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Abstract: We consider settings for which one needs to perform multiple flow simulations based on the
Navier-Stokes equations, each having different initial condition data, boundary conditions data, forcing
functions, and/or coefficients such as the viscosity. For such settings, we propose a second-order time
accurate ensemble-based method that to simulate the whole set of solutions, requires, at each time step, the
solution of only a single linear system with multiple right-hand-side vectors. Rigorous analyses are given
proving the conditional stability and establishing error estimates for the proposed algorithm. Numerical
experiments are provided that illustrate the analyses.
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1 Introduction

Many computational fluid dynamics applications require multiple simulations of a flow under different input
conditions. For example, the ensemble Kalman filter approach used in data assimilation first simulates a
forward model a large number of times by perturbing either the initial condition data, boundary condition
data, or uncertain parameters, then corrects the model based on the model forecasts and observational data.
A second example is the construction of low-dimensional surrogates for partial differential equation (PDE)
solutions such as sparse-grid interpolants or proper orthogonal decomposition approximations, for which
one has to first obtain expensive approximations of solutions corresponding to several parameter samples.
Another example is sensitivity analyses of solutions for which one often has to determine approximate
solutions for a number of perturbed inputs such as the values of certain physical parameters. In this paper,
we consider such applications and develop a second-order time-stepping scheme for efficiently simulating
an ensemble of flows. In particular, we consider the setting in which one wishes to determine the PDE
solutions for several different choices of initial condition and boundary condition data, forcing functions,
and physical parameters appearing in the PDE model.

The ensemble algorithm was first developed in [16] to find a set of J solutions of the Navier-Stokes
equations (NSE) subject to different initial condition and forcing functions. The main idea is that, based on
the introduction of an ensemble average and a special semi-implicit time discretization, the discrete systems
for the multiple flow simulations share a common coefficient matrix. Thus, instead of solving J linear systems
with J different matrices and right-hand sides (RHS), one only need solve a single linear system with J RHS
vectors. This leads to very significant computational savings in linear solver costs when LU factorization (for
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small-scale systems) or a block iterative algorithm (for large-scale systems) are used. High-order ensemble
algorithms were designed in [17, 18]. For high Reynolds number flows, ensemble regularization methods and
a turbulence model based on ensemble averaging have been developed in [17, 19, 20, 24]. The method has
also been extended to simulate MHD flows in [23] and to develop ensemble-based reduced-order modeling
techniques in [6, 7]. In [8], the authors proposed a first-order ensemble algorithm that deals with a number
of flow simulations subject to not only different initial condition, boundary conditions, and/or body force
data, but also distinct viscosity coefficients appearing in the NSE model. In this paper, we follow the same
direction and develop an ensemble scheme having higher accuracy.

To begin, consider an ensemble of incompressible flow simulations on a bounded domain subject to
Dirichlet boundary conditions. The j-th member of the ensemble is a simulation associated with the positive
viscosity coefficient v}, initial condition data u(])», boundary condition data g;, and body force f;. All of
these data may vary from one simulation to another. Then, for j = 1, ..., J, we need to solve

uj ¢ +uj - Vuj —v;Au; + Vpy = fj(ﬂi’, t) in Q x [0,00),
Vouj = 0 in  x [0, 00), )
uj = gj(z,t) on 09,
uj(z,0) = u(])(x) in Q.

There is a long list of work in developing time discretization methods for the NSE including explicit, implicit,
and semi-implicit schemes, for example, [11, 12, 13, 14, 21, 22, 25]. In general, explicit schemes are easier to
implement, but they suffer the severely restricted time step size from stability requirement. The fully implicit
and semi-implicit schemes have better stability conditions, but the discretization would lead to a varying
coefficient matrix of the system. As a result, a different linear system has to be solved for each member at
every time step, thus totally J linear systems need to be solved per time step. To overcome this issue, we
propose a new, second-order accurate in time, ensemble-based scheme that improves the computational
efficiency. The scheme is semi-implicit that permits the use of a known quantity (the ensemble mean defined
below), which is independent of the ensemble index j, in the advection term and, therefore, leads to a single
coefficient matrix for all the ensemble members.

For keeping the exposition simple, we consider a uniform time step At and let ¢, = nAt forn =0,1,....
We then consider the ensemble of semi-discrete in time systems

Bu;.”l —dul + !

j — 1, -1 +1
SAL +a" VUl " - V(2uf — ) + VY

77 n - n n— n 2
— Z/Auj+1 —(vj—7D) A(Quj —uj 1) — fj +17 (2)

V-U?Jrl =0,

where uf, p} and f}' denote approximations of u; (-, t,), p;(-,tn) and f;(-,tn) of (1), respectively. In (2),
u"™ and 7 denote the ensemble means of the velocity field and viscosity coefficient, respectively, defined by

"= L i 2" — 1 and U= 1 - Vs
= g g = J 'j
Jj=1 j=1

and u;" represents the fluctuation defined by

<l

u;” =2uj — u?il —u”.

It is easy to see that the coefficient matrix in the spatial discretization of (2) does not depend on j. Thus,
all the members in the ensemble do share a common coefficient matrix. To advance one time step, one only
need solve a single linear system with J RHS vectors, which is more efficient than solving J individual
simulations.

We assume homogeneous flow boundary conditions (g; = 0) in the following derivation and analysis
of the proposed ensemble algorithm. But flows with inhomogeneous essential boundary conditions are
considered in our first numerical experiment presented in Section 5, where, in the implementation, the data



e M. Gunzburger et al., A second-order ensemble scheme for parameterized flow problems = 3

g; at each time step is first replaced by its interpolant on the Lagrangian finite element space and then is
enforced on the boundary nodes. The extension of our analysis to the inhomogeneous cases will follow the
idea presented in [3], which will be discussed elsewhere.

In what follows, we present a rigorous theoretical analysis of the proposed scheme. In Section 2, we
provide some notations and preliminaries; in Section 3, the stability conditions of the scheme are obtained;

and in Section 4, an error estimate is derived. Then, several numerical experiments are presented in Section
5.

2 Notation and preliminaries

Let © be an open, regular domain in R? (d = 2 or 3). The space L?(Q) is equipped with the norm | - ||
and inner product (-, -). Denote by || - ||z and || - ||W§, respectively, the norms for LP(£2) and the Sobolev

space WI’f(Q) Let H*(£2) be the Sobolev space W5 (Q) equipped with the norm || - ||. For functions v(x, )
defined on (0,T), we define (1 < m < 00)

1/m

T
[vllook = EssSup,ryllo(t, )k and ol = /Ilv(tv-)HZ’dt
0

Given a time step At, let v™ = v(t,) and define the discrete norms

N 1/m
ol = max o[ and o], , = (Z ||v”||z”At> :
n=0

0<n<N

Denote by H~1(£2) the dual space of bounded linear functionals defined on H}(Q) = {v € HY(Q) : v =
0 on 990}. A norm for H~1(Q) is given by

o= sup LY

ozveri(@ IVl

We choose the velocity space X and pressure space Q to be

X = (H}(@)"  and Q:=L3m>={qeL2<ﬂ>:/qdm:o}.
Q

The space of weakly divergence free functions is then
Vi={veX: (V-v,9)=0,VqeQ}.

A weak formulation of (1) reads: find u; : [0,7] = X and p; : [0,T] = Q for a.e. t € (0, T satisfying,
forj=1,...,J,

(uje,v) + (uj - Vuj,v) + v5(Vuy, Vo) — (p;, V- v) = (fj,v), VvelX,

(3)
(V-uj,q) =0, VgeQ

with u;(z,0) = ug(x)

For the spatial discretization, we use a finite element (FE) method. However, the results can be extended
to many other variational methods without much difficulty. Denote by X; C X and Qp C @ the conforming
velocity and pressure FE spaces on an edge to edge triangulation of 2 with hA denoting the maximum
diameter of the triangles. Assume that the pair of spaces (X}, Q) satisfy the discrete inf-sup (or LBB},)
condition, that is required to guarantee the stability of FE approximations. We also assume that the FE
spaces satisfy the following approximation properties [15]:

inf o —vp| < CRE o]l Vo e [H(Q)?, (4)
VR €Xp
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int V(o ~ o) < Ch¥folliin voe [HH @), 6)
Vp,
it llg = ol < O gl vge HHQ), ©)

where the generic constant C' > 0 is independent of the mesh size h. One example for which the LBBj,
stability condition is satisfied is the family of Taylor-Hood P**1-P$ element pairs (i.e., k = s + 1 in the
definition of X3), for s > 1 [5]. The discrete divergence free subspace of X, is

ho={vn € Xy (V-vp,qn) =0, Vq, € Qn}

We assume the mesh and FE spaces satisfy the following standard inverse inequality (typical for locally
quasi-uniform meshes and standard FE spaces, see, e.g., [2]): for all vy, € X,

RV UR|l < Cliny)llvnll- (7)
Define the explicitly skew-symmetric trilinear form
* 1 1
b* (u, v, w) := E(u - Vo, w) — §(u -Vw,v)
that satisfies the bounds [15]
b (u, 0,w) < CQ) (19l [ul) /2 [ Vol Val, Yu,vwe X, ®)
* 1/2
b (u,0,w) < COQ)|Vull[Vo] (|Vwlllwl)?, Vu,v,we X, 9)

where C(€2) is a constant depending on the domain. Denote the exact solution to (1) and the FE approximate

solution to (10) at ¢t = t,, by u? and u?, , respectively.

The fully discrete finite element dis}é;etization of (2) at tp41 is as follows: given ul/), find u"+1 € Xy,
and p"Jrl € Qy, satisfying
n+1 n n—1
(Bt S T ) ) + B, — 0 — T2 — o)
— (PR Y vn) + <Vu?2%w)+<w =) (VQ2uf, —ufy "), Vo) = (ff 7 on), Yoy, € Xp,
(Vi an) =0, Van € Qp-

(10)

This is a two-step method that requires u?, 5, and u},h to start the time stepping; uR 5, is determined

by the initial condition and u; 5, can be computed by the first-order ensemble algorithm developed by the

authors in [8] (which is locally second-order accurate) or by using a standard, non-ensemble time-stepping

method to compute each individual simulation at the very first time step. Compared to the second-order

ensemble scheme developed in [17] for the NSEs without variations in the viscosity coefficient, the scheme

(10) for parametrized flows introduces an additional average of the viscosity coefficients for the parameterized

flow ensemble. As is shown in the next section, the deviation of the flow viscosity coefficients from the
ensemble average will play an important role in the stability analysis of the scheme.

3 Stability Analysis

We begin by proving the conditional, nonlinear, long time stability of (10) under conditions on the time
step and viscosity coefficient deviation: for any j=1,...,J, there exists 0 <pu<land 0 <e <2-2,/p
such that

2—-2/1L—c¢€
H h” 2(\\//75+6))\/ﬁ and (11)
M<@ (12)
v - 3’

where C denotes a generic constant depending on the domain and the minimum angle of the mesh.
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Theorem 3.1 (Stability). The ensemble scheme (10) is stable provided the conditions (11)-(12) hold. In
particular, for j =1,...,J and for any N > 2, we have

7 (Rl + 2, — 2 2) + Z| Wit = 2wy 4

+VAtf+e VE 2+ 73|uj—1/| IVl 12 + VAL Jii+e (Vi 2+€  3ly -7 [vule
—VE\ 2 Ji+te 20 Gk 32—\ 2 Jiate 2
VIt €

Z 22 f)—||f”“||2 1 (sl I+ 1263, = w2, 1P)

n At\/>+€ \/> 2+e€ 3|Vj*7| HV ”2 Z/At\/ﬁ"‘e ﬂ 2+e¢ _3|Vjiﬁ| ||vu0 H2
—VE\ 2 Vite 2 i 32—\ 2 Jiute 20 BRI
(13)

Proof. See Appendix A. B

Remark 3.2. Observe that the stability conditions (11) and (12) are oppositional to each other. The upper
bound for the relative deviation of the viscosity coefficient given in (12) must be less than ‘g whereas the
upper bound in the time-step condition (11) must be less than 1 — /it because this bound is increasing when €
is decreasing, and it approaches 1 — /i as € = 0. In practice, condition (12) is easy to check. If it does not
hold, one could split the ensemble into smaller groups so that this condition holds for each group. Condition

(11) can be satisfied by adjusting the time-step size.

4 Error Analysis

In this section we derive the numerical error estimate of the proposed ensemble scheme (10). We first give a
lemma on the estimate of the consistency error of the backward differentiation formula that will be used in
the error analysis for the fully discrete ensemble scheme.

Lemma 4.1. For any u € H3(0,T; L?(52)), we have that

tw+1

3yt — gyn 4 ! 2 7
|t <iae / e | . (1)

Proof. The proof is given in Appendix B. B

Assuming that Xp and Qy, satisfy the LB By, condition, then the ensemble scheme (10) is equivalent to: for
n=1,...,N —1, find un';:l € Vy, such that

+1
<3u" —4uj A —b—uj h

SA; ) + b*(auy, ;”,; ,UR) + I/(Vu;”gl, Vo) + (v; = 7) (V(2u] ), — uZ;l),Vvh)

-1 = -1 1
+ 0" (2u} ), — uf i U, 2uj p, — u?,h JUR) = (fj”Jr ,UR), Yoy, € V.
(15)
To analyze the rate of convergence of the approximation, we assume the regularity assumptions on the NSE
given by

u; € H? (0,T; H*1(Q)) n H? (0, T; H'(Q)) ,
p; € L* (0,T; H*t1(Q)) ,and f; € L* (0,T; L*(Q)) .

Let e} = uj —u} ), be the error between the true solution of (1) and the approximate solution determined

from (15). We then have the following error estimates.
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Theorem 4.2 (Error Estimate). For any j =1,...,J, under the stability conditions of (11)-(12) for some
p and € satisfying 0 < p < 1 and 0 < € < 2 — 2./, there exists a positive constant C independent of the
time step At and mesh size h such that

1
e’ + CrmaL Ve |®
cr 1 _ — —— k 4 —— k
<eiB { (||ejl||2 + ||2€} — e?||2) + 4 VAL‘HV@%HQ + CQI/AtHV65-)||2 + Cr K2 H|uj|||47k_|_1 + O h?
At BT 00, 8 + 0o A sl + CT g + CHARIVusalBe (16)
k — 2 —— k —1 2k 2
+ ChP AL Vujl|3 g1 + C7 B2 P2 )l o g + C7 R 2 |13 o + COR* [lusllz ks

i
el Tz, oo

k k
} + O 2 g 12,y + CTRR AL g2, 4y

where positive constants C1 = 2Cy + 3 Vit (1 - 17Co — M) Co=Co+3y Bt (1 —17Co — ng;ﬂ)

—VH 32— Vi)
andCoz%ere( —4)

Proof. See Appendix C. H

It is well known that the Taylor-Hood P31+1-P5 element pairs for which the LBBy, stability condition and
the approximation properties (4)-(6) are all satisfied [2, 5, 15]. In particular, when the popular P2?-P?
Taylor-Hood FE is used (i.e., kK = 2 and s = 1 in the definitions of X}, and Qp, respectively), we have the
following optimal convergence results.

Corollary 4.2.1. Suppose the P?>-P' Taylor-Hood FE pair is used for the spatial discretization and assume
that the initial errors ||u9 - u?,h||, HV(U? - “?,h)H’ ||u]1 - u;,hH and ||V(u]1 — uj{h)H are all at least O(h?)
accurate. Then, the approzimation error of the ensemble scheme (10) at time tn satisfies

1
Ll =12+ 20AH Y (u) =) 2 ~ O + At + hAE). (17)

5 Numerical Experiments

The goal of the numerical experiments is two-fold: (i) to numerically illustrate the convergence rate of the
ensemble algorithm (10), that is, illustrate the second-order accuracy in time; (ii) to explore the stability
of the algorithm; in particular, the numerical results strongly indicate that the stability condition (12) is
sharp.

5.1 Convergence Test

We illustrate the convergence rate of (10) by considering a test problem for the NSE from [9] that has an
analytical solution. This solution preserves the spatial patterns of the Green-Taylor solution [1, 10] but the
vortices do not decay as t — 0o. On the unit square Q = [0, 1]?, we define

1
Upep = [—s(t) coszsiny, s(t) sina cosy] " and  pref = —Z[COS(ZT) + cos(2y)]s2(t)
with s(t) = sin(2t). We then have the corresponding source term
frep(@,y,t) = (s'(t) + 2vs(t)) [~ coszsiny, sinz cosy] "

and an inhomogeneous Dirichlet boundary condition with data ggef(x, Y, t) = Ures(x,y,t) for (z,y) € 00
and zero initial condition data u?ef(x, Y) = Ures(x,y,0) = [0, 0.
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To illustrate the convergence behavior, we consider an ensemble of two members with different viscosity
coefficients and perturbed initial conditions. For the first member, we choose the viscosity coefficient v; = 0.2
and the exact solution is chosen as u1 = (1 + €)u,s whereas for the second member, we choose vo = 0.3
and ug = (1 — €)upes, where € = 1073, The initial condition data, boundary condition data, and source
terms are adjusted accordingly.

For this choice of parameters, we have |v; — U|/7 = 1 for both j = 1 and j = 2; hence the stability
condition (12) is satisfied. We first apply the ensemble algorithm (10) using the P2-P! Taylor-Hood FE
and evaluate the rates of convergence. The initial mesh size and time step size are chosen to be h = 0.1 and
At = 0.05; both the spatial and temporal grids are uniformly refined. Numerical results are listed in Table 1
for which

<n<N

N
1€F o0 = max Jluf —ufy | and  [VEPIbo = \| AT V(3 — )2
- n=0

It is seen that the convergence rates for both u; and ug are second order, which matches our theoretical
analysis.

Table 1: Approximation errors for ensemble simulations of two members with inputs 1 = 0.2, u; = (1 + 10*3)uref and
vy = 0.3, ug = (1 — 1073)uref

| 1/ ][ 1EFlsc0 | rate [[ [[VEE 2,0 | rate [ [[€F]lcc,0 [ rate [| [VEF 2,0 | rate |
10 1.02e — 04 - 8.51le — 04 - 8.02¢ — 05 - 7.99¢ — 04 -

. 20 2.60e — 05 | 1.98 2.12e — 04 | 2.00 2.03e — 05 | 1.98 1.99¢ — 04 | 2.00
40 6.54e — 06 | 1.99 5.31le — 05 | 2.00 5.12e — 06 | 1.99 4.99¢ — 05 | 2.00
80 1.64e — 06 | 1.99 1.33¢e — 05 | 2.00 1.28¢ — 06 | 2.00 1.25¢ — 05 | 2.00

Furthermore, we implement the two individual simulations separately and denote the corresponding
numerical errors by HEJS loo,0 and ||[VE JS ||l2,0. Comparing the ensemble simulation solutions in Table 1 with
the independent simulation results listed in Table 2, we observe that the former achieves the same order of
accuracy as the latter.

Table 2: Approximation errors for two individual simulations: v1 = 0.2, u1 = (1 + 10’3)uref and vo = 0.3, us =
(1 - 10_3)urcf

‘ 1/h 1€ 00,0 rate IVET 2,0 | rate 1€5 00,0 rate IVES 2,0 | rate
10 1.08e — 04 - 8.79¢ — 04 - 7.64e — 05 - 7.79e — 04 -

. 20 2.74e — 05 | 1.98 2.20e — 04 | 2.00 1.94e — 05 | 1.98 1.94e — 04 | 2.00
40 6.92e — 06 | 1.99 5.50e — 05 | 2.00 4.87e — 06 | 1.99 4.85e — 05 | 2.00
80 1.74e — 06 | 1.99 1.38¢ — 05 | 1.99 1.22¢ — 06 | 2.00 1.21e — 05 | 2.00

Although the pressure error is not discussed in this paper, we determine the pressure approximation of
the ensemble simulation using the same uniform mesh refinement strategy and then, in Table 3, provide
results for Hé'pf || 50,0, the maximum values over all the time levels of the pressure errors in the L? norm.
Results for approximate solutions obtained by the ensemble method as well as through separate computations
are given. It is observed that the ensemble-based scheme achieves second-order convergence in the pressure
approximation and the associated numerical errors are nearly identical to those obtained from individual
simulations, H87>f|\0070.
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Table 3: Pressure approximation errors for the ensemble and individual simulations.

L/h || I€pF llsc,0 | rate || [|EpF [loc,0 | rate || [|€pT lloo,0 | rate || [|€p5loo,0 | rate
10 2.09e — 03 - 2.08e — 03 - 2.08e — 03 - 2.08e — 03 -

20 5.27e — 04 | 1.99 5.22¢ — 04 | 1.99 5.27¢e —04 | 1.99 5.22¢ — 04 | 1.99
40 1.32¢ — 04 | 2.00 1.31e— 04 | 1.99 1.32¢e — 04 | 2.00 1.31e — 04 | 1.99
80 3.30e — 05 | 2.00 3.27e — 05 | 2.00 3.30e — 05 | 2.00 3.27e — 05 | 2.00

5.2 Stability tests

Two conditions, (11) and (12), guarantee the stability of the proposed scheme. Condition (12), in many
applications, relates to the probability distribution of the uncertain physical parameters. This requirement on
the parameter deviation ratio can be easily checked. If it is not fulfilled, one could divide the parameter sample
set into smaller subsets so that it holds on each subset. Condition (11) depends on the nature of nonlinear
problems. Its severity depends on the governing equations, domain, model parameters, initial/boundary
conditions, forcing terms, etc. In practice, once condition (12) holds, condition (11) can be satisfied by
making At sufficiently small and/or by dividing the ensemble into smaller ensembles. Of course, when the
ensemble consists of high Reynolds number flows, this condition could easily fail due to the requirement
of having an extremely small time-step size leading to a prohibitive computational cost. Condition (11)
has been extensively investigated in [16, 19, 17]. Hence, in the following, we are mostly interested on the
optimality of condition (12). However, we do consider the conditional stability due to (11) because we want
to determine values of the parameter for which that condition is satisfied; this is not directly computable
from (11) because of the generic constant appearing in that condition. Note that (12) contains no such
constant so that we can directly study the sharpness of the condition.

We check the stability of our algorithm by using the problem of a flow between two offset circles
[16, 17, 19, 20]. The domain is a disk with a smaller off-center obstacle inside. Letting 7y = 1, 72 = 0.1, and
¢ = (c1,c2) = (3,0), the domain is given by

Q={(z,y) : 2®+y° <r] and (z—c1)’ + (y —2)® 273},
The flow is driven by a counterclockwise rotational body force
fla,y.t) = [=6y(1 = 2% —?),62(1 —2® —y*)] (18)

with no-slip boundary conditions imposed on both circles. A von Kérmén vortex street forms behind the inner
circle and then re-interacts with that circle and with itself, generating complex flow patterns. We consider
multiple numerical simulations of the flow with different viscosity coefficients using the ensemble-based
algorithm (10). For spatial discretization, we apply the P2-P! Taylor-Hood element pair on a triangular
mesh that is generated by a Delaunay triangulation with 80 mesh points on the outer circle and 60 mesh
points on the inner circle and with refinement near the inner circle, resulting in 18,638 degrees of freedom;
see Figure 1.

In order to illustrate the stability analysis based on conditions (11) and (12) we design two numerical
tests involving two different sets of viscosity coefficients within an ensemble of three members, keeping the
rest of computational setting, including the initial and boundary conditions and body force, the same for
all the members. In particular, the initial condition is generated by solving the steady Stokes problem with
viscosity ¥ = 0.03 and the same body force f(z,y,t) given by (18). We have two test cases:

Case 1: 11 =0.021, v =0.030, wv3=0.039;

Case 2: v =0.019, v =0.030, wv3=0.041.

Note that the viscosity coefficients v and v3 for Case 2 are obtained by making small perturbations from
those for Case 1 with the average of the viscosity coefficients 7 = 0.03 being the same for in both cases.
However, the stability condition (12) holds in the first case but breaks down in the second case. In fact, the
parameter deviation ratios are given by
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Fig. 1: Mesh for the flow between two offset cylinders.
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For the stability test, we use the kinetic energy as a criterion and compare the ensemble simulation results

to the independent simulations using the same mesh and time-step size.

Case 1. Condition (12) is satisfied so that this case illustrates the conditional stability due to (11). As
mentioned above, we also use this test to determine a value for At for which (11) is satisfied so that, in
Case 2, we can study the sharpness of condition (12). We first test the ensemble-based algorithm at a large
time step size At = 0.5. The corresponding evolutions of the energy of all the three members are plotted in
Figure 2. It is seen that for At = 0.5, the algorithm is unstable because the energy of the third member
increases dramatically after ¢t = 4 and that of the first member after ¢t = 4.5. Although not shown in this
figure, the energy of the second member also blows up but not until after ¢ = 20. This implies that the
stability condition (11) does not hold. Therefore, we next decrease the time step size to At = 0.05 and
re-run the ensemble simulations. The associated evolutions of the energies are shown in Figure 2, indicating

that the algorithm is now stable over the same time interval. Indeed, additional numerical experiments

100 : !
_s_v,=0.021, dt=05
g0l - + -V4=0.021, dt=0.05
. v,=0.030, dt=0.5
> 60H-¢ .v,=0.030, dt=0.05
g v,=0.039, dt=0.5
G 4ol . v,=0.039, dt=0.05
20
N
\
\
IEELED v ==
0 0.5 1

Fig. 2: For the flow between two offset cylinders, Case 1, the energy evolution of the ensemble simulations for At = 0.5

and At = 0.05.
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show that, for any time step size smaller than 0.05, the algorithm is always stable in Case 1 over a much
longer time interval, for instance, [0, 50]. When an even smaller time step size At = 0.01 is selected, the
comparison of the energy evolutions of ensemble-based simulations with the corresponding independent
simulations over the time interval [0, 5] is given in Figures 3. The ensemble simulation is obviously stable
and the output energy approximations are very close to those of the independent simulations.

25 ; .
__v,=0.021, Ind.
20‘L_*__v1=0.021,Ens. i
“ —v,=0.030, Ind.
| -
Rt |
g “‘ ,=0.039, Ind.
w 4ol v3=0.039, Ens. B
L L

4 45 5

Fig. 3: For the flow between two offset cylinders, Case 1, the energy evolution of the ensemble (Ens.) and independent
simulations (Ind.) for At = 0.01.

Case 2. We run ensemble simulations using the small time step size At = 0.01 over the same time
interval as that for Case 1. As we mentioned above, the viscosity coefficients in Case 2 are obtained by
slightly perturbing those in Case 1; this is the only difference between the two computational settings. Since
At is chosen small, we believe condition (11) still holds for Case 2. But condition (12) no longer holds.
Therefore, we expect the ensemble simulation to be unstable even when using the small time step size
At = 0.01. The plots of energy evolutions in Figure 4 matches our expectation as they clearly indicate that
the ensemble simulation is unstable in this case. In fact, the energy of the third member blows up after
t = 1.95 and then affects the other two members and results in their energy dramatically increasing after
t = 2.45.

100 ‘ ‘ |
—v,=0.019, Ind. :
= |

80l -* .v,=0.019, Ens. ! |
__v,=0.030, Ind. |
= |

> 60H-¢ _v2_0.030, Ens. ! |
2 = I
] V3—0.041, Ind. :

W gol|_ e .V,=0.041, Ens. | |
|
|
|

I .
|

— ‘ﬁﬁﬁ?W ‘ ‘
1 1.5 2 25 3 35 A s !
Time

Fig. 4: For the flow between two offset cylinders, Case 2, the energy evolution of the ensemble (Ens.) and independent
simulations (Ind.) for At = 0.01.
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6 Conclusions

In this paper, we develop a second-order time-stepping ensemble scheme to compute a set of Navier-Stokes
equations in which every member is subject to an independent computational setting including a distinct
viscosity coefficient, initial condition data, boundary condition data, and/or body force. By using the
ensemble algorithm, all ensemble members share a common coefficient matrix after discretization, although
with different RHS vectors. Therefore, many efficient block iterative solvers such as the block CG and
block GMRES can be applied to solve such a single linear system with multiple RHS vectors, leading to
great savings in both storage and simulation time. A rigorous analysis shows the proposed algorithm is
conditionally, nonlinearly and long-time stable provided two explicit conditions hold and is second-order
accurate in time. Two numerical experiments are presented that illustrate our theoretical analysis. In
particular, the first is a test problem having an analytic solution that serves to illustrate that the rate of
convergence with respect to the time-step size is indeed second order whereas the second example is for a
flow between two offset cylinders and shows that the stability condition is sharp. For future work, we plan
to investigate the performance of the ensemble algorithm in data assimilation applications.

Acknowledgment: This research was partially supported by the U.S. Department of Energy under grants
DE-SC0009324 and DE-SC0016540, the U.S. Air Force Office of Scientific Research grant FA9550-15-1-0001,
a Defense Advanced Projects Agency contract administered under the Oak Ridge National Laboratory
subcontract 4000145366, the U.S. National Science Foundation grants DMS-1522672 and DMS-1720001,
and a University of Missouri Research Board grant.

References

[1] L. BERSELLI, On the large eddy simulation of the Taylor-Green vortez, Journal of Mathematical Fluid
Mechanics, 7 (2005), pp. S164-S191.

[2] S. BRENNER AND R. ScoTT, The Mathematical Theory of Finite Element Methods, Springer, 3rd
edition, 2008.

[3] G.J. Fix, M.D. GUNZBURGER AND J.S. PETERSON, On finite element approzimations of problems
having inhomogeneous essential boundary conditions, Computers & mathematics with applications, 9
(1983), pp. 687-700.

[4] V. GIRAULT AND P. RAVIART, Finite element approxzimation of the Navier-Stokes equations, Lecture
Notes in Mathematics, Vol. 749, 1979.

[5] M. GUNZBURGER, Finite Element Methods for Viscous Incompressible Flows - A Guide to Theory,
Practices, and Algorithms, Academic Press, London, 1989.

[6] M. GUNZBURGER, N. JIANG, AND M. SCHNEIER, An ensemble-proper orthogonal decomposition
method for the nonstationary Navier-Stokes Equations, SIAM Journal on Numerical Analysis, 55 (2017),
286-304.

[7] M. GUNZBURGER, N. JIANG, AND M. SCHNEIER, A higher-order ensemble/proper orthogonal decom-
position method for the nonstationary Navier-Stokes Equations, submitted, 2016.

[8] M. GUNZBURGER, N. JIANG, AND Z. WANG, An efficient algorithm for simulating ensembles of
parameterized flow problems, submitted, 2017, https://arxiv.org/abs/1705.09350.

[9] J.-L. GUERMOND AND L. QUARTAPELLE, On stability and convergence of projection methods based on
pressure Poisson equation, International Journal for Numerical Methods in Fluids, 26 (1998), 1039-1053.

[10] A. GREEN AND G. TAYLOR, Mechanism of the production of small eddies from larger ones, Proceedings
of the Royal Society of London. Series A, Mathematical and Physical Sciences, 158 (1937), 499-521.

[11] Y. HE, Two-level method based on finite element and Crank-Nicolson extrapolation for the time-
dependent Navier-Stokes equations, STAM Journal on Numerical Analysis, 41 (2003), 1263-1285.



12 — REFERENCES e

[12] Y. HE AND W. SUN, Stability and convergence of the Crank-Nicolson/Adams-Bashforth scheme for
the time-dependent Navier-Stokes equations, SIAM Journal on Numerical Analysis, 45 (2007), 837-869.

[13] Y. HE, The Euler implicit/explicit scheme for the 2D time-dependent Navier-Stokes equations with
smooth or non-smooth initial data, Mathematics of Computation, 77 (2008), 2097-2124.

[14] J. G. HEYWOOD AND R. RANNACHER, Finite-element approxzimation of the nonstationary Navier—
Stokes problem. Part IV: Error analysis for second-order time discretization, SIAM Journal on Numerical
Analysis, 27 (1990), 353-384.

[15] W. LAYTON, Introduction to the Numerical Analysis of Incompressible Viscous Flows, Society for
Industrial and Applied Mathematics (SIAM), Philadelphia, 2008.

[16] N. JiaANG AND W. LAYTON, An algorithm for fast calculation of flow ensembles, International Journal
for Uncertainty Quantification, 4 (2014), 273-301.

[17] N. JIANG, A higher order ensemble simulation algorithm for fluid flows, Journal of Scientific Computing,
64 (2015), 264-288.

[18] N. JIANG, A second-order ensemble method based on a blended backward differentiation formula
timestepping scheme for time-dependent Navier-Stokes equations, Numerical Methods for Partial
Differential Equations, 33 (2017), 34-61.

[19] N. JiaANG AND W. LAYTON, Numerical analysis of two ensemble eddy viscosity numerical regularizations
of fluid motion, Numerical Methods for Partial Differential Equations, 31 (2015), 630-651.

[20] N. JiaNG, S. Kaya, AND W. LAYTON, Analysis of model variance for ensemble based turbulence
modeling, Computational Methods in Applied Mathematics, 15 (2015), 173-188.

[21] H. JOHNSTON AND J.-G. L1vu, Accurate, stable and efficient Navier—Stokes solvers based on explicit
treatment of the pressure term, Journal of Computational Physics, 199 (2004), 221-259.

[22] M. MARION AND R. TEMAM, Navier-Stokes equations: Theory and approzimation, in: Handbook of
numerical analysis, Vol. VI, pp. 503-688, North-Holland, Amsterdam, 1998.

[23] M. MOHEBUJJAMAN AND L. REBHOLZ, An efficient algorithm for computation of MHD flow ensembles,
Computational Methods in Applied Mathematics, 17 (2017), 121-137.

[24] A. TAkHIROV, M. NEDA, AND J. WATERS, Time relazation algorithm for flow ensembles, Numerical
Methods for Partial Differential Equations, 32 (2016), 757-777.

[25] F. ToONE, Error analysis for a second order scheme for the Navier-Stokes equations, Applied numerical
mathematics, 50 (2004), 93-119.

A Proof of Theorem 3.1

Proof. Setting vj, = u”+1 and g = pﬂng in (10) and multiplying the result by At gives

1 1 1
7 (2 2t = l?) = 5 (Il + 263 = w2 02) + gt = 2, + w2
+ VAtHVunJrlHZ + Atb* (2’LL] h— U;th ﬁ}”QUj,h ;lhlau?j;l)
— At (f’.“rl u’?*l) —(vj =D)AL (V(Quj h— Uy . Vu"+1) .

> 75,k

Applying Young’s inequality to the terms on the RHS yields, for any «, 31, 82 > 0,

1
7 (2 4 2utt = ) = 3 (I

1/AL‘||Vun'H||2 + Atb* (2uj p—u - Up, 2uf ), — u ! um'l)

1
2 = ) = 2

Ujn j,h 75,k
oa/At v, —D)2At
< D v+ SR + vt P+ B v, 2
1
BQVAt (v; — D)2 At _
[P + L a2 (19)

B2v



Because the last four terms on the RHS of (19) need to be absorbed into

LHS, we minimize Bll/At||Vu”+1H2 +

W”VU] hH2 by taking 51 = %

REFERENCES = 13

VAL VUl T on the

nd ﬂguAtHV n+1H2 +
(iju HVU Y12 by taking 8o = M Then (19) becomes
1 192 1 2 2 1 2
7 (2 4 p2utt — e al?) = 3 (Il +2ug, — 03 12) + gt = 26, + 33
+ TAY VUL A" (2uf, -t - w2 7,},”7;1)
oa/At 2 1 3lv; — D|At 112 _ 9
< Va5 1% + Jlf"Jr [ ]7” TP (v = TAL Vgl
-7 At
v T v (20)
Next, we bound the trilinear term using the inequality (9) and the inverse inequality (7):
b* (2u;€h - uzgl =y, 2ujy, — ;’hl,uﬁl)
-1 1 1
= b* <2u?,h_“?,h uh,—ujh +2ujh—u?h ,uﬁ; )
-1 1 1 1 1 —1d
< CHV(QU}% —ugy” - uh)|||\VU"+ IV (= 2uf, + gy, DIE it = 2u}y, + gy |2
1 1 -1
< Chm2|V(2uy, —ulyt —ap)lllI Ve s ||||U”+ = 2ufy, +uly,
Using Young’s inequality again gives
-1 — 1 1
* (QU?,h —uZh —uZ,QuZ ?h ,u?;lr ) ‘
At2 n n+1 2 n+1 2
< OV (2ujy, — ujy, A R A *Il —2uy (21)
Substituting (21) into (20) and combining like terms, we have
1 1
1 Rt e 2astt = a2 = 3 (gl + 263, — w23 1P)
v, —v
*H n+1_2u h+u3h ||2+VAt(1_Z |J |>|| n+1||2
At?
1 1
Jlf"Jr [ +07|\V(2ugh =yt =) PV P
‘V' | 1
+ vy — DALV} |7+ Va3 2. (22)

The second term on the RHS of (22), as well as the last two terms, need to be absorbed into the viscous

term on the LHS. Thus we select an arbitrary number o € (0, 1), decompose the positive viscous term into

four parts, and move all the terms that need to be bounded on RHS to the LHS of the inequality, which
gives

1 1 1
7 (2 zuntt = a2 = 3 (Il +12a3, — w23 12)

B _ a 3y, — 7
- gt = g 4wt (1= § - SR (19 - o)

_ a 3y —-v CAt n— n
+vAt<<1—a> (1-5 - 2527 - v, - gt -wIR ) 1w P

(2 A e A |
At (2o (122 J no2
+v t<3a( 1 o ) - HVUJ,hH
O a 3y -7 -
rrars (1= - L) (19ule - 19zt i)

a  3ly; -7 lv; — 7
+VAt<3 <14 JQP > ]21/ HVU 12

At
< - n+1 2
< IR,
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Because a > 0 is arbitrary, we take o =4 — @\/ﬁ To make sure that « is greater than 0, we need

7> \/ﬁ\/,, where 5 \/'L:Lf € (0,1).
— VR —VH
Now taking
Vi te
= , where €€ (0,2 —2/pn),
2—
(23) becomes
1
7 (2 2t = pal?) = 7 (Il + 20 — i3 12) + Sl = 2, + 252

_ o+1 3lv; — 7
+yma( oV = ) (19w = 19u2)

_ c+1 v, — 7 CAt
+uAt(<1o>( o ') 9 2, yhluh>|2>|w“|2

20 2U

3 (24)
AL ((a +1) (ﬁ - M)) N
3 v
A0 (o+1 3y — 7 2 n—12
erad (v ) (19l - 19 1)
_,,0+1 0 v n— n
prac (T o < Sy,
Stability follows if the following conditions hold:
o+1 3lv; — 7
— > 2
55 VH oy 20, (25)
oc+1 3lvj — 7| CAt
-0 (Tt v 2 ) - SR, -yt - > (26)
and Y M > 0. (27)
3 1%
Under the assumption of (12), we have
3 3 9 _
ﬂ_hﬁi”‘zo and 0+1\m—3‘%,y|2\/ﬁ( \/ﬁ)z()
3 % 20 2U 2(\/p +€)

Together with the first assumption in (11), we have

o+1 v, — v CAt
(1—o>( Vi 3 ') 92, — ! - )

20 2U
2-2y/p—eyn CAt n _
= 2(yi+e€) IV (2u —upyt =)l
><2—2ﬁ—e)ﬁ_<2—2¢ﬁ—e>ﬁ:0
— 2(/u+e) 2(y/p+€) '

Therefore, we can draw the conclusion that the ensemble algorithm (10) is stable under conditions (11)-(12).
Indeed, assuming both conditions (11)-(12) hold, (24) reduces to

1 1 1 1
7 (R 12 2wt = 2) = 5 (Ml 4 1220 — ) + gl = 20y a2y P

2 PR
+ Atf+€ f +e 3|V]7 Vl (”v n+1H2 Hvunh”2)
-V 2 Jpte 2U Js
TvA 2 iU
4 rat vAt f—}—G \/ﬁ +€ 3|V]7 7/| (Hvunth _ Hvun;1‘|2)
3 Q—f 2 f—}—G 2U > 75
Ti+e .
< g I (28)
) v




tn+1
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Summing up (28) from n =1 to N — 1 results in
1
7 (Bl + 203, — i 2) + Z it = 2ul, + w2
. At\f—o—e VI 2+e 3|iju| A VAt Jite (/i 24+€ 3|y -V ||V 1|2
—~VE\ 2 Vite 20 oo 32—\ 2 Jite 20
u+ €
-y e m—nf”“n? v 3 (akall? + 126k, — w2 1%)
n=1
1+ € 24+ 3y -7 AL /€ W 2+e€ 3lv; — 7|
+ Atf f ]7 ‘|Vul*7h||2 4+ = \/: £ _ ]7 ||VU§),hH2
—VE\ 2 Jute 2v 32—/ \ 2 Jute 20
(29)
|
B Proof of Lemma 4.1
Proof. To prove (14), we first rewrite
tn+1 tn
3(u™t — ) — (u" —u" ) = 2AtuP T =3 / updt — / updt — 20t
tn ¢n—1
gt n
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tn+1 tn+1
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—AtTup T —
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1 1
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n
1 1
+ §At2u?t - / 5(15 - tn_1)2utttdt

tn—1
gl gl i
1 1 1
= _iAt2 (upt™ —uph) — At / (t — t™)ugpedt + 3 / 5(t — ") uggpdt — / 5(t — " )20y dt
tn tn gn—1
gl gt gt n
1 1 1
= —QAtZ / Uttt dt — At / (t - t")utttdt +3 / i(t — tn)zutttdt - / 5(1‘, - tnil)Qutttdt
tr tn tm tn—1
Then the L? norm of the term of interest can be estimated as follows
|
tn+1 tn+1
1 1
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Q tn n
tn+1 tn 2
1 1
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9 1
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7 7
< EAtS/ / |uttt|2 dt dx < ZAtS / Hum||2dt.
Q ¢n—1 tn—1

This completes the proof. B

C Proof of Theorem 4.2

Proof. The true solution(u;,p;) of the NSE satisfies



untl — 4y + un_l
( fi j J e ( n+17u?+1,vh) +u; (VU?H,V%)

_ (p;z,+1’v . Uh) _ (fm-l ) +Intp( n+tl. Uh) for all vy, € Vp,

J

where Intp ( ntl vh) is defined as

Sut Tt — 4y 4t
Intp( n+l, Uh) — < J J J — uj t(tn-‘rl) vh )

2At

Let

e =uj —ujy = (uj — Ipyuj) + (Ihuf —ujy) =nj + &

where Iuj € Vj is the FE interpolant of u} in Vj,. Subtracting (15) from (30) gives

e A
(S ) g7 o 7
+ (- 7) (wzg;-th — € Vo) =0t (20— wint ot )
_b*( 2, ,Uh> (p?+17v.vh)

3nn+1 477 +77n 1
— ( J | -7 (Vn?"'l Vvh> +Intp( n+l. vh>

2A¢

7= vy) (V@ =070, Vo) + 7 = ) (VO = 20 + ™), Vo)

Setting vy, = 5?;;1 € Vj, and rearranging the nonlinear terms leads to

4At(ue:”“n%-n%"*l-—g;u?) o (1017 + 1263, — €2517)
1 Atug"“ =267, + &0, 1P+ PIVE P
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+b*< W 2ul, ;zhl —U?Jﬁlvf;l#) +( ntl oy §n+1)

37777,4-1 47] +77n 1
_ ( J n+1 | _ (annﬂ V§n+1) +Intp( n+1, 5;;1)
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7= vy) (Vg =20y +un ), VT

J

We first bound the viscous terms on the RHS of (32):

—(vj =) (V@I =20} +ul ), VELT)

1
< e ‘l/ | Hv( n+1 QU +un 1)||2+00V||v§n+1”2
0
tn+l
A3 |v;
< 2P [ v+ comlve e,

tn—1
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(30)

(33)
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and
(VT vert) < HW”“\F + CoPl|VE?
n 1 |y — 7> .
=20y = )V, VER < oo IV P+ Cor VP
;O vty < LT g 4 gpgeni
i ~4C, v i ’
_ n n+1 1 |y —7)? n o2 _ n+1 2
2005 = PAVEL, V) < o IVEIP + Ve
< vy = DI VERLIIP + | — quW"“H?,
1 |y —7)?
n+1 n—12 n+12
(vj — D)VEL, Ve )sr@—uvgh 12+ Com|| Ve
lv; — 7|

A

_ vy —v
vt + T w2,

(36)

(37)

(38)

where, because the terms on the RHS of (37) and (38) need to be hidden in the LHS of the error equation,

we took C] = @ and Cy = % in order to minimize their summations.

Next, we analyze the nonlinear terms on the RHS of (32) one by one. The first two nonlinear terms can

be rewritten as

n+1l  n+l sn+l 1 +1 +1
—b* <uj sui &G, >+b* (2ujh*u;bh ; ;Lh ’gn )
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7, i .

b 1 J.h J j,h

and
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2
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Since u; € L™ (O,T; Hl(Q)), we have the estimates

W2 IV Ve
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Js

< Clveg

Al Ve
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Similarly,

* n— n n n— 1 n n
b (Lt < CIvE IR I IRV u Ve

< OV IF e, IE Ve
n+12 n—1 n—1
(dvg 12+ 21ver e |>
<o (elverI?+ = (oIver 12 + 1€ 12
€ Jsh § 155k
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Also by inequality (8) and the stability result (13), i.e. ||u?h||2 < C, we have
—2b* ( ult ot ;le) < C|Vul 12 |12 [V VI

n C n
<GPV IP + 15— IV, Ry 2 (42)

1 i
b (it gt < IV ||2||Vn7+l|u|vgn+l||
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2
< GV + e APV [ sl (44

tn—1

Now we bound the third nonlinear term in (32):

* m n+ n+1
—-b (uj,ﬁ]h 72ujh+ujh,§ )

X m n+1 n—1 ¢n+1 * m n+1 n—1 ¢n+1
=b (u —2e +ei & )—b (ujh,u —2u +u; ,j’h)

j.ho €5
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By skew symmetry
0 (G 26+ 1) = (GG 26+ 6.
Using (9) and inverse inequality (7) gives
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< OIVaFLIIIVE T IV ES T = 265 + &I 2NEr T — 260, + €551
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b*( Wt = 207 4 Hl)
< OV IV (=200 + 02 ) NIV
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tn+1

CAB
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For the pressure term in (32), since §’7}’;1 € Vj,, we have

( n+1 v §n+1) (pn+1 ?Zl’v gn—i—l)

<Vd|pytt =g Ve (49)
d 1

< . n+1l n+1 2 n+1 2 .

<757 12+ Com Ve

The other terms are bounded as

n+1 )y n—1 n+1 ), n—1
(377 477; 15 ’€n+1> < i 71H377 477;7 15

1 + Cop||VEX I

2At ~ 4C, 2At
tn+1
cC __,,1
<o Mg [ e P+l
tn—l
tn.+1
dt n+12 .
< 40 z/At + Cov|VE, |
tn— 1
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umtl — gy L
Intp( ’r_LJrl Jn’zl) _ J 2AIJt J —ujy (tn+1) f]n,;trl
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<o) TN Ve
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<C n+12 J J J . tn+1 2
FIVEF + g | D g (™)
tn+1
5C?At3
< el + 2o [ sl (50
1

Combining (33)-(50) and taking Cy = % f (1- g) with € € (0,2—2,/1), we have for Vo, 0 < o < 1,

nHL2 4 jog n+1 : 2) 2 4 [j2¢n gl 2) gl _gen 2
o (NP + 1260t = 0l?) = g (NERal® + 0260 — €551 12) + s Nt — 260 + €55
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+2Cov(||V§’721II2 I9€5112) + Cov (19717 = 19675 11)

+w0 (11700 - B2T) (o - 19 lP)
-7 A
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2 Blvj v\ _ v =7 n |12
<3a<1 17Cy 5 ) = IVEL LI
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+
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3 2v
47 1 170 3|l/j717 ‘V V| HVE!L 1H2
(7 (1o .
3 2v 2v g
<€y (Il + 15 1) + Jers VUV 2 4 oo [V Vg (51)
tn+1 tn+1
At? |y 2 cA 12
2 T [ it + SSE R [ 9l
tn—1 tn—1
tn+1
c CAt3
+ ey (V31 1903 742 190312 4 S5 9P / 19l dt
tn+1
CAt3

+

g, 2 / IVl dt+ o = P

tm
gntl

C 5 v 1 vy —7)?
_c 2 dt - L2 g2

tn—1

1 |vj—7f? _ CAt?
e v+ S5 [ gl (52)

where C on the RHS is a generic constant independent of A¢ and h. Similar to the discussion in the stability

proof, we take

VAT
2— /i
By the viscosity deviation condition (12), we have
v, —7 (2 v, — 7
|17y - =T 2EaVE Sy 7] (53)
2v 2(y/p+e) 2v
L@V viE Va2 = Vi)
2yp+e) 2 2(y/1+e) ’
3l — 7 w2 2
E Yo L ek W /B B/ U Chant VL) N/ (54)
2U % 32—/ 2(/m+e) 3
1 v —v[\ |y -7
and 39 (1 —17Cy — o > - > 0. (55)
Also, by the stability condition (12), we have
3lv; — 7 C’At
-0y (1- 1700 - 5T - Sl 2 ()
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Then (51) reduces to

n+12 n+1__ n 2 '71 2 n+1__ n
o (I + 125t = 0al?) = i (NERal® + 1263 = €5 112) + s NEnt = 267 + €55
+ 017 IV IR = IVEal?) + Com (196512 - HV§§2;1||2)
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Y

(57)

where C1 = 2Cy + (1 — 17Cy — M) and Cy = Co + §(1 —17Co — M) Summing (57) from n =1

to N — 1, multiplying both sides by At and absorbing constants gives
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Using the interpolation inequality (5) and the result (29) from the stability analysis, i.e., At Z HV "'H I? <
C, we have
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ALY VUl IV < T RRAE Y [Vl R
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Because u; € L™ (0, T;H' (Q)) we have HVu"'HH2 < C'. Using convergence condition (11) and applying

interpolation inequalities (4), (5) and (6) gives
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The next step uses an application of the discrete Gronwall inequality (Girault and Raviart [4], p. 176):
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Recall that e =n; +&7

= 5~ Using the triangle inequality on the error equation to split the error terms
into the terms of 7} and &'y, gives

Lo~ - N
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Applying inequality (61), using the previous bounds for the n; terms, and absorbing constants into a new
constant C, we have Theorem 4.2. B
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