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Abstract
For a finite dimensional unital complex simple Jordan superalgebra J , the Tits–Kantor–
Koecher construction yields a 3-graded Lie superalgebra g� ∼= g�(−1) ⊕ g�(0) ⊕ g�(1),
such that g�(−1) ∼= J . Set V := g�(−1)∗ and g := g�(0). In most cases, the space P(V )

of superpolynomials on V is a completely reducible and multiplicity-free representation of
g, and there exists a direct sum decomposition P(V ) := ⊕λ∈� Vλ, where (Vλ)λ∈� is a
family of irreducible g-modules parametrized by a set of partitions�. In these cases, one can
define a natural basis (Dλ)λ∈� of “Capelli operators” for the algebraPD(V )g of g-invariant
superpolynomial differential operators on V . In this paper we complete the solution to the
Capelli eigenvalue problem, which asks for the determination of the scalar cμ(λ) by which
Dμ acts on Vλ. We associate a restricted root system Σ to the symmetric pair (g, k) that
corresponds to J , which is either a deformed root system of type A(m, n) or a root system
of type Q(n). We prove a necessary and sufficient condition on the structure of Σ forP(V )

to be completely reducible and multiplicity-free. When Σ satisfies the latter condition we
obtain an explicit formula for the eigenvalue cμ(λ), in terms of Sergeev–Veselov’s shifted
super Jack polynomials when Σ is of type A(m, n), and Okounkov-Ivanov’s factorial Schur
Q-polynomials when Σ is of type Q(n). Along the way, we prove that the natural map from
the centre of the enveloping algebra of g intoPD(V )g is surjective in all cases except when
J ∼= F, where F is the 10-dimensional exceptional Jordan superalgebra.
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1 Introduction andmain results

Let J be a finite dimensional unital complex simple Jordan superalgebra (for the classifica-
tion of these Jordan superalgebras see [3,16]). The Tits–Kantor–Koecher construction (see
Appendix A) associates1 to J a Lie superalgebra g� together with an imbedded sl2-triple
s := SpanC{h, e, f } where

[h, e] = 2e, [e, f ] = h, and [h, f ] = −2 f . (1)

Following Kac (see [3,16]), we consider the grading of g� by the eigenspaces of ad(− 1
2h).

Then we obtain a “short grading”

g� ∼= g�(−1) ⊕ g�(0) ⊕ g�(1),

where g�(−1) ∼= J and e is the identity element of J . Set g := g�(0) and k := stabg (e).
Then (g, k) is a symmetric pair, and in fact k = g� where � := Adw , for w ∈ PSL2(C)

representing the nontrivial element of the Weyl group, defined as in (55).
Set V := g�(−1)∗, where g�(−1)∗ denotes the dual of the g-module g�(−1). Let P(V )

denote the superalgebra of superpolynomials on V . Note that there is a canonical g-module
isomorphism P(V ) ∼= S(J ), where S(J ) denotes the symmetric algebra of the Z/2-graded
vector space J . In most cases (see Theorem 1.4), the g-moduleP(V ) is completely reducible
and multiplicity-free, and the irreducible summands of P(V ) are parametrized by a set of
partitions �, i.e.,

P(V ) ∼=
⊕

λ∈�

Vλ,

where the Vλ are mutually non-isomorphic irreducible finite dimensional g-modules. In these
cases, to each λ one can associate a Capelli operator2 Dλ ∈ PD(V )g, where PD(V )g

denotes the algebra of g-invariant superpolynomial differential operators on V . Indeed the
family (Dλ)λ∈� forms a basis of PD(V )g (see Remark 1.7).

From Schur’s Lemma it follows that each operator Dμ acts on Vλ by a scalar cμ(λ). The
problem of calculating this scalar (the Capelli eigenvalue problem) has a long history (see
below). In this paper we complete the solution of this problem in the super setting.

For ordinary Jordan algebras (i.e., when J1 = {0}),P(V ) is a multiplicity-free represen-
tation of the reductive Lie algebra g (see [15,26]). In this case, the solution to the Capelli
eigenvalue problem was given when Dλ corresponds to a one-dimensional representation
by B. Kostant and the first author in [18], and later in full generality by the first author in
[23]. Indeed in [23] the first author introduced a “universal” family of symmetric polyno-
mials ϕ

(ρ)
μ (x) characterized by certain vanishing properties, and depending on an auxiliary

vector ρ = (ρ1, . . . , ρn). The main result of [23] is that cμ(λ) = ϕ
(rδ)
μ (λ + rδ), such that

δ := (0,−1, . . . ,−n + 1) where n is the rank of the symmetric space (g, k) associated to
the Jordan algebra J , and r is half the multiplicity of restricted roots.

The polynomials ϕ
(rδ)
μ (x)were studied by Knop and the first author in [17] for arbitrary r ,

who proved that they satisfy a system of difference equations, which are a discrete version of
the Debiard-Sekiguchi system for Jack polynomials [8,27]. Knop and the first author deduced
that the top-degree terms of ϕ

(rδ)
μ are proportional to the Jack polynomials P(1/r)

μ . For this

1 We remark that g� is a slight modification of the simple Lie superalgebra that is constructed from J by the
Kantor functor (see Remark A.3).
2 The classical Capelli operator appears as a special case of the operators Dλ. For this reason, we call the Dλ

the Capelli operators.
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reason, the ϕ
(rδ)
μ (x) are sometimes referred to as Knop–Sahi polynomials, or shifted Jack

polynomials. The supersymmetric analogue of these polynomialswas constructed by Sergeev
andVeselov [29]. The top-degree terms of the Sergeev–Veselov polynomials SP∗

λ (x, y, θ) are
the super Jack polynomials. An analogous family of polynomials Q∗

λ(x) whose top-degree
terms are the Schur Q-polynomials was defined by Okounkov and Ivanov [14].

The study of the Capelli eigenvalue problem for Jordan superalgebras was initiated in
[24], where it was solved in the cases J ∼= gl(m, n)+ and J ∼= osp(n, 2m)+. These Jordan
superalgebras correspond to symmetric pairs of types (gl×gl, gl) and (gl, osp), respectively.
Extending the results of Kostant and Sahi to these Jordan superalgebras, in [24] the first two
authors showed that the eigenvalues of the Capelli operators are obtained by specialization of
the polynomials SP∗

μ at θ = 1, 1
2 . Later, in [1] the Capelli eigenvalue problemwas considered

for Jordan superalgebras of type q(n)+, and it was shown that the eigenvalues cμ(λ) are given
by the polynomials Q∗

μ.
In this paper, we complete the project started in [1,24], and solve the Capelli eigenvalue

problem for general unital simple Jordan superalgebras. The new phenomenon that arises in
the present setting is the occurrence of certain deformations of the root system of the Lie
superalgebra gl(r |s), studied by Sergeev and Veselov [28], which we define below.

Let r , s ≥ 0 be integers. We represent the roots of the root system A(r − 1, s − 1) by

Rr ,s := {εi − εi ′
}
1≤i 	=i ′≤r ∪ {δ j − δ j ′

}
1≤ j 	= j ′≤s ∪ {± (εi − δ j

)}
1≤i≤r ,1≤ j≤s, (2)

as a subset of the (r + s)-dimensional vector space

Er ,s := SpanR
{
εi , δ j : 1 ≤ i ≤ r , 1 ≤ j ≤ s

}
.

Fix κ ∈ R (if s > 0, we assume κ 	= 0), and let 〈·, ·〉κ be a (unique up to a scalar)
nondegenerate symmetric bilinear form on Er ,s such that

{
εi

}r
i=1 ∪ {δ j

}s
j=1 is an orthogonal

basis of Er ,s with respect to 〈·, ·〉κ that satisfies

〈εi , εi 〉κ = 〈ε j , ε j 〉κ = κ−1〈δi ′ , δi ′ 〉κ = κ−1〈δ j ′ , δ j ′ 〉κ for 1 ≤ i, j ≤ r and 1 ≤ i ′, j ′ ≤ s.

The deformed root system Aκ (r − 1, s − 1) is the subset Rr ,s of the quadratic space(
Er ,s, 〈·, ·〉κ

)
. The root multiplicities of Aκ (r − 1, s − 1) are defined to be

mult(εi − εi ′) := κ, mult(δ j − δ j ′) := κ−1, and mult(εi − δ j ) := 1. (3)

For convenience, from now on we assume that J0 	= {0}. We remark that our techniques
and results can easily be adapted to ordinary Jordan algebras, and the reason for excluding
them is that they have been dealt with in [23].

Remark 1.1 If J ∼= JP(0, n), then P2(V ) is not completely reducible. Therefore without
loss of generality, from now on we exclude the Jordan superalgebras JP(0, n).

Our next goal is to associate a set of restricted roots Σ to J . The Lie superalgebra g that
is associated to J is isomorphic to one of the types gl, gl×gl, gosp, or q×q. Throughout the
paper, we will use a standard matrix realization of g that is given in Sect. 2. In this realization,
there is a natural Cartan subalgebra h ⊆ g such that h0 is equal to the subspace of diagonal
matrices and �(h) = h. Note that h1 = {0} except when J ∼= q(n)+ for n ≥ 2.

Since �(h0) = h0, we have a direct sum decomposition

h0 = t0 ⊕ a0,
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where t0 and a0 are the +1 and −1 eigenspaces of �
∣
∣
h0
, respectively. Let Δ denote the root

system of g corresponding to h0, and set

Σ :=
{
α
∣
∣
a0

: α ∈ Δ
}

\{0}. (4)

Assume that Σ 	= ∅ (see Remark 1.3). Then according to the structure of Σ , the Jordan
superalgebras J can be divided into two classes (type A and type Q) defined below.

Jordan superalgebras of typeA

Assume that J is one of the Jordan superalgebras that appear in Table 1. Then Σ is a root
system of type A(r − 1, s − 1), where r := rJ ,+ and s := rJ ,− are given in Table 1. We
represent this root system as in (2). Furthermore, in these cases g� always has an invariant non-
degenerate supersymmetric even bilinear form (see Table 4). Fix such a bilinear form 〈·, ·〉�
on g� (the choice of the bilinear form will not matter in what follows). Then the restriction
〈·, ·〉�
∣
∣
a0×a0

is also non-degenerate, and therefore it induces an isomorphism a
0

∼= a∗
0
. Via

the latter isomorphism, 〈·, ·〉�
∣
∣
a0×a0

induces a bilinear form

〈·, ·〉J : a∗
0

× a∗
0

→ C.

For α ∈ Σ , we denote the corresponding restricted root space of g by gα . We define the
multiplicity of each α ∈ Σ to be

mult(α) := −1

2
sdim(gα),

where for anyZ/2-graded vector space E := E0⊕E1 we define sdimE := dim E0−dim E1.
The last 3 columns of Table 1 give the graded dimensions of the restricted root spaces.

One can now verify directly that Σ , considered as a subset of the quadratic space(
a∗
0
, 〈·, ·〉J

)
and equipped with the multiplicities defined above, is the deformed root sys-

tem Aκ (r − 1, s − 1). Set

θJ := −κ.

Thus, the value of θJ can be obtained from either of the two equalities

θJ = −〈δ1, δ1〉J
〈ε1, ε1〉J

and θJ = 1

2
sdim(εi − ε j ),

Table 1 Σ of Type A

J Remarks rJ ,+ rJ ,− θJ ±(εi − ε j ) ±(εi − δ j ) ±(δi − δ j )

I gl(m, n)+ m, n ≥ 1 m n 1 2|0 0|2 2|0
II osp(n, 2m)+ m, n ≥ 1 m n 1

2 1|0 0|2 4|0
III (m, 2n)+ m, n ≥ 1 2 0 m−1

2 − n m − 1|2n – –

IV Dt t 	= 0,− 1 1 1 − 1
t – 0|2 –

V F 2 1 3
2 3|0 0|2 –

123



The Capelli eigenvalue problem for Lie superalgebras 363

Table 2 Σ of Type Q

J Remarks rJ

VI p(n)+ n ≥ 2 n

VII q(n)+ n ≥ 2 n

and indeed in the cases that both of the quantities −〈δ1,δ1〉J〈ε1,ε1〉J and 1
2 sdim(εi − ε j ) are well-

defined, they are equal. The values of θJ are given in Table 1. The details of the computations
that yield the values of the parameters rJ ,+, rJ ,−, and θJ are postponed until Sect. 2.

Remark 1.2 In Case IV of Table 1, we assume that t ∈ C\{0,−1} because D0 is not simple
and D−1 ∼= gl(1, 1)+.

Jordan superalgebras of typeQ

Next assume that J is one of the Jordan superalgebras that appear in Table 2. Then Σ is a
root system of type Q(r), where r := rJ is given in Table 2. The graded dimension of all of
the restricted root spaces is (2|2).

In the following remark, (m, 2n)+ denotes the Jordan superalgebra with underlying space
C1 ⊕ E and with product a ◦ b := (a, b)E1, where E is an (m|2n)-dimensional vector
superspace equipped with a nondegenerate even supersymmetric bilinear form (·, ·)E .
Remark 1.3 The only cases for which Σ = ∅ are the Jordan superalgebras of type (0, 2n)+.
Indeed it appears that the situation for these Jordan superalgebras differs substantially from
the other cases that are considered in this paper, for the following reasons. First, the Zariski
closure of the set of highest weights that occur in P(V ) is not an affine subspace (see
Definition 1.12 and Remark 1.15), and therefore it does not seem to be natural to consider the
eigenvalues of the Dμ as a polynomial function on this Zariski closure (see Theorem 1.13).
Second, even thoughP(V ) is a completely reducible and multiplicity-free g-module (see [7,
Sec. 5.3]), the highest weights that occur inP(V ) look quite different from those that occur
in the cases J ∼= (m, 2n)+ for m > 0. In particular, the number of irreducible g-submodules
occurring in the subspacePk(V ) of homogeneous elements of degree k inP(V ) stabilizes
for k ≥ 2n. Therefore unlike the case J ∼= (m, 2n)+ for m > 0, one cannot expect a
parametrization of irreducible summands of P(V ) by hook partitions [see (5) below]. We
hope to investigate these interesting cases in the future. In the rest of this paper, we assume
that J � (0, 2n)+.

In order to state our first theorem (Theorem 1.4), we need the parametrization of the
irreducible summands of P(V ) by partitions. For this parametrization, we choose a Borel
subalgebra

b := h ⊕ n

of g satisfying g = k+b. For the precise definition of b and the embedding of k as a subalgebra
of g, see Sect. 2. The quintuples (g�, g, k, b, V ) that are associated to the Jordan superalgebras
J are also listed in Table 4.

Let P denote the set of partitions. We represent elements of P by sequences of integers
λ := (λi )

∞
i=1 such that λi ≥ λi+1 for all i ≥ 1, and λi = 0 for all sufficiently large i ∈ N. As

usual, the weight of any λ ∈ P is defined by |λ| := ∑∞
i=1 λi . A partition λ := (λi )

∞
i=1 ∈ P
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is called strict if λi > λi+1 for all i ≤ �(λ), where �(λ) := max{i : λi > 0} denotes the
length of λ. For n ≥ 0 let DP(n) be the set of strict partitions λ such that �(λ) ≤ n. For
m, n ≥ 0, letH(m, n) be the set of (m, n)-hook partitions, defined by

H(m, n) := {λ ∈ P : λm+1 ≤ n} . (5)

For d ≥ 0 set

Hd(m, n) := {λ ∈ H(m, n) : |λ| = d} and DPd(n) := {λ ∈ DP(n) : |λ| = d}.
Also, set

S(m, n) :=

⎧
⎪⎨

⎪⎩

{− a
b : a, b ∈ Z, a ≥ 1, and 1 ≤ b ≤ m − 1

}
if n = 0,

{− a
b : a, b ∈ Z, 0 ≤ a ≤ n, and b ≥ 1

}
if m = 0,

Q
≤0 otherwise.

Indeed S(m, n) is the set of admissible parameter values of the Sergeev-Veselov polynomials
(see Theorem 1.8). The first main result of this paper is the following.

Theorem 1.4 Let J be a finite dimensional unital complex simple Jordan superalgebra such
that J1 	= {0}. Further, assume that J is not isomorphic to one of the Jordan superalgebras of
types (0, 2n)+ and JP(0, n). Let g, b, and V be associated to J as above. Then the following
assertions hold.

(i) When J is of type A, the g-moduleP(V ) is completely reducible and multiplicity-free if
and only if θJ /∈ S(rJ ,+, rJ ,−).

(ii) When J is of type Q, the g-module P(V ) is completely reducible and multiplicity-free.

Furthermore, wheneverP(V ) is completely reducible and multiplicity-free, for every d ≥ 0
we have

Pd(V ) ∼=
⊕

λ∈�d

Vλ, (6)

where Vλ is the irreducible g-module with the b-highest weight λ given in Table 3, and

�d :=
{
Hd(rJ ,+, rJ ,−) if J is of type A,

DPd(rJ ) if J is of type Q.

Remark 1.5 In Table 3, we represent the b-highest weight λ as a linear combination of the
standard characters of h0, when g is realized as in Sect. 2. The standard character of the Lie
superalgebras of types gl, gosp, and q are given in Appendices B.1, B.2, and B.6 respectively.
The highest weights λstm|n and λstn that appear in Cases I and VII of Table 3 are defined in
Appendices B.1. and B.6 respectively.

Remark 1.6 We remark that several of the cases of Theorem 1.4 are already known. For J
corresponding to Cases I–III andVII of Tables 1 and 2, Theorem 1.4 can be found in [2,4,5,7].
Thus, the new cases of Theorem 1.4 are Cases IV–VI, for which the assertion is proved in
Sect. 3.

In the rest of this section we assume that the g-moduleP(V ) is completely reducible and
multiplicity-free. Set

� :=
⋃

d≥0

�d .
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The Capelli eigenvalue problem for Lie superalgebras 365

Then from (6) it follows that

PD(V )g ∼= (P(V ) ⊗ S(V ))g ∼=
⊕

λ,μ∈�

(
Vλ ⊗ V ∗

μ

)g ∼=
⊕

λ,μ∈�

Homg(Vμ, Vλ). (7)

For λ ∈ �, let Dλ be the element ofPD(V )g that corresponds to idVλ ∈ Homg(Vλ, Vλ) via
the isomorphism (7).

Remark 1.7 The family (Dλ)λ∈� forms a basis ofPD(V )g. This is because Vλ is of typeM
in the sense of [6, Sec. 3.1.2], that is, Vλ is irreducible as an ungraded module. In particular,
there is no odd g-intertwining map Vλ → Vλ. For Cases I–VI, this property of Vλ is an
immediate consequence of highest weight theory for Lie superalgebras of types gl and osp,
and for Case VII, it is verified in [1, Sec. 3.1].

Our secondmain result (Theorem 1.13) yields an explicit formula for the eigenvalue cμ(λ)

of Dμ on Vλ. Before we state Theorem 1.13, we need to recall the definitions of the shifted
super Jack polynomials of Sergeev and Veselov [29], and the factorial Schur Q-polynomials
of Okounkov and Ivanov [14].

Form, n ≥ 0 letPm,n denote theC-algebra of polynomials inm+n variables x1, . . . , xm
and y1, . . . , yn . Fix θ ∈ C (if n > 0, we assume θ 	= 0). Let �

�
m,n,θ ⊆ Pm,n be the

subalgebra of polynomials f (x, y)with complex coefficientswhich are separately symmetric
in x := (x1, . . . , xm) and in y := (y1, . . . , yn), and which satisfy the relation

f
(
x + 1

2ei , y − 1
2e j
) = f

(
x − 1

2ei , y + 1
2e j
)

on every hyperplane xi +θ y j = 0, where 1 ≤ i ≤ m and 1 ≤ j ≤ n. Given any λ ∈ H(m, n),
as in [29, Sec. 6] for 1 ≤ i ≤ m and 1 ≤ j ≤ n we define

pi (λ) : = λi − θ
(
i − 1

2

)− 1
2 (n − θm) and

q j (λ) : = 〈λ′
j − m〉 − θ−1

(
j − 1

2

)+ 1
2

(
θ−1n + m

)
, (8)

where λ′ denotes the transpose of λ, and

〈x〉 := max{x, 0} for x ∈ R.

The (m + n)-tuple (p(λ),q(λ)), where p(λ) := (p1(λ), . . . ,pm(λ)) and q(λ) :=
(q1(λ), . . . ,qn(λ)), is called the Frobenius coordinates of λ. The following theorem charac-
terizes shifted super Jack polynomials by their degree, symmetry, and vanishing properties.

Theorem 1.8 (Sergeev–Veselov [29, Thm 3], Knop–Sahi [17, Sec. 2]) Let m, n ≥ 0 be
integers and let θ be a complex number such that θ /∈ S(m, n). Then for each λ ∈ H(m, n),
there exists a unique polynomial SP∗

λ ∈ �
�
m,n,θ that satisfies the following properties.

(i) deg(SP∗
λ ) ≤ |λ|, where deg(SP∗

λ ) denotes the total degree of SP∗
λ in x and y.

(ii) SP∗
λ (p(μ), q(μ), θ) = 0 for all μ ∈ H(m, n) such that |μ| ≤ |λ| and μ 	= λ.

(iii) SP∗
λ (p(λ), q(λ), θ) = Hθ (λ), where

Hθ (λ) :=
∏

1≤i≤�(λ)

∏

1≤ j≤λi

(λi − j + θ(λ′
j − i) + 1).

Furthermore, the family of polynomials
(
SP∗

λ (x, y, θ)
)
λ∈H(m,n)

is a basis of ��
m,n,θ .
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Remark 1.9 For m, n > 0, Theorem 1.8 is proved in [29]. If either m = 0 or n = 0, then up
to scaling the SP∗

λ are the same as the interpolation polynomials Pρ
λ defined by Knop and

Sahi [17]. Given k ∈ N and α ∈ C, set ρk,α := (ρ1, . . . , ρk) where ρi := α
2 (k − 2i + 1)

for 1 ≤ i ≤ k. If n = 0 then SP∗
λ (x, θ) = Pρ

λ for ρ := ρm,θ , and if m = 0 then

SP∗
λ (y, θ) = Hθ (λ)

H
θ−1 (λ′) P

ρ

λ′ for ρ := ρ
n,θ−1 .

Next we state the characterization of factorial Schur Q-polynomials by their degree, sym-
metry and vanishing properties. For n ∈ N, let Pn denote the C-algebra of polynomials in
n variables x1, . . . , xn . Further, let �n ⊆ Pn be the subalgebra of symmetric polynomials
f (x1, . . . , xn) such that f (t,−t, x3, . . . , xn) is independent of t (for n = 1 the latter condi-
tion is vacuous). In Theorem 1.10, for λ ∈ DP(n)we define λ! :=∏1≤i≤�(λ) λi ! and identify
λ with the n-tuple (λ1, . . . , λn) ∈ C

n .

Theorem 1.10 (Ivanov [14, Sec. 1]) For every λ ∈ DP(n), there exists a unique polynomial
Q∗

λ ∈ �n which satisfies the following properties.

(i) deg(Q∗
λ) ≤ |λ|.

(ii) Q∗
λ(μ) = 0 for all μ ∈ DP(n) such that |μ| ≤ |λ| and μ 	= λ.

(iii) Q∗
λ(λ) = H(λ), where H(λ) := λ!∏1≤i< j≤�(λ)

λi+λ j
λi−λ j

.

Furthermore, the family of polynomials
(
Q∗

λ

)
λ∈DP(n)

is a basis of �n.

Set

�J :=
{

�
�
rJ ,+,rJ ,−,θJ

if J is of type A,

�rJ if J is of type Q.
and PJ :=

{
PrJ ,+,rJ ,− if J is of type A,

PrJ if J is of type Q.
(9)

There is a natural embedding of �J as a subalgebra of PJ .

Definition 1.11 For λ ∈ �, we define PJ ,λ ∈ �J as follows. When J is of type A we set

PJ ,λ := |λ|!
HθJ (λ)

SP∗
λ (x, y, θJ ),

where x := (x1, . . . , xrJ ,+
)
and y := (y1, . . . , yrJ ,−

)
. When J is of type Q we set

PJ ,λ := |λ|!
H(λ)

Q∗
λ(x),

where x := (x1, . . . , xrJ
)
.

Recall that for λ ∈ �, we denote the b-highest weight of the irreducible g-module Vλ by
λ.

Definition 1.12 We define a∗
� to be the Zariski closure of the set

{
λ : λ ∈ �

}
in h∗

0
.

By a straightforward calculation using the explicit description of the b-highest weights given
in Table 3, one can verify that a∗

� is a linear subspace of h∗
0
(see the proof of Proposition 4.2).

Set

nJ :=
{
rJ ,+ + rJ ,− if J is of type A,

rJ if J is of type Q.
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The Capelli eigenvalue problem for Lie superalgebras 367

Table 3 The b-highest weights λ and the affine maps τJ

λ τJ

I (−λstm|n) ⊕ λstm|n μa,b �→∑m
i=1

(
ai + m−2i+1−n

2

)
ei +

∑n
j=1

(
b j + m−2 j+1+n

2

)
em+ j

II −∑m
i=1 2λi εi −

∑n
j=1〈λ′

j − m〉(δ2 j−1 + δ2 j )

μa,b �→∑m
i=1

(
− 1

2 ai + m+1−2n−2i
4

)
ei +

∑n
j=1

(
−b j + m+2+2n−4 j

2

)
em+ j

III (λ1 − λ2)ε1 + (λ1 + λ2)ζ μa,b �→
(
1
2 (a + b) + 1

4 (m − 2n − 1)
)
e1+

(
1
2 (b − a) − 1

4 (m − 2n − 1)
)
e2

IV
((

3+t
1+t

)
|λ| − 2λ1

)
ε1 +

(
λ1 −
(
2+t
1+t

)
|λ|
)

(δ1 + δ2)

μa,b �→
(
− 2+t

1+t a − 3+t
1+t b − 1

2

)
e1 +

(
1

1+t a − 3+t
1+t b + 5+t

1+t

)
e2

V (3|λ| − 2λ1 − 2λ2) ε1 +
(λ1 − λ2) (δ1 + δ2) + |λ|ζ

μa,b,c �→
(−a+2b+3c+1

4

)
e1 +

(−a−2b+3c−5
4

)
e2 +
(
a−c+2

2

)
e3

VI −∑n
i=1 λi εi −∑n

j=1 λ j δ j μa �→ −∑n
i=1 aiei

VII (−λstn ) ⊕ λstn μa �→∑n
i=1 aiei

Let

τJ : a∗
� → C

nJ (10)

be the affine linear map given in Table 3, where the elements of a∗
� are given in Cases I–VII

by (30), (31), (32), (33), (38), (35), and (37) respectively, and the standard basis of C
nJ

is denoted by e1, . . . , enJ . We identify PJ with the algebra of polynomials on C
nJ in the

natural way. Namely, for v := (v1, . . . , vnJ ) ∈ C
nJ , we identify the xi ∈ PJ with the maps

v �→ vi and the y j (if they exist) with the maps v �→ v j+rJ ,+ . The second main result of this
paper is the following.

Theorem 1.13 Let J , g, b, and V be as in Theorem 1.4. Assume that P(V ) is a completely
reducible and multiplicity-free g-module. Then for every λ,μ ∈ �, the operator Dμ acts on
Vλ by the scalar PJ ,μ

(
τJ
(
λ
))
, where PJ ,μ is as in Definition 1.11, and λ is the b-highest

weight of Vλ, given in Table 3.

Remark 1.14 Theorem 1.13 is proved in [24] for Cases I–II, and in [1] for Case VII. We
give a uniform proof for Cases I–IV and and VI in Sects. 4 and 5 (see Proposition 5.2(iii)).
With minor modifications, this strategy also works for Case VII. However, this uniform proof
strategy does not work in Case V. In the latter case we prove Theorem 1.13 in Sect. 6 by a
different method.

Remark 1.15 If J ∼= (0, 2n)+, thenP(V ) is completely reducible and multiplicity-free, but
the Zariski closure of the set of highest weights is a union of n + 1 lines. Therefore it is not
possible to give a natural formulation of Theorem 1.13.

Remark 1.16 In Case VII, the operators Dλ are closely related to certain operators Iλ that are
constructed by Nazarov [21, Eq. (4.7)] using characters of the Sergeev algebra. Nazarov also
defined certain explicit “Capelli” elements in the centre of the enveloping algebra of q(n),
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and proved [21, Cor. 4.6] that their images under the left action of q(n) on V are the Iλ. The
precise connection between the Dλ and Nazarov’s operators is determined in [1, Prop. 3.6].

The reason why the uniform proof of Theorem 1.13 fails for Case V is a property of the
image of the Harish-Chandra homomorphism which is of independent interest. We denote
the universal enveloping algebra of g by U(g). The g-action on V induces a homomorphism
of associative superalgebras

j : U(g) → PD(V ). (11)

Let
(
U(i)(g)

)
i≥0 denote the standard filtration of U(g). Let Z(g) ⊆ U(g) be the centre of

U(g), and set Z(i)(g) := Z(g) ∩ U(i)(g) for i ≥ 0. Let

HC : U(g) → S(h) ∼= P(h∗) (12)

be the Harish-Chandra projection corresponding to the triangular decomposition g = n− ⊕
h⊕n, where n− is the nilpotent subalgebra of g opposite to n. Thus for D ∈ U(g) we define

HC(D) := Dh,

where D = Dh + D′ is the unique way of expressing D as a sum of two elements Dh ∈
U(h) ∼= S(h) and D′ ∈ (U(g)n + n−U(g)

)
. Let

res : P(h∗) → P(a∗
�) (13)

denote the canonical restriction map, and let

τ ∗
J : PJ → P(a∗

�) (14)

be the pullback of the map τJ defined in (10), that is, τ ∗
J (p) := p ◦ τJ for p ∈ PJ . We

denote the degree filtration of the algebraPJ defined in (9) by
(
P

(i)
J

)

i≥0
. In the following

theorem, whichwill be proved in Sect. 4, we denote the exceptional (6|4)-dimensional Jordan
superalgebra by F.

Theorem 1.17 Let J be as in Theorem 1.4. Assume that P(V ) is completely reducible and

multiplicity-free. If J � F, then res
(
HC
(
Z(i)(g)

)) = τ ∗
J

(
�

(i)
J

)
for i ≥ 0, where �

(i)
J :=

�J ∩ P
(i)
J . If J ∼= F, then res (HC (Z(g))) � τ ∗

J

(
�J

)
.

Since the map j : U(g) → PD(V ) is g-equivariant, we have j(Z(g)) ⊆ PD(V )g.

Corollary 1.18 Let J be as in Theorem 1.4. Assume that P(V ) is completely reducible and
multiplicity-free. If J � F, then j(Z(g)) = PD(V )g. If J ∼= F, then j(Z(g)) � PD(V )g.

This phenomenon already occurs in the non-super case [10,12]. Corollary 1.18 follows
from Propositions 5.2(ii) and 5.3.

Remark 1.19 Weingart [30] computes the eigenvalues of a basis of invariant operators cor-
responding to the action of gl(n) on �(S2(Cn)) and �(�2(Cn)). These multiplicity-free
representations arise naturally from the action of the even part of the Lie superalgebra p(n)

on its odd part. We will study similar actions in a forthcoming paper.

123



The Capelli eigenvalue problem for Lie superalgebras 369

2 Realizations of g, k, b, V , and 6

In this section we describe explicit embeddings of b and k in g. We have the following three
possibilities for g.

(i) g ∼= gl(r |s) or g ∼= gl(r |s) ⊕ gl(r |s) for some r , s ∈ N.
(ii) g ∼= gosp(r |2s) for some r , s ∈ N.
(iii) g ∼= q(r) ⊕ q(r) for some r ≥ 2.

In each of the cases (i)–(iii) above, we consider the standard matrix realization of g (or its
direct summands) as given in Appendices B.1, B.2, and B.6, respectively. The embedding
g ↪→ g� is determined uniquely by the semisimple element h given below. We identify k and
b as subalgebras of this realization of g. We also give an explicit description of Σ . In what
follows, diag(X1, . . . , Xn) denotes the block diagonal matrix formed by X1, . . . , Xn .

Case I. The matrix realization of g� ∼= gl(2m|2n) is as in Appendix B.1. We set

h := diag(−Im×m, Im×m,−In×n, In×n).

The matrix realization of g ∼= gl(m|n) ⊕ gl(m|n) is as in Appendix B.1, and the embedding
g ↪→ g� is given by

([
A B
C D

]

,

[
A′ B ′
C ′ D′
])

�→

⎡

⎢
⎢
⎣

A 0m×m B 0m×n

0m×m A′ 0m×n B ′
C 0n×m D 0n×n

0n×m C ′ 0n×n D′

⎤

⎥
⎥
⎦ .

Invariant supersymmetric even bilinear forms on g� are of the form

〈x, y〉 := α1str(xy) + α2str(x)str(y) for α1, α2 ∈ C.

The realization of a0 as a subalgebra of g
� is

a0 := {diag(d1,−d1,d2,−d2) : d1 ∈ C
m and d2 ∈ C

n} .

Note that the bilinear map (x, y) �→ str(x)str(y) vanishes on a0, and therefore without loss
of generality we can choose the invariant form 〈x, y〉� to be 〈x, y〉� := str(xy). Then Σ

is a root system of type A(m − 1, n − 1) for the choice of εi := εi
∣
∣
a0

and δ j := δ j
∣
∣
a0
,

where {εi }mi=1 ∪ {δ j }nj=1 are the standard characters of the Cartan subalgebra hm|n of the left
gl(m|n) summand of g, defined in (57). By a direct calculation we obtain 〈εi , ε j 〉J = 1

2 δi, j

and 〈δi , δ j 〉J = − 1
2 δi, j , so that θJ = 1.

The embedding of k ∼= gl(m|n) in g is the diagonal map x �→ x ⊕ x . We set b :=
b
op
m|n ⊕ bstm|n ⊆ g, where bstm|n and b

op
m|n are defined in Appendix B.1.

Case II. The matrix realization of g� ∼= osp(4n|2m) is as in Appendix B.2. We set

h := diag (−I2n×2n, I2n×2n,−Im×m, Im×m) .

The matrix realization of g ∼= gl(m|2n) is as in Appendix B.1, and the embedding g ↪→ g�

is given by

[
A B
C D

]

�→

⎡

⎢
⎢
⎣

D 02n×2n C 02n×m

02n×2n −DT 02n×m BT

B 0m×2n A 0m×m

0m×2n −CT 0m×m −AT

⎤

⎥
⎥
⎦ .

123



370 S. Sahi et al.

We set 〈x, y〉� := str(xy). The realization of a0 as a subalgebra of g
� is

a0 =
{
diag (d, −d, a, −a) : d ∈ C

m , a := (a1, . . . , a2n) ∈ C
2n, a2i−1 = a2i for 1 ≤ i ≤ n

}
,

and thus Σ is a root system of type A(m − 1, n − 1) with εi := εi
∣
∣
a0
, 1 ≤ i ≤ m, and

δ j := δ2 j−1
∣
∣
a0
, 1 ≤ j ≤ n, where {εi }mi=1 ∪ {δ j }2nj=1 are the standard characters of the

Cartan subalgebra hm|2n ⊆ gl(m|2n), defined in (57). By a direct calculation we obtain
〈εi , ε j 〉J = − 1

2 δi, j and 〈δi , δ j 〉J = 1
4δi, j , so that θJ = 1

2 .

The embedding of k ∼= osp(m|2n) in g is as in Appendix B.3. We set b := b
op
m|2n , where

b
op
m|2n is defined in Appendix B.1.

Case III. Set k := �m+1
2 �. The realization of g� ∼= osp(m + 3|2n) is as in Appendix B.2. We

set

h :=
{
diag(−2, 0k×k, 2, 0k×k, 02n×2n) if m + 1 = 2k,

diag(0,−2, 0k×k, 2, 0k×k, 02n×2n) if m + 1 = 2k + 1.

The realization of g ∼= gosp(m + 1|2n) is as in Appendix B.2. Let {εi }ki=1 ∪ {δ j }nj=1 ∪ {ζ }
be the standard characters of the Cartan subalgebra h̃m+1,n of g. Then

a0 =
k⋂

i=2

ker(εi ) ∩
n⋂

j=1

ker(δ j ),

and thus Σ =
{
ε1
∣
∣
a0

}
. We consider Σ as a root system of type A(1,−1), where ε1 − ε2 :=

ε1
∣
∣
a0

(the choice of ε1 and ε2 does not matter). Since there are no δ j ’s, the value of θJ is

obtained only from the superdimension of ε1 − ε2.
Similar to Appendix B.2, let {ei }m+1

i=1 ∪ {e′
j }2nj=1 denote the natural homogeneous basis of

the standard g-moduleC
m+1|n . Then k ∼= osp(m|2n) is the subalgebra of g ∼= gosp(m+1|2n)

given by

k :=
{
Stabg(e1 − ek+1) if m + 1 = 2k,

Stabg(e2 − ek+2) if m + 1 = 2k + 1.

The Borel subalgebra b := bm+1|2n is defined in (59).

Case IV. The Lie superalgebra g� is isomorphic to Scheunert’s Lie superalgebra
�(−t,−1, 1 + t) (see [25, Example I.1.5]). The realization of g ∼= gl(1|2) is as in
Appendix B.1, and the embedding of k ∼= osp(1|2) in g ∼= gl(1|2) is as in Appendix B.3. The
Borel subalgebra b := b

op
1|2 is defined in Appendix B.1.

To identify Σ and compute the value of θJ , we need the explicit realization of the root
system of g�. To distinguish the root systems of g� and g, we denote the root system of g� by
Δ� := Δ

�

0
� Δ

�

1
where

Δ
�

0
:= {±2ε̃1,±2ε̃2,±2ε̃3} and Δ

�

1
:= {±ε̃1 ± ε̃2 ± ε̃3} .

Let (·, ·)′� denote the bilinear form induced on SpanC{ε̃i : 1 ≤ i ≤ 3} by the invariant form
(·, ·)�. As usual, we choose (·, ·)� such that the ε̃i ’s are orthogonal with respect to (·, ·)′� and
we have (ε̃1, ε̃1)

′
� = −t , (ε̃2, ε̃2)′� = −1, and (ε̃3, ε̃3)

′
� = 1+ t . Let {hi }3i=1 be a basis for the

123



The Capelli eigenvalue problem for Lie superalgebras 371

Cartan subalgebra of g� that is dual to the ε̃i ’s, i.e., ε̃i (h j ) = δi, j . Then h := h1 + h2 and
therefore the fundamental roots of Δ are ε1 − δ1 := ε̃1 − ε̃2 − ε̃3

∣
∣
h
and δ1 − δ2 := 2ε̃3

∣
∣
h
,

where h denotes the diagonal Cartan subalgebra of g. It follows that a0 = SpanC{h1, h2}, and
therefore Σ has only one odd root, hence it is of type A(0, 0). If we choose ε1 := ε̃1

∣
∣
a0

then

it follows that we should have δ1 = ε̃2
∣
∣
a0
, and by a straightforward calculation we obtain

〈ε1, ε1〉J = −t and 〈δ1, δ1〉J = −1, so that θJ = − 1
t .

Case V. The embedding of k := kex ∼= osp(1|2) ⊕ osp(1|2) in g ∼= gosp(2|4) is defined in
Appendix B.4. The Borel subalgebra b := bex2|4 is defined in (60).

As inCase IV,we let (·, ·)′� be the bilinear form induced on the dual of theCartan subalgebra

of g� by the invariant form (·, ·)� of g�. The root system Δ� := Δ
�

0
� Δ

�

1
of g� is

Δ
�

0
:= {±ε̃i ± ε̃ j

}
1≤i< j≤3 ∪ {± ε̃i

}3
i=1 ∪ {δ̃} and Δ

�

1
:=
{
1
2

(± ε̃1 ± ε̃2 ± ε̃3 ± δ̃
)}

,

such that (ε̃i , ε̃ j )
′
� = δi, j , (δ̃, δ̃)′� = −3, and (ε̃i , δ̃)

′
� = 0. Let

{
h ε̃i

}3
i=1 ∪{h δ̃

}
be a basis dual

to {ε̃i }3i=1 ∪ {δ̃} for the Cartan subalgebra of g�. We set h := h ε̃1 + h δ̃ . Then the fundamental
roots of Δ are

ε1 − δ1 := 1
2 (δ̃ − ε̃1 − ε̃2 − ε̃3)

∣
∣
h
, δ1 − δ2 := ε̃3

∣
∣
h
, and 2δ2 := (ε̃2 − ε̃3)

∣
∣
h
.

From the description of k it follows that δ1 − δ2 is a root of k, hence δ1 − δ2
∣
∣
a

= 0. Conse-
quently,

a0 = SpanC
{
h δ̃ , h ε̃1 , h ε̃2

}
.

One can now verify that Σ is a root system of type A(1, 0), with fundamental roots

ε1 − ε2 := ε̃2
∣
∣
a0

and ε2 − δ1 := 1
2 (δ̃ − ε̃1 − ε̃2 − ε̃3)

∣
∣
a0

.

We can determine the value of θJ without making a choice for the εi and the δ j , as follows.
First note that ε1 − ε2 = ε̃2

∣
∣
a
, so that

〈ε1 − ε2, ε1 − ε2〉J = (ε̃2, ε̃2)� = 1. (15)

Since Σ is assumed to be a Sergeev–Veselov deformed root system, in particular we should
have 〈ε1, ε1〉J = 〈ε2, ε2〉J and 〈ε1, ε2〉J = 0. Thus from (15) it follows that 〈ε1, ε1〉J = 1

2 .
Similarly, ε1 − δ1 = 1

2 (δ̃ − ε̃1 + ε̃2)
∣
∣
a0
, so that

〈ε1, ε1〉J + 〈δ1, δ1〉J = 〈ε1 − δ1, ε1 − δ1〉J = 1
4 (δ̃ − ε̃1 + ε̃2, δ̃ − ε̃1 + ε̃2)� = − 1

4 .

Consequently, 〈δ1, δ1〉J = − 1
4 −〈ε1, ε1〉J = − 3

4 . From the values of 〈ε1, ε1〉J and 〈δ1, δ1〉J
we obtain θJ = 3

2 .

Case VI. The realization of g� ∼= p(2n) is as in Appendix B.5. We set

h := diag(−In×n, In×n, In×n − In×n).

The realization of g ∼= gl(n|n) is as in Appendix B.1, and the embedding g ↪→ g� is given
by the map

[
A B
C D

]

�→

⎡

⎢
⎢
⎣

A 0n×n 0n×n B
0n×n −DT BT 0n×n

0n×n −CT −AT 0n×n

C 0n×n 0n×n D

⎤

⎥
⎥
⎦ .
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Table 4 The quintuples (g�, g, k, b, V )

g� g k b V

I gl(2m|2n) gl(m|n) ⊕ gl(m|n) gl(m|n) b
op
m|n ⊕ bstm|n C

m|n ⊗ (Cm|n)∗

II osp(4n|2m) gl(m|2n) osp(m|2n) b
op
m|2n S2(Cm|2n)

III osp(m + 3|2n) gosp(m + 1|2n) osp(m|2n) bm+1|2n (Cm+1|2n)∗

IV D(2|1, t) gl(1|2) osp(1|2) b
op
1|2

(
− 3+t

1+t

)
ε1 +

(
2+t
1+t

)
(δ1 + δ2)

V F(3|1) gosp(2|4) osp(1|2) ⊕ osp(1|2) bex2|4 −3ε1 − ζ

VI p(2n) gl(n|n) p(n) bmx
n|n �(�2(Cn|n))

VII q(2n) q(n) ⊕ q(n) q(n) b
op
n ⊕ bstn (Cn|n ⊗ (Cn|n)∗)�⊗�

The realization of a0 as a subalgebra of g
� is

a0 := {diag(a,−d,−a,d) : a,d ∈ C
n} ,

and Σ is a root system of type Q(n). The embedding of k ∼= p(n) in g ∼= gl(n|n) is given in
Appendix B.5. The Borel subalgebra b := bmx

n|n is defined in Appendix B.1.

Case VII. The matrix realization of g� ∼= q(2n) is as in Appendix B.6. The embedding of
g ∼= q(n) ⊕ q(n) in g� is the restriction of the one given in Case I. The subalgebra a0 is the
intersection with g of the one given in Case I. The embedding of k ∼= q(n) in g ∼= q(n)⊕q(n)

is also the restriction of the diagonal map x �→ x ⊕ x . We set b := b
op
n ⊕ bstn , where b

st
n and

b
op
n are defined in Appendix B.6.
We summarize the descriptions of g�, g, k, and b in Table 4. In addition, in the last column

of Table 4 we give an explicit realization of V for Cases I–III and VI–VII, and the b-highest
weight of V for Cases IV and V. The symbol � in Cases VI and VII of Table 4 is the parity
reversal functor, so that

((Cn|n)∗ ⊗ C
n|n)�⊗� :=

{
v ∈ ((Cn|n)∗ ⊗ C

n|n) : (� ⊗ �)(v) = v
}

.

3 Proof of Theorem 1.4

In this section we prove Theorem 1.4. Recall that by Remark 1.6, we will only need to
consider Cases IV–VI. We address each case separately.

3.1 Case IV

Recall that in this case g ∼= gl(1|2). Let bst1|2 be the Borel subgroup of g defined as in
Appendix B.1. The next proposition implies Theorem 1.4 in Case IV.

Proposition 3.1 Assume that J ∼= Dt for t 	= 0,−1. Then P(V ) is multiplicity-free if and
only if − 1

t /∈ Q
≤0. If the latter condition holds, then for every d ≥ 1 we have

Pd(V ) ∼=
d⊕

k=1

Vηk ,
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where Vηk is the irreducible g-module with b-highest weight

ηk :=
(

d

(
3 + t

1 + t

)

− 2k

)

ε1 +
(

−d

(
2 + t

1 + t

)

+ k

)

(δ1 + δ2).

Proof By the g-module isomorphismPd(V ) ∼= Sd(V ∗) it is enough to prove the analogous
statement for Sd(V ∗). The bst1|2-highest weight of V ∗ is

η :=
(
3 + t

1 + t

)

ε1 −
(
2 + t

1 + t

)

(δ1 + δ2).

For every μ := x1ε1 + y1δ1 + y2δ2 ∈ h∗
0
such that y1 − y2 ∈ Z

≥0, we denote the

irreducible finite dimensional g
0
-module with (bst1|2 ∩ g

0
)-highest weight μ by Mμ. Let

K (μ) := Indg
bst1|2

Mμ be the corresponding Kac module. As a g
0
-module, K (μ)1 is isomor-

phic to Mμ ⊗ M−ε1+δ1 . Therefore

K (μ)1
∼=
{
Mμ−ε1+δ1 if y1 = y2,

Mμ−ε1+δ1 ⊕ Mμ−ε1+δ2 if y1 > y2.
(16)

Furthermore, μ is a typical bst1|2-highest weight if and only if x1 + y1 	= 0 and x1 + y2 	= 1.
Since η is typical, we have V ∗ ∼= K (η). Let F denote the category of finite dimensional

h-weight modules of g. Typicality of η implies that V ∗ is projective in F. Consequently, the
tensor product of V ∗ and any object of F is also projective (the proof of the latter statement
is similar to [13, Prop. 3.8(b)]). It follows that Sd(V ∗), which is a submodule of (V ∗)⊗d , is
also projective, and therefore it has a filtration by Kac modules (see [31, Prop. 2.5]).

Set γ := η−2ε1+δ1+δ2 and γk := dη−(2k+1)ε1+(k+1)δ1+kδ2 for 0 ≤ k ≤ d−1.
Then we have an isomorphism of g

0
-modules

Sd(V ∗)1 ∼= Sd−1(V ∗
0
) ⊗ V ∗

1

∼= Sd−1 (Mγ ⊕ Mη

)⊗ Mη−ε1+δ1
∼=

d−1⊕

k=0

Mkγ+(d−k−1)η ⊗ Mη−ε1+δ1
∼=

d−1⊕

k=0

Mγk .

(17)

By comparing (17) with (16), it follows that the Kac-module filtration of Sd(V ∗) consists
of exactly one copy of each of the modules K (γk + ε1 − δ1). If γk + ε1 − δ1 is atypical for
some k, then Sd(V ∗) cannot be completely reducible because the subquotient K (γk+ε1−δ1)

is reducible but indecomposable. Thus, a necessary condition for complete reducibility of
Sd(V ∗) is that γk + ε1 − δ1 is typical for every 0 ≤ k ≤ d − 1. But the latter necessary
condition is also sufficient because typical modules always split off as direct summands.

Next we determine when all of the γk + ε1 − δ1 are typical. Note that for 0 ≤ k ≤ d − 1,

γk + ε1 − δ1 =
(

d

(
3 + t

1 + t

)

− 2k

)

ε1 +
(

−d

(
2 + t

1 + t

)

+ k

)

(δ1 + δ2).

Therefore γk + ε1 − δ1 is typical for all 0 ≤ k ≤ d − 1 if and only if d
1+t /∈ {0, . . . , d}. It

follows that S(V ∗) is completely reducible if and only if 1
1+t /∈ {x ∈ Q : 0 ≤ x ≤ 1}. Since

t 	= 0, the latter condition can be expressed as − 1
t /∈ Q

≤0.
Finally, using the fact that b is obtained from bst1|2 by the composition

sδ1−δ2 ◦ sε1−δ2 ◦ sε1−δ1
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of even and odd reflections, it is straightforward to verify that the b-highest weight of K (γk +
ε1 − δ1) is ηk+1 (see [6, Lem 1.40]). ��

3.2 Case V

For d ≥ 0 we have a g-module isomorphism Pd(V ) ∼= Sd(V ∗). The weights of V ∗
0
are

{ε1 + ζ, ε1 ± δ1 ± δ2 + ζ, 3ε1 + ζ } and the weights of V ∗
1
are {2ε1 ± δ1 + ζ, 2ε1 ± δ2 + ζ }.

Let b := bex2|4 and b2|4 be the Borel subalgebras that are chosen in Appendix B.2. Then b
can be obtained from b2|4 by applying the sequence of odd reflections

rε1+δ1 ◦ rε1+δ2 ◦ rε1−δ2 ◦ rε1−δ1 . (18)

Let u be a b-highest weight vector of V ∗. Then u has weight ε1 + δ1 + δ2 + ζ . Also, let w be
a b2|4-highest weight vector of V ∗. Then the weight ofw is 3ε1, hencew ∈ V ∗

0
and therefore

wk for k ≥ 2 is a b2|4-highest weight vector in Sk(V ∗) of weight 3kε1. For s ≥ 2, we set

ws := e−ε1−δ1(e−ε1−δ2(e−ε1+δ2(e−ε1+δ1(w
s)))),

where the e−ε1±δi denote root vectors of g.

Lemma 3.2 For s ≥ 2, the vector ws is a typical b-highest weight, whose weight is
(3s − 4)ε1 + sζ . In addition, w2 ∈ S2(V ∗

0
).

Proof It is straightforward to verify that 3sε1 + sζ is a typical b2|4-highest weight. From the
relation between b and b2|4 via odd reflections given in (18), it follows that the b-highest
weight vector of the irreducible summand of Ss(V ∗) generated by ws is ws (see [6, Lem.
1.40]).
Since the (2ε1 + 2ζ )-weight space of S2(V ∗) is indeed a subspace of S2(V ∗

0
), we obtain

w2 ∈ S2(V ∗
0
). ��

Definition 3.3 LetWd denote the set of b-highest weight vectors given in (i) and (ii) below.

(i) Vectors of the form uq(w2)
rws for integers q, r , s that satisfy q, r ≥ 0, s ≥ 2, and

d + 2r + s = d . Note that uq(w2)
rws 	= 0 since u, w2 ∈ S(V ∗

0
). The weight of

uq(w2)
rws is equal to

(d + 2s − 4)ε1 + (d − 2r − s) (δ1 + δ2) + dζ. (19)

(ii) The vector ud , whose weight is dε1 + dδ1 + dδ2 + dζ .

We denote the set of weights of the vectors inWd by Ed .
Let m be the image of the unique embedding ι : sp(4) → g0. For every μ := y1δ1 + y2δ2
such that y1 ≥ y2, let M(μ) denote the irreducible m-module with b ∩ m-highest weight μ.

Lemma 3.4 Let W be the irreducible g-module with b-highest weight dε1 +dδ1 +dδ2 +dζ ,
for d ≥ 1. Then both M

(
dδ1 + dδ2) and M

(
(d − 1)δ1 + (d − 1)δ2

)
occur as m-submodules

of W0.

Proof The m-submodule of W that is generated by the b-highest weight of W is isomorphic
to M
(
dδ1+dδ2). From [6, Lem. 1.40] and the relation between b and b2|4 via odd reflections

given in (18) it follows that the b2|4-highest weight of W is

(d + 2)ε1 + (d − 1)δ1 + (d − 1)δ2 + dζ.
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Sinceb2|4∩m = b∩m, them-module generated by theb2|4-highestweight ofW is isomorphic
to M
(
(d − 1)δ1 + (d − 1)δ2

)
. ��

Lemma 3.5 For every k ≥ 0 there is an isomorphism of sp(4)-modules

Sk
(
M(δ1 + δ2)

) ∼=
� k
2 �⊕

i=0

M
(
(k − 2i)δ1 + (k − 2i)δ2

)
.

Proof Note that sp(4) ∼= so(5) and M(δ1 + δ2) is the standard 5-dimensional representation
of so(5). The statement now follows from the classical theory of spherical harmonics (for
example see [9, Thm 5.6.11]). ��

The next proposition proves Theorem 1.4 in Case V.

Proposition 3.6 Assume that J ∼= F. Then Pd(V ) is a multiplicity-free direct sum of irre-
ducible g-modules with b-highest weights in Ed , where Ed is as in Definition 3.3.

Proof For every γ ∈ Ed , we denote the irreducible g-module with b-highest weight γ by
Wγ . If γ 	= dε1 + dδ1 + dδ2 + dζ , then by setting a := s − 2 and b := d − 2r − s in (19)
we can express γ as

γ := (d + 2a)ε1 + bδ1 + bδ2 + dζ, (20)

where 0 ≤ a ≤ d − 2, 0 ≤ b ≤ d − a − 2 and b ≡ d − a (mod 2). It is straightforward to
verify that every γ of the form (20) is typical. Since typical submodules split off as direct
summands, in order to prove the assertion of the proposition it suffices to show that the only
irreducible subquotients of Pd(V ) are those whose b-highest weight vectors are inWd .

For γ of the form (20), typicality of γ implies that Wγ is a Kac module, and therefore
dim(Wγ )0 = 8 dim M(bδ1 + bδ2). Set Nk := dim M(kδ1 + kδ2). By the Weyl character
formula for sp(4),

Nk = (2k + 3)(k + 2)(k + 1)

6
for k ≥ 0. (21)

From (21), Lemmas 3.4, and 3.5 it follows that

∑

γ∈Ed
dim(Wγ )0 = Nd + Nd−1 + 8

d−2∑

a=0

∑

0 ≤ b ≤ d − a − 2
b ≡ d − a (mod 2)

dim M(bδ1 + bδ2)

= (d + 1)(2d2 + 4d + 3)

3
+ 8

d−2∑

a=0

dim Sd−a−2(C5)

= (d + 1)(2d2 + 4d + 3)

3
+ 8 dim Sd−2(C6)

= (d + 1)(2d2 + 4d + 3)

3
+ (d + 3)(d + 2)(d + 1)d(d − 1)

15
= dim Sd (V ∗)0.

The relation
∑

γ∈Ed dim(Wγ )0 = dim Sd(V ∗)0 implies that if Sd(V ∗) has an irreducible
subquotient W such that W � Wγ for all γ ∈ Ed , then W0 = {0}. Since [g, g] is generated
by its odd elements, W must be a trivial [g, g]-module. However, the h ∩ [g, g]-weights of
V ∗ are −ε1 ± δ1 ± δ2, −ε1, −3ε1, −2ε1 ± δ1, and −2ε1 ± δ2, and it is straightforward
to verify that all of the h ∩ [g, g]-weights of Sd(V ∗) are nonzero, which is a contradiction.
Consequently, Sd(V ∗) ∼=⊕γ∈Ed Wγ . ��
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3.3 Case VI

For d ≥ 0 we have an isomorphism of g-modules

Pd(V ) ∼= Sd(�(�2(Cn|n))∗) ∼=
(
�d�d(�2(Cn|n))

)∗
. (22)

Therefore in Case VI, Theorem 1.4 follows from the following proposition.

Proposition 3.7 For every d ≥ 0 we have
(
�d�d(�2(Cn|n))

)∗ ∼=
⊕

μ∈DPd (n)

Vμ,

where Vμ denotes the gl(n|n)-module with bmx
n|n-highest weight −

∑n
i=1 μi (εi + δi ).

Proof By Schur–Weyl–Sergeev duality,

(Cn|n)⊗2d ∼=
⊕

μ∈H2d (n,n)

Eμst
n|n ⊗ Fμ, (23)

where Eμst
n|n is the gl(n|n)-module with bstn|n-highest weight μst

n|n defined as in (58) and Fμ

is the S2d -module associated to the partition μ in the standard way.
For every λ ∈ DP(n) we define λ̆ ∈ H(n, n) to be the partition whose Young diagram

is constructed by nesting the (1, 1)-hooks with λi boxes in the first row and λi + 1 boxes
in the first column, where 1 ≤ i ≤ �(λ). For example, if λ = (4, 2, 1, 0, . . .) then λ̆ =
(4, 3, 3, 1, 0, . . .). From (23) and a superized variation of the proof of [11, Thm 4.4.4] we
obtain

�d(S2(Cn|n)) ∼=
⊕

μ∈DP(n)d

E(μ̆)stn|n . (24)

By comparing (22) and (24), we obtain that

Pd(V ) ∼=
⊕

μ∈DP(n)d

Wμ,

where Wμ is the gl(n|n)-module with b
op
n|n-highest weight −(μ̆)stn|n .

Set λ := μ̆, and recall that 〈x〉 := max{x, 0} for x ∈ R. A straightforward calculation
based on the method of [6, Sec. 2.4.1] shows that the bmx

n|n-highest weight of Wμ is

−
n∑

i=1

〈λi − i + 1〉εi −
n∑

i=1

〈λ′
i − i〉δi = −

n∑

i=1

μi (εi + δi ).

��

4 Surjectivity of the Harish-Chandramap

This section is devoted to the proof of Theorem 1.17. The proof is divided into two parts: the
case J � F, given in Proposition 4.2, and the case J ∼= F, given in Proposition 4.3.

The associative superalgebraPD(V ) has a natural filtration
(
PD (i)(V )

)
i≥0 by order of

operators. We denote the natural degree filtrations of P(h∗) and P(a∗
�) by

(
P(i)(h∗)

)
i≥0

and
(
P(i)(a∗

�)
)
i≥0, respectively.
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In the following lemma, Bt (z) :=∑t
i=0

1
i+1

∑i
j=0(−1) j

(i
j

)
(z+ j)t denotes the Bernoulli

polynomial of degree t .

Lemma 4.1 Let k, k′ ∈ N, and let θ be a complex number such that θ /∈ Q
≤0. For t ∈ N, let

ht (x, y, θ) ∈ �
�

k,k′,θ be defined by

ht (x, y, θ) :=
k∑

i=1
Bt
(
xi + 1

2

)+ (−θ)t−1
k′∑

j=1
Bt
(
y j + 1

2

)
.

Finally, let
(
�

�,(i)
k,k′,θ

)

i≥0
denote the degree filtration of��

k,k′,θ . Then for every d ≥ 0we have

�
�,(d)

k,k′,θ = SpanC

⎧
⎨

⎩
hm1
1 · · · hmd

d : m1, . . . ,md ∈ Z
≥0 and

d∑

j=1

jm j ≤ d

⎫
⎬

⎭
. (25)

Proof Clearly ht ∈ �
�,(t)
k,k′,θ for t ∈ N. Therefore it remains to prove that in (25), the left

hand side is a subset of the right hand side. For N ∈ N, let �N ,θ denote the C-algebra of
polynomials f (z1, . . . , zN ) which are symmetric in zi + θ(1 − i), and let �θ := lim←− �N ,θ

be the algebra of θ -shifted symmetric functions. Let
(
�

(i)
θ

)

i≥0
be the degree filtration of�θ .

For t ∈ N, let bt (z, θ) ∈ �
(t)
θ be defined by

bt (z, θ) :=
∞∑

i=1

[

Bt

(

zi + 1

2
+ θ

(
1

2
− i

))

− Bk

(
1

2
+ θ

(
1

2
− i

))]

.

In [29, Sec. 6], Sergeev and Veselov construct an epimorphism ϕ� : �θ → �
�

k,k′,θ such that

ϕ�
(
�

(t)
θ

)
= �

�,(t)
k,k′,θ and deg

(
ϕ�(bt ) − ht

)
< t for t ∈ N. (26)

Since gr(�θ ) is isomorphic to the algebra of symmetric functions, the formal series b�
t

constitute algebraically independent generators of �θ . Consequently,

�
(d)
θ ⊆ SpanC

⎧
⎨

⎩
bm1
1 · · · bmd

d : m j ∈ Z
≥0 for j ≥ 1 and

d∑

j=1

jm j ≤ d

⎫
⎬

⎭
. (27)

From (27) and (26) it follows that ��,(d)

k,k′,θ is a subset of the right hand side of (25). ��
Proposition 4.2 Assume that J � F. Then

res
(
HC
(
Z(i)(g)

))
= τ ∗

J

(
�

(i)
J

)
for i ≥ 0. (28)

Proof The idea of the proof for all of the cases is similar and uses the explicit Harish-Chandra
homomorphism (see for example [6, Prop. 2.25]). However, the explicit calculations in each
case is different. Therefore our analysis is case by case.

Case I. In this case g ∼= gl(m|n) ⊕ gl(m|n) and therefore Z(g) ∼= Z(gl(m|n)) ⊗Z(gl(m|n)).
For i ≥ 0 setAi := j

(
Z(i)(gl(m|n)) ⊗ 1

)
andBi := j

(
1 ⊗ Z(i)(gl(m|n))

)
, where j : U(g) →

PD(V ) is as in (11). From [24, Thm B.1] we obtain

j(Z(i) (g)) = Ai = Bi = PD (i)(V )g. (29)
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For a := (a1, . . . , am) ∈ C
m and b := (b1, . . . , bn) ∈ C

n , set

μa,b :=
m∑

i=1

aiεi +
n∑

j=1

b jδ j . (30)

Then we have

a∗
� = {(−μa,b, μa,b) : a ∈ C

m, b ∈ C
n} .

From (29) it follows that

res
(
HC
(
Z(i)(g)

))
= res
(
HC
(
1 ⊗ Z(i)(gl(m|n))

))
.

Now for k ∈ N we define fk ∈ P(k)(a∗
�) by

fk(μa,b) :=
m∑

i=1

(

ai + m + 1

2
− n

2
− i

)k
+ (−1)k−1

n∑

j=1

(

b j + m + 1

2
+ n

2
− j

)k
.

From the explicit description of the image of the Harish-Chandra homomorphism of gl(m|n),
given for example in [6], it follows that res (HC (1 ⊗ Z(gl(m|n)))) is theC-algebra generated
by the fk for k ≥ 1. Furthermore, by graded-surjectivity of the Harish-Chandra homomor-
phism of gl(m|n) (see the proof of [6, Thm 2.26]), for every i ≥ 0 we have

HC
(
1 ⊗ Z(i)(gl(m|n))

) = HC
(
1 ⊗ Z(gl(m|n))

) ∩ P(i)(h∗).

Consequently, f1, . . . , fk ∈ res
(
HC
(
1 ⊗ Z(k)(gl(m|n))

)) = res
(
HC
(
Z(k)(g)

))
for k ∈ N.

Next observe that for k ∈ N,

(
τ ∗
J

)−1
( fk) =

m∑

i=1

xki + (−1)k−1
n∑

j=1

ykj ∈ �
(k)
J .

Since deg
(
hk(x, y, 1) − (τ ∗

J

)−1
( fk)
)

< k, equality in (28) follows from Lemma 4.1.

Case II. For a := (a1, . . . , am) ∈ C
m and b := (b1, . . . , bn) ∈ C

n set

μa,b :=
m∑

i=1

aiεi +
n∑

j=1

b j (δ2 j−1 + δ2 j ). (31)

Then

a∗
� = {μa,b : a ∈ C

m, b ∈ C
n} ,

and from the explicit description of the Harish-Chandra homomorphism for gl(m|2n), given
for example in [6], it follows that res(HC(Z(g)) is theC-algebra generated by the polynomials
fk ∈ P(a∗

�) for k ∈ N, defined as

fk(μa,b) :=
m∑

i=1

(

ai − m + 1

2
+ n + i

)k

+ (−1)k−1
n∑

j=1

(

b j − m + 1

2
− n + 2 j − 1

)k
+
(

b j − m + 1

2
− n + 2 j

)k
.
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Furthermore, by graded-surjectivity of the Harish-Chandra homomorphism of g (see the
proof of [6, Thm 2.26]) we have f1, . . . , fk ∈ res

(
HC
(
Z(k)(g)

))
for k ∈ N. Next observe

that

(
τ ∗
J

)−1
( fk) = (−2)k

⎡

⎣
m∑

i=1

xki + (−1)k−1

2k

n∑

j=1

(

y j + 1

2

)k
+
(

y j − 1

2

)k
⎤

⎦ ∈ �
(k)
J .

Furthermore deg
((− 1

2

)k (
τ ∗
J

)−1
( fk) − hk(x, y,

1
2 )
)

< k, so that Lemma 4.1 implies equal-

ity in (28).

Case III. For a, b ∈ C set

μa,b := aε1 + bζ. (32)

Then

a∗
� := {μa,b : a, b ∈ C

}
,

and from the explicit description of the Harish-Chandra homomorphism for osp(m + 1|2n)

(see [6, Thm 2.26]) it follows that res(HC(Z(g))) is generated by f1, f2 ∈ P(a∗
�), defined

as

f1(μa,b) := b and f2(μa,b) :=
(

a + m + 1

2
− n − 1

)2
.

Furthermore, fk ∈ res(HC(Z(k)(g))) for k = 1, 2 ( f1 lies in the image of the center of
gosp(m + 1|2n), and f2 lies in the image of the Casimir operator of osp(m + 1|2n)). Next
observe that

(
τ ∗
J

)−1
( f1) = x1 + x2 and

(
τ ∗
J

)−1 (
f2 − f 21

) = −4x1x2.

The statement now follows from the fact that x1 + x2 and x1x2 are algebraically independent
generators of the algebra of symmetric polynomials in two variables (see [19, Sec. I.2]).

Case IV. For a, b ∈ C, set

μa,b := aε1 + b(δ1 + δ2). (33)

Then

a∗
� = {μa,b : a, b ∈ C},

and from the explicit description of the Harish-Chandra homomorphism of gl(1|2) it follows
that the C-algebra res(HC(Z(g))) is generated by fk ∈ P(k)(a∗

�) for k ∈ N, where

fk(μa,b) := (a + 1) + (−1)k−1((b − 1)k + bk).

Setting ã := 1
2 (a + 1) and b̃ := b − 1

2 , we obtain that in the new coordinates (ã, b̃), the
polynomial fk is equal to

f̃k(ã, b̃) := 2k
[

ãk + (−1)k−1

2k

((

b̃ − 1

2

)k
+
(

b̃ + 1

2

)k
)]

.
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Let Wk ⊆ P(k)(a∗
�) be defined as

Wk := SpanC

⎧
⎨

⎩
f m1
1 · · · f mk

k : m j ∈ Z
≥0 for j ≥ 1 and

k∑

j=1

jm j ≤ k

⎫
⎬

⎭
.

For k ∈ N, let hk(x, y, 1
2 ) ∈ �

�

1,1, 12
be defined as in Lemma 4.1. Since

deg
(
f̃k(ã, b̃) − hk(ã, b̃, 1

2 )
)

< k for k ∈ N,

Lemma 4.1 implies that dimWk = |Hk(1, 1)|. It is straightforward to verify that
(
τ ∗
J

)−1
( fk) ∈ �

�,(k)
1,1,− 1

t
for k ∈ N, so that

(
τ ∗
J

)−1
(Wk) ⊆ �

�,(k)
1,1,− 1

t
. Since dimWk =

|Hk(1, 1)| = dim�
�,(k)
1,1,− 1

t
, we obtain

(
τ ∗
J

)−1
(Wk) = �

�,(k)
1,1,− 1

t
. This completes the proof

of (28).

Case VI. For a:=(a1, . . . , an) ∈ C
n and b:=(b1, . . . , bn) ∈ C

n set

μ̃a,b:=
n∑

i=1

(aiεi + biδi ).

From the explicit description of the image of the Harish-Chandra homomorphism of gl(n|n)

corresponding to bmx
n|n it follows that HC (Z(g)) is generated by the polynomials f̃k ∈ P(h∗)

for k ≥ 1, where f̃k(μ̃a,b) := ∑n
i=1(xi + 1

2 )
r + (−1)r−1∑n

i=1(yi + 1
2 )

r . For k ∈ N let

hk(x, y, 1) ∈ �
�
n,n,1 be defined as in Lemma 4.1. Since deg(hk − f̃k) < k, graded surjec-

tivity of the Harish-Chandra homomorphism of gl(n|n) (see the proof of [6, Thm 2.26]) and
Lemma 4.1 imply that

HC
(
Z(k)(g)

) = SpanC

{

f̃ m1
1 · · · f̃ mk

k : m j ∈ Z
≥0 for j ≥ 1 and

k∑

j=1
jm j ≤ k

}

. (34)

Next for a := (a1, . . . , an) ∈ C
n set

μa :=
n∑

i=1

ai (εi + δi ). (35)

Then

a∗
� = {μa : a ∈ C

n} .

Set fk := f̃k
∣
∣
a∗
�
, so that

fk(μa) :=
n∑

i=1

(

ai + 1

2

)k
+ (−1)k−1

n∑

j=1

(

ai − 1

2

)k
.

Also, set pr (μa) := ∑n
i=1 a

r
i for r ≥ 0. Then fk is a linear combination of the p2i−1 for

1 ≤ i ≤ � k+1
2 �. Therefore from (34) it follows that

res(HC(Z(k)(g))) = SpanC

⎧
⎨

⎩

∏

i∈N
pmi
2i−1 : m j ∈ Z

≥0 for j ≥ 1 and
∑

j∈N
(2 j − 1)m j ≤ k

⎫
⎬

⎭
.

(36)
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The statement of the proposition is now a consequence of the fact that the right hand side of

(36) is equal to τ ∗
J

(
�

(k)
J

)
(this follows for example from [22, Thm 2.11] and [22, Rem. 2.6]).

Case VII. The argument is similar to Case I, based on the explicit description of the Harish-
Chandra homomorphism of q(n) (see [6, Thm 2.46]). In this case

a∗
� := {(−μa, μa) : a ∈ C

n},
where for a := (a1, . . . , an) ∈ C

n we define

μa :=
n∑

i=1

aiεi . (37)

��
Proposition 4.3 Assume that J ∼= F. Then

res (HC (Z(g))) � τ ∗
J (�J ) .

Proof Recall that g ∼= gosp(2|4). For a, b, c ∈ C set

μa,b,c := aε1 + bδ1 + bδ2 + cζ. (38)

Then

a∗
� := {μa,b,c : a, b, c ∈ C

}
, (39)

and from the explicit description of the Harish-Chandra homomorphism of osp(2|4) (see
for example [6, Thm 2.26]) it follows that res(HC(Z(g))) is the C-algebra generated by the
following three families of polynomials.

(i) The polynomials fk for k ∈ N, where fk(μa,b,c) := (a + 2)2k − (b+ 2)2k − (b+ 1)2k .
(ii) The polynomials

Fg(μa,b,c): = (a + 2)
(
(b + 2)2 − (a + 2)2

) (
b + 1)2 − (a + 2)2

)

× [g (a + 2, (b + 2)2, (b + 1)2
)]

,

where g(s, t1, t2) is a polynomial in the variables s, t1, t2 which is symmetric in t1, t2.
(iii) The polynomial Q(μa,b,c) := c.

By a straightforward calculation based on the above generators we can verify that
(
τ ∗
J

)−1 (res(HC(Z(g))
) ⊆ �

�

2,1, 32
.

To complete the proof of the proposition, it suffices to show that

h3(x1, x2, y1,
3
2 ) /∈ (τ ∗

J

)−1 (res(HC(Z(g))
)
, (40)

where h3(x1, x2, y1, 3
2 ) ∈ �

�

2,1, 32
is defined as in Lemma 4.1. Consider the change of coor-

dinates
⎧
⎪⎨

⎪⎩

ã := a + b + 7
2 = 2x1 + 3y1

b̃ := a − b + 1
2 = 2x2 + 3y1

c̃ := c = x1 + x2 + y1.

In the (ã, b̃, c̃) coordinates, the generators fk , Fg , and Q turn into f̃k , F̃g , and Q̃, defined
below.
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(i) f̃k(ã, b̃, c̃) := 1
22k

[
(ã + b̃)2k − (ã − b̃ + 1)2k − (ã − b̃ − 1)2k

]
.

(ii) F̃g(ã, b̃, c̃) := 1
32

[
(ã + b̃)(4ã2 − 1)(4b̃2 − 1)

]
g
(
ã+b̃
2 , ( ã−b̃+1

2 )2, ( ã−b̃−1
2 )2
)
.

(iii) Q̃(ã, b̃, c̃) := c̃.

Note that the f̃k are independent of c. Also, τ ∗
J

(
h3(x1, x2, y1,

3
2 )
)
can be expressed in

(ã, b̃, c̃)-coordinates as

81

64
c̃3 − 135

128
(ã + b̃)c̃2 +

(
171

256
(ã2 + b̃2) + 27

128
ãb̃ − 51

64

)

c̃

+
(

− 53

512
(ã3 + b̃3) − 63

512
(ã2b̃ + ãb̃2) + 35

128
(ã + b̃)

)

. (41)

Now assume that (40) is not true. It follows that the polynomial (41) belongs to the C-
algebra generated by the f̃k’s, the F̃g’s, and Q̃. Since the variables ã, b̃, c̃ are algebraically
independent, the coefficient of c̃2 in (41) should belong to the C-algebra generated by the
f̃k and the F̃g’s. It follows that there exist polynomials φ(u1, . . . , uN ) ∈ C[u1, . . . , uN ] for
some N ∈ N and g◦(ã, b̃) ∈ C[ã, b̃] such that

(ã + b̃) = (ã + b̃)(4ã2 − 1)(4b̃2 − 1)g◦(ã, b̃) + φ
(
f̃1(ã, b̃), . . . , f̃N (ã, b̃)

)
. (42)

Setting ã = 1
2 and b̃ = 0 in (42), we obtain

1
2 = φ

(
− ( 32
)2

, . . . ,− ( 32
)2N)

, (43)

and setting ã = − 1
2 and b̃ = 0 in (42), we obtain

− 1
2 = φ

(
− ( 32
)2

, . . . ,− ( 32
)2N)

. (44)

Clearly (43) and (44) cannot be true simultaneously. This contradiction implies that (40)
must be true. ��

5 Proof of Theorem 1.13 when J � F.

The proof of Theorem 1.13 differs in the two cases J � F and J ∼= F. Indeed in the case
J � F Proposition 4.2 allows us to give a uniform proof. Thus, we first prove Theorem 1.13
in the case J � F, and then we give a separate argument for the case J ∼= F. We begin with
the following lemma, whose proof is similar to that of [24, Lem. 5.4]. Recall that cμ(λ) for
λ,μ ∈ � denotes the scalar by which Dμ acts on Vλ.

Lemma 5.1 Let μ ∈ �d where d ≥ 0. Then cμ(μ) = d!, and cμ(λ) = 0 for all λ ∈
⋃d

k=0 �k\{μ}.

Proof If λ ∈ �k where k < d , then Vλ ⊆ Pk(V ), and thus cμ(λ) = 0 because DμP
k(V ) =

{0}. Next assumeλ ∈ �d . Themapm : PD(V )⊗P(V ) → P(V ) defined by D⊗ f �→ Df
and the canonical isomorphism m : P(V ) ⊗ S(V ) → PD(V ) are g-equivariant. Since
Dμ ∈ m(Vμ ⊗ V ∗

μ), the restriction of Dμ to Vλ is a g-equivariant map Vλ → Vμ, so that
cμ(λ) = 0 unless λ = μ.
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Finally, assume λ = μ. Let 〈·, ·〉 be the duality pairing between Pd(V ) ∼= Sd(V )∗ and
Sd(V ), and let β : Pd(V ) × Sd(V ) → C be the bilinear map β(a, b) := ∂b(a), where

∂ : S(V ) → D(V )

is the canonical isomorhpismbetween the symmetric algebraS(V ) and the algebra of constant
coefficient differential operatorsD(V ). A direct calculation shows thatβ(·, ·) = d!〈·, ·〉. Now
choose a basis v1, . . . , vt for Vμ and a dual basis v∗

1 , . . . , v
∗
t for V ∗

μ . Then

Dμvk = m
(

t∑

i=1
vi ⊗ v∗

t

)

vk =
t∑

i=1
vi∂v∗

i
vk = d!vk .

��
Recall the maps

j : U(g) → PD(V ), HC : U(g) → P(h∗), and res : P(h∗) → P(a∗
�),

defined in (11), (12), and (13). For D ∈ PD(V )g and λ ∈ � let HC(D)
(
λ
)
denote the

scalar by which D acts on the irreducible g-module Vλ ⊆ P(V ) whose b-highest weight is
λ. Then we have

HC(j(z)) = res(HC(z)) for z ∈ Z(g). (45)

Recall that by
(
P

(i)
J

)

i≥0
we denote the standard degree filtration of the polynomial

algebra PJ defined in (9). Let τJ : a∗
� → C

nJ and τ ∗
J : PJ → P

(
a∗
�

)
be defined as in

(10) and (14), respectively. Since τJ is a bijection, τ ∗
J is an isomorphism of C-algebras.

If J � F, then by Proposition 4.2, for every μ ∈ �d there exists an element zμ ∈ Z(d)(g)

such that

res(HC(zμ)) = τ ∗
J

(
PJ ,μ

)
,

where PJ ,μ is as in Definition 1.11. Theorem 1.13 follows from Proposition 5.2(iii).

Proposition 5.2 Assume that J � F. Then the following assertions hold.

(i) j
(
zμ
) = Dμ for all μ ∈ �.

(ii) j(Z(g)) = PD(V )g.
(iii) HC(Dμ)(λ) = PJ ,μ(τJ (λ)) for all λ,μ ∈ �.

Proof (i)Byadirect computation, fromTheorems1.8 and1.10 it follows that PJ ,μ

(
τJ (μ)
)

=
d! and

PJ ,μ

(
τJ (λ)
) = 0 for all λ ∈

d⋃

k=0

�k\{μ}.

Set D′
μ := j(zμ). Then D′

μ ∈ PD (d)(V )g because the map j preserves the filtrations. From

(45) it follows that for λ ∈ ⋃d
k=0 �k , the operator D′

μ acts on Vλ by the scalar PJ
(
τJ (λ)
)
.

Since elements ofPD (d)(V ) are uniquely determined by their restrictions toPd(V ), Lemma
5.1 implies that Dμ = D′

μ.
(ii) Since the family

(
Dμ

)
μ∈�

is a basis of PD(V )g, the above argument implies that
j(Z(g)) = PD(V )g.

(iii) This follows immediately from the fact that Dμ = D′
μ. ��
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We remark that Proposition 5.2(ii) does not hold when J ∼= F. This is proved in Proposi-
tion 5.3.

Proposition 5.3 Assume that J ∼= F. Then j (Z(g)) � PD(V )g

Proof Suppose that j (Z(g)) = PD(V )g. Then from (45) and the explicit description of the
image of the Harish-Chandra homomorphism of osp(2|4) it follows that

HC
(
PD(V )g

) = HC (j (Z(g))) = res (HC(Z(g))) ⊆ τ ∗
J (�J ). (46)

Fix d ≥ 0 and set �≤d := ⋃d
k=0 �k . By Proposition C.6 we have HC(Dλ) ∈ P(d)(a∗

�)

for λ ∈ �≤d , and therefore from (46) it follows that HC(Dλ) ∈ τ ∗
J

(
�

(d)
J

)
for λ ∈ �≤d .

Recall that elements ofPD(V ) are uniquely determined by their restrictions toP(V ). Since
the Capelli operators (Dλ)λ∈�≤d

are linearly independent, it follows that the polynomials
(
HC(Dλ)

)
λ∈�≤d

are also linearly independent. Since |�≤d | =∑d
k=0 |Hk(1, 2)| = dim�

(d)
J ,

it follows that the family
(
HC(Dλ)

)
λ∈�≤d

also spans τ ∗
J

(
�

(d)
J

)
. Since d can be any non-

negative integer, from (45) it follows that

τ ∗
J (�J ) =

∞⋃

d=0

τ ∗
J (�

(d)
J ) ⊆ res

(
HC(PD(V )g)

) = res (HC(Z(g))) ,

which contradicts Proposition 4.3. ��

6 Proof of Theorem 1.13 when J ∼= F

Recall that in this case g ∼= gosp(2|4), and a∗
� is the subspace of h∗ that is given in (39). Let

σ : C
3 → a∗

� be defined by σ(a, b, c) := μa,b,c, where μa,b,c is defined in (38). We define
the map σ ∗ : P(a∗

�) → P(C3) ∼= C[a, b, c] by σ ∗( f ) := f ◦ σF .

Lemma 6.1 Assume that J ∼= F. Then σ ∗(τ ∗
J (�J )) is the subalgebra of C[a, b, c] consisting

of polynomials f (a, b, c) which satisfy the following two properties.

(i) f (a, b, c) = f (a,−b − 3, c).
(ii) f (a + 1, b + 1

2 , c) = f (a − 1, b − 1
2 , c) on the affine hyperplane a − b + 1

2 = 0.

Proof This is straightforward from the explicit description of τJ given in Table 3. ��
Now for D ∈ PD(V )g we have σ ∗ (HC(D)

) ∈ C[a, b, c]. We have a direct sum decom-
position g ∼= g′ ⊕ z where g′ := [g, g] ∼= osp(2|4) and z := z(g) ∼= C is the centre of
g.

From now on, let G denote the simply connected complex Lie supergroup corresponding
to g, and let V be the affine superspace corresponding to V . The g-action on V lifts to a
G-action on V. Set K := stabG(e) (see Appendix C). Since z is K-invariant,

U(g)K ∼= (U(g′) ⊗ U(z)
)K ∼= U(g′)K ⊗ U(z).

Remark C.5 implies that every D ∈ PD(V )g can be realized as an element of D(G/K). Let
�G,K be defined as in (61). Since there is aK-invariant complement of k in g, Proposition C.1
implies that every D ∈ D(G/K) lies in �G,K

(
U(g)K

)
.

Lemma 6.2 Assume that J ∼= F. Let D ∈ PD(V )g.
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(i) If D
∣
∣G/K ∈ �G,K (1 ⊗ U(z)), then σ ∗ (HC(D)

) ∈ C[c].
(ii) If D

∣
∣G/K ∈ �G,K

(
U(g′)K ⊗ 1

)
, then σ ∗ (HC(D)

) ∈ C[a, b].

Proof The proof of (i) is straightforward. For (ii), let G′ be the subsupergroup of G corre-
sponding to g′ ⊆ g. For X̃ ∈ U(g)K, let LX̃ denote the left invariant differential operator
induced by X̃ on G/K (see Appendix C). Similarly, any X̃ ∈ U(g′)K induces a left invariant
differential operator on G′/K, which we denote by LX̃ as well. For X̃ ∈ U(g′)K ⊆ U(g)K,
the diagram

OG/K(G/K )
φ �→φ|G′/K

LX̃

OG′/K(G ′/K )

LX̃

OG/K(G/K )
φ �→φ|G′/K

OG′/K(G ′/K )

is commutative. According to Remark C.5, there is a G-equivariant embedding

p#e (V0)
∣
∣
P (V )

: P(V ) ↪→ OG/K(G/K ).

For λ ∈ �, let pλ ∈ Vλ ⊆ P(V ) be a b-highest weight vector and set φλ := p#e (V0)(pλ).
Since φλ 	= 0 and pλ is a homogeneous element of P(V ), we obtain φλ

∣
∣G′/K 	= 0. Set

h′ := h ∩ g′. From Proposition C.6 and the fact that g′ = k + (b ∩ g′) it follows that D
acts on Vλ is by the scalar λ(D̃h′) for some D̃h′ ∈ U(h′) that only depends on D. Since

the map λ �→ λ(D̃h′) only depends on λ
∣
∣
h′ , it is indeed an element of P(a'∗), where

a'∗ := {μa,b,0 : a, b ∈ C
}
, for μa,b,c defined as in (38). Finally, to complete the proof

observe that σ ∗ (P(a'∗)
) = C[a, b]. ��

Proposition 6.3 Let D ∈ PD(V )g. If D
∣
∣G/K ∈ �G,K(U(g′)K ⊗ 1), then h := σ ∗ (HC(D)

)

satisfies the relation h(a, b) = h(a,−b − 3).

Proof Let us denote the one-dimensional so(2)-module with weight kε1 by M(kε1), and the
irreducible sp(4)-module with b ∩ sp(4)-highest weight k1δ1 + k2δ2 by M ′(k1δ1 + k2δ2).
We have V ∗ ∼= V ∗

0
⊕ V ∗

1
, where

V ∗
0

∼= M(ε1) ⊗ M ′(δ1 + δ2) ⊕ M(3ε1) ⊗ M ′(0) and V ∗
1

∼= M(2ε) ⊗ M ′(δ1),

as so(2) ⊕ sp(4)-modules. Set

U∗ := M(ε1) ⊗ M ′(δ1 + δ2) and W ∗ := M(3ε1) ⊗ M ′(0) ⊕ M(2ε) ⊗ M ′(δ1).

Then V ∗ ∼= U∗ ⊕ W ∗, from which we obtain a natural tensor product decomposition

P(V ) ∼= P(U ) ⊗ P(W ). (47)

Using (47), we identify P(U ) and P(W ) with subalgebras P(U ) ⊗ 1 and 1 ⊗ P(W ) of
P(V ). By dualizing the relation V ∗ ∼= U∗ ⊕ W ∗ we obtain a direct sum decomposition
V ∼= U ⊕ W for subspaces U ,W of V . The latter direct sum decomposition yields a tensor
product decomposition

D(V ) ∼= D(U ) ⊗ D(W ), (48)

which allows us to identify D(U ) and D(W ) with subalgebras of D(V ).
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It is straightforward to verify thatU∗ = (V ∗)b1 . Thus everyb0-invariant vector inP(U ) ⊂
P(V ) is also a b-highest weight vector inP(V ). By Lemma 3.5, we have an so(2)⊕ sp(4)-
module isomorphism

Pk(U ) ∼=
� k
2 �⊕

i=0

M(kε1) ⊗ M ′((k − 2i)δ1 + (k − 2i)δ2
)
.

Recall that μa,b,c denotes the element of a∗
� defined in (38). The Zariski closure of the set

S :=
{

kε1 + (k − 2i)δ1 + (k − 2i)δ2 : i, k ∈ Z
≥0 and 0 ≤ i ≤

⌊
k

2

⌋}

is equal to {μa,b,0 : a, b ∈ C}.
Let P+(W ) and D+(W ) denote the augmentation ideals of P(W ) and D(W ), respec-

tively. Using (47), we obtain a decomposition

PD(V ) ∼= PD(U ) ⊕ PD(U )⊥, (49)

where

PD(U )⊥ := PD(V )D+(W ) + P+(W )PD(U ).

Write D := DU ⊕ D⊥
U , where DU ∈ PD(U ) and D⊥

U ∈ PD(U )⊥. For 0 ≤ i ≤ � k
2�,

choose a nonzero vector

vk,i ∈ M(kε1) ⊗ M ′((k − 2i)δ1 + (k − 2i)δ2
)
.

Then Dvk,i = ck,ivk,i for some scalar ck,i ∈ C, hence D⊥
U vk,i = Dvk,i − DUvk,i ∈ P(U ).

Since D+(W )vk,i = 0, we obtain D⊥
U vk,i ∈ P(U ) ∩ (P+(W )P(V )

) = {0}, so that
Dvk,i = DUvk,i . Since the decomposition (49) is g0-invariant, we have DU ∈ PD(U )g0 .
Therefore from [12, Sec. 11.4] it follows that DU lies in the algebra generated by the degree
operator and the image of the Casimir operator of sp(4). Let f1, f2 ∈ P(a∗

�) denote the
eigenvalues of the degree and Casimir operators, respectively, and set hi := σ ∗( fi ) for
i = 1, 2. The degree operator acts on vk,i by the scalar k. It follows that h1(a, b) = a, and
therefore h1(a, b) = h1(a,−b − 3). Similarly, the Casimir operator of sp(4) acts on vk,i
by the scalar (k + 2)2 + (k + 1)2, so that h2(a, b) := (b + 2)2 + (b + 1)2, and therefore
h2(a, b) = h2(a,−b − 3). The statement of the proposition follows from the fact that h
belongs to the subalgebra of C[a, b] generated by h1 and h2. ��
Proposition 6.4 Let D ∈ PD(V )g. If D

∣
∣G/K ∈ �G,K(U(g′)K ⊗ 1), then h := σ ∗ (HC(D)

)

satisfies the relation h(a+1, b+ 1
2 ) = h(a−1, b− 1

2 ) for all a, b ∈ C such that a−b+ 1
2 = 0.

Proof Let b2|4 ⊆ g be the Borel subalgebra defined as in (59). Note that b2|4 	= b. For λ ∈ �,
let λ denote the b2|4-highest weight of Vλ. The Borel subalgebra b can be obtained from b2|4
by the composition of the odd reflections given in (18). Thus from [6, Lem. 1.40] it follows
that if λ is one of the typical highest weights of the form given in (19), then λ := λ + 4ε1,
whereas if λ = dε1 + dδ1 + dδ2 + dζ , then λ = λ + 2ε1 − δ1 − δ2. In particular, the
b2|4-highest weight λ always lies in a∗

�, where a
∗
� is the subspace of h∗ given in (39).

Now for every b2|4-highest weight λ ∈ a∗
�, let f (λ) denote the scalar by which D acts

on Vλ. We have g = b2|4 + kex, and thus by Proposition C.6 the map λ �→ f (λ) can be
extended to an element of P(a∗

�). Set h1 := σ ∗( f ). From Lemma 6.2(ii) it follows that
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indeed h1 ∈ C[a, b]. Since the eigenvalue of D on Vλ is independent of the choice of the
Borel subalgebra, from typical highest weights we obtain

h1(a + 4, b) = h(a, b) for a, b ∈ C, (50)

and from the atypical highest weights, which correspond to the partitions λ := (d, 0, . . .),
we obtain

h1(a + 2, a − 1) = h(a, a) for a ∈ C. (51)

Consequently, if a − b + 1
2 = 0 then a + 1 = b + 1

2 and thus from (50) and (51) it follows
that

h
(
a + 1, b + 1

2

) = h1
(
a + 3, b − 1

2

) = h
(
a − 1, b − 1

2

)
.

��

6.1 Proof of Theorem 1.13 when J ∼= F.

Fixμ ∈ �d for d ≥ 0. Then Dμ ∈ PD (d)(V )g and therefore by Proposition C.6 there exists
h ∈ Pd(a∗

�) such that for every λ ∈ �, the operator Dμ acts on Vλ by the scalar h(λ). By
Lemma 5.1 we have

h(μ) = d! and h(λ) = 0 for λ ∈
d⋃

k=0

�k\{λ}. (52)

Let f ∈ P
(d)
J be defined by f := (τ ∗

J

)−1
(h). From Lemmas 6.1, 6.2, Propositions 6.3,

and 6.4 it follows that f ∈ �
(d)
J . Furthermore,

τJ (λ) =
(
λ1 + 1

4 , λ2 − 5
4 , d − λ1 − λ2 + 1

)
= (p1(λ),p2(λ),q1(λ)

)
, (53)

where p1(λ), p2(λ), and q1(λ) are defined as in (8) for m = 2, n = 1, and θ = 3
2 . From

(52) and (53) it follows that f and PJ ,μ satisfy the same degree, symmetry, and vanishing
properties, so that f = PJ ,μ by Theorem 1.8.
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Appendix A. The TKK construction

Recall that a vector superspace J := J0 ⊕ J1 is called a Jordan superalgebra if it is equipped
with a supercommutative bilinear product J × J → J which satisfies the Jordan identity

(−1)|x ||z|[Lx , Lyz] + (−1)|y||x |[Ly, Lzx ] + (−1)|z||y|[Lz, Lxy] = 0 for homogeneous

x, y, z ∈ J ,

where we define La : J → J for a ∈ J to be the left multiplication map x �→ ax , and
denote the parity of a homogeneous element a ∈ J by |a|.
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Following [3], by a short grading of a Lie superalgebra l we mean a Z-grading of l of the
form l :=⊕t∈Z l(t), such that l(t) = {0} for t /∈ {0,±1}. Using the Kantor functor, in [16]
Kac associates to J a simple Lie superalgebra gJ (the TKK Lie superalgebra) with a short
grading

gJ := gJ (−1) ⊕ gJ (0) ⊕ gJ (1).

We recall the definition of gJ . Set gJ (−1) := J , gJ (0) := SpanC{La, [La, Lb] : a, b ∈
J } ⊆ EndC(J ), and gJ (1) := SpanC{P, [La, P] : a ∈ J } ⊆ HomC(S2(J ), J ), where P :
S2(J ) → J is themap P(x, y) := xy, and [La, P](x, y) := a(xy)−(ax)y−(−1)|x ||y|(ay)x .
The Lie superbracket of gJ is defined by the following relations.

(i) [A, a] := A(a) for A ∈ gJ (0) and a ∈ gJ (−1).
(ii) [A, a](x) := A(a, x) for A ∈ gJ (1), a ∈ gJ (−1), and x ∈ J .
(iii) [A, B](x, y) := A(B(x, y))− (−1)|A||B|B(A(x), y)− (−1)|A||B|+|x ||y|B(A(y), x) for

A ∈ gJ (0), B ∈ gJ (1), and x, y ∈ J .

For the classification of finite dimensional complex simple Jordan superalgebras and their
corresponding TKK Lie superalgebras, see the articles by Kac [16] and Cantarini and Kac
[3].

If J has a unit 1J ∈ J , then the elements e := 1J , f := −2P , and h := 2L1J of gJ
satisfy (1). It follows that s := SpanC{e, f , h} is a subalgebra of gJ isomorphic to sl2(C).
Indeed s is a short subalgebra of gJ (see [3]). We recall the definition of a short subalgebra.

Definition A.1 Let lbe a complexLie superalgebra.A short subalgebra of l is aLie subalgebra
a ⊆ l0 that is isomorphic to sl2(C), with a basis e, f , h that satisfies the relations (1), such
that the eigenspace decomposition of ad

(− 1
2h
)
defines a short grading of l.

Remark A.2 Let l be a complex Lie superalgebra and let a ⊆ l0 be a short subalgebra of l.

(a) Assume that l is a subalgebra of another Lie superalgebra l̃ such that dim l̃ = dim l + 1.
Since every finite dimensional sl2(C)-module is completely reducible, it follows that
l̃ ∼= l ⊕ C as a-modules, so that a is a short subalgebra of l̃ as well.

(b) Every central extension 0 → C → l̂ → l → 0 splits on a. An argument similar to part
(a) implies that the image of a under the splitting section is a short subalgebra of l̂.

When J is isomorphic to gl(m, n)+, p(n)+, or q(n)+, it will be more convenient for us to
replace gJ by a non-simple Lie superalgebra which has a more natural matrix realization (see
also Remark A.3). To this end, we define the Lie superalgebra g� by

g� :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

gl(2m|2n) if J ∼= gl(m, n)+,

p(2n) if J ∼= p(n)+,

q(2n) if J ∼= q(n)+,

gJ otherwise.

(54)

For a precise description of p(2n) and q(2n) see Appendix B. From Remark A.2 it follows
that the short subalgebra s of gJ corresponds to a unique short subalgebra of g�. We use the
same symbols s, e, f , and h for denoting the short subalgebra of g� and its corresponding
basis.

By restriction of the adjoint representation, g� is equipped with an s-module structure.
This s-module is a direct sum of trivial and adjoint representations of s, hence it integrates
to a representation of the adjoint group PSL2(C). Furthermore,
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w := exp(ad( f )) exp(−ad(e)) exp(ad( f )) (55)

represents the nontrivial element of the Weyl group of PSL2(C).
Set g�(t) := {x ∈ g� : [h, x] = −2t x} for t ∈ {0,±1}. The Lie superalgebra g�(0)

naturally acts on g�(−1) ∼= J . Set

g := g�(0) and V := g�(−1)∗ := HomC(V , C
1|0).

Thus the g-module V is the dual of the g-module J .

Remark A.3 The reason for replacing gJ by g� is to obtain a convenient way of associating
partitions to the irreducible g-modules that occur in P(V ). For example, assume that J ∼=
gl(m, n)+, where gl(m, n)+ denotes the Jordan superalgebra of (m + n) × (m + n) matrices
in (m, n)-block form. Then gJ

∼= sl(2m|2n) if m 	= n, and gJ
∼= psl(2m|2n) if m = n.

In both cases, gJ (0) is closely related to gl(m|n) ⊕ gl(m|n), but it is not isomorphic to it.
However, g := g�(0) ∼= gl(m|n) ⊕ gl(m|n), and the irreducible summands of P(V ) ∼=
P((Cm|n)∗ ⊗ C

m|n) are naturally parametrized by (m, n)-hook partitions.

Appendix B. Classical Lie superalgebras

In this Appendix we give explicit realizations of classical Lie superalgebras gl(m|n),
gosp(m|2n), p(n), and q(n). We describe root systems of gl(m|n), gosp(m|2n), and q(n),
and choose Borel subalgebras in these Lie superalgebras.

B.1. The Lie superalgebra gl(m|n)

Let m, n ≥ 1 be integers. We use the usual realization of gl(m|n) as (m + n) × (m + n)

matrices in (m, n)-block form
[
A B
C D

]

(56)

where A is m × m and D is n × n. The diagonal Cartan subalgebra of gl(m|n) is

hm|n := {diag(s, t) : s := (s1, . . . , sm) ∈ C
m and t := (t1, . . . , tn) ∈ C

n} . (57)

The standard characters εi , δ j : hm|n → C are defined by

εi (diag(s, t)) := si for 1 ≤ i ≤ m and δ j (diag(s, t)) := t j for 1 ≤ j ≤ n.

We define bstm|n (respectively, b
op
m|n) to be the Borel subalgebras of gl(m|n) corresponding to

the fundamental systems �st (respectively, �op), where

�st := {εi − εi+1}m−1
i=1 ∪ {εm − δ1} ∪ {δ j − δ j+1

}n−1
j=1 and �op := −�st

For every partition λ ∈ H(m, n), we set

λstm|n :=
m∑

i=1

λiεi +
n∑

j=1

〈λ′
j − m〉δ j . (58)

In the spacial case m = n, we define bmx
n|n to be the Borel subalgebra corresponding to the

fundamental system

�mx := {δi − εi }ni=1 ∪ {ε j − δ j−1
}n
j=2 .
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B.2. The Lie superalgebra gosp(m|2n)

Let m, n ≥ 1 be integers. We begin with an explicit realization of osp(m|2n). Set r := �m
2 �.

Let J+ be the m × m matrix defined by

J+ :=
⎡

⎣
1 01×r 01×r

0r×1 0r×r Ir×r

0r×1 Ir×r 0r×r

⎤

⎦ if m = 2r + 1, and J+ :=
[
0r×r Ir×r

Ir×1 0r×r

]

if m = 2r ,

Also, let J− be the 2n × 2n matrix defined by

J− :=
[
0n×n In×n

−In×n 0n×n

]

.

Let {ei }mi=1 ∪ {e′
j }2nj=1 be the standard homogeneous basis of C

m|2n , and let B : C
m|2n ×

C
m|2n → C be the even supersymmetric bilinear form defined by

B(ei , e j ) = J+
i, j , B(e′

i , e
′
j ) = J−

i, j , and B(ei , e′
j ) = 0.

We realize the Lie superalgebra osp(m|2n) as the subalgebra of gl(m|2n) that leaves the
bilinear form B : C

m|2n × C
m|2n → C invariant. For s ∈ C

r and t ∈ C
n , set

d(s, t) :=
{
diag(s,−s, t,−t) if m = 2r ,

diag(0, s,−s, t,−t) if m = 2r + 1.

Recall from Appendix B.1 that we denote the standard Cartan subalgebra of gl(m|2n) by
hm|2n . Then hm|2n := hm|2n ∩ osp(m|2n) is a Cartan subalgebra of osp(m|2n). We have

hm|2n = {d(s, t) : s ∈ C
r and t ∈ C

n} ,

and the standard characters of hm|2n are given by

εi (d(s, t)) := si for 1 ≤ i ≤ r and δ j (d(s, t)) := t j for 1 ≤ j ≤ n.

Let b̆m|2n ⊆ osp(m|2n) be the Borel subalgebra corresponding to the fundamental system
�, where

� :=
{{εi − εi+1}r−1

i=1 ∪ {εr − δ1} ∪ {δ j − δ j+1
}n−1
j=1 ∪ {δn} if m = 2r + 1,

{εi − εi+1}r−1
i=1 ∪ {εr − δ1} ∪ {δ j − δ j+1

}n−1
j=1 ∪ {2δn} if m = 2r .

Finally, we set gosp(m|2n) := osp(m|2n) ⊕ CI ⊆ gl(m|2n), where I := I(m+2n)×(m+2n).
We also set

bm|2n := b̆m|2n ⊕ CI . (59)

We extend the standard characters εi , δ j of hm|2n to the subalgebra h̃m|2n := hm|2n ∩
gosp(m|2n) of diagonal matrices in gosp(m|2n), by setting εi (I ) = δ j (I ) = 0. Let
ζ : h̃m|2n → C be the linear functional defined uniquely by

ζ
∣
∣
hm|2n

= 0 and ζ(I ) = 1.

The set {εi }ri=1 ∪ {δ j }nj=1 ∪ {ζ } is a basis for the dual of h̃m|2n . We remark that when g is of

type gosp (i.e., in Cases III and V), we have ζ(h) = 2 where h ∈ g� is defined as in (1).
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In Case V, where g = gosp(2|4), we need to consider an exceptional Borel subalgebra

bex2|4 := b̂2|4 ⊕ CI , (60)

where b̂2|4 is the Borel subalgebra of osp(2|4) corresponding to the fundamental system

�ex := {−ε1 − δ1, δ1 − δ2, 2δ2}.

B.3. The anisotropic embedding of osp(m|2n) in gl(m|2n)

We will need another realization of osp(m|2n) inside gl(m|2n) which will be used in the
description of the spherical subalgebra k. Set r := �m

2 �, and let J̃− be the 2n × 2n matrix
defined by

J̃− := diag( J̃ , . . . , J̃
︸ ︷︷ ︸
n times

) where J̃ :=
[
0 1

−1 0

]

.

Let B̃ : C
m|2n × C

m|2n → C be the even supersymmetric bilinear form which is given in the
standard basis {ei }mi=1 ∪ {e j }2nj=1 of C

m|2n by

B̃(ei , e j ) := δi, j , B̃(e′
i , e

′
j ) := J̃−

i, j , and B̃(ei , e′
j ) := 0.

Thus, the matrix of B̃(·, ·) in the standard basis of C
m|2n is

[
Im×m 0m×2n

02n×m J̃−
]

.

The subalgebra of gl(m|2n) that leaves the bilinear form B̃ invariant is isomorphic to
osp(m|2n).

B.4. The exceptional embedding of osp(1|2) ⊕ osp(1|2) in gosp(2|4)

We consider the realization of osp(2|4) given in Appendix B.2. Set

g :=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
√−1 0 0 0 0

−√−1 0 0 0 0 0
0 0 0 0 0 −√−1
0 0 0 0

√−1 0
0 0 0 −√−1 0 0
0 0

√−1 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

We set kex to be the subalgebra of fixed points of the map osp(2|4) → osp(2|4) given by
x �→ Adg(x). One can verify that kex ∼= osp(1|2) ⊕ osp(1|2). We will consider kex as a
subalgebra of gosp(2|4).

B.5. The Lie superalgebra p(n)

Let n ≥ 1 be an integer, and let B̌ : C
n|n × C

n|n → C be the odd supersymmetric bilinear
form defined by

B̌(ei , e′
j ) := δi, j , B̌(ei , e j ) := 0, and B̌(e′

i , e
′
j ) := 0,
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where {ei }ni=1∪{e′
i }ni=1 is the standard homogeneous basis ofC

n|n . The Lie superalgebra p(n)

is the subalgebra of gl(n|n) that leaves B̌(·, ·) invariant. It consists of matrices in (n, n)-block
form

[
A B
C −AT

]

, where B = BT and C = −CT .

In this paper we will not need a description of the root system and highest weight modules
of p(n).

B.6. The Lie superalgebra q(n)

Let n ≥ 1 be an integer. The Lie superalgebra q(n) is the subalgebra of gl(n|n) that consists
of matrices in (n, n)-block form

[
A B
B A

]

.

Let h be the subalgebra of matrices of the latter form where A and B are diagonal. Then
h is a Cartan subalgebra of q(n). The standard characters {εi }ni=1 of h0 are the restrictions
of the corresponding standard characters of gl(n|n). Let bstn (respectively, bopn ) be the Borel
subalgebra of q(n) associated to the fundamental system�st := {εi −εi+1}n−1

i=1 (respectively,
�op := {εi+1 − εi }n−1

i=1 ). For every partition λ ∈ DP(n), we set λstn :=∑n
i=1 λiεi .

Appendix C. Facts from supergeometry

All of the supermanifolds that are considered in this appendix are complex analytic. We
denote the underlying complex manifold of a supermanifold X by |X|, and the sheaf of
superfunctions on X by OX. Morphisms of supermanfolds are expressed as (f, f#) : X → Y,
where f : |X| → |Y| is the complex analytic map between the underlying spaces and f# :
OY → f∗OX is the associated morphism of sheaves of superalgebras.

Let L be a connected Lie supergroup and let M be a Lie subsupergroup of L. Set l :=
Lie(L) and m := Lie(M). The right action of L on L induces a canonical isomorphism of
superalgebras from U(l) onto the algebra of left invariant holomorphic differential operators
on L. Under this isomorphism elements of U(l)M, the subalgebra of M-invariants in U(l),
are mapped to holomorphic differential operators which are left L-invariant and right M-
invariant. The latter differential operators induce L-invariant differential operators on the
homogeneous space L/M. Consequently, we obtain a homomorphism of superalgebras

�L,M : U(l)M → D(L/M), (61)

where D(L/M) denotes the algebra of L-invariant differential operators on L/M. By a
superization of the argument of [20, Prop. 9.1], we obtain the following statement.

Proposition C.1 Let D (d)(L/M) denote the subspace of elements of D(L/M) of order at
most d. Assume that there exists anM-invariant complement of m in l. Then

�L,M
(
U(d)(l)M

)
= D (d)(L/M) for every d ≥ 0.

In the rest of this appendix we will assume that J is a Jordan superalgebra of type A. Let
g, k, and V be as in Sect. 1.
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Lemma C.2 There is a vector vk ∈ V0 such that k = stabg(vk).

Proof In all of the cases where J is of type A we have V ∼= V ∗ ∼= J as k-modules, hence we
can set vk equal to the element of V0 corresponding to 1J ∈ J . ��
Lemma C.3 The map g → V , x �→ x · vk is surjective.

Proof The kernel of the linear map x �→ x · vk is k. The statement now follows in all of the
cases by verifying that the graded dimension of the image of this map and of V are the same.

��
Let b̃ := h̃ ⊕ ñ be a Borel subalgebra of g such that g = b̃ + k. Let G be a complex Lie
supergroup such that Lie(G) = g, and letV be the complex affine superspace corresponding to
V .We assume that |G| is a connected Lie group, and that the action of g on V can be globalized
to an action of G on V. The stabilizer of vk ∈ |V| = V0 is a complex Lie supergroup (K,OK)

such that Lie(K) = k.

Proposition C.4 The orbit map of vk factors through an embedding (pvk
, p#vk) : G/K ↪→ V

whose image is an open subsupermanifold of V.

Proof This follows from the fact that the differential of the orbit map (pvk
,p#vk) is a bijection

for all g ∈ G, which is a consequence of Lemma C.3 and G-equivariance of (pvk
,p#vk). ��

Remark C.5 Using the embedding G/K ↪→ V of Proposition C.4 and the natural injection
P(V ) ↪→ OV(|V|), we obtain a G-equivariant embedding

p#vk(|V|)∣∣
P (V )

: P(V ) ↪→ OG/K (|G/K|) .

Furthermore, connectedness of |G| impliesPD(V )g = PD(V )G. Therefore we can restrict
every D ∈ PD(V )g to the open subsupermanifold G/K of V, and indeed D

∣
∣G/K ∈ D(G/K).

For the next proposition, recall that every linear functional ϕ : h̃ → C induces a nat-
ural homomorphism of C-algebras S

(
h̃
) → C given by x1 · · · xk �→ ϕ(x1) · · · ϕ(xk) for

x1, . . . , xk ∈ h̃. Set S(d)(h̃) :=⊕d
i=0 S

i
(
h̃
)
.

Proposition C.6 Assume thatP(V ) is a completely reducible andmultiplicity-free g-module,
and let D ∈ PD (d)(V )g. Then there exists an element xD ∈ S(d)

(
h̃
)
such that for every

irreducible g-module W ⊆ P(V ), the action of D on W is by the scalar λ̃(xD), where λ̃ is
the b̃-highest weight of W .

Proof Let G, V, and K be defined as above, and let (q,q#) : G → G/K be the canonical
quotient map. Then q#(|G/K|) : OG/K(|G/K|) → OG(G) is an injection. For any X̃ ∈ U(g),
let LX̃ (respectively, RX̃ ) denote the action of X̃ on OG(G) by left invariant (respectively,
right invariant) differential operators. By Proposition C.1, there exists D̃ ∈ U(d)(g)K such
that q#(|G/K|)(Df ) = LD̃q

#(|G/K|)( f ) for every f ∈ OG/K(|G/K|).
Now set f := p#vk(|V |)(φλ̃) where φλ̃ ∈ P(V ) is a highest weight vector of W , and let

f̃ := q#(|G/K|)( f ). Let N be the connected Lie subsupergroup of G such that Lie(N) = ñ.
Then f̃ is left N-invariant and right K-invariant. We can express D̃ in the form D̃ = D1 +
D2 + D3, where

D1 ∈ ñU(d−1)(g), D2 ∈ U(d)
(
h̃
)
, and D3 ∈ U(d−1)(g)k.
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From K-invariance of f it follows that LD3 f̃ = 0. Furthermore, we can write D1 as a sum
of elements of the form XD′ where X ∈ ñ and D′ ∈ U(g). Let H := (H ,OH) denote the
connected Lie subsupergroup of G such that Lie(H) = h̃. For h ∈ H we have

LXD′ f̃ (h) = LX

(
LD′ f̃
)

(h) = R−Adh X

(
LD′ f̃
)

(h).

Since LD′ f̃ is leftN-invariant andAdh
(
ñ
) ⊆ ñ, it follows that LXD′ f̃ (h) = 0. Consequently,

we have shown that for xD := D2,

LD̃ f̃ (h) = LD2 f̃ (h) = λ̃
(
D2
)
f̃ (h) = λ̃(xD) f̃ (h).

It remains to prove that f̃ 	= 0. To this end, note that the canonical multiplication morphism

N × H × K → G
is a local isomorphism at the identity element. Thus, from analyticity, leftN-invariance, and
right K-invariance of f̃ , it follows that f̃

∣
∣
H is not identically zero. ��
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