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Many applications of computational fluid dynamics require multiple simulations of a flow under different
input conditions. In this paper, a numerical algorithm is developed to efficiently determine a set of such
simulations in which the individually independent members of the set are subject to different viscosity
coefficients, initial conditions, and/or body forces. The proposed scheme, when applied to the flow en-
semble, needs to solve a single linear system with multiple right-hand sides, and thus is computationally
more efficient than solving for all the simulations separately. We show that the scheme is nonlinearly and
long-term stable under certain conditions on the time-step size and a parameter deviation ratio. Rigorous
numerical error estimate shows the scheme is of first-order accuracy in time and optimally accurate in
space. Several numerical experiments are presented to illustrate the theoretical results.

Keywords: Navier-Stokes equations; ensemble simulations; ensemble method.

1. Introduction

Numerical simulations of incompressible viscous flows have important applications in engineering and
science. In this paper, we consider settings in which one wishes to obtain solutions for several different
values of the physical parameters and several different choices for the forcing functions appearing in
the partial differential equation (PDE) model. For example, in building low-dimensional surrogates for
the PDE solution such as sparse-grid interpolants or proper orthogonal decomposition approximations,
one has to first determine expensive approximation of solutions corresponding to several values of the
parameters. Sensitivity analyses of solutions often need to determine approximate solutions for several
parameter values and/or forcing functions. An important third example is quantifying the uncertainties

TResearch supported by the U.S. Air Force Office of Scientific Research grant FA9550-15-1-0001, the U.S. Department of
Energy Office of Science grants DE-SC0009324, DE-SC0016591 and DE-SC0016540, the U.S. National Science Foundation
grants DMS-1522672 and DMS-1720001, and a University of Missouri Research Board grant.

*Email: mgunzburger @fsu.edu

$Email: jiangn@mst.edu

Y Corresponding author. Email: wangzhu@math.sc.edu

(© The author 2018. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.



2 of 25 M. GUNZBURGER ET AL.

of outputs from the model equations. Mathematical models should take into account the uncertainties
invariably present in the specification of physical parameters and/or forcing functions appearing in the
model equations. For flow problems, because the viscosity of the liquid or gas often depends on the
temperature, an inaccurate measurement of the temperature would introduce some uncertainty into the
viscosity of the flow. Direct measurements of the viscosity using flow meters and measurements of the
state of the system are also prone to uncertainties. Of course, forcing functions, e.g., initial condition
data, can and usually are also subject to uncertainty. In such cases, due to the lack of exact information,
stochastic modeling is used to describe flows subject to a random viscosity coefficient and/or random
forcing. Subsequently, numerical methods are employed to quantify the uncertainties in system out-
put. It is known that uncertainty quantification, when a random sampling method such as Monte Carlo
method is used, could be computationally expensive for large-scale problems because each individual
realization requires a large-scale computation but on the other hand, many realizations may be needed
in order to obtain accurate statistical information about the outputs of interest. Therefore, for all the
examples discussed and for many others, how to design efficient algorithms for performing multiple
numerical simulations becomes a matter of great interest.

The ensemble method which forms the basis for our approach was proposed in Jiang et al. (2014);
there, a set of J solutions of the Navier-Stokes equations (NSE) with distinct initial conditions and forc-
ing terms is considered. All solutions are found, at each time step, by solving a linear system with
one shared coefficient matrix and J right-hand sides (RHS), reducing both the storage requirements and
computational costs of the solution process. The algorithm of Jiang et al. (2014) is first-order accurate
in time; it is extended to higher-order accurate schemes in Jiang (2015, 2017). Ensemble regulariza-
tion methods are developed in Jiang (2015), Jiang & Layton (2015), Takhirov ef al. (2016) for high
Reynolds number flows, and a turbulence model based on ensemble averaging is developed in Jiang,
Kaya & Layton (2015). The ensemble algorithm has also been extended to magnetohydrodynamics
flows in Mohebujjaman et al. (2017), to natural convection problems in Fiordilino (2017b), and to
parametrized flow problems in Gunzburger ef al. (2016¢). Ensemble algorithms incorporating reduced-
order modeling techniques are studied in Gunzburger ef al. (2016a,b). Recently, the ensemble method
has been introduced in Luo & Wang (2018a,b); Fiordilino (2017a) for uncertainty quantification prob-
lems on random linear parabolic equations.

In this paper, we develop a numerical scheme for simulating ensembles of the NSE flow problems in
which not only the initial data and body force function, but also the viscosity coefficient, may vary from
one ensemble member to another. Specifically, we consider a set of J NSE simulations on a bounded
domain subject to no-slip boundary conditions in which the j-th individual member solves the system

ujs+uj-Vuj—V-(v;Vu;)+Vp; = fi(x,tr) inQ x[0,00)
Voauj = 0 in Q x [0,00) (L.1)
uj = 0 on dQ x [0,00) ’ :
uj(x,0) = u?(x) in Q

which, for each j, corresponds to a different variable kinematic viscosity v; = v; (x) and/or distinct initial
data u? and/or body forces f;. In the sequel, it is assumed that v;(x) € L*(2) and v;(x) = V; min > 0.
Due to the nonlinear convection term, implicit and semi-implicit schemes are invariably used for
time integration. For a semi-implicit scheme, the associated discrete linear systems would be different
for each individually independent simulation, i.e., for each j. As a result, at each time step, J linear
systems need to be solved to determine the ensemble, resulting in a huge computational effort. For a
fully implicit scheme, the situation is even worse because one would have to solve many more linear
systems due to the nonlinear solver iteration. To tackle this issue, we propose a novel discretization
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scheme that results, at each time step, in a common coefficient matrix for all the ensemble members.

1.1  The ensemble-based semi-implicit scheme

To focus on the main idea, we temporarily ignore the spatial discretization and only consider the
ensemble-based implicit-explicit temporal integration scheme

u1@+1 —u"

TV (=T Vi =V (V) =V (v = V) Vag) + Vit =

Vit =0
J Y
(1.2)
where u" and V are the ensemble means of the velocity and viscosity coefficient, respectively, defined
as

J 1 J
—n._ n Vo— _ .
u.—JZu/ and i JZVJ'
j=1
We also define v, := }):5:1 V; min. After rearranging the system, we have, at time #,1,

Uit +1 S, +1 41, 1 _ =
Eu? +u" VUi =V (VT ) + Vit = fY +A—tu?—(u?—u")~Vu;'»+V~((vj—v)Vu’}),

V. ur;H =0.

‘ (1.3)
It is clear that the coefficient matrix of the resulting linear system will be independent of j. Thus, for
the flow ensemble, to advance all members of the ensemble one time step, we need only solve a single
linear system with J right-hand sides. Compared with solving J individually independent simulations,
this approach used with either a single LU factorization for small scale problems or a block Krylov sub-
space method (Gutknecht (2007); Parks et al. (2016)) for large scale problems is computationally more
efficient and significantly reduces the required storage. When the size of the ensemble becomes huge, it
can be subdivided into p sub-ensembles so as to balance memory, communication, and computational
costs and then (1.2) can be applied to each sub-ensemble.

The rest of this section is devoted to establishing notation and to providing other preliminary infor-
mation. Then, in §2, we prove a conditional stability result for a fully discrete finite element discretiza-
tion of (1.2). In §3, we derive an error estimate for the fully-discrete approximation. Results of the
preliminary numerical simulations that illustrate the theoretical results are given in §4, and §5 provides
some concluding remarks.

1.2 Notation and preliminaries

Let © denote an open, regular domain in R? for d = 2 or 3 having boundary denoted by dQ. The
L?(€) norm and inner product are denoted by | - || and (-,-), respectively. The L”(£2) norms and the
Sobolev W;‘(Q) norms are denoted by || - ||z» and || - HW;" respectively. The Sobolev space W () is

simply denoted by H*(£2) and its norm by || - ||y. For functions v(x,¢) defined on (0,7, we define, for
1<m< oo,

T m 1/m
e = EssSupo vl and bl o= ([ IvColipan) "
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Given a time step At, associated discrete norms are defined as

1 Al n||m l/m
o = gmax 0 and bl = (0 v

where V' = v(t,) and t, = nAt. Denote by H~'(Q) the dual space of bounded linear functions on
H}(Q)={veH":v=00n9dQ};anormon H '(Q) is given by

o= sip WY

0#veH) (Q) vl

The velocity space X and pressure space Q are given by
X:=[H(Q) ad  Q:=L13(Q)={qel}Q) : /qux:O},
respectively. The space of weakly divergence free functions is
V.={veX: (V-vq) =0,Vqg€Q}.

A weak formulation of (1.1) reads: for j =1,...,J, findu;: [0,T] — X and p;: [0,T] — Q for a.e.
t € (0,T] satisfying

(e, v)+ (wj-Vuj,v)+(vjVu;, Vv) — (p;,V-v) = (fj,v) WeX,
(V-ujq)=0 Vg €0,

with u;(x,0) = u? (x).

Our analysis is based on a finite element method (FEM) for spatial discretization. However, the
results also extend, without much difficulty, to other variational discretization methods. Let X, C X and
On, C Q denote families of conforming velocity and pressure finite element spaces on regular subdivision
of Q into simplicies; the family is parameterized by the maximum diameter / of any of the simplicies.
Assume that the pair of spaces (X}, Q;,) satisfy the discrete inf-sup (or LBB;,) condition required for the
stability of the finite element approximation and that the finite element spaces satisfy the approximation
properties

inf [lv—vp| < CE Y ul|pyy W e [H Q)] (1.4)
thXh
inf V(v —vy)|| < CH|[v]|is1 v e [H1(Q)), (1.5)
vLEX),
inf [lg— gl < Ch*(|plls41 Vg€ HT(Q), (1.6)
qnE0p

where the generic constant C > 0 is independent of mesh size h. An example for which the LBB),
stability condition and the approximation properties are satisfied is the family of Taylor-Hood P$*!1—P*,
s > 1, element pairs. For details concerning finite element methods see, e.g., Ciarlet (2002) and Girault
etal. (1979, 1986); Gunzburger (1989); Layton (2008) for finite element methods for the Navier-Stokes
equations.

The discretely divergence free subspace of Xj, is defined as

Vip ={vn€Xp : (V-vi,qn) =0,Vq, € Oy}
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Note that, in general, Vj, ¢ V. We assume the mesh and finite element spaces satisfy the standard inverse
inequality
h||VvhH gC(,-W)thH Vv, € Xy, (1.7)

that is known to hold for standard finite element spaces with locally quasi-uniform meshes (Brenner et
al. (2008)). We also define the standard explicitly skew-symmetric trilinear form

1 1
b*(u,v,w) := E(M'VV,W) - §(u~Vw,v),
which satisfies the bounds (Layton (2008))
b* (u,v,w) < C(||Vul[|u]) 2 V||| VW] Vu,vw € X, (1.8)
b* (u,v,w) < C||Vul|||[ V] (IVw][[w)'/? Vu,v,w e X. (1.9)

We also denote the exact and approximate solutions at f =" as u’; and u’} »» respectively.

2. Stability analysis

The fully discrete finite element discretization of (1.2) is given as follows. Given u(}. n € X, for n =
0,1,.. —1, find unzl € X, and p"+1 € Qy, satisfying

n+l
h /
( Js - ]1 >+b*(uh’ 74};17vh)—|—b( — Uy, W s Vi) — (p]h Vo)

—&-(VVMS’ZI,VVI,)—F((vj—V)Vu;f,h,Vvh) = (f1 ) Vv € X,
(V- M"Zly%) 0 Vgu € Op.

We begin by proving the conditional, nonlinear, long-time stability of the scheme (2.1) under a time-step
condition and a parameter deviation condition.

2.1)

THEOREM 2.1 (Stability) Forall j=1,...,J,if for some u, 0 < u <1, and some €,0 <& <2—-2,/U,
the following time-step condition and parameter deviation condition both hold

At 2 2-2 —€
hvmin I 2(\/[.74’ 8)
Vi—V||e
”Li" <V, (2.3)
Vimin
then, the scheme (2.1) is nonlinearly, long time stable. In particular, for j =1,...,J and forany N > 1,

we have

n 2 l'L n
T -+ Z fﬁ Voin At |V

= VE 2+ ViV N 12
+ VminAt — Vi’
min ( 3 \/‘L—L e 2V, || Ujn ||

N—1 —

241 VE 2+e  |[vi—V]

<) o [ [ 2+vmmAt< /_ vil, 1%
n=0 me”f || ! || ]h” 2 f—i—s 2V min || ./7h||

*Ilu

(2.4)
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Proof. The proof is given in Appendix A. g

REMARK 2.1 It is seen from (2.2) that the upper bound in the time-step condition increases as € de-
creases. As € — 0, the bound approaches 1 — /1. Because the relative deviation of viscosity coefficient
in (2.3) is bounded by /i, the two stability conditions are oppositional to each other.

REMARK 2.2 Noting that the condition (2.2) only depends on known quantities such as the solution at
t, and that the scheme (2.1) is a one-step method, (2.2) can be used to adapt Az in order to guarantee the
stability for the ensemble simulations.

REMARK 2.3 When the viscosity V; is a constant instead of being variable, the relative viscosity coef-
ficient deviation ratio required for stability is still bounded by /L, and the condition (2.3) becomes to
[vi—V]

bemjax T < V.

3. Error Analysis

In this section, we give a detailed error analysis of the proposed method under the same type of time-
step condition (with possibly different constant C on the left hand side of the inequality) and the same
parameter deviation condition. Assuming that X;, and Qy, satisfy the LBB" condition, the scheme (2.1)
is equivalent to: Given ”9,}; eV, forn=0,1,...,N—1, find uﬁ] €V}, such that

Wt
J,h J.h *—n  n+l ®(N =N N
<7At ,vh) +b (“h,”,’,h V) + b (W — W, U i) G.1)

HVVUE V) 4+ (v = V)V, Von) = (1 vn) - Yvn € Vi

To analyze the rate of convergence of the approximation, we assume that the following regularity for
the exact solutions:

uj € L(0,T; H*(Q))nH' (0, T; H*(Q)) nH*(0,T; L*(Q)),
p; €LX(0,T;HN(Q)) and f; € L*(0,T;L*(Q)).

Lete = uj — u’; , denote the approximation error of the j-th simulation at the time instance t,,. We then
have the following error estimates.

THEOREM 3.1 (Convergence of scheme (2.1)) Forall j=1,...,J, if for some u, 0 < p < 1, and some
€,0 < e <2-2,/u, the following time-step condition and parameter deviation condition both hold

2-2/i—e)VE
2(yp+e) (3-2)

M < VI, (3.3)

Vmin

AN

At 12
€ |7 =)
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then, there exists a positive constant C independent of the time step such that

Loy, 1€ VB = ¥ 12
— e 1— VoninAt Vet
Slef 1P+ 5 WHS( 5 ) Vimin n§:0|| el

CT -
o0l o VE(2+€)  lvi—V]e) 012
< Vinin { — ! ~ — — Vi Atl|lVe!
e {3+ (G L ) arpocs)
Lookay 02 VHE(2+¢€)  |[vi—V]e)_ 2%11..0112
+§h e [0 + 2 JRre v ViminAth™ || ||y
JrCAtzHVj—Vl lvi = VI
V .

2
= 10 B+ i+ 2 g

min Vmin

30 OV [

L ORI AL y||u,-{||§,k+1 +ChAt||Vu,,|

+CV,, L A V13 +cv;,},,h2’<|||uj|||j"k+1 +cv, 1 p2

min

+CV;ilnh2S+2 |||Pj |||§,s+l + CVIZl'lnth+2 ||uj7f |%,k+1 + CVr;ilnAtZ”uj-,ll ”%,0}
1 2 1 € M\ _ 2
I o+ 5 7 (15 ) Pl
Proof. The proof is given in Appendix B. (]

In particular, when Taylor-Hood elements (k = 2, s = 1) are used, i.e., the o piecewise-quadratic
velocity space Xj, and the C° piecewise-linear pressure space Q,, we have the following estimate.

COROLLARY 3.1 Assume that ||e(J)-H and HVe?H are both O(h) accurate or better. Then, if (Xj,,Qp) is
chosen as the (P, P) Taylor-Hood element pair, we have

1 N2 1 € ( \/r'l' = N +172 2 2
2Hej || 15 \/T1+8 2 min nZOH e] || ( )

4. Numerical experiments

In this section, we illustrate the effectiveness of our proposed method (1.2) and the associated theoretical
analyses in §2 and §3 by considering two examples: a Green-Taylor vortex problem and a flow between
two offset cylinders. The first problem has a known exact solution that is used to illustrate the error
analysis. The second example does not have an analytic solution but has complex flow structures; it is
used to check the stability analysis and demonstrate the necessity and efficiency of the proposed method.

4.1 The Green-Taylor vortex problem

The Green-Taylor vortex flow is commonly used for testing convergence rates, e.g., see Barbato et al.
(2007); Berselli (2005); Chorin (1968); John et al. (2002), Jiang & Tran (2015), and Tafti (1996). The
Green-Taylor vortex solution given by

u(x,y,t) = —cos(wnx) Sin(a)jry)e—zwzﬂzt/r’

v(x,y,t) = sin(@7x) cos(coﬂ:y)efz‘”z’tzt/f7 4.1)

—40?nt)T
K

1
plx,y,t) = ~2 (cos(Qomx) + cos(2omy))e
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satisfies the NSE in Q = (0, 1)? for T = Re and initial condition
u® = (- cos(wnx) sin(@7y), sin(wrx) cos(a)iry))T

The solution consists of an @ X @ array of oppositely signed vortices that decay as t — co. In the
following numerical tests, we take @ =1, v =1/Re, T =1, h = 1/m, and At /h = 2/5. The boundary
condition is assumed to be inhomogeneous Dirichlet, that is, the boundary values match that of the exact
solution.

We consider an ensemble of two members, u; and uy, corresponding to two incompressible NSE
simulations with different viscosity coefficients v; and initial conditions u;o. We investigate the ensem-
ble simulations and compare it with independent simulations. For j = 1,2, we define by é’jE =uj—ujp

the approximation error of the j-th member of the ensemble simulation and by éajs =u;—ujy the ap-
proximation error of the j-th independently determined simulation. Here, the superscript “E” stands for
“ensemble” whereas “S” stands for “independent.”

CASE 1 We set the viscosity coefficient v; = 0.2 and initial condition u; o = (1 + €)u® for the first
member #; and v, = 0.3 and up 9 = (1 — e)uo for the second member u,, where € = 10~3. For this
choice of parameters, we have |v; —V|/V = % for both j =1 and j = 2 so that the condition (2.3)
is satisfied. We first apply the ensemble algorithm; results are shown in Table 1. It is seen that the
convergence rate for u#; and u, is first order.

Table 1. For the Green-Taylor vortex problem (Case 1) and for a sequence of uniform grid sizes A, errors for ensemble simulations
of two members with inputs v; = 0.2, uy 9 = (1+1073)u® and v = 0.3, up o = (1 — 1073)u".

1/h ||£1E 00,0 rate HVé”lE ll2,0 rate Hcg’fﬂm,o rate ||V(£”2E||2.,0 rate
20 1.05-1072 - 4.17-1072 - 7.36-1073 - 2.53-1072 -
40 5.86-1073 | 0.85 221-1072 | 091 3.87-1073 | 093 1.31-1072 | 0.95
80 3.10-1073 | 0.92 1.14-1072 | 0.95 2.02-1073 | 0.94 6.70-1073 | 0.97
160 1.59-1073 | 0.96 5.81-1073 | 0.97 1.03-1073 | 0.97 3.39-1073 | 0.98

We next compare the ensemble simulations with independent simulations. To this end, we perform
each NSE simulation independently using the same discretization setup. The associated approximation
errors are listed in Table 2. Comparing with Table 1, we observe that the ensemble simulation is able to
achieve accuracies close to that of the independent, more costly simulations.

Table 2. For the Green-Taylor vortex problem (Case 1) and for a sequence of uniform grid sizes &, errors in independent simula-
tions of two members with inputs v; = 0.2, u; o = (1 + 1073)u® and v, = 0.3, ur = (1— 1073)u0.

/h | 067 eo | rate || V&S0 | rate || [[63]wo | rate || [Vé3llo | rate
20 1.01-1072 - 3.88-1072 - 7.88-103 - 2.76-1072 -
40 547-1073 | 0.89 2.04-1072 | 0.93 4241073 | 0.90 1.44-1072 | 0.93
80 2.85-1073 | 0.94 1.05-1072 | 0.96 2.22-1073 | 0.93 741-1073 | 0.96
160 1.46-1073 | 097 5.30-1073 | 0.98 1.13-1073 | 0.97 3.76-1073 | 0.98

CASE 2 We now set vi =0.01 and v, = 0.49 while keeping the same initial conditions as for Case 1.
With this choice of parameters, |v; —V|/V = % for both j =1 and j = 2, which still satisfies (2.3) but
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Table 3. For the Green-Taylor vortex problem (Case 2) and for a sequence of uniform grid sizes %, errors in ensemble simulations
of two members: v; = 0.01, u9 = (14 1073)u® and v, = 0.49, up 9 = (1 — 1073)uO.

1/h [ rate [VEF o | rate 165 [les,0 rate [VEF 20 | rate
20 291102 - 2.96-107! - 3.50-1073 - 9.94.1073 -
40 1.86-1072 | 0.65 1.80-107' | 0.71 1.65-1073 1.08 4.97-1073 1
80 1.08-1072 | 0.78 1.02-10°! | 083 8.53-107% | 0.95 2521073 | 0.98
160 5.89-1073 | 0.87 546-1072 | 0.90 4321074 | 0.98 1.27-1073 | 0.98

is closer to the upper limit. The ensemble simulation errors are listed in Table 3, which shows the rate
of convergence for the second member is nearly 1 and for the first member is approaching 1.

The approximation errors for two independent simulations under using the same discretization setup
are listed in Table 4. Comparing the ensemble simulation results in Table 3 with the independent simu-
lations, we find that the accuracy of first member in the ensemble simulation degrades slightly whereas
that of the second member in the ensemble simulation improves a bit. Overall, the ensemble simulation
is able to achieve the same order of accuracy as the independent simulations.

Table 4. For the Green-Taylor vortex problem (Case 2) and for a sequence of uniform grid sizes A, errors in independent simula-
tions of two members: v; = 0.01, uj 9 = (1+ 1073)u® and vo = 0.49, up o = (1 — 1073)u®.

1/h ||é”15|\°°70 rate HVéD]SHZ,O rate H(%SHMQ rate HV@ZSHQQ rate
20 3.19-1072 - 2.95-107T - 5.49.1073 - 1.79-1072 -
40 1.67-1072 | 0.93 1.54-107! 0.93 3.03-1073 0.86 9.38-1073 | 0.94

80 8.56-1073 | 0.97 7.90-1072 | 0.97 1.59-1073 | 0.93 4.81-1073 | 0.96
160 433.1073 | 0.98 3.99-1072 | 098 8.18-107* | 0.96 2.44-1073 | 0.98

4.2 Flow between two offset cylinders

Next, we check the stability of our algorithm by considering the problem of a flow between two offset
circles (see, e.g., Jiang (2015), Jiang et al. (2014), Jiang & Layton (2015); Jiang, Kaya & Layton
(2015)). The domain is a disk with a smaller off center obstacle inside. Letting r; =1, r, = 0.1, and
c=(c1,02) = (%,O), the domain is given by

Q={(xy) : ¥+y’<rf and (x—c1)*+ (y—c2)> =13}

The flow is driven by a counterclockwise rotational body force

Flryt) = (= 6y(1 =22 —y?),6x(1 —> —y?)) |

with no-slip boundary conditions imposed on both circles. The flow between the two circles shows
interesting structures interacting with the inner circle. A Von Kdrmdn vortex street is formed behind
the inner circle and then re-interacts with that circle and with itself, generating complex flow patterns.
We consider multiple numerical simulations of the flow with different viscosity coefficients using the
ensemble-based algorithm (2.1). For spatial discretization, we apply the Taylor-Hood element pair on a
triangular mesh that is generated by Delaunay triangulation with 80 mesh points on the outer circle and
60 mesh points on the inner circle and with refinement near the inner circle, resulting in 18,638 degrees
of freedom; see Figure 1.
In order to illustrate the stability analysis, we select two different sets of viscosity coefficients for:
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FIG. 1. Mesh for the flow between two offset cylinders example.

Case I: vy =0.005, v» =0.039, v;=0.016,
Case 2: vy =0.005, v, =0.041, v3 =0.014.

Note that the viscosity coefficients in Case 2 are obtained by slightly perturbing those in Case 1. The
average of the viscosity coefficients is Vv = 0.02 for both cases. However, the stability condition (2.3) is
satisfied in the first case but is not satisfied in the second one, i.e., we have

S O [v»=Vv| _ 19 va—v| _ 1
Case 1: = —4<1, = —20<1, > —5<1,

R |
Case2: —H—=

Alw

[va—v| _ 21 lvs—v| _ 3

The second member of Case 2 has a perturbation ratio greater than 1. Simulations of both cases are
subject to the same initial condition and body forces for all ensemble members. In particular, the initial
condition is generated by solving the steady Stokes problem with viscosity v = 0.02 and the same
body force f(x,y,t). All the simulations are run over the time interval [0,5] with a time step size
At = 0.01. This time step size is smaller than the one ensuring a stable ensemble simulation in Case
1, thus condition (2.2) holds. Furthermore, the same Ar is used in Case 2. Because the viscosity
coefficients in Case 2 are slightly perturbed from those in Case 1, and Az is chosen small, we believe
condition (2.2) still holds. But condition (2.3) no longer holds. Therefore, we expect the ensemble
simulation to be unstable even when using the small time step size Ar = 0.01. For testing the stability,
we use the kinetic energy as a criterion and compare the ensemble simulation results with independent
simulations using the same mesh and time-step size.

The comparison of the energy evolution of ensemble-based simulations with the corresponding in-
dependent simulations is shown in Figures 2 and 3. It is seen that, for Case 1, the ensemble simulation is
stable, but for Case 2, it becomes unstable. This phenomena coincides with our stability analysis since
the condition (2.3) holds for all members of Case 1, but does not hold for the second member of Case
2. Indeed, it is observed from Figure 3 that the energy of the second member in Case 2 blows up after
t = 3.7, then affecting other two members and results in their energy dramatically increase after r = 4.7.
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100 ‘ ‘

__v,=0.005, Ind.

soll _v,=0.005, Ens. |
__v,=0.039, Ind.

> 601 +v2=0.039, Ens. |
Ej v,=0.016, Ind.

w 4ol v3=0.01 6, Ens. B

| [

0 0.5 1 15 2 25 3 35 4 4.5 5
Time

FIG. 2. For the flow between two offset cylinders, Case 1, the energy evolution of the ensemble (Ens.) and independent simulations
(Ind.).

100 ‘ I
v,=0.005, Ind.
sol v,=0.005, Ens. |
__ v,=0.041, Ind.
> 60/ _oV,=0.041, Ens. i
fedd
aé v,4=0.014, Ind.
i

ok

40H V3=0.014, Ens. /—/—[ N

Time

FIG. 3. For the flow between two offset cylinders, Case 2, the energy evolution of the ensemble (Ens.) and independent simulations
(Ind.).

Next, we use this test example to illustrate the necessity of ensemble simulations. Indeed, the
ensemble calculation is in great need when flow problems are under parameter uncertainty. This is
because even though one could obtain a “best estimate” of the parameter that is close enough to the true
parameter value, the corresponding individual solution may vary significantly from the true solution
due to the nonlinearity of the problems. However, the ensemble mean of the model problems at several
selected parameter samples, which are drawn from a probability distribution (usually experimentally
determined), tends to smooth out possible errors and gives better forecast than the single run using the
“best estimate” parameter value. Here, we consider a simple computational setting in which the true
viscosity v = 0.01. Due to the errors in measurements, the “best estimate” of the viscosity is 0.00995.
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Suppose the viscosity value empirically follows a uniform distribution on [0.009,0.011]. We first run
the simulation with viscosity v = 0.01 on the domain partitioned by a Delaunay triangular mesh with 80
mesh points on the outer circle and 40 mesh points on the inner circle, take the uniform time step size to
be At = 0.002, and label the output solution to be “true” as it is the numerical solution associated with
the true datum.

We then run the simulation associated to the “best estimate” v = 0.00995, and label its solution
by “best estimate”, which is to be compared with the ensemble forecast. For the latter, we draw J
(J = 16,32,64) independent, uniformly distributed samples of v from [0.009,0.011], and seek the mean
of these J simulation results by using the proposed ensemble algorithm. Time evolution of the kinetic
energy for the single “best estimate”, ensemble means of J simulations are shown in Figure 4, respec-
tively, together with that of the “true” solution. It is observed that, although the “best estimate” of v is
very close to the true value, the difference between these two solutions are relatively large. However,
the ensemble mean is able to yield more accurate forecast. The greater the number of realizations, the
better forecast that ensemble mean could achieve.

39 T
—A—true
—e—best estimate
J=16
':-::;'::;:'::’v;;.,_ J=32
T o 8eeg - - J=64

38 -

energy

37 1 1 1 1 1 1 1 1 1
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

time

FIG. 4. For the flow between two offset cylinders, comparison of “true” solution, “best estimate” solution and ensemble forecast.

Finally, we illustrate the efficiency of the proposed ensemble algorithm. To this end, we solve a
group of J flow problems using a sequence of individual simulations and one ensemble simulation,
respectively. These problems are subject to fixed initial and boundary conditions and forcing function,
but different viscosity parameter values. We then compare the efficiency of these two approaches by
considering the CPU time. Assume the viscosity parameter V; to be a random variable that distributes
uniformly on the interval [0.4,0.5]. We generate a set of J (= 2,4, 8, 16) random samples using Matlab,
partition the domain by a Delaunay triangular mesh with 80 mesh points on the outer circle and 40 mesh
points on the inner circle, and take the uniform time step size to be Az = 0.002. Both individual and
ensemble simulations are implemented by using FreeFem++ with UMFPACK, which solves the linear
system with multifrontal LU factorization. Numerical results together with the CPU time for simulations
(measured in seconds) are listed in Table 5, where ||@” (T)|| is the L, norm of the mean of the velocity
obtained by the ensemble algorithm (2.1) at the final simulation time 7 = 0.1 and ||@(T)|| is that of
individual simulations.

Define the speedup factor of the ensemble algorithm to be the ratio of execution time for the sequence
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of individual simulations to that of the ensemble simulation. It is observed that for this simple test, the
computational time for completing the sequence of individual simulations increases almost linearly as
the size of the ensemble increases, which is expected as all the work including assembly of matrices
and LU decomposition needs to be done repeatedly for each ensemble member. However, the ensemble
algorithm takes significantly less CPU time while maintaining the same accuracy. It is seen that for
J = 2, the speedup factor is 2.30; while for J = 16, the speedup factor increases to 4.81. This saving
rate will keep increasing as the size of the ensemble increases.

Table 5. Efficiency comparison between the ensemble simulations and individual simulations on a set of J parametrized NSE
flow between two offset cylinders problems at 7 = 0.1. It is observed that the ensemble algorithm outperforms the individual
simulations as the former spends less CPU times than the latter but keeps the same accuracy.

J la“(T)| | CPU(s) [@5(T)| | CPU(s)
2 1.9870 44.2404 1.9870 101.244
4 1.8674 60.9567 1.8674 199.142
8 1.8893 95.1164 1.8893 397.261
16 1.9227 164.637 1.9227 788.407

5. Conclusions

In this paper, we consider a set of Navier-Stokes simulations in which each member may be subject to a
distinct viscosity coefficient, initial conditions, and/or body forces. An ensemble algorithm is developed
for the group by which all the flow ensemble members, after discretization, share a common linear
system with different right-hand side vectors. This leads to great saving in both storage requirements and
computational costs. The stability and accuracy of the ensemble method are analyzed. Two numerical
experiments are presented. The first is for Green-Taylor flow and serves to illustrate the first-order
accuracy in time of the ensemble-based scheme. The second is for a flow between two offset cylinders
and serves to show that our stability analysis is sharp. As a next step, we will investigate higher-order
accurate schemes for the flow ensemble simulations.
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Appendices

A. Proof of Theorem 2.1

Setting v;, = u”+1 and g, = p”+1 in (2.1) and then adding two equations, we obtain
12 2 1 2 1
*II T | *II Tall”+ *Ilu"+ W pl|*+ ALh" (= Wy 50
+At||vzvu"+’||2 Ar(fiH! "+‘)—Ar((v,—V)vu';h,Vu"*‘).

’ /h Jsh

Note that V > V,,,;;, > 0. We apply Young’s inequality to the terms on the RHS and have, for Vo, § > 0,
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Next, we bound the trilinear term using the inequality (1.9) and the inverse inequality (1.7), obtaining
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— At (), — 10} =10} ) < CAL|V @l =) [V IV Gt — ) N — ”‘?,h”}
< AV, ) ||| Va2 IIM"+1 i -
Using Young’s inequality again gives
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Substituting (A.3) into (A.2) and combining like terms, we have
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Select o = 4 — =——,/11. Since a is supposed to be greater than 0, we have
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Stability follows if the following conditions hold:
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so that (A.7) holds. Together with assumption (2.2), we then have
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(A4)

(A.5)

(A.6)

(A7)

(A.8)
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so (A.8) holds. Therefore, assuming that (2.2) and (2.3) hold, (A.6) reduces to
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Summing up (A.9) fromn=0ton =N — 1 results in
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This completes the proof of stability.

B. Proof of Theorem 3.1
The weak solution of the NSE u; satisfies
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where Ryu'} € Vj is the Ritz projection of '} onto Vj defined by (V V(u7 —Rhu;?),Vvh) = 0. The

associated Ritz projection error satisfies (see, e.g., in Thomée (1997))
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& =g, i i
(jTt'h v ) (VV ]n}:l,Vvh) =+ ((VJ — V)V(M;H'l _u;!)7vvh) + ((v _ v)véﬁhﬂvvh)

+b"(u '?+1,u;!+1,vh)—b*(uh, ’;'Zl,vh) b*(u?yhfﬁz,u?’h,vh) ( V)

ntl_pn
:—(n"Atn/, ) (vVn"+1 Vvy) — ((vj—V)Vn;’,Vvh)+Intp(u;?+l;vh).



19 of 25

Setting v;, = "“ € V), and rearranging the nonlinear terms, we have
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We first bound the viscous terms on the RHS of (B.3):
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in which we note that both terms on the RHS of (B.6) need to be hidden in the LHS of the error equation
thus C; = H’viH“’ is selected to minimize the summation.

Next we analyze the nonlinear terms on the RHS of (B.3) one by one. For the first nonlinear term,
we have
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Using inequality (1.8) and Young’s inequality, we have the estimates
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Next, we bound the last two nonlinear terms on the RHS of (B.3) as follows:
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where we set o = @C’”’" and 6 = 8C°C min By Young’s inequality, (1.8), and the result (A.10) from the
stability analysis, i.e., ||u;‘hH2 < C, we also have
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For the pressure term in (B.3), because ”“ € Vj,, we have, for any ¢"*' € 0y,
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The other terms are bounded as
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Combining (B.4)-(B.19), we have
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Note that the generic constant C independent of At is used on the RHS. It, however, depends on the
geometry and mesh due to the use of inverse inequality in (B.10).

Similar to the stability analysis, we take Cy = 11—4( — ‘72—? u) = 1]—4 \/ﬁ:e (1— 4) with 0 = ﬂjg
Then, (B.20) becomes
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By the convergence condition (3.3), we have
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and by the convergence conditions (3.2) and (3.3), we have
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Summing (B.20) from n = 1 to N — 1 and multiplying both sides by Ar gives
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Using the Ritz projection error (B.2) and the result (2.4) from the stability analysis, i.e., At ¥~ ||Vu n I? <
C, we have
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By applying again the Ritz projection error (B.2) and the interpolation error (1.6), we have
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The next step is the application of the discrete Gronwall inequality (see Girault et al. (1979, p. 176)):
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Recall that ¢} = 1} + 7).

into terms of 1} and 13 j” 5 gives
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Using the triangle inequality on the error equation to split the error terms
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Applying inequality (B.25), using the previous bounds for 1 ;’ terms, and absorbing constants into a new
constant C, completes the proof of Theorem 3.1.
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