applications and develop a second-order time-stepping scheme for efficiently simulating
an ensemble of flows. In particular, we consider the setting in which one wishes to determine the PDE
solutions for several different choices of initial condition and boundary condition data, forcing functions,
and physical parameters appearing in the PDE model.

The ensemble algorithm was first developed in [16] to find a set of 𝐽 solutions of the Navier-Stokes
equations (NSE) subject to different initial condition and forcing functions. The main idea is that, based on
the introduction of an ensemble average and a special semi-implicit time discretization, the discrete systems
for the multiple flow simulations share a common coefficient matrix. Thus, instead of solving 𝐽 linear systems
with 𝐽 different matrices and right-hand sides (RHS), one only need solve a single linear system with 𝐽 RHS
vectors. This leads to very significant computational savings in linear solver costs when 𝐿𝑈 factorization (for
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small-scale systems) or a block iterative algorithm (for large-scale systems) are used. High-order ensemble
algorithms were designed in [17, 18]. For high Reynolds number flows, ensemble regularization methods and
a turbulence model based on ensemble averaging have been developed in [17, 19, 20, 24]. The method has
also been extended to simulate MHD flows in [23] and to develop ensemble-based reduced-order modeling
techniques in [6, 7]. In [8], the authors proposed a first-order ensemble algorithm that deals with a number
of flow simulations subject to not only different initial condition, boundary conditions, and/or body force
data, but also distinct viscosity coefficients appearing in the NSE model. In this paper, we follow the same
direction and develop an ensemble scheme having higher accuracy.

To begin, consider an ensemble of incompressible flow simulations on a bounded domain subject to
Dirichlet boundary conditions. The 𝑗-th member of the ensemble is a simulation associated with the positive
viscosity coefficient 𝜈𝑗 , initial condition data 𝑢0

𝑗 , boundary condition data 𝑔𝑗 , and body force 𝑓𝑗 . All of
these data may vary from one simulation to another. Then, for 𝑗 = 1, ..., 𝐽 , we need to solve

𝑢𝑗,𝑡 + 𝑢𝑗 · ∇𝑢𝑗 − 𝜈𝑗△𝑢𝑗 + ∇𝑝𝑗 = 𝑓𝑗(𝑥, 𝑡) in Ω × [0, ∞),
∇ · 𝑢𝑗 = 0 in Ω × [0, ∞),

𝑢𝑗 = 𝑔𝑗(𝑥, 𝑡) on 𝜕Ω,
𝑢𝑗(𝑥, 0) = 𝑢0

𝑗 (𝑥) in Ω.

(1)

There is a long list of work in developing time discretization methods for the NSE including explicit, implicit,
and semi-implicit schemes, for example, [11, 12, 13, 14, 21, 22, 25]. In general, explicit schemes are easier to
implement, but they suffer the severely restricted time step size from stability requirement. The fully implicit
and semi-implicit schemes have better stability conditions, but the discretization would lead to a varying
coefficient matrix of the system. As a result, a different linear system has to be solved for each member at
every time step, thus totally 𝐽 linear systems need to be solved per time step. To overcome this issue, we
propose a new, second-order accurate in time, ensemble-based scheme that improves the computational
efficiency. The scheme is semi-implicit that permits the use of a known quantity (the ensemble mean defined
below), which is independent of the ensemble index 𝑗, in the advection term and, therefore, leads to a single
coefficient matrix for all the ensemble members.

For keeping the exposition simple, we consider a uniform time step Δ𝑡 and let 𝑡𝑛 = 𝑛Δ𝑡 for 𝑛 = 0, 1, . . ..
We then consider the ensemble of semi-discrete in time systems

3𝑢𝑛+1
𝑗 − 4𝑢𝑛

𝑗 + 𝑢𝑛−1
𝑗

2Δ𝑡
+ 𝑢𝑛 · ∇𝑢𝑛+1

𝑗 + 𝑢′ 𝑛
𝑗 · ∇(2𝑢𝑛

𝑗 − 𝑢𝑛−1
𝑗 ) + ∇𝑝𝑛+1

𝑗

− 𝜈Δ𝑢𝑛+1
𝑗 − (𝜈𝑗 − 𝜈) Δ(2𝑢𝑛

𝑗 − 𝑢𝑛−1
𝑗 ) = 𝑓𝑛+1

𝑗 ,

∇ · 𝑢𝑛+1
𝑗 = 0,

(2)

where 𝑢𝑛
𝑗 , 𝑝𝑛

𝑗 and 𝑓𝑛
𝑗 denote approximations of 𝑢𝑗(·, 𝑡𝑛), 𝑝𝑗(·, 𝑡𝑛) and 𝑓𝑗(·, 𝑡𝑛) of (1), respectively. In (2),

𝑢𝑛 and 𝜈 denote the ensemble means of the velocity field and viscosity coefficient, respectively, defined by

𝑢𝑛 := 1
𝐽

𝐽∑︁
𝑗=1

(︁
2𝑢𝑛

𝑗 − 𝑢𝑛−1
𝑗

)︁
and 𝜈 := 1

𝐽

𝐽∑︁
𝑗=1

𝜈𝑗

and 𝑢′ 𝑛
𝑗 represents the fluctuation defined by

𝑢′ 𝑛
𝑗 = 2𝑢𝑛

𝑗 − 𝑢𝑛−1
𝑗 − 𝑢𝑛.

It is easy to see that the coefficient matrix in the spatial discretization of (2) does not depend on 𝑗. Thus,
all the members in the ensemble do share a common coefficient matrix. To advance one time step, one only
need solve a single linear system with 𝐽 RHS vectors, which is more efficient than solving 𝐽 individual
simulations.

We assume homogeneous flow boundary conditions (𝑔𝑗 = 0) in the following derivation and analysis
of the proposed ensemble algorithm. But flows with inhomogeneous essential boundary conditions are
considered in our first numerical experiment presented in Section 5, where, in the implementation, the data
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𝑔𝑗 at each time step is first replaced by its interpolant on the Lagrangian finite element space and then is
enforced on the boundary nodes. The extension of our analysis to the inhomogeneous cases will follow the
idea presented in [3], which will be discussed elsewhere.

In what follows, we present a rigorous theoretical analysis of the proposed scheme. In Section 2, we
provide some notations and preliminaries; in Section 3, the stability conditions of the scheme are obtained;
and in Section 4, an error estimate is derived. Then, several numerical experiments are presented in Section
5.

2 Notation and preliminaries
Let Ω be an open, regular domain in R𝑑 (𝑑 = 2 or 3). The space 𝐿2(Ω) is equipped with the norm ‖ · ‖
and inner product (·, ·). Denote by ‖ · ‖𝐿𝑝 and ‖ · ‖𝑊 𝑘

𝑝
, respectively, the norms for 𝐿𝑝(Ω) and the Sobolev

space 𝑊 𝑘
𝑝 (Ω). Let 𝐻𝑘(Ω) be the Sobolev space 𝑊 𝑘

2 (Ω) equipped with the norm ‖ · ‖𝑘. For functions 𝑣(𝑥, 𝑡)
defined on (0, 𝑇 ), we define (1 ≤ 𝑚 < ∞)

‖𝑣‖∞,𝑘 := 𝐸𝑠𝑠𝑆𝑢𝑝[0,𝑇 ]‖𝑣(𝑡, ·)‖𝑘 and ‖𝑣‖𝑚,𝑘 :=

⎛⎝ 𝑇∫︁
0

‖𝑣(𝑡, ·)‖𝑚
𝑘 𝑑𝑡

⎞⎠1/𝑚

.

Given a time step Δ𝑡, let 𝑣𝑛 = 𝑣(𝑡𝑛) and define the discrete norms

|||𝑣|||∞,𝑘 = max
0≤𝑛≤𝑁

‖𝑣𝑛‖𝑘 and |||𝑣|||𝑚,𝑘 :=

(︃
𝑁∑︁

𝑛=0
‖𝑣𝑛‖𝑚

𝑘 Δ𝑡

)︃1/𝑚

.

Denote by 𝐻−1(Ω) the dual space of bounded linear functionals defined on 𝐻1
0 (Ω) = {𝑣 ∈ 𝐻1(Ω) : 𝑣 =

0 on 𝜕Ω}. A norm for 𝐻−1(Ω) is given by

‖𝑓‖−1 = sup
0 ̸=𝑣∈𝐻1

0 (Ω)

(𝑓, 𝑣)
‖∇𝑣‖

.

We choose the velocity space 𝑋 and pressure space 𝑄 to be

𝑋 := (𝐻1
0 (Ω))𝑑 and 𝑄 := 𝐿2

0(Ω) =
{︁

𝑞 ∈ 𝐿2(Ω) :
∫︁
Ω

𝑞 𝑑𝑥 = 0
}︁

.

The space of weakly divergence free functions is then

𝑉 := {𝑣 ∈ 𝑋 : (∇ · 𝑣, 𝑞) = 0 , ∀ 𝑞 ∈ 𝑄}.

A weak formulation of (1) reads: find 𝑢𝑗 : [0, 𝑇 ] → 𝑋 and 𝑝𝑗 : [0, 𝑇 ] → 𝑄 for a.e. 𝑡 ∈ (0, 𝑇 ] satisfying,
for 𝑗 = 1, ..., 𝐽 ,

(𝑢𝑗,𝑡, 𝑣) + (𝑢𝑗 · ∇𝑢𝑗 , 𝑣) + 𝜈𝑗(∇𝑢𝑗 , ∇𝑣) − (𝑝𝑗 , ∇ · 𝑣) = (𝑓𝑗 , 𝑣), ∀ 𝑣 ∈ 𝑋,

(∇ · 𝑢𝑗 , 𝑞) = 0, ∀ 𝑞 ∈ 𝑄
(3)

with 𝑢𝑗(𝑥, 0) = 𝑢0
𝑗 (𝑥).

For the spatial discretization, we use a finite element (FE) method. However, the results can be extended
to many other variational methods without much difficulty. Denote by 𝑋ℎ ⊂ 𝑋 and 𝑄ℎ ⊂ 𝑄 the conforming
velocity and pressure FE spaces on an edge to edge triangulation of Ω with ℎ denoting the maximum
diameter of the triangles. Assume that the pair of spaces (𝑋ℎ, 𝑄ℎ) satisfy the discrete inf-sup (or 𝐿𝐵𝐵ℎ)
condition, that is required to guarantee the stability of FE approximations. We also assume that the FE
spaces satisfy the following approximation properties [15]:

inf
𝑣ℎ∈𝑋ℎ

‖𝑣 − 𝑣ℎ‖ ≤ 𝐶ℎ𝑘+1‖𝑣‖𝑘+1 ∀ 𝑣 ∈ [𝐻𝑘+1(Ω)]𝑑 , (4)
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inf
𝑣ℎ∈𝑋ℎ

‖∇(𝑣 − 𝑣ℎ)‖ ≤ 𝐶ℎ𝑘‖𝑣‖𝑘+1 ∀ 𝑣 ∈ [𝐻𝑘+1(Ω)]𝑑 , (5)

inf
𝑞ℎ∈𝑄ℎ

‖𝑞 − 𝑞ℎ‖ ≤ 𝐶ℎ𝑠+1‖𝑞‖𝑠+1 ∀ 𝑞 ∈ 𝐻𝑠+1(Ω) , (6)

where the generic constant 𝐶 > 0 is independent of the mesh size ℎ. One example for which the 𝐿𝐵𝐵ℎ

stability condition is satisfied is the family of Taylor-Hood 𝑃 𝑠+1-𝑃 𝑠 element pairs (i.e., 𝑘 = 𝑠 + 1 in the
definition of 𝑋ℎ), for 𝑠 ≥ 1 [5]. The discrete divergence free subspace of 𝑋ℎ is

𝑉ℎ := {𝑣ℎ ∈ 𝑋ℎ : (∇ · 𝑣ℎ, 𝑞ℎ) = 0 , ∀ 𝑞ℎ ∈ 𝑄ℎ}.

We assume the mesh and FE spaces satisfy the following standard inverse inequality (typical for locally
quasi-uniform meshes and standard FE spaces, see, e.g., [2]): for all 𝑣ℎ ∈ 𝑋ℎ,

ℎ‖∇𝑣ℎ‖ ≤ 𝐶(𝑖𝑛𝑣)‖𝑣ℎ‖. (7)

Define the explicitly skew-symmetric trilinear form

𝑏*(𝑢, 𝑣, 𝑤) := 1
2(𝑢 · ∇𝑣, 𝑤) − 1

2(𝑢 · ∇𝑤, 𝑣)

that satisfies the bounds [15]

𝑏*(𝑢, 𝑣, 𝑤) ≤ 𝐶(Ω) (‖∇𝑢‖‖𝑢‖)1/2 ‖∇𝑣‖‖∇𝑤‖, ∀ 𝑢, 𝑣, 𝑤 ∈ 𝑋, (8)

𝑏*(𝑢, 𝑣, 𝑤) ≤ 𝐶(Ω)‖∇𝑢‖‖∇𝑣‖ (‖∇𝑤‖‖𝑤‖)1/2 , ∀ 𝑢, 𝑣, 𝑤 ∈ 𝑋, (9)

where 𝐶(Ω) is a constant depending on the domain. Denote the exact solution to (1) and the FE approximate
solution to (10) at 𝑡 = 𝑡𝑛 by 𝑢𝑛

𝑗 and 𝑢𝑛
𝑗,ℎ, respectively.

The fully discrete finite element discretization of (2) at 𝑡𝑛+1 is as follows: given 𝑢𝑛
𝑗,ℎ, find 𝑢𝑛+1

𝑗,ℎ ∈ 𝑋ℎ

and 𝑝𝑛+1
𝑗,ℎ ∈ 𝑄ℎ satisfying

(︁3𝑢𝑛+1
𝑗,ℎ − 4𝑢𝑛

𝑗,ℎ + 𝑢𝑛−1
𝑗,ℎ

2Δ𝑡
, 𝑣ℎ

)︁
+ 𝑏*(𝑢𝑛

ℎ, 𝑢𝑛+1
𝑗,ℎ , 𝑣ℎ) + 𝑏*(2𝑢𝑛

𝑗,ℎ − 𝑢𝑛−1
𝑗,ℎ − 𝑢𝑛

ℎ, 2𝑢𝑛
𝑗,ℎ − 𝑢𝑛−1

𝑗,ℎ , 𝑣ℎ)

− (𝑝𝑛+1
𝑗,ℎ , ∇ · 𝑣ℎ) + 𝜈(∇𝑢𝑛+1

𝑗,ℎ , ∇𝑣ℎ) + (𝜈𝑗 − 𝜈) (∇(2𝑢𝑛
𝑗,ℎ − 𝑢𝑛−1

𝑗,ℎ ), ∇𝑣ℎ) = (𝑓𝑛+1
𝑗 , 𝑣ℎ), ∀ 𝑣ℎ ∈ 𝑋ℎ,(︀

∇ · 𝑢𝑛+1
𝑗,ℎ , 𝑞ℎ

)︀
= 0, ∀ 𝑞ℎ ∈ 𝑄ℎ.

(10)
This is a two-step method that requires 𝑢0

𝑗,ℎ and 𝑢1
𝑗,ℎ to start the time stepping; 𝑢0

𝑗,ℎ is determined
by the initial condition and 𝑢1

𝑗,ℎ can be computed by the first-order ensemble algorithm developed by the
authors in [8] (which is locally second-order accurate) or by using a standard, non-ensemble time-stepping
method to compute each individual simulation at the very first time step. Compared to the second-order
ensemble scheme developed in [17] for the NSEs without variations in the viscosity coefficient, the scheme
(10) for parametrized flows introduces an additional average of the viscosity coefficients for the parameterized
flow ensemble. As is shown in the next section, the deviation of the flow viscosity coefficients from the
ensemble average will play an important role in the stability analysis of the scheme.

3 Stability Analysis
We begin by proving the conditional, nonlinear, long time stability of (10) under conditions on the time
step and viscosity coefficient deviation: for any 𝑗 = 1, . . . , 𝐽 , there exists 0 ≤ 𝜇 < 1 and 0 < 𝜖 ≤ 2 − 2√

𝜇

such that

𝐶
Δ𝑡

𝜈ℎ

⃦⃦
∇𝑢′ 𝑛

𝑗,ℎ

⃦⃦2 ≤
(2 − 2√

𝜇 − 𝜖)√𝜇

2(√𝜇 + 𝜖) and (11)

|𝜈𝑗 − 𝜈|
𝜈

≤
√

𝜇

3 , (12)

where 𝐶 denotes a generic constant depending on the domain and the minimum angle of the mesh.



M. Gunzburger et al., A second-order ensemble scheme for parameterized flow problems 5

Theorem 3.1 (Stability). The ensemble scheme (10) is stable provided the conditions (11)-(12) hold. In
particular, for 𝑗 = 1, . . . , 𝐽 and for any 𝑁 ≥ 2, we have

1
4

(︁
‖𝑢𝑁

𝑗,ℎ‖2 + ‖2𝑢𝑁
𝑗,ℎ − 𝑢𝑁−1

𝑗,ℎ ‖2
)︁

+ 1
8

𝑁−1∑︁
𝑛=1

‖𝑢𝑛+1
𝑗,ℎ − 2𝑢𝑛

𝑗,ℎ + 𝑢𝑛−1
𝑗,ℎ ‖2

+ 𝜈Δ𝑡

√
𝜇 + 𝜖

2 − √
𝜇

(︂√
𝜇

2
2 + 𝜖

√
𝜇 + 𝜖

−
3|𝜈𝑗 − 𝜈|

2𝜈

)︂
‖∇𝑢𝑁

𝑗,ℎ‖2 + 𝜈Δ𝑡

3

√
𝜇 + 𝜖

2 − √
𝜇

(︂√
𝜇

2
2 + 𝜖

√
𝜇 + 𝜖

−
3|𝜈𝑗 − 𝜈|

2𝜈

)︂
‖∇𝑢𝑁−1

𝑗,ℎ ‖2

≤
𝑁−1∑︁
𝑛=1

√
𝜇 + 𝜖

2𝜖(2 − √
𝜇)

Δ𝑡

𝜈
‖𝑓𝑛+1

𝑗 ‖2
−1 + 1

4
(︀
‖𝑢1

𝑗,ℎ‖2 + ‖2𝑢1
𝑗,ℎ − 𝑢0

𝑗,ℎ‖2)︀
+ 𝜈Δ𝑡

√
𝜇 + 𝜖

2 − √
𝜇

(︂√
𝜇

2
2 + 𝜖

√
𝜇 + 𝜖

−
3|𝜈𝑗 − 𝜈|

2𝜈

)︂
‖∇𝑢1

𝑗,ℎ‖2 + 𝜈Δ𝑡

3

√
𝜇 + 𝜖

2 − √
𝜇

(︂√
𝜇

2
2 + 𝜖

√
𝜇 + 𝜖

−
3|𝜈𝑗 − 𝜈|

2𝜈

)︂
‖∇𝑢0

𝑗,ℎ‖2.

(13)

Proof. See Appendix A.

Remark 3.2. Observe that the stability conditions (11) and (12) are oppositional to each other. The upper
bound for the relative deviation of the viscosity coefficient given in (12) must be less than

√
𝜇

3 whereas the
upper bound in the time-step condition (11) must be less than 1 − √

𝜇 because this bound is increasing when 𝜖

is decreasing, and it approaches 1 − √
𝜇 as 𝜖 → 0. In practice, condition (12) is easy to check. If it does not

hold, one could split the ensemble into smaller groups so that this condition holds for each group. Condition
(11) can be satisfied by adjusting the time-step size.

4 Error Analysis
In this section we derive the numerical error estimate of the proposed ensemble scheme (10). We first give a
lemma on the estimate of the consistency error of the backward differentiation formula that will be used in
the error analysis for the fully discrete ensemble scheme.

Lemma 4.1. For any 𝑢 ∈ 𝐻3(0, 𝑇 ; 𝐿2(Ω)), we have that

⃦⃦⃦3𝑢𝑛+1 − 4𝑢𝑛 + 𝑢𝑛−1

2Δ𝑡
− 𝑢𝑛+1

𝑡

⃦⃦⃦2
≤ 7

4Δ𝑡3
𝑡𝑛+1∫︁

𝑡𝑛−1

‖𝑢𝑡𝑡𝑡‖2 𝑑𝑡. (14)

Proof. The proof is given in Appendix B.

Assuming that 𝑋ℎ and 𝑄ℎ satisfy the 𝐿𝐵𝐵ℎ condition, then the ensemble scheme (10) is equivalent to: for
𝑛 = 1, ..., 𝑁 − 1, find 𝑢𝑛+1

𝑗,ℎ ∈ 𝑉ℎ such that(︃
3𝑢𝑛+1

𝑗,ℎ − 4𝑢𝑛
𝑗,ℎ + 𝑢𝑛−1

𝑗,ℎ

2Δ𝑡
, 𝑣ℎ

)︃
+ 𝑏*(𝑢𝑛

ℎ, 𝑢𝑛+1
𝑗,ℎ , 𝑣ℎ) + 𝜈(∇𝑢𝑛+1

𝑗,ℎ , ∇𝑣ℎ) + (𝜈𝑗 − 𝜈) (∇(2𝑢𝑛
𝑗,ℎ − 𝑢𝑛−1

𝑗,ℎ ), ∇𝑣ℎ)

+ 𝑏*(2𝑢𝑛
𝑗,ℎ − 𝑢𝑛−1

𝑗,ℎ − 𝑢𝑛
ℎ, 2𝑢𝑛

𝑗,ℎ − 𝑢𝑛−1
𝑗,ℎ , 𝑣ℎ) = (𝑓𝑛+1

𝑗 , 𝑣ℎ), ∀𝑣ℎ ∈ 𝑉ℎ.

(15)
To analyze the rate of convergence of the approximation, we assume the regularity assumptions on the NSE
given by

𝑢𝑗 ∈ 𝐻2 (︀0, 𝑇 ; 𝐻𝑘+1(Ω)
)︀

∩ 𝐻3 (︀0, 𝑇 ; 𝐻1(Ω)
)︀

,

𝑝𝑗 ∈ 𝐿2 (︀0, 𝑇 ; 𝐻𝑠+1(Ω)
)︀

, and 𝑓𝑗 ∈ 𝐿2 (︀0, 𝑇 ; 𝐿2(Ω)
)︀

.

Let 𝑒𝑛
𝑗 = 𝑢𝑛

𝑗 − 𝑢𝑛
𝑗,ℎ be the error between the true solution of (1) and the approximate solution determined

from (15). We then have the following error estimates.
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Theorem 4.2 (Error Estimate). For any 𝑗 = 1, . . . , 𝐽 , under the stability conditions of (11)-(12) for some
𝜇 and 𝜖 satisfying 0 ≤ 𝜇 < 1 and 0 < 𝜖 ≤ 2 − 2√

𝜇, there exists a positive constant 𝐶 independent of the
time step Δ𝑡 and mesh size ℎ such that

1
4‖𝑒𝑁

𝑗 ‖2 + 𝐶1𝜈Δ𝑡‖∇𝑒𝑁
𝑗 ‖2

≤ 𝑒
𝐶𝑇
𝜈3

{︂
1
4
(︀
‖𝑒1

𝑗 ‖2 + ‖2𝑒1
𝑗 − 𝑒0

𝑗 ‖2)︀+ 𝐶1𝜈Δ𝑡‖∇𝑒1
𝑗 ‖2 + 𝐶2𝜈Δ𝑡‖∇𝑒0

𝑗 ‖2 + 𝐶𝜈−1ℎ2𝑘|||𝑢𝑗 |||44,𝑘+1 + 𝐶𝜈−1ℎ2𝑘

+ 𝐶Δ𝑡4 |𝜈𝑗 − 𝜈|2

𝜈
‖∇𝑢𝑗,𝑡𝑡‖2

2,0 + 𝐶𝜈−1Δ𝑡4‖𝑢𝑗,𝑡𝑡‖2
2,0 + 𝐶𝜈−1ℎ2𝑘|||𝑢𝑗 |||22,𝑘+1 + 𝐶ℎΔ𝑡3‖∇𝑢𝑗,𝑡𝑡‖2

2,0 (16)

+ 𝐶ℎ2𝑘+1Δ𝑡3‖∇𝑢𝑗,𝑡𝑡‖2
2,𝑘+1 + 𝐶𝜈−1ℎ2𝑠+2|||𝑝𝑗 |||22,𝑠+1 + 𝐶𝜈−1ℎ2𝑘+2‖𝑢𝑗,𝑡‖2

2,𝑘+1 + 𝐶𝜈ℎ2𝑘|||𝑢𝑗 |||22,𝑘+1

+ 𝐶
|𝜈𝑗 − 𝜈|2

𝜈
ℎ2𝑘|||𝑢𝑗 |||22,𝑘+1 + 𝐶𝜈−1Δ𝑡4‖∇𝑢𝑗,𝑡𝑡𝑡‖2

2,0

}︂
+ 𝐶ℎ2𝑘+2|||𝑢𝑗 |||2∞,𝑘+1 + 𝐶𝜈ℎ2𝑘Δ𝑡|||𝑢𝑗 |||2∞,𝑘+1 ,

where positive constants 𝐶1 = 2𝐶0 +
√

𝜇+𝜖
2−√

𝜇

(︁
1 − 17𝐶0 − 3|𝜈𝑗−𝜈|

2𝜈

)︁
, 𝐶2 = 𝐶0 +

√
𝜇+𝜖

3(2−√
𝜇)

(︁
1 − 17𝐶0 − 3|𝜈𝑗−𝜈|

2𝜈

)︁
and 𝐶0 = 1

17
𝜖√

𝜇+𝜖 (1 −
√

𝜇
2 ).

Proof. See Appendix C.

It is well known that the Taylor-Hood 𝑃 𝑠+1-𝑃 𝑠 element pairs for which the 𝐿𝐵𝐵ℎ stability condition and
the approximation properties (4)-(6) are all satisfied [2, 5, 15]. In particular, when the popular 𝑃 2-𝑃 1

Taylor-Hood FE is used (i.e., 𝑘 = 2 and 𝑠 = 1 in the definitions of 𝑋ℎ and 𝑄ℎ, respectively), we have the
following optimal convergence results.

Corollary 4.2.1. Suppose the 𝑃 2-𝑃 1 Taylor-Hood FE pair is used for the spatial discretization and assume
that the initial errors ‖𝑢0

𝑗 − 𝑢0
𝑗,ℎ‖, ‖∇(𝑢0

𝑗 − 𝑢0
𝑗,ℎ)‖, ‖𝑢1

𝑗 − 𝑢1
𝑗,ℎ‖ and ‖∇(𝑢1

𝑗 − 𝑢1
𝑗,ℎ)‖ are all at least 𝑂(ℎ2)

accurate. Then, the approximation error of the ensemble scheme (10) at time 𝑡𝑁 satisfies

1
4‖𝑢𝑁

𝑗 − 𝑢𝑁
𝑗,ℎ‖2 + 2𝐶0𝜈Δ𝑡‖∇

(︀
𝑢𝑁

𝑗 − 𝑢𝑁
𝑗,ℎ

)︀
‖2 ∼ 𝒪(ℎ4 + Δ𝑡4 + ℎΔ𝑡3). (17)

5 Numerical Experiments
The goal of the numerical experiments is two-fold: (i) to numerically illustrate the convergence rate of the
ensemble algorithm (10), that is, illustrate the second-order accuracy in time; (ii) to explore the stability
of the algorithm; in particular, the numerical results strongly indicate that the stability condition (12) is
sharp.

5.1 Convergence Test

We illustrate the convergence rate of (10) by considering a test problem for the NSE from [9] that has an
analytical solution. This solution preserves the spatial patterns of the Green-Taylor solution [1, 10] but the
vortices do not decay as 𝑡 → ∞. On the unit square Ω = [0, 1]2, we define

𝑢𝑟𝑒𝑓 = [−𝑠(𝑡) cos 𝑥 sin 𝑦, 𝑠(𝑡) sin 𝑥 cos 𝑦]⊤ and 𝑝𝑟𝑒𝑓 = −1
4 [cos(2𝑥) + cos(2𝑦)]𝑠2(𝑡)

with 𝑠(𝑡) = sin(2𝑡). We then have the corresponding source term

𝑓𝑟𝑒𝑓 (𝑥, 𝑦, 𝑡) =
(︀
𝑠′(𝑡) + 2𝜈𝑠(𝑡)

)︀
[− cos 𝑥 sin 𝑦, sin 𝑥 cos 𝑦]⊤

and an inhomogeneous Dirichlet boundary condition with data 𝑔0
𝑟𝑒𝑓 (𝑥, 𝑦, 𝑡) = 𝑢𝑟𝑒𝑓 (𝑥, 𝑦, 𝑡) for (𝑥, 𝑦) ∈ 𝜕Ω

and zero initial condition data 𝑢0
𝑟𝑒𝑓 (𝑥, 𝑦) = 𝑢𝑟𝑒𝑓 (𝑥, 𝑦, 0) = [0, 0]⊤.
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To illustrate the convergence behavior, we consider an ensemble of two members with different viscosity
coefficients and perturbed initial conditions. For the first member, we choose the viscosity coefficient 𝜈1 = 0.2
and the exact solution is chosen as 𝑢1 = (1 + 𝜖)𝑢𝑟𝑒𝑓 whereas for the second member, we choose 𝜈2 = 0.3
and 𝑢2 = (1 − 𝜖)𝑢𝑟𝑒𝑓 , where 𝜖 = 10−3. The initial condition data, boundary condition data, and source
terms are adjusted accordingly.

For this choice of parameters, we have |𝜈𝑗 − 𝜈|/𝜈 = 1
5 for both 𝑗 = 1 and 𝑗 = 2; hence the stability

condition (12) is satisfied. We first apply the ensemble algorithm (10) using the 𝑃 2-𝑃 1 Taylor-Hood FE
and evaluate the rates of convergence. The initial mesh size and time step size are chosen to be ℎ = 0.1 and
Δ𝑡 = 0.05; both the spatial and temporal grids are uniformly refined. Numerical results are listed in Table 1
for which

‖ℰ𝐸
𝑗 ‖∞,0 = max

0≤𝑛≤𝑁
‖𝑢𝑛

𝑗 − 𝑢𝑛
𝑗,ℎ‖ and ‖∇ℰ𝐸

𝑗 ‖2,0 =

⎯⎸⎸⎷Δ𝑡

𝑁∑︁
𝑛=0

‖∇(𝑢𝑛
𝑗 − 𝑢𝑛

𝑗,ℎ)‖2.

It is seen that the convergence rates for both 𝑢1 and 𝑢2 are second order, which matches our theoretical
analysis.

Table 1: Approximation errors for ensemble simulations of two members with inputs 𝜈1 = 0.2, 𝑢1 = (1 + 10−3)𝑢𝑟𝑒𝑓 and
𝜈2 = 0.3, 𝑢2 = (1− 10−3)𝑢𝑟𝑒𝑓

.

1/ℎ ‖ℰ𝐸
1 ‖∞,0 rate ‖∇ℰ𝐸

1 ‖2,0 rate ‖ℰ𝐸
2 ‖∞,0 rate ‖∇ℰ𝐸

2 ‖2,0 rate
10 1.02𝑒− 04 – 8.51𝑒− 04 – 8.02𝑒− 05 – 7.99𝑒− 04 –
20 2.60𝑒− 05 1.98 2.12𝑒− 04 2.00 2.03𝑒− 05 1.98 1.99𝑒− 04 2.00
40 6.54𝑒− 06 1.99 5.31𝑒− 05 2.00 5.12𝑒− 06 1.99 4.99𝑒− 05 2.00
80 1.64𝑒− 06 1.99 1.33𝑒− 05 2.00 1.28𝑒− 06 2.00 1.25𝑒− 05 2.00

Furthermore, we implement the two individual simulations separately and denote the corresponding
numerical errors by ‖ℰ𝑆

𝑗 ‖∞,0 and ‖∇ℰ𝑆
𝑗 ‖2,0. Comparing the ensemble simulation solutions in Table 1 with

the independent simulation results listed in Table 2, we observe that the former achieves the same order of
accuracy as the latter.

Table 2: Approximation errors for two individual simulations: 𝜈1 = 0.2, 𝑢1 = (1 + 10−3)𝑢𝑟𝑒𝑓 and 𝜈2 = 0.3, 𝑢2 =

(1− 10−3)𝑢𝑟𝑒𝑓

.

1/ℎ ‖ℰ𝑆
1 ‖∞,0 rate ‖∇ℰ𝑆

1 ‖2,0 rate ‖ℰ𝑆
2 ‖∞,0 rate ‖∇ℰ𝑆

2 ‖2,0 rate
10 1.08𝑒− 04 – 8.79𝑒− 04 – 7.64𝑒− 05 – 7.79𝑒− 04 –
20 2.74𝑒− 05 1.98 2.20𝑒− 04 2.00 1.94𝑒− 05 1.98 1.94𝑒− 04 2.00
40 6.92𝑒− 06 1.99 5.50𝑒− 05 2.00 4.87𝑒− 06 1.99 4.85𝑒− 05 2.00
80 1.74𝑒− 06 1.99 1.38𝑒− 05 1.99 1.22𝑒− 06 2.00 1.21𝑒− 05 2.00

Although the pressure error is not discussed in this paper, we determine the pressure approximation of
the ensemble simulation using the same uniform mesh refinement strategy and then, in Table 3, provide
results for ‖ℰ𝒫

𝐸
𝑗 ‖∞,0, the maximum values over all the time levels of the pressure errors in the 𝐿2 norm.

Results for approximate solutions obtained by the ensemble method as well as through separate computations
are given. It is observed that the ensemble-based scheme achieves second-order convergence in the pressure
approximation and the associated numerical errors are nearly identical to those obtained from individual
simulations, ‖ℰ𝒫

𝑆
𝑗 ‖∞,0.
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Table 3: Pressure approximation errors for the ensemble and individual simulations.

1/ℎ ‖ℰ𝒫𝐸
1 ‖∞,0 rate ‖ℰ𝒫𝐸

2 ‖∞,0 rate ‖ℰ𝒫𝑆
1 ‖∞,0 rate ‖ℰ𝒫𝑆

2 ‖∞,0 rate
10 2.09𝑒− 03 – 2.08𝑒− 03 – 2.08𝑒− 03 – 2.08𝑒− 03 –
20 5.27𝑒− 04 1.99 5.22𝑒− 04 1.99 5.27𝑒− 04 1.99 5.22𝑒− 04 1.99
40 1.32𝑒− 04 2.00 1.31𝑒− 04 1.99 1.32𝑒− 04 2.00 1.31𝑒− 04 1.99
80 3.30𝑒− 05 2.00 3.27𝑒− 05 2.00 3.30𝑒− 05 2.00 3.27𝑒− 05 2.00

5.2 Stability tests

Two conditions, (11) and (12), guarantee the stability of the proposed scheme. Condition (12), in many
applications, relates to the probability distribution of the uncertain physical parameters. This requirement on
the parameter deviation ratio can be easily checked. If it is not fulfilled, one could divide the parameter sample
set into smaller subsets so that it holds on each subset. Condition (11) depends on the nature of nonlinear
problems. Its severity depends on the governing equations, domain, model parameters, initial/boundary
conditions, forcing terms, etc. In practice, once condition (12) holds, condition (11) can be satisfied by
making Δ𝑡 sufficiently small and/or by dividing the ensemble into smaller ensembles. Of course, when the
ensemble consists of high Reynolds number flows, this condition could easily fail due to the requirement
of having an extremely small time-step size leading to a prohibitive computational cost. Condition (11)
has been extensively investigated in [16, 19, 17]. Hence, in the following, we are mostly interested on the
optimality of condition (12). However, we do consider the conditional stability due to (11) because we want
to determine values of the parameter for which that condition is satisfied; this is not directly computable
from (11) because of the generic constant appearing in that condition. Note that (12) contains no such
constant so that we can directly study the sharpness of the condition.

We check the stability of our algorithm by using the problem of a flow between two offset circles
[16, 17, 19, 20]. The domain is a disk with a smaller off-center obstacle inside. Letting 𝑟1 = 1, 𝑟2 = 0.1, and
𝑐 = (𝑐1, 𝑐2) = ( 1

2 , 0), the domain is given by

Ω = {(𝑥, 𝑦) : 𝑥2 + 𝑦2 ≤ 𝑟2
1 and (𝑥 − 𝑐1)2 + (𝑦 − 𝑐2)2 ≥ 𝑟2

2}.

The flow is driven by a counterclockwise rotational body force

𝑓(𝑥, 𝑦, 𝑡) = [−6𝑦(1 − 𝑥2 − 𝑦2), 6𝑥(1 − 𝑥2 − 𝑦2)]⊤ (18)

with no-slip boundary conditions imposed on both circles. A von Kármán vortex street forms behind the inner
circle and then re-interacts with that circle and with itself, generating complex flow patterns. We consider
multiple numerical simulations of the flow with different viscosity coefficients using the ensemble-based
algorithm (10). For spatial discretization, we apply the 𝑃 2-𝑃 1 Taylor-Hood element pair on a triangular
mesh that is generated by a Delaunay triangulation with 80 mesh points on the outer circle and 60 mesh
points on the inner circle and with refinement near the inner circle, resulting in 18, 638 degrees of freedom;
see Figure 1.

In order to illustrate the stability analysis based on conditions (11) and (12) we design two numerical
tests involving two different sets of viscosity coefficients within an ensemble of three members, keeping the
rest of computational setting, including the initial and boundary conditions and body force, the same for
all the members. In particular, the initial condition is generated by solving the steady Stokes problem with
viscosity 𝜈 = 0.03 and the same body force 𝑓(𝑥, 𝑦, 𝑡) given by (18). We have two test cases:

Case 1: 𝜈1 = 0.021, 𝜈2 = 0.030, 𝜈3 = 0.039;
Case 2: 𝜈1 = 0.019, 𝜈2 = 0.030, 𝜈3 = 0.041.

Note that the viscosity coefficients 𝜈1 and 𝜈3 for Case 2 are obtained by making small perturbations from
those for Case 1 with the average of the viscosity coefficients 𝜈 = 0.03 being the same for in both cases.
However, the stability condition (12) holds in the first case but breaks down in the second case. In fact, the
parameter deviation ratios are given by
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Fig. 1: Mesh for the flow between two offset cylinders.

Case 1: |𝜈1−𝜈|
𝜈 = 3

10 < 1
3 , |𝜈2−𝜈|

𝜈 = 0 < 1
3 , |𝜈3−𝜈|

𝜈 = 3
10 < 1

3 ;
Case 2: |𝜈1−𝜈|

𝜈 = 11
30 > 1

3 , |𝜈2−𝜈|
𝜈 = 0 < 1

3 , |𝜈3−𝜈|
𝜈 = 11

30 > 1
3 .

For the stability test, we use the kinetic energy as a criterion and compare the ensemble simulation results
to the independent simulations using the same mesh and time-step size.

Case 1. Condition (12) is satisfied so that this case illustrates the conditional stability due to (11). As
mentioned above, we also use this test to determine a value for Δ𝑡 for which (11) is satisfied so that, in
Case 2, we can study the sharpness of condition (12). We first test the ensemble-based algorithm at a large
time step size Δ𝑡 = 0.5. The corresponding evolutions of the energy of all the three members are plotted in
Figure 2. It is seen that for Δ𝑡 = 0.5, the algorithm is unstable because the energy of the third member
increases dramatically after 𝑡 = 4 and that of the first member after 𝑡 = 4.5. Although not shown in this
figure, the energy of the second member also blows up but not until after 𝑡 = 20. This implies that the
stability condition (11) does not hold. Therefore, we next decrease the time step size to Δ𝑡 = 0.05 and
re-run the ensemble simulations. The associated evolutions of the energies are shown in Figure 2, indicating
that the algorithm is now stable over the same time interval. Indeed, additional numerical experiments
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Fig. 2: For the flow between two offset cylinders, Case 1, the energy evolution of the ensemble simulations for Δ𝑡 = 0.5

and Δ𝑡 = 0.05.
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show that, for any time step size smaller than 0.05, the algorithm is always stable in Case 1 over a much
longer time interval, for instance, [0, 50]. When an even smaller time step size Δ𝑡 = 0.01 is selected, the
comparison of the energy evolutions of ensemble-based simulations with the corresponding independent
simulations over the time interval [0, 5] is given in Figures 3. The ensemble simulation is obviously stable
and the output energy approximations are very close to those of the independent simulations.
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Fig. 3: For the flow between two offset cylinders, Case 1, the energy evolution of the ensemble (Ens.) and independent
simulations (Ind.) for Δ𝑡 = 0.01.

Case 2. We run ensemble simulations using the small time step size Δ𝑡 = 0.01 over the same time
interval as that for Case 1. As we mentioned above, the viscosity coefficients in Case 2 are obtained by
slightly perturbing those in Case 1; this is the only difference between the two computational settings. Since
Δ𝑡 is chosen small, we believe condition (11) still holds for Case 2. But condition (12) no longer holds.
Therefore, we expect the ensemble simulation to be unstable even when using the small time step size
Δ𝑡 = 0.01. The plots of energy evolutions in Figure 4 matches our expectation as they clearly indicate that
the ensemble simulation is unstable in this case. In fact, the energy of the third member blows up after
𝑡 = 1.95 and then affects the other two members and results in their energy dramatically increasing after
𝑡 = 2.45.
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Fig. 4: For the flow between two offset cylinders, Case 2, the energy evolution of the ensemble (Ens.) and independent
simulations (Ind.) for Δ𝑡 = 0.01.
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6 Conclusions
In this paper, we develop a second-order time-stepping ensemble scheme to compute a set of Navier-Stokes
equations in which every member is subject to an independent computational setting including a distinct
viscosity coefficient, initial condition data, boundary condition data, and/or body force. By using the
ensemble algorithm, all ensemble members share a common coefficient matrix after discretization, although
with different RHS vectors. Therefore, many efficient block iterative solvers such as the block CG and
block GMRES can be applied to solve such a single linear system with multiple RHS vectors, leading to
great savings in both storage and simulation time. A rigorous analysis shows the proposed algorithm is
conditionally, nonlinearly and long-time stable provided two explicit conditions hold and is second-order
accurate in time. Two numerical experiments are presented that illustrate our theoretical analysis. In
particular, the first is a test problem having an analytic solution that serves to illustrate that the rate of
convergence with respect to the time-step size is indeed second order whereas the second example is for a
flow between two offset cylinders and shows that the stability condition is sharp. For future work, we plan
to investigate the performance of the ensemble algorithm in data assimilation applications.
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A Proof of Theorem 3.1
Proof. Setting 𝑣ℎ = 𝑢𝑛+1

𝑗,ℎ and 𝑞ℎ = 𝑝𝑛+1
𝑗,ℎ in (10) and multiplying the result by Δ𝑡 gives

1
4

(︁
‖𝑢𝑛+1

𝑗,ℎ ‖2 + ‖2𝑢𝑛+1
𝑗,ℎ − 𝑢𝑛

𝑗,ℎ‖2
)︁

− 1
4

(︁
‖𝑢𝑛

𝑗,ℎ‖2 + ‖2𝑢𝑛
𝑗,ℎ − 𝑢𝑛−1

𝑗,ℎ ‖2
)︁

+ 1
4‖𝑢𝑛+1

𝑗,ℎ − 2𝑢𝑛
𝑗,ℎ + 𝑢𝑛−1

𝑗,ℎ ‖2

+ 𝜈Δ𝑡‖∇𝑢𝑛+1
𝑗,ℎ ‖2 + Δ𝑡𝑏*

(︁
2𝑢𝑛

𝑗,ℎ − 𝑢𝑛−1
𝑗,ℎ − 𝑢𝑛

ℎ, 2𝑢𝑛
𝑗,ℎ − 𝑢𝑛−1

𝑗,ℎ , 𝑢𝑛+1
𝑗,ℎ

)︁
= Δ𝑡

(︁
𝑓𝑛+1

𝑗 , 𝑢𝑛+1
𝑗,ℎ

)︁
− (𝜈𝑗 − 𝜈)Δ𝑡

(︁
∇(2𝑢𝑛

𝑗,ℎ − 𝑢𝑛−1
𝑗,ℎ ), ∇𝑢𝑛+1

𝑗,ℎ

)︁
.

Applying Young’s inequality to the terms on the RHS yields, for any 𝛼, 𝛽1, 𝛽2 > 0,

1
4

(︁
‖𝑢𝑛+1

𝑗,ℎ ‖2 + ‖2𝑢𝑛+1
𝑗,ℎ − 𝑢𝑛

𝑗,ℎ‖2
)︁

− 1
4

(︁
‖𝑢𝑛

𝑗,ℎ‖2 + ‖2𝑢𝑛
𝑗,ℎ − 𝑢𝑛−1

𝑗,ℎ ‖2
)︁

+ 1
4‖𝑢𝑛+1

𝑗,ℎ − 2𝑢𝑛
𝑗,ℎ + 𝑢𝑛−1

𝑗,ℎ ‖2

+ 𝜈Δ𝑡‖∇𝑢𝑛+1
𝑗,ℎ ‖2 + Δ𝑡𝑏*

(︁
2𝑢𝑛

𝑗,ℎ − 𝑢𝑛−1
𝑗,ℎ − 𝑢𝑛

ℎ, 2𝑢𝑛
𝑗,ℎ − 𝑢𝑛−1

𝑗,ℎ , 𝑢𝑛+1
𝑗,ℎ

)︁
≤ 𝛼𝜈Δ𝑡

4 ‖∇𝑢𝑛+1
𝑗,ℎ ‖2 + Δ𝑡

𝛼𝜈
‖𝑓𝑛+1

𝑗 ‖2
−1 + 𝛽1𝜈Δ𝑡‖∇𝑢𝑛+1

𝑗,ℎ ‖2 +
(𝜈𝑗 − 𝜈)2Δ𝑡

𝛽1𝜈
‖∇𝑢𝑛

𝑗,ℎ‖2

+ 𝛽2𝜈Δ𝑡

4 ‖∇𝑢𝑛+1
𝑗,ℎ ‖2 +

(𝜈𝑗 − 𝜈)2Δ𝑡

𝛽2𝜈
‖∇𝑢𝑛−1

𝑗,ℎ ‖2. (19)
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Because the last four terms on the RHS of (19) need to be absorbed into 𝜈Δ𝑡‖∇𝑢𝑛+1
𝑗,ℎ ‖2 on the

LHS, we minimize 𝛽1𝜈Δ𝑡‖∇𝑢𝑛+1
𝑗,ℎ ‖2 + (𝜈𝑗−𝜈)2Δ𝑡

𝛽1𝜈 ‖∇𝑢𝑛
𝑗,ℎ‖2 by taking 𝛽1 = |𝜈𝑗−𝜈|

𝜈 and 𝛽2𝜈Δ𝑡
4 ‖∇𝑢𝑛+1

𝑗,ℎ ‖2 +
(𝜈𝑗−𝜈)2Δ𝑡

𝛽2𝜈 ‖∇𝑢𝑛−1
𝑗,ℎ ‖2 by taking 𝛽2 = 2|𝜈𝑗−𝜈|

𝜈 . Then (19) becomes

1
4

(︁
‖𝑢𝑛+1

𝑗,ℎ ‖2 + ‖2𝑢𝑛+1
𝑗,ℎ − 𝑢𝑛

𝑗,ℎ‖2
)︁

− 1
4

(︁
‖𝑢𝑛

𝑗,ℎ‖2 + ‖2𝑢𝑛
𝑗,ℎ − 𝑢𝑛−1

𝑗,ℎ ‖2
)︁

+ 1
4‖𝑢𝑛+1

𝑗,ℎ − 2𝑢𝑛
𝑗,ℎ + 𝑢𝑛−1

𝑗,ℎ ‖2

+ 𝜈Δ𝑡‖∇𝑢𝑛+1
𝑗,ℎ ‖2 + Δ𝑡𝑏*

(︁
2𝑢𝑛

𝑗,ℎ − 𝑢𝑛−1
𝑗,ℎ − 𝑢𝑛

ℎ, 2𝑢𝑛
𝑗,ℎ − 𝑢𝑛−1

𝑗,ℎ , 𝑢𝑛+1
𝑗,ℎ

)︁
≤ 𝛼𝜈Δ𝑡

4 ‖∇𝑢𝑛+1
𝑗,ℎ ‖2 + Δ𝑡

𝛼𝜈
‖𝑓𝑛+1

𝑗 ‖2
−1 +

3|𝜈𝑗 − 𝜈|Δ𝑡

2 ‖∇𝑢𝑛+1
𝑗,ℎ ‖2 + |𝜈𝑗 − 𝜈|Δ𝑡‖∇𝑢𝑛

𝑗,ℎ‖2

+
|𝜈𝑗 − 𝜈|Δ𝑡

2 ‖∇𝑢𝑛−1
𝑗,ℎ ‖2. (20)

Next, we bound the trilinear term using the inequality (9) and the inverse inequality (7):

𝑏*
(︁

2𝑢𝑛
𝑗,ℎ − 𝑢𝑛−1

𝑗,ℎ − 𝑢𝑛
ℎ, 2𝑢𝑛

𝑗,ℎ − 𝑢𝑛−1
𝑗,ℎ , 𝑢𝑛+1

𝑗,ℎ

)︁
= 𝑏*

(︁
2𝑢𝑛

𝑗,ℎ − 𝑢𝑛−1
𝑗,ℎ − 𝑢𝑛

ℎ, −𝑢𝑛+1
𝑗,ℎ + 2𝑢𝑛

𝑗,ℎ − 𝑢𝑛−1
𝑗,ℎ , 𝑢𝑛+1

𝑗,ℎ

)︁
≤ 𝐶‖∇(2𝑢𝑛

𝑗,ℎ − 𝑢𝑛−1
𝑗,ℎ − 𝑢𝑛

ℎ)‖‖∇𝑢𝑛+1
𝑗,ℎ ‖‖∇(𝑢𝑛+1

𝑗,ℎ − 2𝑢𝑛
𝑗,ℎ + 𝑢𝑛−1

𝑗,ℎ )‖
1
2 ‖𝑢𝑛+1

𝑗,ℎ − 2𝑢𝑛
𝑗,ℎ + 𝑢𝑛−1

𝑗,ℎ ‖
1
2

≤ 𝐶ℎ− 1
2 ‖∇(2𝑢𝑛

𝑗,ℎ − 𝑢𝑛−1
𝑗,ℎ − 𝑢𝑛

ℎ)‖‖∇𝑢𝑛+1
𝑗,ℎ ‖‖𝑢𝑛+1

𝑗,ℎ − 2𝑢𝑛
𝑗,ℎ + 𝑢𝑛−1

𝑗,ℎ ‖ .

Using Young’s inequality again gives

Δ𝑡
⃒⃒⃒
𝑏*
(︁

2𝑢𝑛
𝑗,ℎ − 𝑢𝑛−1

𝑗,ℎ − 𝑢𝑛
ℎ, 2𝑢𝑛

𝑗,ℎ − 𝑢𝑛−1
𝑗,ℎ , 𝑢𝑛+1

𝑗,ℎ

)︁ ⃒⃒⃒
≤ 𝐶

Δ𝑡2

ℎ
‖∇(2𝑢𝑛

𝑗,ℎ − 𝑢𝑛−1
𝑗,ℎ − 𝑢𝑛

ℎ)‖2‖∇𝑢𝑛+1
𝑗,ℎ ‖2 + 1

8‖𝑢𝑛+1
𝑗,ℎ − 2𝑢𝑛

𝑗,ℎ + 𝑢𝑛−1
𝑗,ℎ ‖2 . (21)

Substituting (21) into (20) and combining like terms, we have
1
4

(︁
‖𝑢𝑛+1

𝑗,ℎ ‖2 + ‖2𝑢𝑛+1
𝑗,ℎ − 𝑢𝑛

𝑗,ℎ‖2
)︁

− 1
4

(︁
‖𝑢𝑛

𝑗,ℎ‖2 + ‖2𝑢𝑛
𝑗,ℎ − 𝑢𝑛−1

𝑗,ℎ ‖2
)︁

+ 1
8‖𝑢𝑛+1

𝑗,ℎ − 2𝑢𝑛
𝑗,ℎ + 𝑢𝑛−1

𝑗,ℎ ‖2 + 𝜈Δ𝑡

(︂
1 − 𝛼

4 −
3|𝜈𝑗 − 𝜈|

2𝜈

)︂
‖∇𝑢𝑛+1

𝑗,ℎ ‖2

≤ Δ𝑡

𝛼𝜈
‖𝑓𝑛+1

𝑗 ‖2
−1 + 𝐶

Δ𝑡2

ℎ
‖∇(2𝑢𝑛

𝑗,ℎ − 𝑢𝑛−1
𝑗,ℎ − 𝑢𝑛

ℎ)‖2‖∇𝑢𝑛+1
𝑗,ℎ ‖2

+ |𝜈𝑗 − 𝜈|Δ𝑡‖∇𝑢𝑛
𝑗,ℎ‖2 +

|𝜈𝑗 − 𝜈|Δ𝑡

2 ‖∇𝑢𝑛−1
𝑗,ℎ ‖2. (22)

The second term on the RHS of (22), as well as the last two terms, need to be absorbed into the viscous
term on the LHS. Thus we select an arbitrary number 𝜎 ∈ (0, 1), decompose the positive viscous term into
four parts, and move all the terms that need to be bounded on RHS to the LHS of the inequality, which
gives

1
4

(︁
‖𝑢𝑛+1

𝑗,ℎ ‖2 + ‖2𝑢𝑛+1
𝑗,ℎ − 𝑢𝑛

𝑗,ℎ‖2
)︁

− 1
4

(︁
‖𝑢𝑛

𝑗,ℎ‖2 + ‖2𝑢𝑛
𝑗,ℎ − 𝑢𝑛−1

𝑗,ℎ ‖2
)︁

+ 1
8‖𝑢𝑛+1

𝑗,ℎ − 2𝑢𝑛
𝑗,ℎ + 𝑢𝑛−1

𝑗,ℎ ‖2 + 𝜈Δ𝑡𝜎

(︂
1 − 𝛼

4 −
3|𝜈𝑗 − 𝜈|

2𝜈

)︂(︁
‖∇𝑢𝑛+1

𝑗,ℎ ‖2 − ‖∇𝑢𝑛
𝑗,ℎ‖2

)︁
+ 𝜈Δ𝑡

(︂
(1 − 𝜎)

(︂
1 − 𝛼

4 −
3|𝜈𝑗 − 𝜈|

2𝜈

)︂
− 𝐶Δ𝑡

𝜈ℎ
‖∇(2𝑢𝑛

𝑗,ℎ − 𝑢𝑛−1
𝑗,ℎ − 𝑢𝑛

ℎ)‖2
)︂

‖∇𝑢𝑛+1
𝑗,ℎ ‖2

+ 𝜈Δ𝑡

(︂
2
3𝜎

(︂
1 − 𝛼

4 −
3|𝜈𝑗 − 𝜈|

2𝜈

)︂
−

|𝜈𝑗 − 𝜈|
𝜈

)︂
‖∇𝑢𝑛

𝑗,ℎ‖2

+ 𝜈Δ𝑡
𝜎

3

(︂
1 − 𝛼

4 −
3|𝜈𝑗 − 𝜈|

2𝜈

)︂(︁
‖∇𝑢𝑛

𝑗,ℎ‖2 − ‖∇𝑢𝑛−1
𝑗,ℎ ‖2

)︁
+ 𝜈Δ𝑡

(︂
𝜎

3

(︂
1 − 𝛼

4 −
3|𝜈𝑗 − 𝜈|

2𝜈

)︂
−

|𝜈𝑗 − 𝜈|
2𝜈

)︂
‖∇𝑢𝑛−1

𝑗,ℎ ‖2

≤ Δ𝑡

𝛼𝜈
‖𝑓𝑛+1

𝑗 ‖2
−1 . (23)
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Because 𝛼 > 0 is arbitrary, we take 𝛼 = 4 − 2(𝜎+1)
𝜎

√
𝜇. To make sure that 𝛼 is greater than 0, we need

𝜎 >

√
𝜇

2 − √
𝜇

, where
√

𝜇

2 − √
𝜇

∈ (0, 1).

Now taking

𝜎 =
√

𝜇 + 𝜖

2 − √
𝜇

, where 𝜖 ∈ (0, 2 − 2√
𝜇),

(23) becomes

1
4

(︁
‖𝑢𝑛+1

𝑗,ℎ ‖2 + ‖2𝑢𝑛+1
𝑗,ℎ − 𝑢𝑛

𝑗,ℎ‖2
)︁

− 1
4

(︁
‖𝑢𝑛

𝑗,ℎ‖2 + ‖2𝑢𝑛
𝑗,ℎ − 𝑢𝑛−1

𝑗,ℎ ‖2
)︁

+ 1
8‖𝑢𝑛+1

𝑗,ℎ − 2𝑢𝑛
𝑗,ℎ + 𝑢𝑛−1

𝑗,ℎ ‖2

+ 𝜈Δ𝑡𝜎

(︂
𝜎 + 1

2𝜎

√
𝜇 −

3|𝜈𝑗 − 𝜈|
2𝜈

)︂(︁
‖∇𝑢𝑛+1

𝑗,ℎ ‖2 − ‖∇𝑢𝑛
𝑗,ℎ‖2

)︁
+ 𝜈Δ𝑡

(︂
(1 − 𝜎)

(︂
𝜎 + 1

2𝜎

√
𝜇 −

3|𝜈𝑗 − 𝜈|
2𝜈

)︂
− 𝐶Δ𝑡

𝜈ℎ
‖∇(2𝑢𝑛

𝑗,ℎ − 𝑢𝑛−1
𝑗,ℎ − 𝑢𝑛

ℎ)‖2
)︂

‖∇𝑢𝑛+1
𝑗,ℎ ‖2

+ 𝜈Δ𝑡

(︂
(𝜎 + 1)

(︂√
𝜇

3 −
|𝜈𝑗 − 𝜈|

𝜈

)︂)︂
‖∇𝑢𝑛

𝑗,ℎ‖2

+ 𝜈Δ𝑡
𝜎

3

(︂
𝜎 + 1

2𝜎

√
𝜇 −

3|𝜈𝑗 − 𝜈|
2𝜈

)︂(︁
‖∇𝑢𝑛

𝑗,ℎ‖2 − ‖∇𝑢𝑛−1
𝑗,ℎ ‖2

)︁
+ 𝜈Δ𝑡

𝜎 + 1
2

(︂√
𝜇

3 −
|𝜈𝑗 − 𝜈|

𝜈

)︂
‖∇𝑢𝑛−1

𝑗,ℎ ‖2 ≤ Δ𝑡

𝛼𝜈
‖𝑓𝑛+1

𝑗 ‖2
−1 .

(24)

Stability follows if the following conditions hold:

𝜎 + 1
2𝜎

√
𝜇 −

3|𝜈𝑗 − 𝜈|
2𝜈

≥ 0, (25)

(1 − 𝜎)
(︂

𝜎 + 1
2𝜎

√
𝜇 −

3|𝜈𝑗 − 𝜈|
2𝜈

)︂
− 𝐶Δ𝑡

𝜈ℎ
‖∇(2𝑢𝑛

𝑗,ℎ − 𝑢𝑛−1
𝑗,ℎ − 𝑢𝑛

ℎ)‖2 ≥ 0, (26)

and
√

𝜇

3 −
|𝜈𝑗 − 𝜈|

𝜈
≥ 0. (27)

Under the assumption of (12), we have
√

𝜇

3 −
|𝜈𝑗 − 𝜈|

𝜈
≥ 0 and 𝜎 + 1

2𝜎

√
𝜇 −

3|𝜈𝑗 − 𝜈|
2𝜈

≥
√

𝜇(2 − √
𝜇)

2(√𝜇 + 𝜖) ≥ 0.

Together with the first assumption in (11), we have

(1 − 𝜎)
(︂

𝜎 + 1
2𝜎

√
𝜇 −

3|𝜈𝑗 − 𝜈|
2𝜈

)︂
− 𝐶Δ𝑡

𝜈ℎ
‖∇(2𝑢𝑛

𝑗,ℎ − 𝑢𝑛−1
𝑗,ℎ − 𝑢𝑛

ℎ)‖2

≥
(2 − 2√

𝜇 − 𝜖)√𝜇

2(√𝜇 + 𝜖) − 𝐶Δ𝑡

𝜈ℎ
‖∇(2𝑢𝑛

𝑗,ℎ − 𝑢𝑛−1
𝑗,ℎ − 𝑢𝑛

ℎ)‖2

≥
(2 − 2√

𝜇 − 𝜖)√𝜇

2(√𝜇 + 𝜖) −
(2 − 2√

𝜇 − 𝜖)√𝜇

2(√𝜇 + 𝜖) = 0.

Therefore, we can draw the conclusion that the ensemble algorithm (10) is stable under conditions (11)-(12).
Indeed, assuming both conditions (11)-(12) hold, (24) reduces to

1
4

(︁
‖𝑢𝑛+1

𝑗,ℎ ‖2 + ‖2𝑢𝑛+1
𝑗,ℎ − 𝑢𝑛

𝑗,ℎ‖2
)︁

− 1
4

(︁
‖𝑢𝑛

𝑗,ℎ‖2 + ‖2𝑢𝑛
𝑗,ℎ − 𝑢𝑛−1

𝑗,ℎ ‖2
)︁

+ 1
8‖𝑢𝑛+1

𝑗,ℎ − 2𝑢𝑛
𝑗,ℎ + 𝑢𝑛−1

𝑗,ℎ ‖2

+ 𝜈Δ𝑡

√
𝜇 + 𝜖

2 − √
𝜇

(︂√
𝜇

2
2 + 𝜖

√
𝜇 + 𝜖

−
3|𝜈𝑗 − 𝜈|

2𝜈

)︂(︁
‖∇𝑢𝑛+1

𝑗,ℎ ‖2 − ‖∇𝑢𝑛
𝑗,ℎ‖2

)︁
+ 𝜈Δ𝑡

3

√
𝜇 + 𝜖

2 − √
𝜇

(︂√
𝜇

2
2 + 𝜖

√
𝜇 + 𝜖

−
3|𝜈𝑗 − 𝜈|

2𝜈

)︂(︁
‖∇𝑢𝑛

𝑗,ℎ‖2 − ‖∇𝑢𝑛−1
𝑗,ℎ ‖2

)︁
≤

√
𝜇 + 𝜖

2𝜖(2 − √
𝜇)

Δ𝑡

𝜈
‖𝑓𝑛+1

𝑗 ‖2
−1 . (28)
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Summing up (28) from 𝑛 = 1 to 𝑁 − 1 results in

1
4

(︁
‖𝑢𝑁

𝑗,ℎ‖2 + ‖2𝑢𝑁
𝑗,ℎ − 𝑢𝑁−1

𝑗,ℎ ‖2
)︁

+ 1
8

𝑁−1∑︁
𝑛=1

‖𝑢𝑛+1
𝑗,ℎ − 2𝑢𝑛

𝑗,ℎ + 𝑢𝑛−1
𝑗,ℎ ‖2

+ 𝜈Δ𝑡

√
𝜇 + 𝜖

2 − √
𝜇

(︂√
𝜇

2
2 + 𝜖

√
𝜇 + 𝜖

−
3|𝜈𝑗 − 𝜈|

2𝜈

)︂
‖∇𝑢𝑁

𝑗,ℎ‖2 + 𝜈Δ𝑡

3

√
𝜇 + 𝜖

2 − √
𝜇

(︂√
𝜇

2
2 + 𝜖

√
𝜇 + 𝜖

−
3|𝜈𝑗 − 𝜈|

2𝜈

)︂
‖∇𝑢𝑁−1

𝑗,ℎ ‖2

≤
𝑁−1∑︁
𝑛=1

√
𝜇 + 𝜖

2𝜖(2 − √
𝜇)

Δ𝑡

𝜈
‖𝑓𝑛+1

𝑗 ‖2
−1 + 1

4
(︀
‖𝑢1

𝑗,ℎ‖2 + ‖2𝑢1
𝑗,ℎ − 𝑢0

𝑗,ℎ‖2)︀
+ 𝜈Δ𝑡

√
𝜇 + 𝜖

2 − √
𝜇

(︂√
𝜇

2
2 + 𝜖

√
𝜇 + 𝜖

−
3|𝜈𝑗 − 𝜈|

2𝜈

)︂
‖∇𝑢1

𝑗,ℎ‖2 + 𝜈Δ𝑡

3

√
𝜇 + 𝜖

2 − √
𝜇

(︂√
𝜇

2
2 + 𝜖

√
𝜇 + 𝜖

−
3|𝜈𝑗 − 𝜈|

2𝜈

)︂
‖∇𝑢0

𝑗,ℎ‖2.

(29)

B Proof of Lemma 4.1
Proof. To prove (14), we first rewrite

3(𝑢𝑛+1 − 𝑢𝑛) − (𝑢𝑛 − 𝑢𝑛−1) − 2Δ𝑡𝑢𝑛+1
𝑡 = 3

𝑡𝑛+1∫︁
𝑡𝑛

𝑢𝑡𝑑𝑡 −
𝑡𝑛∫︁

𝑡𝑛−1

𝑢𝑡𝑑𝑡 − 2Δ𝑡𝑢𝑛+1
𝑡

= 3

⎛⎜⎝[(𝑡 − 𝑡𝑛)𝑢𝑡]𝑡
𝑛+1

𝑡𝑛 −
𝑡𝑛+1∫︁
𝑡𝑛

(𝑡 − 𝑡𝑛)𝑢𝑡𝑡𝑑𝑡

⎞⎟⎠−

⎛⎝[︀(𝑡 − 𝑡𝑛−1)𝑢𝑡

]︀𝑡𝑛

𝑡𝑛−1 −
𝑡𝑛∫︁

𝑡𝑛−1

(𝑡 − 𝑡𝑛−1)𝑢𝑡𝑡𝑑𝑡

⎞⎠− 2Δ𝑡𝑢𝑛+1
𝑡

= 3Δ𝑡𝑢𝑛+1
𝑡 − Δ𝑡𝑢𝑛

𝑡 − 2Δ𝑡𝑢𝑛+1
𝑡 − 3

𝑡𝑛+1∫︁
𝑡𝑛

𝑑

𝑑𝑡

(︂
1
2(𝑡 − 𝑡𝑛)2

)︂
𝑢𝑡𝑡𝑑𝑡 +

𝑡𝑛∫︁
𝑡𝑛−1

𝑑

𝑑𝑡

(︂
1
2(𝑡 − 𝑡𝑛−1)2

)︂
𝑢𝑡𝑡𝑑𝑡

= Δ𝑡𝑢𝑛+1
𝑡 − Δ𝑡𝑢𝑛

𝑡 − 3
𝑡𝑛+1∫︁
𝑡𝑛

𝑑

𝑑𝑡

(︂
1
2(𝑡 − 𝑡𝑛)2

)︂
𝑢𝑡𝑡𝑑𝑡 +

𝑡𝑛∫︁
𝑡𝑛−1

𝑑

𝑑𝑡

(︂
1
2(𝑡 − 𝑡𝑛−1)2

)︂
𝑢𝑡𝑡𝑑𝑡

= Δ𝑡

𝑡𝑛+1∫︁
𝑡𝑛

𝑢𝑡𝑡𝑑𝑡 − 3

⎛⎜⎝[︂1
2(𝑡 − 𝑡𝑛)2𝑢𝑡𝑡

]︂𝑡𝑛+1

𝑡𝑛

−
𝑡𝑛+1∫︁
𝑡𝑛

1
2(𝑡 − 𝑡𝑛)2𝑢𝑡𝑡𝑡𝑑𝑡

⎞⎟⎠
+

⎛⎝[︂1
2(𝑡 − 𝑡𝑛−1)2𝑢𝑡𝑡

]︂𝑡𝑛

𝑡𝑛−1
−

𝑡𝑛∫︁
𝑡𝑛−1

1
2(𝑡 − 𝑡𝑛−1)2𝑢𝑡𝑡𝑡𝑑𝑡

⎞⎠
= Δ𝑡

⎛⎜⎝[(𝑡 − 𝑡𝑛)𝑢𝑡𝑡]𝑡
𝑛+1

𝑡𝑛 −
𝑡𝑛+1∫︁
𝑡𝑛

(𝑡 − 𝑡𝑛)𝑢𝑡𝑡𝑡𝑑𝑡

⎞⎟⎠− 3

⎛⎜⎝1
2Δ𝑡2𝑢𝑛+1

𝑡𝑡 −
𝑡𝑛+1∫︁
𝑡𝑛

1
2(𝑡 − 𝑡𝑛)2𝑢𝑡𝑡𝑡𝑑𝑡

⎞⎟⎠
+

⎛⎝1
2Δ𝑡2𝑢𝑛

𝑡𝑡 −
𝑡𝑛∫︁

𝑡𝑛−1

1
2(𝑡 − 𝑡𝑛−1)2𝑢𝑡𝑡𝑡𝑑𝑡

⎞⎠
=

⎛⎜⎝Δ𝑡2𝑢𝑛+1
𝑡𝑡 − Δ𝑡

𝑡𝑛+1∫︁
𝑡𝑛

(𝑡 − 𝑡𝑛)𝑢𝑡𝑡𝑡𝑑𝑡

⎞⎟⎠− 3

⎛⎜⎝1
2Δ𝑡2𝑢𝑛+1

𝑡𝑡 −
𝑡𝑛+1∫︁
𝑡𝑛

1
2(𝑡 − 𝑡𝑛)2𝑢𝑡𝑡𝑡𝑑𝑡

⎞⎟⎠
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+

⎛⎝1
2Δ𝑡2𝑢𝑛

𝑡𝑡 −
𝑡𝑛∫︁

𝑡𝑛−1

1
2(𝑡 − 𝑡𝑛−1)2𝑢𝑡𝑡𝑡𝑑𝑡

⎞⎠
= −1

2Δ𝑡2 (︀𝑢𝑛+1
𝑡𝑡 − 𝑢𝑛

𝑡𝑡

)︀
− Δ𝑡

𝑡𝑛+1∫︁
𝑡𝑛

(𝑡 − 𝑡𝑛)𝑢𝑡𝑡𝑡𝑑𝑡 + 3
𝑡𝑛+1∫︁
𝑡𝑛

1
2(𝑡 − 𝑡𝑛)2𝑢𝑡𝑡𝑡𝑑𝑡 −

𝑡𝑛∫︁
𝑡𝑛−1

1
2(𝑡 − 𝑡𝑛−1)2𝑢𝑡𝑡𝑡𝑑𝑡

= −1
2Δ𝑡2

𝑡𝑛+1∫︁
𝑡𝑛

𝑢𝑡𝑡𝑡 𝑑𝑡 − Δ𝑡

𝑡𝑛+1∫︁
𝑡𝑛

(𝑡 − 𝑡𝑛)𝑢𝑡𝑡𝑡𝑑𝑡 + 3
𝑡𝑛+1∫︁
𝑡𝑛

1
2(𝑡 − 𝑡𝑛)2𝑢𝑡𝑡𝑡𝑑𝑡 −

𝑡𝑛∫︁
𝑡𝑛−1

1
2(𝑡 − 𝑡𝑛−1)2𝑢𝑡𝑡𝑡𝑑𝑡

Then the 𝐿2 norm of the term of interest can be estimated as follows⃦⃦⃦3𝑢𝑛+1 − 4𝑢𝑛 + 𝑢𝑛−1

2Δ𝑡
− 𝑢𝑛+1

𝑡

⃦⃦⃦2

= 1
4Δ𝑡2

∫︁
Ω

⃒⃒⃒⃒
⃒− 1

2Δ𝑡2
𝑡𝑛+1∫︁
𝑡𝑛

𝑢𝑡𝑡𝑡 𝑑𝑡 − Δ𝑡

𝑡𝑛+1∫︁
𝑡𝑛

(𝑡 − 𝑡𝑛)𝑢𝑡𝑡𝑡 𝑑𝑡

+ 3
𝑡𝑛+1∫︁
𝑡𝑛

1
2(𝑡 − 𝑡𝑛)2𝑢𝑡𝑡𝑡 𝑑𝑡 −

𝑡𝑛∫︁
𝑡𝑛−1

1
2(𝑡 − 𝑡𝑛−1)2𝑢𝑡𝑡𝑡 𝑑𝑡

⃒⃒⃒⃒
⃒
2

𝑑𝑥

≤ 1
2Δ𝑡2

∫︁
Ω

(︃
1
4Δ𝑡4

⃒⃒⃒⃒
⃒

𝑡𝑛+1∫︁
𝑡𝑛

𝑢𝑡𝑡𝑡 𝑑𝑡

⃒⃒⃒⃒
⃒
2

+ Δ𝑡2

⃒⃒⃒⃒
⃒

𝑡𝑛+1∫︁
𝑡𝑛

(𝑡 − 𝑡𝑛)𝑢𝑡𝑡𝑡 𝑑𝑡

⃒⃒⃒⃒
⃒
2

+ 9
4

⃒⃒⃒⃒
⃒

𝑡𝑛+1∫︁
𝑡𝑛

(𝑡 − 𝑡𝑛)2𝑢𝑡𝑡𝑡 𝑑𝑡

⃒⃒⃒⃒
⃒
2

+ 1
4

⃒⃒⃒⃒
⃒

𝑡𝑛∫︁
𝑡𝑛−1

(𝑡 − 𝑡𝑛−1)2𝑢𝑡𝑡𝑡 𝑑𝑡

⃒⃒⃒⃒
⃒
2)︃

𝑑𝑥

≤ 1
2Δ𝑡2

∫︁
Ω

(︃
1
4Δ𝑡4

⃒⃒⃒⃒
⃒

𝑡𝑛+1∫︁
𝑡𝑛

𝑢𝑡𝑡𝑡 𝑑𝑡

⃒⃒⃒⃒
⃒
2

+ Δ𝑡4

[︃ 𝑡𝑛+1∫︁
𝑡𝑛

|𝑢𝑡𝑡𝑡| 𝑑𝑡

]︃2

+ 9
4Δ𝑡4

[︃ 𝑡𝑛+1∫︁
𝑡𝑛

|𝑢𝑡𝑡𝑡| 𝑑𝑡

]︃2

+ 1
4Δ𝑡4

[︃ 𝑡𝑛∫︁
𝑡𝑛−1

|𝑢𝑡𝑡𝑡| 𝑑𝑡

]︃2)︃
𝑑𝑥

≤ 1
2Δ𝑡2

∫︁
Ω

(︃
1
4Δ𝑡5

𝑡𝑛+1∫︁
𝑡𝑛

|𝑢𝑡𝑡𝑡|2 𝑑𝑡 + Δ𝑡5
𝑡𝑛+1∫︁
𝑡𝑛

|𝑢𝑡𝑡𝑡|2 𝑑𝑡

+ 9
4Δ𝑡5

𝑡𝑛+1∫︁
𝑡𝑛

|𝑢𝑡𝑡𝑡|2 𝑑𝑡 + 1
4Δ𝑡5

𝑡𝑛∫︁
𝑡𝑛−1

|𝑢𝑡𝑡𝑡|2 𝑑𝑡

)︃
𝑑𝑥

≤ 7
4Δ𝑡3

∫︁
Ω

𝑡𝑛+1∫︁
𝑡𝑛−1

|𝑢𝑡𝑡𝑡|2 𝑑𝑡 𝑑𝑥 ≤ 7
4Δ𝑡3

𝑡𝑛+1∫︁
𝑡𝑛−1

‖𝑢𝑡𝑡𝑡‖2 𝑑𝑡.

This completes the proof.

C Proof of Theorem 4.2
Proof. The true solution(𝑢𝑗 , 𝑝𝑗) of the NSE satisfies
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(︃
3𝑢𝑛+1

𝑗 − 4𝑢𝑛
𝑗 + 𝑢𝑛−1

𝑗

2Δ𝑡
, 𝑣ℎ

)︃
+ 𝑏*

(︁
𝑢𝑛+1

𝑗 , 𝑢𝑛+1
𝑗 , 𝑣ℎ

)︁
+ 𝜈𝑗

(︁
∇𝑢𝑛+1

𝑗 , ∇𝑣ℎ

)︁
(30)

−
(︁

𝑝𝑛+1
𝑗 , ∇ · 𝑣ℎ

)︁
=
(︁

𝑓𝑛+1
𝑗 , 𝑣ℎ

)︁
+ Intp

(︁
𝑢𝑛+1

𝑗 ; 𝑣ℎ

)︁
, for all 𝑣ℎ ∈ 𝑉ℎ,

where Intp
(︁

𝑢𝑛+1
𝑗 ; 𝑣ℎ

)︁
is defined as

Intp
(︁

𝑢𝑛+1
𝑗 ; 𝑣ℎ

)︁
=

(︃
3𝑢𝑛+1

𝑗 − 4𝑢𝑛
𝑗 + 𝑢𝑛−1

𝑗

2Δ𝑡
− 𝑢𝑗,𝑡(𝑡𝑛+1), 𝑣ℎ

)︃
.

Let
𝑒𝑛

𝑗 = 𝑢𝑛
𝑗 − 𝑢𝑛

𝑗,ℎ = (𝑢𝑛
𝑗 − 𝐼ℎ𝑢𝑛

𝑗 ) + (𝐼ℎ𝑢𝑛
𝑗 − 𝑢𝑛

𝑗,ℎ) = 𝜂𝑛
𝑗 + 𝜉𝑛

𝑗,ℎ , (31)

where 𝐼ℎ𝑢𝑛
𝑗 ∈ 𝑉ℎ is the FE interpolant of 𝑢𝑛

𝑗 in 𝑉ℎ. Subtracting (15) from (30) gives

(︃
3𝜉𝑛+1

𝑗,ℎ − 4𝜉𝑛
𝑗,ℎ + 𝜉𝑛−1

𝑗,ℎ

2Δ𝑡
, 𝑣ℎ

)︃
+ 𝑏*

(︁
𝑢𝑛+1

𝑗 , 𝑢𝑛+1
𝑗 , 𝑣ℎ

)︁
+ 𝜈

(︁
∇𝜉𝑛+1

𝑗,ℎ , ∇𝑣ℎ

)︁
+ (𝜈𝑗 − 𝜈)

(︁
∇(2𝜉𝑛

𝑗,ℎ − 𝜉𝑛−1
𝑗,ℎ ), ∇𝑣ℎ

)︁
− 𝑏*

(︁
2𝑢𝑛

𝑗,ℎ − 𝑢𝑛−1
𝑗,ℎ − 𝑢′𝑛

𝑗,ℎ, 𝑢𝑛+1
𝑗,ℎ , 𝑣ℎ

)︁
− 𝑏*

(︁
𝑢′𝑛

𝑗,ℎ, 2𝑢𝑛
𝑗,ℎ − 𝑢𝑛−1

𝑗,ℎ , 𝑣ℎ

)︁
−
(︁

𝑝𝑛+1
𝑗 , ∇ · 𝑣ℎ

)︁
= −

(︃
3𝜂𝑛+1

𝑗 − 4𝜂𝑛
𝑗 + 𝜂𝑛−1

𝑗

2Δ𝑡
, 𝑣ℎ

)︃
− 𝜈

(︁
∇𝜂𝑛+1

𝑗 , ∇𝑣ℎ

)︁
+ Intp

(︁
𝑢𝑛+1

𝑗 ; 𝑣ℎ

)︁
+ (𝜈 − 𝜈𝑗)

(︁
∇(2𝜂𝑛

𝑗 − 𝜂𝑛−1
𝑗 ), ∇𝑣ℎ

)︁
+ (𝜈 − 𝜈𝑗)

(︁
∇(𝑢𝑛+1

𝑗 − 2𝑢𝑛
𝑗 + 𝑢𝑛−1

𝑗 ), ∇𝑣ℎ

)︁
.

Setting 𝑣ℎ = 𝜉𝑛+1
𝑗,ℎ ∈ 𝑉ℎ and rearranging the nonlinear terms leads to

1
4Δ𝑡

(︁
‖𝜉𝑛+1

𝑗,ℎ ‖2 + ‖2𝜉𝑛+1
𝑗,ℎ − 𝜉𝑛

𝑗,ℎ‖2
)︁

− 1
4Δ𝑡

(︁
‖𝜉𝑛

𝑗,ℎ‖2 + ‖2𝜉𝑛
𝑗,ℎ − 𝜉𝑛−1

𝑗,ℎ ‖2
)︁

+ 1
4Δ𝑡

‖𝜉𝑛+1
𝑗,ℎ − 2𝜉𝑛

𝑗,ℎ + 𝜉𝑛−1
𝑗,ℎ ‖2 + 𝜈‖∇𝜉𝑛+1

𝑗,ℎ ‖2

= −𝑏*
(︁

𝑢𝑛+1
𝑗 , 𝑢𝑛+1

𝑗 , 𝜉𝑛+1
𝑗,ℎ

)︁
+ 𝑏*

(︁
2𝑢𝑛

𝑗,ℎ − 𝑢𝑛−1
𝑗,ℎ , 𝑢𝑛+1

𝑗,ℎ , 𝜉𝑛+1
𝑗,ℎ

)︁
+ 𝑏*

(︁
𝑢′𝑛

𝑗,ℎ, 2𝑢𝑛
𝑗,ℎ − 𝑢𝑛−1

𝑗,ℎ − 𝑢𝑛+1
𝑗,ℎ , 𝜉𝑛+1

𝑗,ℎ

)︁
+
(︁

𝑝𝑛+1
𝑗 , ∇ · 𝜉𝑛+1

𝑗,ℎ

)︁
−

(︃
3𝜂𝑛+1

𝑗 − 4𝜂𝑛
𝑗 + 𝜂𝑛−1

𝑗

2Δ𝑡
, 𝜉𝑛+1

𝑗,ℎ

)︃
− 𝜈

(︁
∇𝜂𝑛+1

𝑗 , ∇𝜉𝑛+1
𝑗,ℎ

)︁
+ Intp

(︁
𝑢𝑛+1

𝑗 ; 𝜉𝑛+1
𝑗,ℎ

)︁
+ (𝜈 − 𝜈𝑗)

(︁
∇(2𝜉𝑛

𝑗,ℎ − 𝜉𝑛−1
𝑗,ℎ ), ∇𝜉𝑛+1

𝑗,ℎ

)︁
+ (𝜈 − 𝜈𝑗)

(︁
∇(2𝜂𝑛

𝑗 − 𝜂𝑛−1
𝑗 ), ∇𝜉𝑛+1

𝑗,ℎ

)︁
+ (𝜈 − 𝜈𝑗)

(︁
∇(𝑢𝑛+1

𝑗 − 2𝑢𝑛
𝑗 + 𝑢𝑛−1

𝑗 ), ∇𝜉𝑛+1
𝑗,ℎ

)︁
. (32)

We first bound the viscous terms on the RHS of (32):

−(𝜈𝑗 − 𝜈)(∇(𝑢𝑛+1
𝑗 − 2𝑢𝑛

𝑗 + 𝑢𝑛−1
𝑗 ), ∇𝜉𝑛+1

𝑗,ℎ )

≤ 1
4𝐶0

|𝜈𝑗 − 𝜈|2

𝜈
‖∇(𝑢𝑛+1

𝑗 − 2𝑢𝑛
𝑗 + 𝑢𝑛−1

𝑗 )‖2 + 𝐶0𝜈‖∇𝜉𝑛+1
𝑗,ℎ ‖2

≤ Δ𝑡3

4𝐶0

|𝜈𝑗 − 𝜈|2

𝜈

𝑡𝑛+1∫︁
𝑡𝑛−1

‖∇𝑢𝑗,𝑡𝑡‖2 𝑑𝑡 + 𝐶0𝜈‖∇𝜉𝑛+1
𝑗,ℎ ‖2 , (33)
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and

−𝜈(∇𝜂𝑛+1
𝑗 , ∇𝜉𝑛+1

𝑗,ℎ ) ≤ 𝜈

4𝐶0
‖∇𝜂𝑛+1

𝑗 ‖2 + 𝐶0𝜈‖∇𝜉𝑛+1
𝑗,ℎ ‖2 , (34)

−2(𝜈𝑗 − 𝜈)(∇𝜂𝑛
𝑗 , ∇𝜉𝑛+1

𝑗,ℎ ) ≤ 1
𝐶0

|𝜈𝑗 − 𝜈|2

𝜈
‖∇𝜂𝑛

𝑗 ‖2 + 𝐶0𝜈‖∇𝜉𝑛+1
𝑗,ℎ ‖2 , (35)

(𝜈𝑗 − 𝜈)(∇𝜂𝑛−1
𝑗 , ∇𝜉𝑛+1

𝑗,ℎ ) ≤ 1
4𝐶0

|𝜈𝑗 − 𝜈|2

𝜈
‖∇𝜂𝑛−1

𝑗 ‖2 + 𝐶0𝜈‖∇𝜉𝑛+1
𝑗,ℎ ‖2 , (36)

−2(𝜈𝑗 − 𝜈)(∇𝜉𝑛
𝑗,ℎ, ∇𝜉𝑛+1

𝑗,ℎ ) ≤ 1
𝐶1

|𝜈𝑗 − 𝜈|2

𝜈
‖∇𝜉𝑛

𝑗,ℎ‖2 + 𝐶1𝜈‖∇𝜉𝑛+1
𝑗,ℎ ‖2

≤ |𝜈𝑗 − 𝜈|‖∇𝜉𝑛
𝑗,ℎ‖2 + |𝜈𝑗 − 𝜈|‖∇𝜉𝑛+1

𝑗,ℎ ‖2, (37)

(𝜈𝑗 − 𝜈)(∇𝜉𝑛−1
𝑗,ℎ , ∇𝜉𝑛+1

𝑗,ℎ ) ≤ 1
4𝐶2

|𝜈𝑗 − 𝜈|2

𝜈
‖∇𝜉𝑛−1

𝑗,ℎ ‖2 + 𝐶2𝜈‖∇𝜉𝑛+1
𝑗,ℎ ‖2

≤
|𝜈𝑗 − 𝜈|

2 ‖∇𝜉𝑛−1
𝑗,ℎ ‖2 +

|𝜈𝑗 − 𝜈|
2 ‖∇𝜉𝑛+1

𝑗,ℎ ‖2, (38)

where, because the terms on the RHS of (37) and (38) need to be hidden in the LHS of the error equation,
we took 𝐶1 = |𝜈𝑗−𝜈|

𝜈 and 𝐶2 = |𝜈𝑗−𝜈|
2𝜈 in order to minimize their summations.

Next, we analyze the nonlinear terms on the RHS of (32) one by one. The first two nonlinear terms can
be rewritten as

− 𝑏*
(︁

𝑢𝑛+1
𝑗 , 𝑢𝑛+1

𝑗 , 𝜉𝑛+1
𝑗,ℎ

)︁
+ 𝑏*

(︁
2𝑢𝑛

𝑗,ℎ − 𝑢𝑛−1
𝑗,ℎ , 𝑢𝑛+1

𝑗,ℎ , 𝜉𝑛+1
𝑗,ℎ

)︁
= −𝑏*

(︁
2𝑒𝑛

𝑗 − 𝑒𝑛−1
𝑗 , 𝑢𝑛+1

𝑗 , 𝜉𝑛+1
𝑗,ℎ

)︁
− 𝑏*

(︁
2𝑢𝑛

𝑗,ℎ − 𝑢𝑛−1
𝑗,ℎ , 𝑒𝑛+1, 𝜉𝑛+1

𝑗,ℎ

)︁
− 𝑏*

(︁
𝑢𝑛+1

𝑗 − 2𝑢𝑛
𝑗 + 𝑢𝑛−1

𝑗 , 𝑢𝑛+1
𝑗 , 𝜉𝑛+1

𝑗,ℎ

)︁
= −𝑏*

(︁
2𝜂𝑛

𝑗 − 𝜂𝑛−1
𝑗 , 𝑢𝑛+1

𝑗 , 𝜉𝑛+1
𝑗,ℎ

)︁
− 𝑏*

(︁
2𝜉𝑛

𝑗,ℎ − 𝜉𝑛−1
𝑗,ℎ , 𝑢𝑛+1

𝑗 , 𝜉𝑛+1
𝑗,ℎ

)︁
− 𝑏*

(︁
2𝑢𝑛

𝑗,ℎ − 𝑢𝑛−1
𝑗,ℎ , 𝜂𝑛+1

𝑗 , 𝜉𝑛+1
𝑗,ℎ

)︁
− 𝑏*

(︁
𝑢𝑛+1

𝑗 − (2𝑢𝑛
𝑗 − 𝑢𝑛−1

𝑗 ), 𝑢𝑛+1
𝑗 , 𝜉𝑛+1

𝑗,ℎ

)︁
. (39)

and

−𝑏*
(︁

2𝜂𝑛
𝑗 − 𝜂𝑛−1

𝑗 , 𝑢𝑛+1
𝑗 , 𝜉𝑛+1

𝑗,ℎ

)︁
≤ 𝐶‖∇

(︁
2𝜂𝑛

𝑗 − 𝜂𝑛−1
𝑗

)︁
‖‖∇𝑢𝑛+1

𝑗 ‖‖∇𝜉𝑛+1
𝑗,ℎ ‖

≤ 𝐶0𝜈‖∇𝜉𝑛+1
𝑗,ℎ ‖2 + 𝐶2

4𝐶0𝜈

(︁
‖∇𝜂𝑛

𝑗 ‖2 + ‖∇𝜂𝑛−1
𝑗 ‖2

)︁
‖∇𝑢𝑛+1

𝑗 ‖2.

Since 𝑢𝑗 ∈ 𝐿∞ (︀0, 𝑇 ; 𝐻1(Ω)
)︀
, we have the estimates

−2𝑏*
(︁

𝜉𝑛
𝑗,ℎ, 𝑢𝑛+1

𝑗 , 𝜉𝑛+1
𝑗,ℎ

)︁
≤ 𝐶‖∇𝜉𝑛

𝑗,ℎ‖
1
2 ‖𝜉𝑛

𝑗,ℎ‖
1
2 ‖∇𝑢𝑛+1

𝑗 ‖‖∇𝜉𝑛+1
𝑗,ℎ ‖

≤ 𝐶‖∇𝜉𝑛
𝑗,ℎ‖

1
2 ‖𝜉𝑛

𝑗,ℎ‖
1
2 ‖∇𝜉𝑛+1

𝑗,ℎ ‖

≤ 𝐶

(︂
𝜖‖∇𝜉𝑛+1

𝑗,ℎ ‖2 + 1
𝜖

‖∇𝜉𝑛
𝑗,ℎ‖‖𝜉𝑛

𝑗,ℎ‖
)︂

≤ 𝐶

(︂
𝜖‖∇𝜉𝑛+1

𝑗,ℎ ‖2 + 1
𝜖

(︂
𝛿‖∇𝜉𝑛

𝑗,ℎ‖2 + 1
𝛿

‖𝜉𝑛
𝑗,ℎ‖2

)︂)︂
≤ 𝐶0𝜈‖∇𝜉𝑛+1

𝑗,ℎ ‖2 + 𝐶0𝜈‖∇𝜉𝑛
𝑗,ℎ‖2 + 𝐶𝐶−3

0 𝜈−3‖𝜉𝑛
𝑗,ℎ‖2. (40)
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Similarly,

𝑏*
(︁

𝜉𝑛−1
𝑗,ℎ , 𝑢𝑛+1

𝑗 , 𝜉𝑛+1
𝑗,ℎ

)︁
≤ 𝐶‖∇𝜉𝑛−1

𝑗,ℎ ‖
1
2 ‖𝜉𝑛−1

𝑗,ℎ ‖
1
2 ‖∇𝑢𝑛+1

𝑗 ‖‖∇𝜉𝑛+1
𝑗,ℎ ‖

≤ 𝐶‖∇𝜉𝑛−1
𝑗,ℎ ‖

1
2 ‖𝜉𝑛−1

𝑗,ℎ ‖
1
2 ‖∇𝜉𝑛+1

𝑗,ℎ ‖

≤ 𝐶

(︂
𝜖‖∇𝜉𝑛+1

𝑗,ℎ ‖2 + 1
𝜖

‖∇𝜉𝑛−1
𝑗,ℎ ‖‖𝜉𝑛−1

𝑗,ℎ ‖
)︂

≤ 𝐶

(︂
𝜖‖∇𝜉𝑛+1

𝑗,ℎ ‖2 + 1
𝜖

(︂
𝛿‖∇𝜉𝑛−1

𝑗,ℎ ‖2 + 1
𝛿

‖𝜉𝑛−1
𝑗,ℎ ‖2

)︂)︂
≤ 𝐶0𝜈‖∇𝜉𝑛+1

𝑗,ℎ ‖2 + 𝐶0𝜈‖∇𝜉𝑛−1
𝑗,ℎ ‖2 + 𝐶𝐶−3

0 𝜈−3‖𝜉𝑛−1
𝑗,ℎ ‖2. (41)

Also by inequality (8) and the stability result (13), i.e. ‖𝑢𝑛
𝑗,ℎ‖2 ≤ 𝐶, we have

−2𝑏*
(︁

𝑢𝑛
𝑗,ℎ, 𝜂𝑛+1

𝑗 , 𝜉𝑛+1
𝑗,ℎ

)︁
≤ 𝐶‖∇𝑢𝑛

𝑗,ℎ‖
1
2 ‖𝑢𝑛

𝑗,ℎ‖
1
2 ‖∇𝜂𝑛+1

𝑗 ‖‖∇𝜉𝑛+1
𝑗,ℎ ‖

≤ 𝐶0𝜈‖∇𝜉𝑛+1
𝑗,ℎ ‖2 + 𝐶2

4𝐶0𝜈
‖∇𝑢𝑛

𝑗,ℎ‖‖∇𝜂𝑛+1
𝑗 ‖2 . (42)

𝑏*
(︁

𝑢𝑛−1
𝑗,ℎ , 𝜂𝑛+1

𝑗 , 𝜉𝑛+1
𝑗,ℎ

)︁
≤ 𝐶‖∇𝑢𝑛−1

𝑗,ℎ ‖
1
2 ‖𝑢𝑛−1

𝑗,ℎ ‖
1
2 ‖∇𝜂𝑛+1

𝑗 ‖‖∇𝜉𝑛+1
𝑗,ℎ ‖

≤ 𝐶0𝜈‖∇𝜉𝑛+1
𝑗,ℎ ‖2 + 𝐶2

4𝐶0𝜈
‖∇𝑢𝑛−1

𝑗,ℎ ‖‖∇𝜂𝑛+1
𝑗 ‖2 . (43)

− 𝑏*
(︁

𝑢𝑛+1
𝑗 −

(︁
2𝑢𝑛

𝑗 − 𝑢𝑛−1
𝑗

)︁
, 𝑢𝑛+1

𝑗 , 𝜉𝑛+1
𝑗,ℎ

)︁
≤ 𝐶‖∇

(︁
𝑢𝑛+1

𝑗 − 2𝑢𝑛
𝑗 + 𝑢𝑛−1

𝑗

)︁
‖‖∇𝑢𝑛+1

𝑗 ‖‖∇𝜉𝑛+1
𝑗,ℎ ‖

≤ 𝐶0𝜈‖∇𝜉𝑛+1
𝑗,ℎ ‖2 + 𝐶2

4𝐶0𝜈
‖∇
(︁

𝑢𝑛+1
𝑗 − 2𝑢𝑛

𝑗 + 𝑢𝑛−1
𝑗

)︁
‖2‖∇𝑢𝑛+1

𝑗,ℎ ‖2

≤ 𝐶0𝜈‖∇𝜉𝑛+1
𝑗,ℎ ‖2 + 𝐶2

4𝐶0𝜈
Δ𝑡3‖∇𝑢𝑛+1

𝑗 ‖2
𝑡𝑛+1∫︁

𝑡𝑛−1

‖∇𝑢𝑗,𝑡𝑡‖2𝑑𝑡 . (44)

Now we bound the third nonlinear term in (32):

− 𝑏*
(︁

𝑢′𝑛
𝑗,ℎ, 𝑢𝑛+1

𝑗,ℎ − 2𝑢𝑛
𝑗,ℎ + 𝑢𝑛−1

𝑗,ℎ , 𝜉𝑛+1
𝑗,ℎ

)︁
= 𝑏*

(︁
𝑢′𝑛

𝑗,ℎ, 𝑒𝑛+1
𝑗 − 2𝑒𝑛

𝑗 + 𝑒𝑛−1
𝑗 , 𝜉𝑛+1

𝑗,ℎ

)︁
− 𝑏*

(︁
𝑢′𝑛

𝑗,ℎ, 𝑢𝑛+1
𝑗 − 2𝑢𝑛

𝑗 + 𝑢𝑛−1
𝑗 , 𝜉𝑛+1

𝑗,ℎ

)︁
= 𝑏*

(︁
𝑢′𝑛

𝑗,ℎ, 𝜉𝑛+1
𝑗,ℎ − 2𝜉𝑛

𝑗,ℎ + 𝜉𝑛−1
𝑗,ℎ , 𝜉𝑛+1

𝑗,ℎ

)︁
+ 𝑏*

(︁
𝑢′𝑛

𝑗,ℎ, 𝜂𝑛+1
𝑗 − 2𝜂𝑛

𝑗 + 𝜂𝑛−1
𝑗 , 𝜉𝑛+1

𝑗,ℎ

)︁
− 𝑏*

(︁
𝑢′𝑛

𝑗,ℎ, 𝑢𝑛+1
𝑗 − 2𝑢𝑛

𝑗 + 𝑢𝑛−1
𝑗 , 𝜉𝑛+1

𝑗,ℎ

)︁
. (45)

By skew symmetry

−𝑏*
(︁

𝑢′𝑛
𝑗,ℎ, 𝜉𝑛+1

𝑗,ℎ − 2𝜉𝑛
𝑗,ℎ + 𝜉𝑛−1

𝑗,ℎ , 𝜉𝑛+1
𝑗,ℎ

)︁
= 𝑏*

(︁
𝑢′𝑛

𝑗,ℎ, 𝜉𝑛+1
𝑗,ℎ , 𝜉𝑛+1

𝑗,ℎ − 2𝜉𝑛
𝑗,ℎ + 𝜉𝑛−1

𝑗,ℎ

)︁
.

Using (9) and inverse inequality (7) gives

𝑏*
(︁

𝑢′𝑛
𝑗,ℎ, 2𝜉𝑛

𝑗,ℎ − 𝜉𝑛−1
𝑗,ℎ − 𝜉𝑛+1

𝑗,ℎ , 𝜉𝑛+1
𝑗,ℎ

)︁
≤ 𝐶‖∇𝑢′𝑛

𝑗,ℎ‖‖∇𝜉𝑛+1
𝑗,ℎ ‖‖∇(𝜉𝑛+1

𝑗,ℎ − 2𝜉𝑛
𝑗,ℎ + 𝜉𝑛−1

𝑗,ℎ )‖1/2‖𝜉𝑛+1
𝑗,ℎ − 2𝜉𝑛

𝑗,ℎ + 𝜉𝑛−1
𝑗,ℎ ‖1/2

≤ 𝐶‖∇𝑢′𝑛
𝑗,ℎ‖‖∇𝜉𝑛+1

𝑗,ℎ ‖
(︁

ℎ−1/2
)︁

‖𝜉𝑛+1
𝑗,ℎ − 2𝜉𝑛

𝑗,ℎ + 𝜉𝑛−1
𝑗,ℎ ‖

≤ 1
8Δ𝑡

‖𝜉𝑛+1
𝑗,ℎ − 2𝜉𝑛

𝑗,ℎ + 𝜉𝑛−1
𝑗,ℎ ‖2 + 𝐶

Δ𝑡

ℎ
‖∇𝑢′𝑛

𝑗,ℎ‖2‖∇𝜉𝑛+1
𝑗,ℎ ‖2. (46)
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𝑏*
(︁

𝑢′𝑛
𝑗,ℎ, 𝜂𝑛+1

𝑗 − 2𝜂𝑛
𝑗 + 𝜂𝑛−1

𝑗 , 𝜉𝑛+1
𝑗,ℎ

)︁
≤ 𝐶‖∇𝑢′𝑛

𝑗,ℎ‖‖∇
(︁

𝜂𝑛+1
𝑗 − 2𝜂𝑛

𝑗 + 𝜂𝑛−1
𝑗

)︁
‖‖∇𝜉𝑛+1

𝑗,ℎ ‖

≤ 𝐶0𝜈‖∇𝜉𝑛+1
𝑗,ℎ ‖2 + 𝐶𝐶−1

0 𝜈−1‖∇𝑢′𝑛
𝑗,ℎ‖2‖∇

(︁
𝜂𝑛+1

𝑗 − 2𝜂𝑛
𝑗 + 𝜂𝑛−1

𝑗

)︁
‖2

≤ 𝐶0𝜈‖∇𝜉𝑛+1
𝑗,ℎ ‖2 + 𝐶Δ𝑡3

𝐶0𝜈
‖∇𝑢′𝑛

𝑗,ℎ‖2
𝑡𝑛+1∫︁

𝑡𝑛−1

‖∇𝜂𝑗,𝑡𝑡‖2 𝑑𝑡 . (47)

𝑏*
(︁

𝑢′𝑛
𝑗,ℎ, 𝑢𝑛+1

𝑗 − 2𝑢𝑛
𝑗 + 𝑢𝑛−1

𝑗 , 𝜉𝑛+1
𝑗,ℎ

)︁
≤ 𝐶‖∇𝑢′𝑛

𝑗,ℎ‖‖∇
(︁

𝑢𝑛+1
𝑗 − 2𝑢𝑛

𝑗 + 𝑢𝑛−1
𝑗

)︁
‖‖∇𝜉𝑛+1

𝑗,ℎ ‖

≤ 𝐶0𝜈‖∇𝜉𝑛+1
𝑗,ℎ ‖2 + 𝐶𝐶−1

0 𝜈−1‖∇𝑢′𝑛
𝑗,ℎ‖2‖∇

(︁
𝑢𝑛+1

𝑗 − 2𝑢𝑛
𝑗 + 𝑢𝑛−1

𝑗

)︁
‖2

≤ 𝐶0𝜈‖∇𝜉𝑛+1
𝑗,ℎ ‖2 + 𝐶𝐶−1

0 𝜈−1Δ𝑡3‖∇𝑢′𝑛
𝑗,ℎ‖2

𝑡𝑛+1∫︁
𝑡𝑛−1

‖∇𝑢𝑗,𝑡𝑡‖2 𝑑𝑡 . (48)

For the pressure term in (32), since 𝜉𝑛+1
𝑗,ℎ ∈ 𝑉ℎ, we have

(𝑝𝑛+1
𝑗 , ∇ · 𝜉𝑛+1

𝑗,ℎ ) = (𝑝𝑛+1
𝑗 − 𝑞𝑛+1

𝑗,ℎ , ∇ · 𝜉𝑛+1
𝑗,ℎ )

≤
√

𝑑 ‖𝑝𝑛+1
𝑗 − 𝑞𝑛+1

𝑗,ℎ ‖‖∇𝜉𝑛+1
𝑗,ℎ ‖ (49)

≤ 𝑑

4 𝐶0
𝜈−1‖𝑝𝑛+1

𝑗 − 𝑞𝑛+1
𝑗,ℎ ‖2 + 𝐶0 𝜈‖∇𝜉𝑛+1

𝑗,ℎ ‖2 .

The other terms are bounded as(︃
3𝜂𝑛+1

𝑗 − 4𝜂𝑛
𝑗 + 𝜂𝑛−1

𝑗

2Δ𝑡
, 𝜉𝑛+1

𝑗,ℎ

)︃
≤ 𝐶

4𝐶0
𝜈−1‖

3𝜂𝑛+1
𝑗 − 4𝜂𝑛

𝑗 + 𝜂𝑛−1
𝑗

2Δ𝑡
‖2 + 𝐶0𝜈‖∇𝜉𝑛+1

𝑗,ℎ ‖2

≤ 𝐶

4𝐶0
𝜈−1‖ 1

Δ𝑡

𝑡𝑛+1∫︁
𝑡𝑛−1

𝜂𝑗,𝑡 𝑑𝑡‖2 + 𝐶0𝜈‖∇𝜉𝑛+1
𝑗,ℎ ‖2

≤ 𝐶

4𝐶0𝜈Δ𝑡

𝑡𝑛+1∫︁
𝑡𝑛−1

‖𝜂𝑗,𝑡‖2 𝑑𝑡 + 𝐶0𝜈‖∇𝜉𝑛+1
𝑗,ℎ ‖2 .

and

Intp
(︁

𝑢𝑛+1
𝑗 ; 𝜉𝑛+1

𝑗,ℎ

)︁
=

(︃
3𝑢𝑛+1

𝑗 − 4𝑢𝑛
𝑗 + 𝑢𝑛−1

𝑗

2Δ𝑡
− 𝑢𝑗,𝑡(𝑡𝑛+1), 𝜉𝑛+1

𝑗,ℎ

)︃

≤ 𝐶‖
3𝑢𝑛+1

𝑗 − 4𝑢𝑛
𝑗 + 𝑢𝑛−1

𝑗

2Δ𝑡
− 𝑢𝑗,𝑡(𝑡𝑛+1)‖‖∇𝜉𝑛+1

𝑗,ℎ ‖

≤ 𝐶0𝜈‖∇𝜉𝑛+1
𝑗,ℎ ‖2 + 𝐶2

4𝐶0𝜈
‖

3𝑢𝑛+1
𝑗 − 4𝑢𝑛

𝑗 + 𝑢𝑛−1
𝑗

2Δ𝑡
− 𝑢𝑗,𝑡(𝑡𝑛+1)‖2

≤ 𝐶0𝜈‖∇𝜉𝑛+1
𝑗,ℎ ‖2 + 5𝐶2Δ𝑡3

8𝐶0𝜈

𝑡𝑛+1∫︁
𝑡𝑛−1

‖𝑢𝑗,𝑡𝑡𝑡‖2𝑑𝑡 . (50)

Combining (33)-(50) and taking 𝐶0 = 1
17

𝜖√
𝜇+𝜖 (1−

√
𝜇

2 ) with 𝜖 ∈ (0, 2−2√
𝜇), we have for ∀𝜎, 0 < 𝜎 < 1,

1
4Δ𝑡

(︁
‖𝜉𝑛+1

𝑗,ℎ ‖2 + ‖2𝜉𝑛+1
𝑗,ℎ − 𝜉𝑛

𝑗,ℎ‖2
)︁

− 1
4Δ𝑡

(︁
‖𝜉𝑛

𝑗,ℎ‖2 + ‖2𝜉𝑛
𝑗,ℎ − 𝜉𝑛−1

𝑗,ℎ ‖2
)︁

+ 1
8Δ𝑡

‖𝜉𝑛+1
𝑗,ℎ − 2𝜉𝑛

𝑗,ℎ + 𝜉𝑛−1
𝑗,ℎ ‖2
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+ 2𝐶0𝜈
(︁

‖∇𝜉𝑛+1
𝑗,ℎ ‖2 − ‖∇𝜉𝑛

𝑗,ℎ‖2
)︁

+ 𝐶0𝜈
(︁

‖∇𝜉𝑛
𝑗,ℎ‖2 − ‖∇𝜉𝑛−1

𝑗,ℎ ‖2
)︁

+ 𝜈𝜎

(︂
1 − 17𝐶0 −

3|𝜈𝑗 − 𝜈|
2𝜈

)︂(︁
‖∇𝜉𝑛+1

𝑗,ℎ ‖2 − ‖∇𝜉𝑛
𝑗,ℎ‖2

)︁
+ 𝜈

(︂
(1 − 𝜎)

(︂
1 − 17𝐶0 −

3|𝜈𝑗 − 𝜈|
2𝜈

)︂
− 𝐶Δ𝑡

𝜈ℎ
‖∇𝑢′𝑛

𝑗,ℎ‖2
)︂

‖∇𝜉𝑛+1
𝑗,ℎ ‖2

+ 𝜈

(︂
2
3𝜎

(︂
1 − 17𝐶0 −

3|𝜈𝑗 − 𝜈|
2𝜈

)︂
−

|𝜈𝑗 − 𝜈|
𝜈

)︂
‖∇𝜉𝑛

𝑗,ℎ‖2

+ 𝜈
𝜎

3

(︂
1 − 17𝐶0 −

3|𝜈𝑗 − 𝜈|
2𝜈

)︂(︁
‖∇𝜉𝑛

𝑗,ℎ‖2 − ‖∇𝜉𝑛−1
𝑗,ℎ ‖2

)︁
+𝜈

(︂
𝜎

3

(︂
1 − 17𝐶0 −

3|𝜈𝑗 − 𝜈|
2𝜈

)︂
−

|𝜈𝑗 − 𝜈|
2𝜈

)︂
‖∇𝜉𝑛−1

𝑗,ℎ ‖2

≤ 𝐶𝐶−3
0 𝜈−3

(︁
‖𝜉𝑛

𝑗,ℎ‖2 + ‖𝜉𝑛−1
𝑗,ℎ ‖2

)︁
+ 𝐶

4𝐶0𝜈
‖∇𝑢𝑛

𝑗,ℎ‖‖∇𝜂𝑛+1
𝑗 ‖2 + 𝐶

4𝐶0𝜈
‖∇𝑢𝑛−1

𝑗,ℎ ‖‖∇𝜂𝑛+1
𝑗 ‖2 (51)

+ Δ𝑡3

4𝐶0

|𝜈𝑗 − 𝜈|2

𝜈

𝑡𝑛+1∫︁
𝑡𝑛−1

‖∇𝑢𝑗,𝑡𝑡‖2𝑑𝑡 + 𝐶Δ𝑡3

4𝐶0𝜈
‖∇𝑢𝑛+1

𝑗 ‖2
𝑡𝑛+1∫︁

𝑡𝑛−1

‖∇𝑢𝑗,𝑡𝑡‖2𝑑𝑡

+ 𝐶

4𝐶0𝜈

(︁
‖∇𝜂𝑛

𝑗 ‖2 + ‖∇𝜂𝑛−1
𝑗 ‖2

)︁
‖∇𝑢𝑛+1

𝑗 ‖2 + 𝐶Δ𝑡3

𝐶0𝜈
‖∇𝑢′𝑛

𝑗,ℎ‖2
𝑡𝑛+1∫︁

𝑡𝑛−1

‖∇𝑢𝑗,𝑡𝑡‖2 𝑑𝑡

+ 𝐶Δ𝑡3

𝐶0𝜈
‖∇𝑢′𝑛

𝑗,ℎ‖2
𝑡𝑛+1∫︁

𝑡𝑛−1

‖∇𝜂𝑗,𝑡𝑡‖2 𝑑𝑡 + 𝑑

4𝐶0𝜈
‖𝑝𝑛+1

𝑗 − 𝑞𝑛+1
𝑗,ℎ ‖2

+ 𝐶

4𝐶0𝜈Δ𝑡

𝑡𝑛+1∫︁
𝑡𝑛−1

‖𝜂𝑗,𝑡‖2 𝑑𝑡 + 𝜈

4𝐶0
‖∇𝜂𝑛+1

𝑗 ‖2 + 1
𝐶0

|𝜈𝑗 − 𝜈|2

𝜈
‖∇𝜂𝑛

𝑗 ‖2

+ 1
4𝐶0

|𝜈𝑗 − 𝜈|2

𝜈
‖∇𝜂𝑛−1

𝑗 ‖2 + 𝐶Δ𝑡3

4𝐶0𝜈

𝑡𝑛+1∫︁
𝑡𝑛−1

‖𝑢𝑗,𝑡𝑡𝑡‖2𝑑𝑡, (52)

where 𝐶 on the RHS is a generic constant independent of Δ𝑡 and ℎ. Similar to the discussion in the stability
proof, we take

𝜎 =
√

𝜇 + 𝜖

2 − √
𝜇

.

By the viscosity deviation condition (12), we have

1 − 17𝐶0 −
3|𝜈𝑗 − 𝜈|

2𝜈
=

(2 + 𝜖)√𝜇

2(√𝜇 + 𝜖) −
3|𝜈𝑗 − 𝜈|

2𝜈
(53)

>
(2 + 𝜖)√𝜇

2(√𝜇 + 𝜖) −
√

𝜇

2 =
√

𝜇(2 − √
𝜇)

2(√𝜇 + 𝜖) > 0,

2
3𝜎

(︂
1 − 17𝐶0 −

3|𝜈𝑗 − 𝜈|
2𝜈

)︂
−

|𝜈𝑗 − 𝜈|
𝜈

>
2
3

√
𝜇 + 𝜖

2 − √
𝜇

√
𝜇(2 − √

𝜇)
2(√𝜇 + 𝜖) −

√
𝜇

3 = 0, (54)

and 1
3𝜎

(︂
1 − 17𝐶0 −

3|𝜈𝑗 − 𝜈|
2𝜈

)︂
−

|𝜈𝑗 − 𝜈|
2𝜈

> 0. (55)

Also, by the stability condition (12), we have

(1 − 𝜎)
(︂

1 − 17𝐶0 −
3|𝜈𝑗 − 𝜈|

2𝜈

)︂
− 𝐶Δ𝑡

𝜈ℎ
‖∇𝑢′𝑛

𝑗,ℎ‖2 (56)
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=
2 − 2√

𝜇 − 𝜖

2 − √
𝜇

√
𝜇(2 − √

𝜇)
2(√𝜇 + 𝜖) − 𝐶

△𝑡

𝜈ℎ
‖∇𝑢′𝑛

𝑗,ℎ‖2

>
(2 − 2√

𝜇 − 𝜖)√𝜇

2(√𝜇 + 𝜖) −
(2 − 2√

𝜇 − 𝜖)√𝜇

2(√𝜇 + 𝜖) = 0.

Then (51) reduces to

1
4Δ𝑡

(︁
‖𝜉𝑛+1

𝑗,ℎ ‖2 + ‖2𝜉𝑛+1
𝑗,ℎ − 𝜉𝑛

𝑗,ℎ‖2
)︁

− 1
4Δ𝑡

(︁
‖𝜉𝑛

𝑗,ℎ‖2 + ‖2𝜉𝑛
𝑗,ℎ − 𝜉𝑛−1

𝑗,ℎ ‖2
)︁

+ 1
8Δ𝑡

‖𝜉𝑛+1
𝑗,ℎ − 2𝜉𝑛

𝑗,ℎ + 𝜉𝑛−1
𝑗,ℎ ‖2

+ 𝐶1𝜈
(︁

‖∇𝜉𝑛+1
𝑗,ℎ ‖2 − ‖∇𝜉𝑛

𝑗,ℎ‖2
)︁

+ 𝐶2𝜈
(︁

‖∇𝜉𝑛
𝑗,ℎ‖2 − ‖∇𝜉𝑛−1

𝑗,ℎ ‖2
)︁

≤ 𝐶𝐶−3
0 𝜈−3

(︁
‖𝜉𝑛

𝑗,ℎ‖2 + ‖𝜉𝑛−1
𝑗,ℎ ‖2

)︁
+ 𝐶

4𝐶0𝜈
‖∇𝑢𝑛

𝑗,ℎ‖‖∇𝜂𝑛+1
𝑗 ‖2 + 𝐶

4𝐶0𝜈
‖∇𝑢𝑛−1

𝑗,ℎ ‖‖∇𝜂𝑛+1
𝑗 ‖2 (57)

+ Δ𝑡3

4𝐶0

|𝜈𝑗 − 𝜈|2

𝜈

𝑡𝑛+1∫︁
𝑡𝑛−1

‖∇𝑢𝑗,𝑡𝑡‖2𝑑𝑡 + 𝐶Δ𝑡3

4𝐶0𝜈
‖∇𝑢𝑛+1

𝑗 ‖2
𝑡𝑛+1∫︁

𝑡𝑛−1

‖∇𝑢𝑗,𝑡𝑡‖2𝑑𝑡

+ 𝐶

4𝐶0𝜈

(︁
‖∇𝜂𝑛

𝑗 ‖2 + ‖∇𝜂𝑛−1
𝑗 ‖2

)︁
‖∇𝑢𝑛+1

𝑗 ‖2 + 𝐶Δ𝑡3

𝐶0𝜈
‖∇𝑢′𝑛

𝑗,ℎ‖2
𝑡𝑛+1∫︁

𝑡𝑛−1

‖∇𝑢𝑗,𝑡𝑡‖2 𝑑𝑡

+ 𝐶Δ𝑡3

𝐶0𝜈
‖∇𝑢′𝑛

𝑗,ℎ‖2
𝑡𝑛+1∫︁

𝑡𝑛−1

‖∇𝜂𝑗,𝑡𝑡‖2 𝑑𝑡 + 𝑑

4𝐶0𝜈
‖𝑝𝑛+1

𝑗 − 𝑞𝑛+1
𝑗,ℎ ‖2

+ 𝐶

4𝐶0𝜈Δ𝑡

𝑡𝑛+1∫︁
𝑡𝑛−1

‖𝜂𝑗,𝑡‖2 𝑑𝑡 + 𝜈

4𝐶0
‖∇𝜂𝑛+1

𝑗 ‖2 + 1
𝐶0

|𝜈𝑗 − 𝜈|2

𝜈
‖∇𝜂𝑛

𝑗 ‖2

+ 1
4𝐶0

|𝜈𝑗 − 𝜈|2

𝜈
‖∇𝜂𝑛−1

𝑗 ‖2 + 𝐶Δ𝑡3

4𝐶0𝜈

𝑡𝑛+1∫︁
𝑡𝑛−1

‖𝑢𝑗,𝑡𝑡𝑡‖2𝑑𝑡,

where 𝐶1 = 2𝐶0 + 𝜎(1 − 17𝐶0 − 3|𝜈𝑗−𝜈|
2𝜈 ) and 𝐶2 = 𝐶0 + 𝜎

3 (1 − 17𝐶0 − 3|𝜈𝑗−𝜈|
2𝜈 ). Summing (57) from 𝑛 = 1

to 𝑁 − 1, multiplying both sides by Δ𝑡 and absorbing constants gives

1
4

(︁
‖𝜉𝑁

𝑗,ℎ‖2 + ‖2𝜉𝑁
𝑗,ℎ − 𝜉𝑁−1

𝑗,ℎ ‖2
)︁

+
𝑁−1∑︁
𝑛=1

1
8‖𝜉𝑛+1

𝑗,ℎ − 2𝜉𝑛
𝑗,ℎ + 𝜉𝑛−1

𝑗,ℎ ‖2

+ 𝐶1𝜈Δ𝑡‖∇𝜉𝑁
𝑗,ℎ‖2 + 𝐶2𝜈Δ𝑡‖∇𝜉𝑁−1

𝑗,ℎ ‖2

≤ 1
4
(︀
‖𝜉1

𝑗,ℎ‖2 + ‖2𝜉1
𝑗,ℎ − 𝜉0

𝑗,ℎ‖2)︀+ 𝐶1𝜈Δ𝑡‖∇𝜉1
𝑗,ℎ‖2 + 𝐶2𝜈Δ𝑡‖∇𝜉0

𝑗,ℎ‖2

+ 𝐶Δ𝑡

𝜈3

𝑁−1∑︁
𝑛=0

‖𝜉𝑛
𝑗,ℎ‖2 + 𝐶Δ𝑡

𝑁−1∑︁
𝑛=1

{︂
𝜈−1‖∇𝑢𝑛

𝑗,ℎ‖‖∇𝜂𝑛+1
𝑗 ‖2

+ 𝜈−1‖∇𝑢𝑛−1
𝑗,ℎ ‖‖∇𝜂𝑛+1

𝑗 ‖2 + Δ𝑡3 |𝜈𝑗 − 𝜈|2

𝜈

𝑡𝑛+1∫︁
𝑡𝑛−1

‖∇𝑢𝑗,𝑡𝑡‖2𝑑𝑡

+ Δ𝑡3𝜈−1‖∇𝑢𝑛+1
𝑗 ‖2

𝑡𝑛+1∫︁
𝑡𝑛−1

‖∇𝑢𝑗,𝑡𝑡‖2𝑑𝑡 + 𝜈−1
(︁

‖∇𝜂𝑛
𝑗 ‖2 + ‖∇𝜂𝑛−1

𝑗 ‖2
)︁

‖∇𝑢𝑛+1
𝑗 ‖2

+ Δ𝑡3𝜈−1‖∇𝑢′𝑛
𝑗,ℎ‖2

𝑡𝑛+1∫︁
𝑡𝑛−1

‖∇𝑢𝑗,𝑡𝑡‖2 𝑑𝑡 + Δ𝑡3𝜈−1‖∇𝑢′𝑛
𝑗,ℎ‖2

𝑡𝑛+1∫︁
𝑡𝑛−1

‖∇𝜂𝑗,𝑡𝑡‖2 𝑑𝑡
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+ 𝜈−1‖𝑝𝑛+1
𝑗 − 𝑞𝑛+1

𝑗,ℎ ‖2 + 𝜈−1Δ𝑡−1
𝑡𝑛+1∫︁

𝑡𝑛−1

‖𝜂𝑗,𝑡‖2 𝑑𝑡 + 𝜈‖∇𝜂𝑛+1
𝑗 ‖2

+
|𝜈𝑗 − 𝜈|2

𝜈
‖∇𝜂𝑛

𝑗 ‖2 +
|𝜈𝑗 − 𝜈|2

𝜈
‖∇𝜂𝑛−1

𝑗 ‖2 + Δ𝑡3𝜈−1
𝑡𝑛+1∫︁

𝑡𝑛−1

‖𝑢𝑗,𝑡𝑡𝑡‖2𝑑𝑡

}︂
.

Using the interpolation inequality (5) and the result (29) from the stability analysis, i.e., Δ𝑡
∑︀𝑁−1

𝑛=1 ‖∇𝑢𝑛+1
𝑗,ℎ ‖2 ≤

𝐶, we have

𝜈−1Δ𝑡

𝑁−1∑︁
𝑛=1

‖∇𝑢𝑛
𝑗,ℎ‖‖∇𝜂𝑛+1

𝑗 ‖2 ≤ 𝜈−1ℎ2𝑘Δ𝑡

𝑁−1∑︁
𝑛=1

‖∇𝑢𝑛
𝑗,ℎ‖‖𝑢𝑛+1

𝑗 ‖2
𝑘+1

≤𝜈−1ℎ2𝑘

(︃
Δ𝑡

𝑁−1∑︁
𝑛=1

‖𝑢𝑛+1
𝑗 ‖4

𝑘+1 + Δ𝑡

𝑁−1∑︁
𝑛=1

‖∇𝑢𝑛
𝑗,ℎ‖2

)︃
≤𝜈−1ℎ2𝑘|||𝑢𝑗 |||44,𝑘+1 + 𝐶𝜈−1ℎ2𝑘 , (58)

and

𝜈−1Δ𝑡

𝑁−1∑︁
𝑛=1

‖∇𝑢𝑛−1
𝑗,ℎ ‖‖∇𝜂𝑛+1

𝑗 ‖2 ≤ 𝜈−1ℎ2𝑘Δ𝑡

𝑁−1∑︁
𝑛=1

‖∇𝑢𝑛−1
𝑗,ℎ ‖‖𝑢𝑛+1

𝑗 ‖2
𝑘+1

≤𝜈−1ℎ2𝑘

(︃
Δ𝑡

𝑁−1∑︁
𝑛=1

‖𝑢𝑛+1
𝑗 ‖4

𝑘+1 + Δ𝑡

𝑁−1∑︁
𝑛=1

‖∇𝑢𝑛−1
𝑗,ℎ ‖2

)︃
≤𝜈−1ℎ2𝑘|||𝑢𝑗 |||44,𝑘+1 + 𝐶𝜈−1ℎ2𝑘 , (59)

Because 𝑢𝑗 ∈ 𝐿∞ (︀0, 𝑇 ; 𝐻1(Ω)
)︀
, we have ‖∇𝑢𝑛+1

𝑗 ‖2 ≤ 𝐶. Using convergence condition (11) and applying
interpolation inequalities (4), (5) and (6) gives

1
4

(︁
‖𝜉𝑁

𝑗,ℎ‖2 + ‖2𝜉𝑁
𝑗,ℎ − 𝜉𝑁−1

𝑗,ℎ ‖2
)︁

+
𝑁−1∑︁
𝑛=1

1
8‖𝜉𝑛+1

𝑗,ℎ − 2𝜉𝑛
𝑗,ℎ + 𝜉𝑛−1

𝑗,ℎ ‖2 (60)

+ 𝐶1𝜈Δ𝑡‖∇𝜉𝑁
𝑗,ℎ‖2 + 𝐶2𝜈Δ𝑡‖∇𝜉𝑁−1

𝑗,ℎ ‖2

≤ 1
4
(︀
‖𝜉1

𝑗,ℎ‖2 + ‖2𝜉1
𝑗,ℎ − 𝜉0

𝑗,ℎ‖2)︀+ 𝐶1𝜈Δ𝑡‖∇𝜉1
𝑗,ℎ‖2 + 𝐶2𝜈Δ𝑡‖∇𝜉0

𝑗,ℎ‖2

+ 𝐶

[︂
Δ𝑡

𝜈3

𝑁−1∑︁
𝑛=0

‖𝜉𝑛
𝑗,ℎ‖2 + 𝜈−1ℎ2𝑘|||𝑢𝑗 |||44,𝑘+1 + 𝜈−1ℎ2𝑘 + Δ𝑡4 |𝜈𝑗 − 𝜈|2

𝜈
‖∇𝑢𝑗,𝑡𝑡‖2

2,0

+ 𝜈−1Δ𝑡4‖𝑢𝑗,𝑡𝑡‖2
2,0 + 𝜈−1ℎ2𝑘|||𝑢𝑗 |||22,𝑘+1 + ℎΔ𝑡3‖∇𝑢𝑗,𝑡𝑡‖2

2,0

+ ℎ2𝑘+1Δ𝑡3‖∇𝑢𝑗,𝑡𝑡‖2
2,𝑘+1 + 𝜈−1ℎ2𝑠+2|||𝑝𝑗 |||22,𝑠+1 + 𝜈−1ℎ2𝑘+2‖𝑢𝑗,𝑡‖2

2,𝑘+1

+ 𝜈ℎ2𝑘|||𝑢𝑗 |||22,𝑘+1 +
|𝜈𝑗 − 𝜈|2

𝜈
ℎ2𝑘|||𝑢𝑗 |||22,𝑘+1 + 𝜈−1Δ𝑡4‖∇𝑢𝑗,𝑡𝑡𝑡‖2

2,0

]︂
.

The next step uses an application of the discrete Gronwall inequality (Girault and Raviart [4], p. 176):

1
4

(︁
‖𝜉𝑁

𝑗,ℎ‖2 + ‖2𝜉𝑁
𝑗,ℎ − 𝜉𝑁−1

𝑗,ℎ ‖2
)︁

+
𝑁−1∑︁
𝑛=1

1
8‖𝜉𝑛+1

𝑗,ℎ − 2𝜉𝑛
𝑗,ℎ + 𝜉𝑛−1

𝑗,ℎ ‖2 (61)

+ 𝐶1𝜈Δ𝑡‖∇𝜉𝑁
𝑗,ℎ‖2 + 𝐶2𝜈Δ𝑡‖∇𝜉𝑁−1

𝑗,ℎ ‖2

≤ 𝑒
𝐶𝑇

𝜈3

{︂
1
4
(︀
‖𝜉1

𝑗,ℎ‖2 + ‖2𝜉1
𝑗,ℎ − 𝜉0

𝑗,ℎ‖2)︀+ 𝐶1𝜈Δ𝑡‖∇𝜉1
𝑗,ℎ‖2 + 𝐶2𝜈Δ𝑡‖∇𝜉0

𝑗,ℎ‖2

+ 𝐶

[︂
𝜈−1ℎ2𝑘|||𝑢𝑗 |||44,𝑘+1 + 𝜈−1ℎ2𝑘 + Δ𝑡4 |𝜈𝑗 − 𝜈|2

𝜈
‖∇𝑢𝑗,𝑡𝑡‖2

2,0
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+ 𝜈−1Δ𝑡4‖𝑢𝑗,𝑡𝑡‖2
2,0 + 𝜈−1ℎ2𝑘|||𝑢𝑗 |||22,𝑘+1 + ℎΔ𝑡3‖∇𝑢𝑗,𝑡𝑡‖2

2,0

+ ℎ2𝑘+1Δ𝑡3‖∇𝑢𝑗,𝑡𝑡‖2
2,𝑘+1 + 𝜈−1ℎ2𝑠+2|||𝑝𝑗 |||22,𝑠+1 + 𝜈−1ℎ2𝑘+2‖𝑢𝑗,𝑡‖2

2,𝑘+1

+ 𝜈ℎ2𝑘|||𝑢𝑗 |||22,𝑘+1 +
|𝜈𝑗 − 𝜈|2

𝜈
ℎ2𝑘|||𝑢𝑗 |||22,𝑘+1 + 𝜈−1Δ𝑡4‖∇𝑢𝑗,𝑡𝑡𝑡‖2

2,0

]︂}︂
.

Recall that 𝑒𝑛
𝑗 = 𝜂𝑛

𝑗 + 𝜉𝑛
𝑗,ℎ. Using the triangle inequality on the error equation to split the error terms

into the terms of 𝜂𝑛
𝑗 and 𝜉𝑛

𝑗,ℎ gives

1
4‖𝑒𝑁

𝑗 ‖2 + 𝐶1𝜈Δ𝑡‖∇𝑒𝑁
𝑗 ‖2 ≤ 1

4‖𝜉𝑁
𝑗,ℎ‖2 + 𝐶1𝜈Δ𝑡‖∇𝜉𝑁

𝑗,ℎ‖2 + 1
4‖𝜂𝑁

𝑗 ‖2 + 𝐶1𝜈Δ𝑡‖∇𝜂𝑁
𝑗 ‖2 ,

and
1
4
(︀
‖𝜉1

𝑗,ℎ‖2 + ‖2𝜉1
𝑗,ℎ − 𝜉0

𝑗,ℎ‖2)︀+ 𝐶1𝜈Δ𝑡‖∇𝜉1
𝑗,ℎ‖2 + 𝐶2𝜈Δ𝑡‖∇𝜉0

𝑗,ℎ‖2

≤ 1
4
(︀
‖𝑒1

𝑗 ‖2 + ‖2𝑒1
𝑗 − 𝑒0

𝑗 ‖2)︀+ 𝐶1𝜈Δ𝑡‖∇𝑒1
𝑗 ‖2 + 𝐶2𝜈Δ𝑡‖∇𝑒0

𝑗 ‖2

+ 1
4
(︀
‖𝜂1

𝑗 ‖2 + ‖2𝜂1
𝑗 − 𝜂0

𝑗 ‖2)︀+ 𝐶1𝜈Δ𝑡‖∇𝜂1
𝑗 ‖2 + 𝐶2𝜈Δ𝑡‖∇𝜂0

𝑗 ‖2.

Applying inequality (61), using the previous bounds for the 𝜂𝑛
𝑗 terms, and absorbing constants into a new

constant 𝐶, we have Theorem 4.2.
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