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Abstract

For a finite dimensional unital complex simple Jordan superalgebra J, the Tits—Kantor—
Koecher construction yields a 3-graded Lie superalgebra g” = g°(—1) @ ¢°(0) & g°(1),
such that g"(—1) = J. Set V := g’(—1)* and g := g"(0). In most cases, the space Z(V)
of superpolynomials on V is a completely reducible and multiplicity-free representation of
g, and there exists a direct sum decomposition (V) := @xesz V.. where (V))ycq 18 a
family of irreducible g-modules parametrized by a set of partitions 2. In these cases, one can
define a natural basis (D, ); cq of “Capelli operators” for the algebra &2 7 (V)9 of g-invariant
superpolynomial differential operators on V. In this paper we complete the solution to the
Capelli eigenvalue problem, which asks for the determination of the scalar ¢, (1) by which
D,, acts on V. We associate a restricted root system X' to the symmetric pair (g, £) that
corresponds to J, which is either a deformed root system of type A(m, n) or a root system
of type Q(n). We prove a necessary and sufficient condition on the structure of X' for # (V)
to be completely reducible and multiplicity-free. When X' satisfies the latter condition we
obtain an explicit formula for the eigenvalue ¢, (A), in terms of Sergeev—Veselov’s shifted
super Jack polynomials when X is of type A(m, n), and Okounkov-Ivanov’s factorial Schur
Q-polynomials when X' is of type Q(n). Along the way, we prove that the natural map from
the centre of the enveloping algebra of g into 222 (V)9 is surjective in all cases except when
J = F, where F is the 10-dimensional exceptional Jordan superalgebra.
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1 Introduction and main results

Let J be a finite dimensional unital complex simple Jordan superalgebra (for the classifica-
tion of these Jordan superalgebras see [3,16]). The Tits—Kantor—Koecher construction (see
Appendix A) associates! to J a Lie superalgebra g” together with an imbedded sl,-triple
s 1= Spanc{h, e, f} where

[h,e] = 2e, [e, f1=h, and [h, f] = —2f. (1)

Following Kac (see [3,16]), we consider the grading of g” by the eigenspaces of ad(—%h).
Then we obtain a “short grading”

d=d-hed0ed0),

where g’(—1) = J and e is the identity element of J. Set g := g°(0) and ¢ := stabg (e).
Then (g, £) is a symmetric pair, and in fact £ = g® where ® := Ad,, for w € PSL,(C)
representing the nontrivial element of the Weyl group, defined as in (55).

Set V := g°(—=1)*, where g°(—1)* denotes the dual of the g-module g°(—1). Let Z2(V)
denote the superalgebra of superpolynomials on V. Note that there is a canonical g-module
isomorphism Z(V) = §(J), where 8(J) denotes the symmetric algebra of the Z/2-graded
vector space J. In most cases (see Theorem 1.4), the g-module &2 (V) is completely reducible
and multiplicity-free, and the irreducible summands of &(V) are parametrized by a set of
partitions €2, i.e.,

PV) = @ Vi,
reQ
where the V) are mutually non-isomorphic irreducible finite dimensional g-modules. In these
cases, to each A one can associate a Capelli operator2 D, € 22(V)?, where 29(V)?
denotes the algebra of g-invariant superpolynomial differential operators on V. Indeed the
family (D, );cq forms a basis of Z2(V)? (see Remark 1.7).

From Schur’s Lemma it follows that each operator D, acts on Vj by a scalar ¢, (). The
problem of calculating this scalar (the Capelli eigenvalue problem) has a long history (see
below). In this paper we complete the solution of this problem in the super setting.

For ordinary Jordan algebras (i.e., when J; = {0}), #(V) is a multiplicity-free represen-
tation of the reductive Lie algebra g (see [15,26]). In this case, the solution to the Capelli
eigenvalue problem was given when D; corresponds to a one-dimensional representation
by B. Kostant and the first author in [18], and later in full generality by the first author in
[23]. Indeed in [23] the first author introduced a “universal” family of symmetric polyno-

mials goff ) (x) characterized by certain vanishing properties, and depending on an auxiliary

vector p = (p1, ..., py). The main result of [23] is that ¢, (1) = ga,(fs)(k + ), such that
8 :=(0,—1,...,—n+ 1) where n is the rank of the symmetric space (g, ) associated to
the Jordan algebra J, and r is half the multiplicity of restricted roots.

The polynomials <pg 2 (x) were studied by Knop and the first author in [17] for arbitrary r,
who proved that they satisfy a system of difference equations, which are a discrete version of
the Debiard-Sekiguchi system for Jack polynomials [8,27]. Knop and the first author deduced
that the top-degree terms of (p,([ % are proportional to the Jack polynomials P,il/ ") For this

! We remark that o isa slight modification of the simple Lie superalgebra that is constructed from J by the
Kantor functor (see Remark A.3).

2 The classical Capelli operator appears as a special case of the operators Dj, . For this reason, we call the D,
the Capelli operators.
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reason, the ga,“s)(x) are sometimes referred to as Knop—Sahi polynomials, or shifted Jack
polynomials. The supersymmetric analogue of these polynomials was constructed by Sergeev
and Veselov [29]. The top-degree terms of the Sergeev—Veselov polynomials S P;*(x, y, 6) are
the super Jack polynomials. An analogous family of polynomials Q7 (x) whose top-degree
terms are the Schur Q-polynomials was defined by Okounkov and Ivanov [14].

The study of the Capelli eigenvalue problem for Jordan superalgebras was initiated in
[24], where it was solved in the cases J = gl(m, n)4+ and J = osp(n, 2m) . These Jordan
superalgebras correspond to symmetric pairs of types (gl x gl, gl) and (gl, osp), respectively.
Extending the results of Kostant and Sahi to these Jordan superalgebras, in [24] the first two
authors showed that the eigenvalues of the Capelli operators are obtained by specialization of
the polynomials § Plj atf =1, % Later, in [1] the Capelli eigenvalue problem was considered
for Jordan superalgebras of type g(n) 4, and it was shown that the eigenvalues ¢, (1) are given
by the polynomials Q7.

In this paper, we complete the project started in [1,24], and solve the Capelli eigenvalue
problem for general unital simple Jordan superalgebras. The new phenomenon that arises in
the present setting is the occurrence of certain deformations of the root system of the Lie
superalgebra gl(r|s), studied by Sergeev and Veselov [28], which we define below.

Let r, s > 0 be integers. We represent the roots of the root system A(r — 1, s — 1) by

Rrs == {e

£ —§& ’}lsi;éi’sr U {é

i~ 8ihiejpyes VL E (6 = 8)))

I<i<r,1<j<s’ @

as a subset of the (r + s)-dimensional vector space

E s ::SpanR{gl,Sj 1<i<r1 fjfs}.
-), be a (unique up to a scalar)

Fix k € R (if s > 0, we assume « # 0), and let (-,
t{ l} { }T | is an orthogonal

nondegenerate symmetric bilinear form on E, s such tha
basis of E, ; with respect to (-, -), that satisfies

(€. 8) = (&80 =k (8. 8) =k "(8;0.8;), for 1<i,j<randl=<i, j <s.

The deformed root system A.(r — 1,s — 1) is the subset R, of the quadratic space
(Er.s» (-, *)). The root multiplicities of A, (r — 1, s — 1) are defined to be

mult(g; — &) =k, mult@j — Qj,) ="', and mult(g; —§j) =1. 3)

For convenience, from now on we assume that J # {0}. We remark that our techniques
and results can easily be adapted to ordinary Jordan algebras, and the reason for excluding
them is that they have been dealt with in [23].

Remark 1.1 1f J = JP(0, n), then 2%(V) is not completely reducible. Therefore without
loss of generality, from now on we exclude the Jordan superalgebras JP(0, n).

Our next goal is to associate a set of restricted roots X' to J. The Lie superalgebra g that
is associated to J is isomorphic to one of the types gl, gl x gl, gosp, or q x gq. Throughout the
paper, we will use a standard matrix realization of g that is given in Sect. 2. In this realization,
there is a natural Cartan subalgebra h C g such that by is equal to the subspace of diagonal
matrices and © (h) = b. Note that h; = {0} except when J = g(n)4 forn > 2.

Since @ (hg) = by, we have a direct sum decomposition

b = t5 a5
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where t5 and ag are the +1 and —1 eigenspaces of ®|b7, respectively. Let A denote the root
0
system of g corresponding to b, and set

= o], e aj\o @)

Assume that X' # @ (see Remark 1.3). Then according to the structure of X, the Jordan
superalgebras J can be divided into two classes (type A and type Q) defined below.

Jordan superalgebras of type A

Assume that J is one of the Jordan superalgebras that appear in Table 1. Then X is a root
system of type A(r — 1, s — 1), where r := r; 4 and s := r; _ are given in Table 1. We
represent this root system as in (2). Furthermore, in these cases g” always has an invariant non-
degenerate supersymmetric even bilinear form (see Table 4). Fix such a bilinear form (-, ),
on g’ (the choice of the bilinear form will not matter in what follows). Then the restriction
(-, -)b|aﬁxuﬁ is also non-degenerate, and therefore it induces an isomorphism ay = a%. Via
the latter isomorphism, (-, -)p, ’aﬁxaﬁ induces a bilinear form

Lok *
(-,-)J.uﬁxaﬁ—ﬂc.

For « € X, we denote the corresponding restricted root space of g by g,. We define the
multiplicity of each @ € X to be

1
mult(a) := — Esdim(ga),

where for any 7Z/2-graded vector space E := Eg® E7 we define sdimE := dim Eg—dim E7.
The last 3 columns of Table 1 give the graded dimensions of the restricted root spaces.

One can now verify directly that X', considered as a subset of the quadratic space
(a%, (-, *) J) and equipped with the multiplicities defined above, is the deformed root sys-
tem A, (r — 1,5 — 1). Set

0y .= —«.

Thus, the value of 6 can be obtained from either of the two equalities

(81,91) I
0 = — 22T and 0y = =sdim(g; —gj),

<§]»§1)1 2

Table1 X of Type A
J Remarks rj4+ ry— 9y +(g; —gl-) +(g; —Qj) +(4; —éj)

1 gl(m,n)y4 m,n > 1 m n 1 210 02 2|0
11 osp(n,2m)y.  m,n >1 m n % 110 02 410
M (m,2n)4 mn=1 2 0 mln om—120 - -
IV Dy r#£0,—1 1 1 -1 - 02 -
vV F 2 1 3 310 02 -
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Table2 X of Type Q

J Remarks ry
VI pn)+ n=>?2 n
viI qn)+ n=>2 n

. . .. 8,.8
and indeed in the cases that both of the quantities — E;: ’;i;’
’ J

defined, they are equal. The values of 6 are given in Table 1. The details of the computations
that yield the values of the parameters ry 4, ry —, and 6, are postponed until Sect. 2.

and %sdim(gi — gj) are well-

Remark 1.2 In Case IV of Table 1, we assume that t € C\{0, —1} because Dy is not simple
and D_; = gl(1, 1)4.

Jordan superalgebras of type Q

Next assume that J is one of the Jordan superalgebras that appear in Table 2. Then X is a
root system of type Q(r), where r := ry is given in Table 2. The graded dimension of all of
the restricted root spaces is (2/2).

In the following remark, (m, 2n) denotes the Jordan superalgebra with underlying space
Cl1 & E and with product @ o b := (a, b)g1, where E is an (m|2n)-dimensional vector
superspace equipped with a nondegenerate even supersymmetric bilinear form (-, -)g.

Remark 1.3 The only cases for which ¥ = & are the Jordan superalgebras of type (0, 2n) ..
Indeed it appears that the situation for these Jordan superalgebras differs substantially from
the other cases that are considered in this paper, for the following reasons. First, the Zariski
closure of the set of highest weights that occur in &2(V) is not an affine subspace (see
Definition 1.12 and Remark 1.15), and therefore it does not seem to be natural to consider the
eigenvalues of the D/, as a polynomial function on this Zariski closure (see Theorem 1.13).
Second, even though (V) is a completely reducible and multiplicity-free g-module (see [7,
Sec. 5.3]), the highest weights that occur in & (V') look quite different from those that occur
in the cases J = (m, 2n)4 for m > 0. In particular, the number of irreducible g-submodules
occurring in the subspace 2% (V) of homogeneous elements of degree k in Z2(V) stabilizes
for k > 2n. Therefore unlike the case J = (m, 2n)4 for m > 0, one cannot expect a
parametrization of irreducible summands of Z?(V') by hook partitions [see (5) below]. We
hope to investigate these interesting cases in the future. In the rest of this paper, we assume
that J 2 (0, 2n) 4.

In order to state our first theorem (Theorem 1.4), we need the parametrization of the
irreducible summands of Z(V) by partitions. For this parametrization, we choose a Borel
subalgebra

b:=hédn

of g satisfying g = £+b. For the precise definition of b and the embedding of £ as a subalgebra
of g, see Sect. 2. The quintuples (gb, g, £, b, V) thatare associated to the Jordan superalgebras
J are also listed in Table 4.

Let P denote the set of partitions. We represent elements of P by sequences of integers
A= (X)$2, suchthat A; > A;4 foralli > 1,and A; = O for all sufficiently large i € N. As

i=1

usual, the weight of any A € P is defined by [A| := Y72 A;. A partition A := (3;){2, € P
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364 S.Sahietal.

is called strict if A; > Xy for alli < £(A), where £(A) := max{i : A; > 0} denotes the
length of A. For n > 0 let DP(n) be the set of strict partitions A such that £(A) < n. For
m,n > 0, let H(m, n) be the set of (m, n)-hook partitions, defined by

Hm,n) :={reP : Apt1 <n}. 5)
For d > 0 set
Ha(m,n) :={r € H(@m,n) : |A\| =d} and DPy(n) .= {A € DP(n) : |A| =d}.

Also, set
(-4 :abeZ a>=1 andl <b<m—1} ifn=0,
Stm,n):=1{-%:a,beZ 0<a<n, andb > 1} if m =0,
Q=0 otherwise.

Indeed S(m, n) is the set of admissible parameter values of the Sergeev-Veselov polynomials
(see Theorem 1.8). The first main result of this paper is the following.

Theorem 1.4 Let J be a finite dimensional unital complex simple Jordan superalgebra such
that J; # {0}. Further, assume that J is not isomorphic to one of the Jordan superalgebras of
types (0, 2n) 4 and JP(0, n). Let g, b, and V be associated to J as above. Then the following
assertions hold.

(1) When J is of type A, the g-module 27 (V') is completely reducible and multiplicity-free if
andonly if 05 ¢ S(ry +,ry,—).
(i) When J is of type Q, the g-module &2 (V') is completely reducible and multiplicity-free.

Furthermore, whenever &2 (V) is completely reducible and multiplicity-free, for everyd > 0
we have

7'vy= P . (6)

rEQy

where V,_is the irreducible g-module with the b-highest weight A given in Table 3, and

Fa(ry4,r7.—) if Jis of type A,

Qq = :
DPy(r,) if J is of type Q.

Remark 1.5 In Table 3, we represent the b-highest weight A as a linear combination of the
standard characters of b, when g is realized as in Sect. 2. The standard character of the Lie
superalgebras of types gl, gosp, and q are given in Appendices B.1, B.2, and B.6 respectively.
The highest weights )\;ﬁln and AS' that appear in Cases I and VII of Table 3 are defined in
Appendices B.1. and B.6 respectively.

Remark 1.6 We remark that several of the cases of Theorem 1.4 are already known. For J
corresponding to Cases I-III and VII of Tables 1 and 2, Theorem 1.4 can be found in [2,4,5,7].
Thus, the new cases of Theorem 1.4 are Cases IV-VI, for which the assertion is proved in
Sect. 3.

In the rest of this section we assume that the g-module &?(V) is completely reducible and
multiplicity-free. Set
Q= U Q.

d>0
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Then from (6) it follows that

29V = (@M)Wt = P (v, @ V)= P Homg(V,. Vi). (D)
A, e Apue

For A € @, let D;, be the element of 2% (V)# that corresponds to idy, € Homg(Vy, V) via
the isomorphism (7).

Remark 1.7 The family (D, )scq forms a basis of 2 2(V)9. This is because V), is of type M
in the sense of [6, Sec. 3.1.2], that is, V), is irreducible as an ungraded module. In particular,
there is no odd g-intertwining map V, — Vj. For Cases I-VI, this property of V) is an
immediate consequence of highest weight theory for Lie superalgebras of types gl and osp,
and for Case VII, it is verified in [1, Sec. 3.1].

Our second main result (Theorem 1.13) yields an explicit formula for the eigenvalue ¢, (1)
of D, on Vj. Before we state Theorem 1.13, we need to recall the definitions of the shifted
super Jack polynomials of Sergeev and Veselov [29], and the factorial Schur Q-polynomials
of Okounkov and Ivanov [14].

Form,n > 0let &, , denote the C-algebra of polynomials in m +n variables xp, ..., X
and yi,...,y,. Fix 0 € C (if n > 0, we assume 6 # 0). Let Amne C Py be the
subalgebra of polynomials f (x, y) with complex coefficients which are separately symmetric
inx :=(xy,...,xy)andin y := (yy, ..., yn), and which satisfy the relation

fla+zey—5e)=f(x—ze.y+3e)
onevery hyperplane x; +0y; = 0,where 1 <i <mand1 < j < n.Givenany A € H(m, n),
asin [29, Sec. 6] for 1 <i <mand 1 < j < n we define
P =X —9( $) — 3(n—06m) and
aj(h) = =)+ (0Tt m), ®)
where A" denotes the transpose of A, and
(x) := max{x, 0} for x € R.

The (m + n)-tuple (p(}),q(X)), where p(A) := (p;(A),...,p,,(A)) and gq(A) =
Qi (A), ..., q,(A)), is called the Frobenius coordinates of \. The following theorem charac-
terizes shifted super Jack polynomials by their degree, symmetry, and vanishing properties.

Theorem 1.8 (Sergeev—Veselov [29, Thm 3], Knop-Sahi [17, Sec. 2]) Let m,n > 0 be
integers and let 0 be a complex number such that 0 ¢ S(m, n). Then for each A € H(m, n),

there exists a unique polynomial S P;" € A,nn n.0 that satisfies the following properties.

(i) deg(SP)) < |r|, where deg(S Py¥) denotes the total degree of SP; in x and y.
(i) SP;(p(n),q(n),0) =0 forall w € H(m,n) such that || < |A| and 1 # A
(i) SPS(p(A),q(n),0) = Hy(L), where

Hyw = [ T[] Gi-i+00,-i+D.
I<i<e() 1<j=<x

Furthermore, the family of polynomials (S Pl (x,y, 9)) is a basis ofA

reH (m,n) m,n,0°
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366 S.Sahietal.

Remark 1.9 For m, n > 0, Theorem 1.8 is proved in [29]. If either m = 0 or n = 0, then up
to scaling the S P} are the same as the interpolation polynomials Pf defined by Knop and
Sahi [17]. Given k € N and « € C, set Pro = (p1, - .-, pr) where p; := %(k —2i+1)
for 1 <i < k.Ifn = 0 then SP(x,0) = P/ for p := p,, 4, and if m = 0 then

SPi(y,0) = H"(X)Pp for p := Pug1-

Next we state the characterization of factorial Schur Q-polynomials by their degree, sym-
metry and vanishing properties. For n € N, let &2, denote the C-algebra of polynomials in
n variables x, ..., x,. Further, let I';, C &7, be the subalgebra of symmetric polynomials
f(x1,...,xp)suchthat f(¢, —¢, x3, ..., x,) is independent of # (for n = 1 the latter condi-
tion is vacuous). In Theorem 1.10, for . € DP(n) we define A! := ]_[151-55(,\) X;!and identify
A with the n-tuple (A1, ..., 1) € C".

Theorem 1.10 (Ivanov [14, Sec. 1]) For every A € DP(n), there exists a unique polynomial
Q% € T, which satisfies the following properties.

(i) deg(Q3) < IAl.
(i) Q5(n) =0 forall w € DP(n) such that || < |A| and p # A.

(i) QF (1) = H), where H() = M Ty j<) Tgt

Furthermore, the family of polynomials (Qi) is a basis of T',.

reDP(n)

Set

ey P ey
Ay = Ar,(yr,',ﬁ/ if J is of type A, and Py = ']r,.+,rj_, if J is of type A, )
Iy, if J is of type Q. Py, if J is of type Q.

There is a natural embedding of A ; as a subalgebra of &;.

Definition 1.11 For A € @, we define P;; € A as follows. When J is of type A we set

[A]!
o= ———SP(x,y,0),
Hy, ()" "
where x := (x1,...,x, ) and y := (y1,..., yr,_). When J is of type Q we set
[A]!
Py, =
Ty —— 05 (x),

where x 1= (x1,...,x,,).

Recall that for A € 2, we denote the b-highest weight of the irreducible g-module V; by
A

Definition 1.12 We define a, to be the Zariski closure of the set {A L E Q} in b%.

By a straightforward calculation using the explicit description of the b-highest weights given
in Table 3, one can verify that a is a linear subspace of b% (see the proof of Proposition 4.2).
Set

rj++ry— if Jisof type A,

ny .=
Ty if J is of type Q.
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Table 3 The b-highest weights A and the affine maps 7y

A 7
I —h) © A, Hab F> YLy (ai + w) e +
II Zn 1 2hig; — Hab = Z,"Ll (/a‘ + %2"72’) et
./_1()\] —m)(8j—1 +2;) Z’}:1 ( b+ m+2+2n 4/)em+j
1 (1 = A2)er + O + M2)E tap > (Sa+b)+Fm—2m—1)er+
(%(b —a)—Lom—2m - 1)) e
v () =201 ) &1 + wap > (~Tha— b — 1) e+
(= (3) 141) 61 +62) (rha—THp+ ) e
v GIAl =24 — 242) €1 + Hape > (FoEGEcE ey 4
(A1 —2A2) (81 + 82) + Al (‘“_ZT'SC_S)ez " (a ¢+2> e
\%i =i higi = Yo A8 Ha = =Y aie
VII (=25 @ At Ha = D71 i€
Let
Ty agy — CY (10)

be the affine linear map given in Table 3, where the elements of ag, are given in Cases I-VII
by (30), (31), (32), (33), (38), (35), and (37) respectively, and the standard basis of C"/
is denoted by ey, ..., e,,. We identify &7; with the algebra of polynomials on C"/ in the
natural way. Namely, for v := (v, ..., v,,) € C"/, we identify the x; € &2; with the maps
v v; and the y; (if they exist) with the maps v > v, .. The second main result of this
paper is the following.

Theorem 1.13 Let J, g, b, and V be as in Theorem 1.4. Assume that (V) is a completely
reducible and multiplicity-free g-module. Then for every A, u € Q, the operator D, acts on
V. by the scalar Py (Tj ( )) where Py, is as in Definition 1.11, and X is the b -highest
weight of 'V, given in Table 3.

Remark 1.14 Theorem 1.13 is proved in [24] for Cases I-II, and in [1] for Case VII. We
give a uniform proof for Cases I-IV and and VI in Sects. 4 and 5 (see Proposition 5.2(iii)).
With minor modifications, this strategy also works for Case VII. However, this uniform proof
strategy does not work in Case V. In the latter case we prove Theorem 1.13 in Sect. 6 by a
different method.

Remark 1.15 It J = (0, 2n)4, then & (V) is completely reducible and multiplicity-free, but
the Zariski closure of the set of highest weights is a union of n + 1 lines. Therefore it is not
possible to give a natural formulation of Theorem 1.13.

Remark 1.16 In Case VII, the operators D, are closely related to certain operators /I, that are
constructed by Nazarov [21, Eq. (4.7)] using characters of the Sergeev algebra. Nazarov also
defined certain explicit “Capelli” elements in the centre of the enveloping algebra of q(n),
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368 S.Sahietal.

and proved [21, Cor. 4.6] that their images under the left action of q(n) on V are the I;. The
precise connection between the D, and Nazarov’s operators is determined in [1, Prop. 3.6].

The reason why the uniform proof of Theorem 1.13 fails for Case V is a property of the
image of the Harish-Chandra homomorphism which is of independent interest. We denote
the universal enveloping algebra of g by U(g). The g-action on V induces a homomorphism
of associative superalgebras

j:U(g) — 22(V). (11)

Let (U(")(g))i>0 denote the standard filtration of U(g). Let Z(g) < U(g) be the centre of
U(g), and set ZO(g) := Z(g) N UV (g) fori > 0. Let

HC : U(g) — $(h) = 2(h") (12)

be the Harish-Chandra projection corresponding to the triangular decomposition g = n~ &
h @ n, where n™ is the nilpotent subalgebra of g opposite to n. Thus for D € U(g) we define

HC(D) := Dy,

where D = Dy + D' is the unique way of expressing D as a sum of two elements Dy, €
U(h) = 8(h) and D" € (U(g)n + n~U(g)). Let

res: Z2(h*) - 2(ag) (13)
denote the canonical restriction map, and let
T3 Py — P(af) (14)

be the pullback of the map t; defined in (10), that is, 7 (p) := p oz, for p € ;. We

denote the degree filtration of the algebra &2 defined in (9) by (@y)) o In the following
i>

theorem, which will be proved in Sect. 4, we denote the exceptional (6|4)-dimensional Jordan

superalgebra by F.

Theorem 1.17 Let J be as in Theorem 1.4. Assume that (V) is completely reducible and
multiplicity-free. If J % F, then res (HC (Z(g))) = 13} (Ay)) fori > 0, where Ay) =
A, 0PV If T =F, then res (HC (Z(g))) € % (A,).

Since the map j : U(g) — Z2(V) is g-equivariant, we have j(Z(g)) € 22(V)"8.

Corollary 1.18 Let J be as in Theorem 1.4. Assume that (V) is completely reducible and
multiplicity-free. If J 2 F, then j(Z(g)) = 22(V)8. If J = F, then j(Z(g)) C 2 2(V)".

This phenomenon already occurs in the non-super case [10,12]. Corollary 1.18 follows
from Propositions 5.2(ii) and 5.3.

Remark 1.19 Weingart [30] computes the eigenvalues of a basis of invariant operators cor-
responding to the action of gl(n) on A(S8%(C")) and A(AZ(C")). These multiplicity-free
representations arise naturally from the action of the even part of the Lie superalgebra p(n)
on its odd part. We will study similar actions in a forthcoming paper.
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2 Realizations of g, ¢, b, V,and 2

In this section we describe explicit embeddings of b and € in g. We have the following three
possibilities for g.

1) g=gl(r|s) or g = gl(r|s) @ gl(r|s) for some r, s € N.

(i) g = gosp(r|2s) for some r, s € N.
>iii) g = q(r) @ q(r) for some r > 2.

In each of the cases (i)—(iii) above, we consider the standard matrix realization of g (or its
direct summands) as given in Appendices B.1, B.2, and B.6, respectively. The embedding
g < ¢’ is determined uniquely by the semisimple element / given below. We identify € and
b as subalgebras of this realization of g. We also give an explicit description of X'. In what
follows, diag(X1, ..., X,) denotes the block diagonal matrix formed by X1, ..., X,,.

Case L. The matrix realization of g” = gl(2m|2n) is as in Appendix B.1. We set
h = diag(—Lnxms Imxms —Inxns Inxn)-
The matrix realization of g = gl(m|n) @ gl(m|n) is as in Appendix B.1, and the embedding
g < g is given by
A Ome B Om Xn
AB] [A B | Onxm A Owsn B
cCD||C'D C Opxm D Ouxn
Ouxm  C" Opxn D'
Invariant supersymmetric even bilinear forms on g” are of the form
(x, ¥) := agstr(xy) + aastr(x)str(y) for oy, ap € C.
The realization of ag as a subalgebra of g’ is
ag := {diag(d;, —d;,dy, —dy) : d; € C" and d, € C"}.

Note that the bilinear map (x, y) +> str(x)str(y) vanishes on ag, and therefore without loss
of generality we can choose the invariant form (x, y), to be (x, y), := str(xy). Then X
is a root system of type A(m — 1,n — 1) for the choice of ¢; := 8,’|a7 and §j = ‘Sj‘a—’
0 0
where {&;}/*, U {8 j};!:] are the standard characters of the Cartan subalgebra b, ,, of the left
gl(m|n) summand of g, defined in (57). By a direct calculation we obtain (g;, gj)J = %6“
and (8;,8;), = —%8; j, so that 6; = 1.
The embedding of € = gl(m|n) in g is the diagonal map x — x @ x. We set b :=
b® @ bf;'n C g, where bt and bfnp‘n are defined in Appendix B.1.

min min

Case II. The matrix realization of g” = osp(4n|2m) is as in Appendix B.2. We set

h :=diag (—Inx2n, Donx2ns —Imsams Imxm) -

The matrix realization of g = gl(m|2n) is as in Appendix B.1, and the embedding g — g¢”
is given by

D 02n><2n c 02n><m

|:A B:| — 025 x2n _DT 021 xm BT
cD B Ormx2n A Ormscm
Omx2n _CT Omxm _AT
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We set (x, y), := str(xy). The realization of ag as a subalgebra of g’ is

ag = {diag d,—d,a,—a) : deC", a:=(ay,....az) € C?", apj_| = apj for1 <i < n} ,
and thus X' is a root system of type A(m — 1,n — 1) with g; := 5,| 1 <i < m,and
§j = 8| |a7, 1 < j < n, where {g}", U{5;} ”1 are the standard characters of the

Cartan subalgebra b,,, € gl(m|2n), deﬁned in (57). By a direct calculation we obtain
(&, €; )J ——%(S,] and (§;,9; )J = 48,j,sothat91 = é

The embedding of € = osp(m|2n) in g is as in Appendix B.3. We set b := b'", . where

m|2n°

bm\z is defined in Appendix B.1.

Case IIlL. Set k := L’”THJ . The realization of g” = osp(m + 3|2n) is as in Appendix B.2. We
set

| diag(=2, Okxk, 2, Ok ks 02nx2n) if m+1=2k,
diag(0, —2, Ogxk, 2, Okxk, O2nx2n) if m+1 =2k + 1.

The realization of g = gosp(m + 1|2n) is as in Appendix B.2. Let {¢; }§'€=1 U {é; }’;:1 u{c}
be the standard characters of the Cartan subalgebra Em +1.n of g. Then

k n
ag = m ker(e;) N m ker(d;),

i=2 j=I

and thus X = {81 |a—}' We consider X as a root system of type A(1, —1), where g, — &, :=
0

e1 |u7 (the choice of ¢; and g, does not matter). Since there are no § j ’s, the value of 67 is
obtained only from the superdimension of &, — &,.
Similar to Appendix B.2, let {e; }erl U {e }2 denote the natural homogeneous basis of

the standard g-module C"*+!1" Then ¢ = osp (m |2n) is the subalgebra of g = gosp(m+1|2n)
given by

_ Stabg(e] —exy1) ifm+ 1 =2k,
| Stabg(es — exy2) ifm+1=2k+1.

The Borel subalgebra b := by, 12, is defined in (59).

Case IV. The Lie superalgebra g° is isomorphic to Scheunert’s Lie superalgebra
['(—t,—1,1 + t) (see [25, Example 1.1.5]). The realization of g = gl(1]2) is as in
Appendix B.1, and the embedding of £ = 0sp(1|2) in g = gl(1/|2) is as in Appendix B.3. The
Borel subalgebra b := b?& is defined in Appendix B.1.

To identify X' and compute the value of 6;, we need the explicit realization of the root
system of g°. To distinguish the root systems of g” and g, we denote the root system of g° by
AP = A% ] A% where

— {28, +25,, 4283} and A; = (48, £ 5, £+ 5.

Let (-, ~)’b denote the bilinear form induced on Spang{&; : 1 < i < 3} by the invariant form
(-, -)». As usual, we choose (-, -), such that the &;’s are orthogonal with respect to (-, -)’b and
we have (€1, &1); = —1, (82, &2), = —1,and (&3, &3), = 1 +1. Let {hi}?:1 be a basis for the
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Cartan subalgebra of gb that is dual to the &;’s, i.e., & (h;) = &; j. Then h := hy + h and
therefore the fundamental roots of A are 1 — 81 := &) — & — 53’6 and §; — 8 := 283 b
where b denotes the diagonal Cartan subalgebra of g. It follows that ay = Spanc{A1, h2}, and

therefore X has only one odd root, hence it is of type A(0, 0). If we choose ¢, := & |u7 then
0
it follows that we should have §; = g2}a—’ and by a straightforward calculation we obtain
0
(e).2))s = —tand (8;,8;); = —1,s0that 6, = — 1.

Case V. The embedding of ¢ := £ = osp(1]2) @ osp(1]2) in g = gosp(2|4) is defined in
Appendix B.4. The Borel subalgebra b := b5, is defined in (60).
AsinCaselV, welet (-, ~)é be the bilinear form induced on the dual of the Cartan subalgebra

of g° by the invariant form (-, -), of g°. The root system A” := A% U AbT of g’ is

b, ~ ~ ~13 3 b, 1 ~ ~ ~ 3
Api= {8 28} U E] L VB and a7 = [ (8 £ 25 £7)]
such that (&, &), = &1 ), (3,8), = —3,and (3, 8), = 0. Let {hg,}7_, U {h;} be abasis dual
to {éi}?:] U {8} for the Cartan subalgebra of g”. We set i := hz, + hg. Then the fundamental

roots of A are

&1 —81 = %(S —51 - 52 —5‘3) B 51 —82 = 53 and 252 = (52 —53)“).

b 9
From the description of ¢ it follows that §; — &; is a root of €, hence §; — 52}0l = 0. Conse-
quently,

ap = Span(c {hg, hgl , hgz} .
One can now verify that ¥ is a root system of type A(1, 0), with fundamental roots
& — & = §2|a6 andg, —§, := %(S —& —& — é3)|a6.

We can determine the value of 6; without making a choice for the ¢; and the § j»as follows.

First note that &, — &, = &, so that

(§1 — &7, 81 _§2)J = (&2, 52)b =1 (15)

Since X' is assumed to be a Sergeev—Veselov deformed root system, in particular we should
have (g1, &), = (&5, &), and (g, &) ; = 0. Thus from (15) it follows that (g, £;) ; = %
Similarly, g; — 8, = %(5 — &1+ 52)‘a7, so that

0

(e 8000 +(81.81), = (e, —8,.8,—8)), =106 —&1+ 8.8 — &1 + &), =—73.

Consequently, (81, 8;); = _%_@1&1)] = —%.Fromthevaluesof(gl,gl)J and (§;,6,),

w

we obtain 6y = 3.
Case VL. The realization of g = p(2n) is as in Appendix B.5. We set
h = diag(—ILixn, Inxn> Inxn — Tnxn)-

The realization of g = gl(n|n) is as in Appendix B.1, and the embedding g < g” is given
by the map
A Onxn 0’1)(’1 B
A BT | Onxn —DT BT 0,y
C D Ol‘an _CT _AT Onxn
C Ouxn Opxn D
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Table4 The quintuples (@, 9,80,V)

o g e b 1%
I gl@m[2n) gl(m|n) & gl(m|n) ~ gl(m|n) by ® B3, C7Im @ (Cminy*
I osp(4n|2m) al(m|2n) osp(m|2n) b;’fm §2(Cmi2my
I osp(m +3|2n) gosp(m + 112n) osp(m|2n) Bym-t1120 (Cmt1znyx
IV DQIL 1 gl(12) 0sp(1]2) o} (—%) e+
(3)61+6
V. F@ID gosp(2(4) 0sp(112) @ 0sp(1]2)  bSjy —3e1—¢
VI p(2n) al(n|n) p(n) by M(A%(C"M)
VI q(2n) a(n) @ q(n) q(n) by’ @bt (Ctln @ (Crimxnien

The realization of ag as a subalgebra of g’ is
ay := {diag(a, —d, —a,d) : a,d € C"},

and X is a root system of type Q(n). The embedding of ¢ = p(n) in g = gl(n|n) is given in
Appendix B.5. The Borel subalgebra b := by} is defined in Appendix B.1.

Case VII. The matrix realization of g’ = q(2n) is as in Appendix B.6. The embedding of
g = q(n) @ q(n) in g° is the restriction of the one given in Case I. The subalgebra ay is the
intersection with g of the one given in Case 1. The embedding of € = q(n) in g = q(n) ® q(n)
is also the restriction of the diagonal map x > x @ x. We set b := b, @ b3, where b' and
by’ are defined in Appendix B.6.

We summarize the descriptions of g", ¢, £, and b in Table 4. In addition, in the last column
of Table 4 we give an explicit realization of V for Cases I-III and VI-VII, and the b-highest
weight of V for Cases IV and V. The symbol IT in Cases VI and VII of Table 4 is the parity

reversal functor, so that

(@M @e e = fy e () @ T : (M@ M) =v).

3 Proof of Theorem 1.4

In this section we prove Theorem 1.4. Recall that by Remark 1.6, we will only need to
consider Cases IV-VI. We address each case separately.

3.1 CaselV

Recall that in this case g = gl(1]2). Let bﬁtlz be the Borel subgroup of g defined as in
Appendix B.1. The next proposition implies Theorem 1.4 in Case IV.

Proposition 3.1 Assume that J = D; fort # 0, —1. Then & (V) is multiplicity-free if and
only if—% ¢ Q0. If the latter condition holds, then for every d > 1 we have

d
d ~
74y = Py,
k=1
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where Vy, is the irreducible g-module with b-highest weight

. 3+4+1¢ _ _ ﬂ
Nk 1= <d<17+t> 2k>81+< d<1+t>+k)(51+52).

Proof By the g-module isomorphism 24V) = 84(V*)itis enough to prove the analogous
statement for 8¢ (V*). The bﬁtlz—highest weight of V* is

34+t 2+t
= (2 ) e — (250 ) 61+ 62).
n <1+t)81 (l+t>(1+ 2)

For every u := x161 + y181 + y282 € [)% such that y; — yp € 7ZZ9, we denote the
irreducible finite dimensional gﬁ-module with (bﬁ“2 N gﬁ)-highest weight u by M. Let

K(w) = IndiSI M, be the corresponding Kac module. As a gﬁ—module, K ()7 is isomor-
12

phic to M;, ® M_¢, 15,. Therefore

My—g +5, if y1 = y2,

. (16)
M;L7€1+81 @ M;L7£1+52 if y1 > y2.

Kwnz[
Furthermore, w1 is a typical b?“z—highest weight if and only if x| + y; # 0and x1 + y2 # 1.
Since 7 is typical, we have V* = K (n). Let F denote the category of finite dimensional
h-weight modules of g. Typicality of n implies that V* is projective in F. Consequently, the
tensor product of V* and any object of F is also projective (the proof of the latter statement
is similar to [13, Prop. 3.8(b)]). It follows that 84(V*), which is a submodule of (V*)®9 g
also projective, and therefore it has a filtration by Kac modules (see [31, Prop. 2.5]).
Sety :=n—2e1+81+8 and y :=dn— QRk+1)e;+(k+1)8; +kdy for0 <k <d—1.
Then we have an isomorphism of gﬁ—modules

dyxy_ ~ ed—1 * *
sV = sl (v @ v

d—1 d—1

=871 (My ® My) ® My—ey45, = €D Miya—k—1yy ® My—e, = D My,
k=0 k=0

a7

By comparing (17) with (16), it follows that the Kac-module filtration of 89 (V*) consists
of exactly one copy of each of the modules K (yx + &1 — &1). If yx + &1 — 81 is atypical for
some k, then 8¢ (V*) cannot be completely reducible because the subquotient K (yx +&1 — 1)
is reducible but indecomposable. Thus, a necessary condition for complete reducibility of
84(V*) is that y; + &, — 81 is typical for every 0 < k < d — 1. But the latter necessary
condition is also sufficient because typical modules always split off as direct summands.

Next we determine when all of the y, + &1 — §; are typical. Note thatfor0 < k <d — 1,

341t 24+t
-6 =|d|——) -2k —d|— k) (S ).
Vi +e1— 68 ( <1+z> )81+< <1+t)+ )(H— 2)

Therefore y; + €1 — & is typical for all 0 < k < d — 1 if and only if 1%: ¢ {0,...,d}. It
follows that 8(V*) is completely reducible if and only if 1%: ¢{xeQ:0<x <1} Since
t # 0, the latter condition can be expressed as —% ¢ Q0.

Finally, using the fact that b is obtained from bﬁtlz by the composition

$81—82 © Se1 =82 © Se1 -5y
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of even and odd reflections, it is straightforward to verify that the b-highest weight of K (yx +
&1 — 81) 1s k41 (see [6, Lem 1.40]). m]

3.2 CaseV

For d > 0 we have a g-module isomorphism 2¢(V) = 84(V*). The weights of V6* are
{e1 + ¢, 61 £ 61 £ 62+ ¢, 31 + ¢} and the weights of VI* are {21 =61 + ¢, 2e1 £62 + ¢}

Letb := bg’|‘4 and b4 be the Borel subalgebras that are chosen in Appendix B.2. Then b
can be obtained from by 4 by applying the sequence of odd reflections

Fei 481 ©Te 48, ©Te;—8, © Ty —5; - (18)

Let u be a b-highest weight vector of V*. Then u has weight 1 +8; + 2 + ¢. Also, let w be
a byj4-highest weight vector of V*. Then the weight of w is 3¢, hence w € Vﬁ* and therefore

wk fork >2isa b2 j4-highest weight vector in Sk(V*) of weight 3ke;. For s > 2, we set
Wy = €—g1 -8 (6781 —82 (67614*52 (67814»31 (wS))))’
where the e_ +5, denote root vectors of g.

Lemma3.2 For s > 2, the vector ws is a typical b-highest weight, whose weight is
(Bs — 4)e1 + s¢. In addition, wy € Sz(Va*).

Proof 1t is straightforward to verify that 3se| + s¢ is a typical byj4-highest weight. From the
relation between b and by|4 via odd reflections given in (18), it follows that the b-highest
weight vector of the irreducible summand of 8*(V*) generated by w* is wy (see [6, Lem.
1.40]).

Since the (2¢; + 2¢)-weight space of 82(V*) is indeed a subspace of 82(‘/6* ), we obtain

wy € 82(V). O
Definition 3.3 Let W, denote the set of b-highest weight vectors given in (i) and (ii) below.
(i) Vectors of the form u?(w;)"wy for integers g, r, s that satisfy ¢g,r > 0, s > 2, and
d 4+ 2r +s = d. Note that u?(wy)"wy; # 0 since u, wy € S(Vﬁ*). The weight of
u? (wy)" wy is equal to
d+2s —dey+(d—2r —s)(61+6) +de. (19)
(i) The vector u?, whose weight is dey + dd; + déy + d¢.
We denote the set of weights of the vectors in Wy by &,.

Let m be the image of the unique embedding ¢ : sp(4) — gg. For every u := y18; + y282
such that y; > y», let M (u) denote the irreducible m-module with b N m-highest weight w.

Lemma 3.4 Let W be the irreducible g-module with b-highest weight de1 +dd1 +ddr +d¢,
ford > 1. Then both M(d51 +déy) and M((d —1)é1 +(d— 1)82) occur as m-submodules
()f Wﬁ.

Proof The m-submodule of W that is generated by the b-highest weight of W is isomorphic
toM (d(Sl +d3&,). From [6, Lem. 1.40] and the relation between b and by4 via odd reflections
given in (18) it follows that the byj4-highest weight of W is

d +2)e1 + (d — D& + (d — 1)8 + d¢.
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Since byj4Nm = bNm, the m-module generated by the by 4-highest weight of W is isomorphic
to M((d — 1)81 + (d — 1)82). o

Lemma 3.5 For every k > O there is an isomorphism of sp(4)-modules

St

3]
SK(M (81 + 82)) = @D M((k — 20)81 + (k — 2i)8).
i=0
Proof Note that sp(4) = s0(5) and M (81 + 8>) is the standard 5-dimensional representation
of s0(5). The statement now follows from the classical theory of spherical harmonics (for
example see [9, Thm 5.6.11]). O

The next proposition proves Theorem 1.4 in Case V.

Proposition 3.6 Assume that J = F. Then 2¢(V) is a multiplicity-free direct sum of irre-
ducible g-modules with b-highest weights in £4, where &, is as in Definition 3.3.

Proof For every y € &;, we denote the irreducible g-module with b-highest weight y by
W,. Ity #de; +ddy +ddr +d¢, then by settinga :=s —2and b :=d — 2r — s in (19)
we can express y as

y 1= (d +2a)e1 + bd1 + bdr + d¢, (20)

where0 <a <d—-2,0<b<d—-a—2andb =d — a (mod 2). It is straightforward to
verify that every y of the form (20) is typical. Since typical submodules split off as direct
summands, in order to prove the assertion of the proposition it suffices to show that the only
irreducible subquotients of 2% (V') are those whose b-highest weight vectors are in W;.

For y of the form (20), typicality of y implies that W, is a Kac module, and therefore
dim(W,)g = 8dim M (bd; + bd2). Set Ny := dim M (k8 + ké2). By the Weyl character
formula for sp(4),

2k +3)k+2)(k+ 1)

Ny = 5 fork > 0. (21)

From (21), Lemmas 3.4, and 3.5 it follows that

d—2
> dim(Wy)g = Ng+Ng—1 +8 ) dim M (b1 + b8y)
a=0 0

b<d—-a-2

=2
y€eed d — a (mod 2)

A

d—2

d+1)(2d®>+4d +3

= HDOEEUED g3 dimst =)
a=0

d+ 1)(2d? + 4d +3
:( + 1)( +4d + )+8dim8d_2((C6)

3
2 —
_ (d+ 1)(2d3 +4d 4+ 3) n d+3)d+ 2)1(;1 + 1)dd —1) — dim Sd(V*)ﬁ.

The relation Zyegd dim(W, ) = dim Sd(V*)5 implies that if $7(V*) has an irreducible
subquotient W such that W 22 W, for all y € &y, then Wy = {0}. Since [g, g] is generated
by its odd elements, W must be a trivial [g, g]-module. However, the h N [g, g]-weights of
V* are —e; £ 81 + 8, —&1, —3¢e1, —2€1 + &1, and —2¢; * &7, and it is straightforward
to verify that all of the b N [g, g]-weights of 8¢ (V*) are nonzero, which is a contradiction.

Consequently, 8 (V*) = @, e, Wy . o
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3.3 Case VI

For d > 0 we have an isomorphism of g-modules
%
2(v) = /M)t = (M7al (a3 Cn) (22)
Therefore in Case VI, Theorem 1.4 follows from the following proposition.

Proposition 3.7 For every d > 0 we have

(HdAd(Az(Cnln)))*z @ Vi,

neDPy(n)

b -highest weight — Y 7_y wi(&i + ).

where V), denotes the gl(n|n)-module with nin”

Proof By Schur—Weyl-Sergeev duality,

(Criny®2d =~ QB Eys ® Fy. (23)
nedHoq(n,n)

where E,, * is the gl(n|n)-module with b’ -highest weight /,Ln‘n defined as in (58) and F),

nln~
is the Szd module associated to the partition p in the standard way.

For every A € DP(n) we define % € H(n, n) to be the partition whose Young diagram
is constructed by nesting the (1, 1)-hooks with A; boxes in the first row and A; + 1 boxes
in the first column, where 1 < i < £(&). For example, if . = (4,2,1,0,...) then o=
(4,3,3,1,0,...). From (23) and a superized variation of the proof of [11, Thm 4.4.4] we
obtain

Ad(Sl((Cn\n)) = @ E(M)”m_ (24)
neDP(n)q
By comparing (22) and (24), we obtain that
7= P W

neDPn)q

where W, is the gl(n|n)-module with bnln highest weight — ()" nin-
Set A := [, and recall that (x) := max{x, 0} for x € R. A straightforward calculation
based on the method of [6, Sec. 2.4.1] shows that the b))} -highest weight of W, is

nin

_Z i De = Y (K — )8 Zuz(elw)
i=1

4 Surjectivity of the Harish-Chandra map

This section is devoted to the proof of Theorem 1.17. The proof is divided into two parts: the
case J 2 F, given in Proposition 4.2, and the case J = F, given in Prqposition 4.3.
The associative superalgebra &2 (V) has a natural filtration (,@@(’) (V)) o by order of

operators. We denote the natural degree filtrations of £2(h*) and Z(ag,) by (.@(’)(h ))
and (9(’)(%2))

i>0

i=0° respectively.
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In the following lemma, B; (z) := Y i_, z+1 Z —o(— 1)1( )(z-l-])t denotes the Bernoulli
polynomial of degree ¢.

Lemma4.1 Letk, k' € N, and let 0 be a complex number such that 0 ¢ Q=C. Fort € N, let
hi(x,y,0) € Ai.k’,e be defined by
k 1 & 1
hi(x,y,0) =3 B; (xi‘i‘j)‘i‘(_@)t_ > B (yj‘i‘j)-
i=1 =1

Finally, let (A,u< 5{’,) ) denote the degree filtration ofAi v o+ Then foreveryd > 0 we have
2 ELA)

d
APy =Spang AR By s myL L mg € Z70and Yy jmj<dp.  (25)
j=1

Proof Clearly h; € Ai (kt,) for t € N. Therefore it remains to prove that in (25), the left
hand side is a subset of the right hand side. For N € N, let Ay ¢ denote the C-algebra of
polynomials f(z1, ..., zxy) which are symmetric in z; + (1 — i), and let Ag := 1<1r_n AN

be the algebra of 0-shifted symmetric functions. Let (A g)) o be the degree filtration of Ag.
i>
Fort € N, let by (z, 6) € A be defined by

L) RACHES) |

In [29, Sec. 6], Sergeev and Veselov construct an epimorphism ¢” : Ag — Ai o Such that
@* (Aé”) Ai (kt’)O and deg (¢°(b) — h;) <t fort € N. (26)

Since gr(Agp) is isomorphic to the algebra of symmetric functions, the formal series b?
constitute algebraically independent generators of Ag. Consequently,

A < Spang 4B BT m; € 270 for j > 1and zd:jmj <d¢. (7
j=1
From (27) and (26) it follows that A,i:gj?e is a subset of the right hand side of (25). O
Proposition 4.2 Assume that J 2 F. Then
res (HC (z“)(g))) =t (A(j’) fori > 0. (28)

Proof The idea of the proof for all of the cases is similar and uses the explicit Harish-Chandra
homomorphism (see for example [6, Prop. 2.25]). However, the explicit calculations in each
case is different. Therefore our analysis is case by case.

Case L. In this case g = gl(m|n) @ gl(m|n) and therefore Z(g) = Z(gl(m|n)) ® Z(gl(m|n)).
Fori > Oset A; := j (Z9(gl(m|n)) ® 1) and B; := j (1 ® Z) (gl(m|n))), wherej : U(g) —
PP(V)isasin (11). From [24, Thm B.1] we obtain

JZD (9) = A =B = 29D (V)8 (29)
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Fora :=(ay,...,ay) € C"and b := (by, ..., b,) € C", set
m n
Ha,b = Zaiei + ijSj. (30)
i=1 j=1

Then we have
= {(—raps ap) 1 a€C", beC"}.

From (29) it follows that
res (Hc (Z(”(g))) — res (HC (1 ® Z‘”(g[(mm)))) .

Now for k € N we define fj € ﬁ(k)(ag) by

m

m+1 n  \F B m+1 n  \F
fk(ﬂa,h):zz<ai+7—5—l) +(—1)k lz(bj+T+§_j> .

i=1 j=1

From the explicit description of the image of the Harish-Chandra homomorphism of gl(m|n),
given for example in [6], it follows that res (HC (1 ® Z(gl(m|n)))) is the C-algebra generated
by the f; for k > 1. Furthermore, by graded-surjectivity of the Harish-Chandra homomor-
phism of gl(m|n) (see the proof of [6, Thm 2.26]), for every i > 0 we have

HC(1 ® Z¥(gl(m|n))) = HC(1 ® Z(gl(m|n))) N 2D (h*).

Consequently, fi, ..., fi € res (HC (1 ® Z® (gl(m|n)))) = res (HC (Z®)(g))) for k € N.
Next observe that for k € N,

()7 o =Dk + DY ke alh,

i=1 =1
Since deg (hk(x, y, 1) — (r}‘)_l(fk)> < k, equality in (28) follows from Lemma 4.1.

CaseIl. Fora := (ai, ...,ay,) € C" and b := (b, ..., b,) € C" set

m n

MHap = ZaiSi + ij(Sijl +62;). 3D

i=1 j=1
Then
ag = {ttap 1 a€C", beC"},

and from the explicit description of the Harish-Chandra homomorphism for gl(m|2n), given
forexample in [6], it follows that res(HC(Z(g)) is the C-algebra generated by the polynomials
fi € P(ay) for k € N, defined as

m

1 k
Je(a,p) == E (a, — —: +n+ z)
i=1

k—1 k m+1 k
+ (=1 Z b—i—n—i-Zj—l +(bj— = —n+2i)
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Furthermore, by graded-surjectivity of the Harish-Chandra homomorphism of g (see the
proof of [6, Thm 2.26]) we have f1, ..., fx € res (HC (Z(k) (g))) for k € N. Next observe
that

= il x (CDET L 1\* 1\ )
(@) =2 | Y+ ) z(y,-+§)+<y,-_§) e AW,
i=1

j=1

Furthermore deg ((—l)k (r}‘)_l (fr) — he(x, v, %)) < k, so that Lemma 4.1 implies equal-
ity in (28).

Case IIl. For a, b € C set
Hab = acg) + be. (32)
Then
ag = {Ma,b ca,be (C},

and from the explicit description of the Harish-Chandra homomorphism for osp(m + 1|2n)
(see [6, Thm 2.26]) it follows that res(HC(Z(g))) is generated by f1, f> € Z(ag,), defined
as

1 2
S1(a,p) :=band fr(uap) = (a + % —n— 1) .

Furthermore, f; € res(HC(Z® (g))) for k = 1,2 (f; lies in the image of the center of
gosp(m + 1|2n), and f> lies in the image of the Casimir operator of osp(m + 1]2n)). Next
observe that

(77)_1 (f1) = x1 + x2 and (T}‘)_1 (/o — f}) = —4x1xa.

The statement now follows from the fact that x; 4+ x2 and x;x, are algebraically independent
generators of the algebra of symmetric polynomials in two variables (see [19, Sec. 1.2]).

CaseIV.Fora, b € C, set

Ha,p = agl + b(§1 + 82). (33)
Then

ag = {ap : a,b e C},

and from the explicit description of the Harish-Chandra homomorphism of gl(1]2) it follows
that the C-algebra res(HC(Z(g))) is generated by fx € W(k)(a*g) for k € N, where

feGap) = (a+ 1) + (=D (B = DF + b5).

Setting a := %(a + 1) and b:i=b— %, we obtain that in the new coordinates (a, l;), the
polynomial f} is equal to

~ o~ B (_1)k—] ~ 1 k . 1 k
fk(a,b) ::2k |:ak+2k<<b—2> +<b+§) .
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Let Wi C @(k)(az‘z) be defined as
k

Wy == Spang § f"' -+ f" : m; € Z7° for j > 1 and ijj <k
j=1

For k € N, let hi(x, y, %) € A? L1 be defined as in Lemma 4.1. Since
L2

deg (fk(d, b) — hi(a, b, %)) <k fork e N,

Lemma 4.1 implies that dim Wy = |Hi(1, 1)]. It is straightforward to verify that
(7)) (fo € AN for k € N, so that () (W) € A% Since dim Wy =
A= A=
|H (1, 1)| = dim Ai’(lk)_l, we obtain (t}‘)_l Wy) = Ai’(lk)_l. This completes the proof

of (28). ' '
Case VL. For a:=(ay, ...,a,) € C" and b:=(by, ..., b,) € C" set

n
flabi=Y _(aig; +bid;).
i=1
From the explicit description of the image of the Harish-Chandra homomorphism of gl(n|n)
corresponding to b it follows that HC (Z(g)) is generated by the polynomials f; € Z(h*)

nin
for k > 1, where fi(fap) = Y iy (xi + %)’ + (=D i + %)’. For k € N let
hi(x,y,1) € Ai,n’l be defined as in Lemma 4.1. Since deg(hy — _fk) < k, graded surjec-

tivity of the Harish-Chandra homomorphism of gl(n|n) (see the proof of [6, Thm 2.26]) and
Lemma 4.1 imply that

HC (Z®(g)) = Spanc { fi"' -+ f"™ : m; € Z= for j > 1 and f jmj <kt. (34
j=1
Next for a := (ay, ..., a,) € C" set
n
pa =) ailei + ). (35)
i=1
Then

Set fi := fx

+, SO that
ag

n 1 k - n 1 k
fie(ra) :=Z(a,-+5> + (=D l;<a"_2> :

i=1

Also, set p,(Lg) = Z?:l a; forr > 0. Then f is a linear combination of the py; 1 for
1<i< Lk%lj. Therefore from (34) it follows that

res(HC(Z®(g))) = Spanc { [ [ p5i_; : mj € Z7°for j = 1and Y "(2j — ym; <k
ieN jeN
(36)
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The statement of the proposition is now a consequence of the fact that the right hand side of
(36) is equal to 7 (Ay‘)) (this follows for example from [22, Thm 2.11] and [22, Rem. 2.6]).

Case VII. The argument is similar to Case I, based on the explicit description of the Harish-
Chandra homomorphism of q(n) (see [6, Thm 2.46]). In this case

a*Q = {(—Ma, 1a) :a € (Cn},

where fora := (ay, ..., a,) € C" we define
n
Mo =) aisi. (37)
i=1
O
Proposition 4.3 Assume that J = F. Then
res (HC (Z(g))) < 77 (Ay) .
Proof Recall that g = gosp(2|4). Fora, b, c € C set
Ha,p,c = agy + by + bdy + c¢. (38)
Then
ay = {Mape : a.b,c € C}, (39)

and from the explicit description of the Harish-Chandra homomorphism of osp(2|4) (see
for example [6, Thm 2.26]) it follows that res(HC(Z(g))) is the C-algebra generated by the
following three families of polynomials.

(i) The polynomials f fork € N, where fi(tap.c) := (@ +2)* — (b+2)* — (b + H*.
(ii) The polynomials
Fe(ape): = (a+2) ((b+2)7* — @+2)?%) (b+1)? - (a+2)?)
x[g(a+2,+272% b+1)?)],

where g(s, t1, t2) is a polynomial in the variables s, t1, t; which is symmetric in ty, t;.
(iii) The polynomial Q (g p.c) := c.

By a straightforward calculation based on the above generators we can verify that

()™ (restHC@(@)) € A} .

To complete the proof of the proposition, it suffices to show that

h3(xt.x2,v1, 3) ¢ (1) (res(HC(Z(@))). (40)

i

where h3(x1, x2, y1, %) e A is defined as in Lemma 4.1. Consider the change of coor-

2,13
dinates
&::a+b+%:2x1+3y1
5:=a—b+%=2x2+3y1
c:=c=x1+x2+)y1.

In the (a, b, ¢) coordinates, the generators fi, F,, and Q turn into fk ﬁg, and Q defined
below.

@ Springer



382 S.Sahietal.

() fi@b, &)= g [@+D)* = @—b+ 1~ @—-b-1*]

(i) Fo(@, b, é) = 5 [(a—l—b)(4a —1)@? - 1)] (“”’, “—’5“)2,(‘3—12;—‘)2).

(i) 0, b,&):=¢.
Note that the ﬂ are independent of c. Also, T} (hg(xl, X2, V1, %)) can be expressed in
(a, b, ¢)-coordinates as

8l 135 o (T oy, 2105 S
6" " og 256 12877 64

53 ~3 63 o~ = 35 . -
b’ b+ab — b)) . 41
+< 512( +b°) — 12(a +a )+128(a+ ) 41
Now assume that (40) is not true. It follows that the polynomial (41) belongs to the C-
algebra generated by the fk S, the Fg s, and Q. Since the variables a, b, & are algebraically
independent, the coefficient of & in (41) should belong to the C-algebra generated by the

fk and the I:"g’s. It follows that there exist polynomials ¢ (u1, ..., un) € Cluy, ..., uy] for
some N € Nand g,(a, l;) e Cla, l;] such that

@G +b) = (a+b)4a% —1)(@dh* — 1)go (@, b) + ¢ (ﬂ(a, b), ..., fv(@, E)) . @)

Setting a = % and b = 0 in (42), we obtain

1 3\2 3\2N
L=o (- —-()"). “3)
and setting a = -3 Landb =0in (42), we obtain
1 32 3\2N
“3=o (-3 -07) @
Clearly (43) and (44) cannot be true simultaneously. This contradiction implies that (40)
must be true. ]

5 Proof of Theorem 1.13 whenJ % F.

The proof of Theorem 1.13 differs in the two cases J 2 F and J = F. Indeed in the case
J 2 F Proposition 4.2 allows us to give a uniform proof. Thus, we first prove Theorem 1.13
in the case J 2 F, and then we give a separate argument for the case J = F. We begin with
the following lemma, whose proof is similar to that of [24, Lem. 5.4]. Recall that ¢, (1) for
A, u €  denotes the scalar by which D, acts on Vj.

Lemma5.1 Let u € Qq where d > 0. Then c, (1) = d!, and ¢, (A) = 0 for all A €
Uit—o 2 \u).

Proof If A € § where k < d, then V;, € 22%(V), and thus ¢, (M) = Obecause D, 2k =
{0}. Nextassume A € Q4. Themapm : Z2(V)RQZ(V) — F(V)definedby D f +— Df
and the canonical isomorphism m : 2(V) ® 8(V) — £2%(V) are g-equivariant. Since
D, € m(V, ® V), the restriction of Dy, to Vj is a g-equivariant map Vi — V), so that
¢ (M) =0unless A = p
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Finally, assume A = u. Let (-, -) be the duality pairing between 2¢(V) = 8¢(V)* and
84(V),and let B : 2¢(V) x 84(V) — C be the bilinear map f(a, b) := d(a), where

a:8(V) — 2(V)

is the canonical isomorhpism between the symmetric algebra 8 (V') and the algebra of constant
coefficient differential operators Z (V). A direct calculation shows that 8(-, -) = d!{(-, -). Now
choose a basis vy, ..., v; for V, and a dual basis v}, ..., v/ for V:. Then

13

t
Dyvp=m (Z v ® U?) vE =Y. Uiav;ﬂvk =dvy.
i=1 i=1

Recall the maps
j: U = 22(V), HC :U(g) - Z(H"), andres : Z(h*) - 2(ay),

defined in (11), (12), and (13). For D € #2(V)? and 1 €  let HC(D) (A) denote the
scalar by which D acts on the irreducible g-module V, € Z(V) whose b-highest weight is
A. Then we have

HC(j(z)) = res(HC(z)) for z € Z(g). 45)

Recall that by (e@y))' o Ve denote the standard degree filtration of the polynomial
i>
algebra &7; defined in (9). Let 7, : af, — C" and 7} : &) — & (a?z) be defined as in
(10) and (14), respectively. Since 7, is a bijection, 7} is an isomorphism of C-algebras.

If J 22 F, then by Proposition 4.2, for every . € Q4 there exists an element z,, € 79 (g)
such that

res(HC(z,)) = 17 (PJJL) ’

where Pj , is as in Definition 1.11. Theorem 1.13 follows from Proposition 5.2(iii).

Proposition 5.2 Assume that J 2 F. Then the following assertions hold.
() j(z) = Dy forall u € K.

(ii) j(Z(g)) = 22 (V)*.
(iii) HC(D,)(W) = Py u(ty (V) forall &, p € Q.

Proof (i) By adirect computation, from Theorems 1.8 and 1.10it follows that Py , ('L’ J (E)) =
d! and
d
Py (t/ ) =0 forall & € | @ \{n).
k=0

Set D[//. :=j(z;). Then D//l, € 299 (V)9 because the map j preserves the filtrations. From
(45) it follows that for A € Ui:() Q, the operator DL acts on V), by the scalar Py (r 7 @).
Since elements of 222 (V) are uniquely determined by their restrictions to 24 (V), Lemma
5.1 implies that D, = Dj,.

(ii) Since the family (D))
i(Z(g) = 22(V)8.

(iii) This follows immediately from the fact that D, = D;L. O

LeQ is a basis of 222(V)?, the above argument implies that
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We remark that Proposition 5.2(ii) does not hold when J = F'. This is proved in Proposi-
tion 5.3.

Proposition 5.3 Assume that J = F. Then j (Z(g)) C 222(V)?

Proof Suppose that j (Z(g)) = 2 (V)®. Then from (45) and the explicit description of the
image of the Harish-Chandra homomorphism of osp(2|4) it follows that

HC (22(V)f) = HC (j (Z(g))) = res (HC(Z(g))) S 77 (A ). (46)

Fix d > 0 and set Q4 := |J{_, Q. By Proposition C.6 we have HC(D;) € 2D (ag)
for A € Q<4, and therefore from (46) it follows that HC(Dy) € 73} (A(Jd)) for A € Q<.

Recall that elements of &2 2 (V) are uniquely determined by their restrictions to (V). Since
the Capelli operators (D;.);eq_, are linearly independent, it follows that the polynomials

(HC(Dy)) ey
it follows that the family (E(D,\)) ey
negative integer, from (45) it follows that

are also linearly independent. Since [Q2<4| = Zzzo |Hi (1, 2)] = dim A(d),

also spans 77 (A(Jd)). Since d can be any non-

7j(ag) = 7 (A) C res (HC(22(v)9)) = res (HC(Z(g))) .
d=0

which contradicts Proposition 4.3. O

6 Proof of Theorem 1.13whenJ = F

Recall that in this case g = gosp(2[4), and ag, is the subspace of h* that is given in (39). Let
o:C > ag, be defined by o (a, b, ¢) := L4 p,c, Where (g p ¢ is defined in (38). We define
the map o* : 2(afy) — P(C?) = Cla, b, clby 6*(f) := f oop.

Lemma 6.1 Assume that J = F. Then o*(t}(Ay)) is the subalgebra of Cla, b, c] consisting
of polynomials f(a, b, c) which satisfy the following two properties.

(@) fla,b,c)= f(a,—b—3,0).
(i) f@+1,b+ %,c) =fla—-1,b— %,c) on the affine hyperplane a — b + % =0.

Proof This is straightforward from the explicit description of ; given in Table 3. O
Now for D € 2%(V)% we have o * (H7C(D)) € Cla, b, c]. We have a direct sum decom-

position g = ¢’ @ 3 where ¢’ := [g, g] = 0sp(2|4) and 3 := 3(g) = C is the centre of
g.

From now on, let G denote the simply connected complex Lie supergroup corresponding
to g, and let V be the affine superspace corresponding to V. The g-action on V lifts to a
G-action on V. Set K := stabg(e) (see Appendix C). Since 3 is [C-invariant,

U)X = (Ug) @ UE)* = U@ o UG).

Remark C.5 implies that every D € 2% (V)? can be realized as an element of 2(G/K). Let
Wg i be defined as in (61). Since there is a KC-invariant complement of € in g, Proposition C.1
implies that every D € 2(G/K) lies in Wg i (U(g)’c).

Lemma 6.2 Assume that J = F. Let D € 229(V)S.
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@) 1f1)|g/,C € Wgx (1 ®UG)), then o* (HC(D)) € Clc].
(i) If D|g ) € Vg (U@ ® 1), then o* (HC(D)) € Cla, b].

Proof The proof of (i) is straightforward. For (ii), let G’ be the subsupergroup of G corre-
sponding to g’ C g. For X € U(g)~, let L denote the left invariant differential operator

induced by X on G/K (see Appendix C). Similarly, any Xe Uy v induces a left invariant
differential operator on G'/KC, which we denote by L as well. For X € U(g' © < Uk,
the diagram

b=l x ,
Og/k(G/K) ———— Og/;xc(G'/K)

K / "1K
Og/k(G/K) bl Og/x(G'/K)

is commutative. According to Remark C.5, there is a G-equivariant embedding
PV |y 2(V) = Ogii(G/K).

For A € @, let p; € V) € Z(V) be a b-highest weight vector and set ¢, := pf(Vﬁ)(pA).
Since ¢, # 0 and p, is a homogeneous element of &(V), we obtain ¢, a/K # 0. Set

b’ := b N g'. From Proposition C.6 and the fact that g’ = € + (b N g') it follows that D
acts on V,_ is by the scalar L(Dh/) for some Dy € U(h') that only depends on D. Since

the map A +— A(Dh’) only depends on A|,,, it is indeed an element of Z?(a'™), where

h
a* := {pap0 : a,b € C}, for uyp defined as in (38). Finally, to complete the proof
observe that o* (22(a™)) = Cla, b]. u]

Proposition 6.3 Let D € Z2%(V)S. IfD\g/,C € W x(U(g)* ® 1), then h := o* (HC(D))
satisfies the relation h(a, b) = h(a, —b — 3).

Proof Let us denote the one-dimensional so(2)-module with weight ke; by M (ke1), and the
irreducible sp(4)-module with b N sp(4)-highest weight k181 + k28, by M’ (k181 + k282).
We have V* = Vﬁ* &) VT*’ where

Vﬁ* = M(e1) @ M'(81 + 82) @ M(3e1) ® M'(0) and VT* = MQ2e) @ M'(81),
as 50(2) @ sp(4)-modules. Set
U*:=M(e1) @ M'(81 + 82) and W* := M(3e1) @ M'(0) ® M(2¢) ® M'(51).
Then V* = U* @ W*, from which we obtain a natural tensor product decomposition
2V)=2U0) Z2(W). 47

Using (47), we identify &(U) and &?(W) with subalgebras Z(U) ® 1 and 1 ® (W) of
Z(V). By dualizing the relation V* = U* @ W* we obtain a direct sum decomposition
V = U @ W for subspaces U, W of V. The latter direct sum decomposition yields a tensor
product decomposition

2(V)=2(U) @ 2(W), (48)
which allows us to identify 2(U) and (W) with subalgebras of Z(V).
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Itis straightforward to verify that U * = (V*)PT. Thus every by-invariant vectorin 2 (U) C
Z(V) is also a b-highest weight vector in (V). By Lemma 3.5, we have an s0(2) @ sp(4)-
module isomorphism

14
7MU) = EB M(ke)) @ M'((k — 2i)8) + (k — 20)8y).
i=0

Recall that 1,4 5 - denotes the element of ag, defined in (38). The Zariski closure of the set
k
S = {k81 + (k=208 + (k—2i)8 : i,keZ= and 0 <i < {EJ}

isequal to {i4p0 : a,b € C}.
Let 2+ (W) and 27 (W) denote the augmentation ideals of (W) and 2(W), respec-
tively. Using (47), we obtain a decomposition

PIVY= 2PU) D PFU), (49)
where
2IUY = 2I(V)DT(W) + 2 (W)22(U).

Write D := Dy @& D, where Dy € #2(U) and Dy € 29(U)* . For 0 < i < |51,
choose a nonzero vector

ki € M(ker) @ M'((k — 2i)81 + (k — 2i)82).

Then Duvk ; = cx,jvk,; for some scalar ¢;; € C, hence Df;vk,,- = Dvi; — Dyvk,; € Z2U).
Since 2 (W)vr,; = 0, we obtain Djvg; € 2U) N (2T (W)2(V)) = {0}, so that
Dvy,; = Dyug,i. Since the decomposition (49) is gg-invariant, we have Dy € PyU)%.
Therefore from [12, Sec. 11.4] it follows that Dy lies in the algebra generated by the degree
operator and the image of the Casimir operator of sp(4). Let f1, fo € Z(ag,) denote the
eigenvalues of the degree and Casimir operators, respectively, and set h; := o*(f;) for
i = 1, 2. The degree operator acts on v ; by the scalar k. It follows that /1 (a, b) = a, and
therefore hy(a, b) = hi(a, —b — 3). Similarly, the Casimir operator of sp(4) acts on v ;
by the scalar (k 4+ 2)2 + (k + 1)2, so that hs(a, b) := (b + 2)> + (b + 1)2, and therefore
ha(a,b) = ha(a, —b — 3). The statement of the proposition follows from the fact that &
belongs to the subalgebra of C[a, b] generated by % and h,. m]

Proposition 6.4 Let D € 2 %(V)S. IfD\g/}C € Vg c(U@)* @ 1), then h := o* (HC(D))
satisfies the relation h(a+1, b—i—%) =h(a—1, b—%)foralla, b € Csuch thata—b+% =0.

Proof Letby4 C g be the Borel subalgebra defined as in (59). Note that byj4 # b. For A € €,
let A denote the by|4-highest weight of V. The Borel subalgebra b can be obtained from bss
by the composition of the odd reflections given in (18). Thus from [6, Lem. 1.40] it follows
that if A is one of the typical highest weights of the form given in (19), then A := A + 4,
whereas if A = de; + d§) + d6y + d¢, then A = A + 2¢; — 8; — 8. In particular, the
boj4-highest weight A always lies in ag,, where aé is the subspace of h* given in (39).

Now for every byj4-highest weight A € af, let f(1) denote the scalar by which D acts
on V). We have g = byj4 + £, and thus by Proposﬁion C.6 the map A — f(L) can be
extended to an element of Z(ag). Set iy := o*(f). From Lemma 6.2(ii) it follows that
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indeed i1 € Cla, b]. Since the eigenvalue of D on Vj, is independent of the choice of the
Borel subalgebra, from typical highest weights we obtain

hi(a+4,b) = h(a,b)fora,b e C, (50)

and from the atypical highest weights, which correspond to the partitions A := (d, 0, ...),
we obtain

hi(a+2,a—1)=h(a,a)fora € C. (28]

Consequently, if a — b+ = O thena + 1 = b + } and thus from (50) and (51) it follows
that

ha+1L,b+3)=h(a+3,b-3)=h(a—1,b-13).

6.1 Proof of Theorem 1.13 whenJ = F.

Fix u € Qg ford > 0. Then D, 22D (V)® and therefore by Proposition C.6 there exists
h e @d(ag) such that for every A € €2, the operator D, acts on V; by the scalar i (A). By
Lemma 5.1 we have

d
h(u) = d!and h(2) = 0 for & € () Qi\{A). (52)
k=0
Let f € 9’5‘1) be defined by f = (r}*)_1 (h). From Lemmas 6.1, 6.2, Propositions 6.3,
and 6.4 it follows that f € A(Jd). Furthermore,

@ =(hthie-fd=m—iat1) =) R a®). (63

where p; (1), pp(A), and q;(A) are defined as in (8) form = 2,n = 1, and 6 = % From
(52) and (53) it follows that f and P; , satisfy the same degree, symmetry, and vanishing
properties, so that f = P; , by Theorem 1.8.
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Appendix A. The TKK construction
Recall that a vector superspace J := J5® Jy is called a Jordan superalgebra if it is equipped
with a supercommutative bilinear product J x J — J which satisfies the Jordan identity

(DRI Ly 1+ (DML, L1+ (=DFIPIL,, L] =0 for homogeneous
x,y,z2€J,

where we define L, : J — J for a € J to be the left multiplication map x +— ax, and
denote the parity of a homogeneous element a € J by |a|.
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Following [3], by a short grading of a Lie superalgebra [ we mean a Z-grading of [ of the
form [ := P,y l(r), such that [(t) = {0} for r ¢ {0, £1}. Using the Kantor functor, in [16]
Kac associates to J a simple Lie superalgebra g ; (the TKK Lie superalgebra) with a short
grading

gy =g;=D@g,;0 &g,0).

We recall the definition of g;. Set g;(—1) := J, g,;(0) := Spanc{Lq, [La, Lp] : a,b €
J} € Endc(J), and g, (1) := Spanc{P, [Ls, P] : a € J} C Homc(82(J), J), where P :
8%(J) — Jisthemap P (x, y) := xy,and [Ly, P](x, y) := a(xy)—(ax)y— (=¥ (ay)x.
The Lie superbracket of g ; is defined by the following relations.

(i) [A,a]:= A(a)for A € g,;(0)anda € g,(—1).
(i) [A,al(x) := A(a,x) for A € g;(1),a € g;(—1),and x € J.
(iii) [A, B](x, y) == A(B(x, y)) = (=DIAIBIB(A(x), y) — (=D AIBFFIVIB(A(y), x) for
A€g;0),Beg;(1),andx,yeJ.

For the classification of finite dimensional complex simple Jordan superalgebras and their
corresponding TKK Lie superalgebras, see the articles by Kac [16] and Cantarini and Kac
[3].

If J has a unit 1; € J, then the elements e := 1;, f := —2P,and h := 2Ly, of g,
satisfy (1). It follows that 5 := Spanc{e, f, h} is a subalgebra of g, isomorphic to s[> (C).
Indeed s is a short subalgebra of g ; (see [3]). We recall the definition of a short subalgebra.

Definition A.1 Let[be acomplex Lie superalgebra. A short subalgebra of lis aLie subalgebra
a C [ that is isomorphic to sl (C), with a basis e, f, h that satisfies the relations (1), such
that the eigenspace decomposition of ad (— %h) defines a short grading of [.

Remark A.2 Let [ be a complex Lie superalgebra and let a C [ be a short subalgebra of [.

(a) Assume that [ is a subalgebra of another Lie superalgebra [ such that dim [ = dim [ + 1.
Since every finite dimensional sl;(C)-module is completely reducible, it follows that
1=1@Cas a-modules, so that a is a short subalgebra of T as well.

(b) Every central extension 0 — C — 1510 splits on a. An argument similar to part
(a) implies that the image of a under the splitting section is a short subalgebra of I.

When J is isomorphic to gl(m, n)y, p(n)4, or g(n)4, it will be more convenient for us to
replace g ; by a non-simple Lie superalgebra which has a more natural matrix realization (see
also Remark A.3). To this end, we define the Lie superalgebra g® by

gl@2m|2n) ifJ = gl(m,n)4,

(2n) it J Zpn)g,

&= p ! NP + (54)
q(2n) if J = g(n)4,
9, otherwise.

For a precise description of p(2n) and ¢(2n) see Appendix B. From Remark A.2 it follows
that the short subalgebra s of g ; corresponds to a unique short subalgebra of g°. We use the
same symbols s, e, f, and & for denoting the short subalgebra of g° and its corresponding
basis.

By restriction of the adjoint representation, g is equipped with an s-module structure.
This s-module is a direct sum of trivial and adjoint representations of s, hence it integrates
to a representation of the adjoint group PSL, (C). Furthermore,
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w = exp(ad(f)) exp(—ad(e)) exp(ad (/) (55)

represents the nontrivial element of the Weyl group of PSL,(C).

Set g°(r) := {x € g° : [h,x] = —2tx} for t € {0, +1}. The Lie superalgebra g’ (0)
naturally acts on g”(—1) = J. Set

g:=g’(0)and V := g’(—1)* := Hom¢(V, C!%).

Thus the g-module V is the dual of the g-module J.
Remark A.3 The reason for replacing g; by g’ is to obtain a convenient way of associating
partitions to the irreducible g-modules that occur in # (V). For example, assume that J =
gl(m, n), where gl(m, n) denotes the Jordan superalgebra of (m + n) x (m + n) matrices
in (m, n)-block form. Then g; = sl(2m|2n) it m # n, and g; = psl2m|2n) if m = n.
In both cases, g;(0) is closely related to gl(m|n) @ gl(m|n), but it is not isomorphic to it.
However, g := gb (0) = gl(m|n) & gl(m|n), and the irreducible summands of 2 (V) =
2((C™ny* @ C™y are naturally parametrized by (m, n)-hook partitions.

Appendix B. Classical Lie superalgebras

In this Appendix we give explicit realizations of classical Lie superalgebras gl(m|n),
gosp(m|2n), p(n), and q(n). We describe root systems of gl(m|n), gosp(m|2n), and q(n),
and choose Borel subalgebras in these Lie superalgebras.

B.1.The Lie superalgebra gl((m|n)

Let m,n > 1 be integers. We use the usual realization of gl(m|n) as (m + n) x (m + n)
matrices in (m, n)-block form

A B

1)

where A is m x m and D is n x n. The diagonal Cartan subalgebra of gl(m|n) is

Bpp -= {diag(s, t) : s:=(s1.....50) € C"and t:=(11,....1,) € C"}.  (57)
The standard characters ¢;, §; : b, — C are defined by

gi(diag(s, t)) :=s; for 1 <i <m and §;(diag(s,t)) :=t¢; forl < j < n.
We define b

mln
the fundamental systems T1% (respectively, IT1°P), where

(respectively, bfnﬂn) to be the Borel subalgebras of gl(m|n) corresponding to

M = {e; — &1 )1, Ulem — 81} U {8, — (Sj+1}::} and 1% := —IT%
For every partition A € H(m, n), we set
m n
M =D higi + Y (4 —m)s;. (58)

mx

In the spacial case m = n, we define bn‘ "

fundamental system

to be the Borel subalgebra corresponding to the

n

™ .= {8; — 8,'}?:1 U {Sj — (Sj_] }j:2 .
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B.2. The Lie superalgebra gosp(m|2n)

Let m,n > 1 be integers. We begin with an explicit realization of osp(m|2n). Setr := L%J .
Let J T be the m x m matrix defined by

1 01><r ler 0 1
JT = Orx1 Opxr Irxr | ifm =2r +1, and Jt = |:1r><r 0r><ri| ifm=2r,
Orx1 Irxr Orxr xS

Also, let J~ be the 2n x 2n matrix defined by

J = Onxn 1n><n
' _In><n 0n><n '

Let {&;}]", U {e’j}i’; | be the standard homogeneous basis of C™2n and let B : €127 x

™" — C be the even supersymmetric bilinear form defined by
B(ei,ej) = J;';, B(ej, €)) = J;;, and B(e;, €}) = 0.

We realize the Lie superalgebra osp(m|2n) as the subalgebra of gl(m|2n) that leaves the
bilinear form B : C"?" x C"?" — C invariant. Fors € C" and t € C", set

diag(s, —s, t, —t) ifm =2r,

d(s, t) :=
&0 {diag(O, s, —s,t,—t) ifm=2r+1.

Recall from Appendix B.1 that we denote the standard Cartan subalgebra of gl(m|2n) by
Binjon- Then by, 0, := 0,2, N 05p(m|2n) is a Cartan subalgebra of osp(m|2n). We have
Bupn = {d(s,t) : se C"andt e C"},
and the standard characters of Em\Zn are given by
g (d(s,t)) :=s; for1 <i <rand§;(d(s,t)) :=¢;for1 < j <n.

Let Emp,, C osp(m|2n) be the Borel subalgebra corresponding to the fundamental system
I1, where

B {{Si —eiYiZf Uler — 813U {8, — 5j+1}.n'7

= /=
n—

{Si — 8i+1};~‘;11 U {Sr - 51} U {8] - 8j+l}/

LULs)) ifm=2r 41,
LU{28,) ifm=2r.

Finally, we set gosp(m|2n) := osp(m|2n) @ CI C gl(m|2n), where I = I(n420)x (m+2n)-
We also set

Bpmj2n = Bmjan ® CI. (59)

We extend the standard characters ¢;, §; of Em|2n to the subalgebra 6m|2n = Bupn N
gosp(m|2n) of diagonal matrices in gosp(m|2n), by setting &;(/) = 8;(I) = 0. Let
¢ 6m|2n — C be the linear functional defined uniquely by

;ym =0andz(]) = 1.

The set {&;}]_; U {‘Sj}’}:1 U {¢} is a basis for the dual of 6m|2n. We remark that when g is of
type gosp (i.e., in Cases III and V), we have ¢ (h) = 2 where h € g” is defined as in (1).
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In Case V, where g = gosp(2]4), we need to consider an exceptional Borel subalgebra
bg)‘(4 = 62|4 ® (CI, (60)
where [212‘ 4 1s the Borel subalgebra of 0sp(2[4) corresponding to the fundamental system

% = {—&; — 81,81 — 82,28).

B.3. The anisotropic embedding of osp(m|2n) in gl(m|2n)

We will need another realization of osp(m|2n) inside gl(m|2n) Yvhich will be used in the
description of the spherical subalgebra €. Set r := |5 |, and let J~ be the 2n x 2n matrix
defined by

J- ::diag(i,...,f)wheref:: 01 .
ARG —10

n times

Let B : C"12" x C"I2" — C be the even supersymmetric bilinear form which is given in the
standard basis {e;}{* | U {ej}i”:l of CmI2n by

B(ei.e)) =6, ), B(e},€}) :=J_

i ;» and B(e;, e/j) = 0.

Thus, the matrix of é(', -) in the standard basis of cmizn jg
|:Im><m Om~><2n:|
02n xXm J~ '
The subalgebra of gl(m|2n) that leaves the bilinear form B invariant is isomorphic to
osp(m|2n).

B.4. The exceptional embedding of 05p(1]2) & 0sp(1]2) in gosp(2]|4)

We consider the realization of 0sp(2]|4) given in Appendix B.2. Set

0 /=1 0 0 0 0
—/-1 0 0 0 0 0

|1 o0 0 0 0 0 —v—1
E=1 0 0o 0 0 V=1 0
0 0 0 —/—-1 0 0
0 0 /=1 0 0 0

We set €% to be the subalgebra of fixed points of the map osp(2|4) — osp(2|4) given by
x > Adg(x). One can verify that £ = osp(1]2) @ osp(1]2). We will consider £ as a
subalgebra of gosp(2|4).

B.5.The Lie superalgebra p(n)

Let n > 1 be an integer, and let B:Cl" x C"I" — C be the odd supersymmetric bilinear
form defined by

B(ei. €}) :=8; . B(e;. €)) := 0. and B(e], €) := 0,
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where {e;}!_, U{e/}_, is the standard homogeneous basis of C"I". The Lie superalgebra p(n)
is the subalgebra of gl(n|n) that leaves é(-, -) invariant. It consists of matrices in (n, n)-block
form

[é —iT:| , where B =BT and Cc = —CT.

In this paper we will not need a description of the root system and highest weight modules
of p(n).

B.6. The Lie superalgebra q(n)

Letn > 1 be an integer. The Lie superalgebra q(n) is the subalgebra of gl(n|n) that consists
of matrices in (n, n)-block form

AB

B A’

Let h be the subalgebra of matrices of the latter form where A and B are diagonal. Then
b is a Cartan subalgebra of q(n). The standard characters {g;}_; of by are the restrictions
of the corresponding standard characters of gl(n|n). Let bff (respectively, b,?) be the Borel
subalgebra of q(n) associated to the fundamental system IT% := {g; —&; 4 };.:11 (respectively,
M = {g;11 — & };’;11). For every partition A € DP(n), we set A3 1= 7| A;&;.

Appendix C. Facts from supergeometry

All of the supermanifolds that are considered in this appendix are complex analytic. We
denote the underlying complex manifold of a supermanifold X by |A], and the sheaf of
superfunctions on X'by O y. Morphisms of supermanfolds are expressed as (f, f:x—
where f : |X] — |} is the complex analytic map between the underlying spaces and f*
Oy — .0y is the associated morphism of sheaves of superalgebras.

Let £ be a connected Lie supergroup and let M be a Lie subsupergroup of L. Set [ :=
Lie(£) and m := Lie(M). The right action of £ on £ induces a canonical isomorphism of
superalgebras from U(l) onto the algebra of left invariant holomorphic differential operators
on L. Under this isomorphism elements of UM, the subalgebra of M-invariants in U(l),
are mapped to holomorphic differential operators which are left £-invariant and right M-
invariant. The latter differential operators induce L-invariant differential operators on the
homogeneous space £/M. Consequently, we obtain a homomorphism of superalgebras

Yo UOM = 2(L/M), (61)

where Z(L/M) denotes the algebra of L-invariant differential operators on £/ M. By a
superization of the argument of [20, Prop. 9.1], we obtain the following statement.

Proposition C.1 Let 29 (L) M) denote the subspace of elements of Z(L)M) of order at
most d. Assume that there exists an M-invariant complement of m in (. Then

e (ULOM) = 2D L/M) for every d = 0.

In the rest of this appendix we will assume that J is a Jordan superalgebra of type A. Let
g, &, and V be as in Sect. 1.
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Lemma C.2 There is a vector vy € Vg such that € = stabg(ve).

Proof In all of the cases where J is of type A we have V = V* = J as £-modules, hence we
can set ve equal to the element of Vj corresponding to 1, € J. O

LemmaC.3 The map g — V, x > X - vg is surjective.

Proof The kernel of the linear map x +> x - v¢ is €. The statement now follows in all of the
cases by verifying that the graded dimension of the image of this map and of V' are the same.
O

Let b := 6 @ n be a Borel subalgebra of g such that g = b+t LetGbea complex Lie
supergroup such that Lie(G) = g, and let Vbe the complex affine superspace corresponding to
V. We assume that |G| is a connected Lie group, and that the action of g on V can be globalized
to an action of G on V. The stabilizer of v¢ € |V| = V{5 is a complex Lie supergroup (K, Ox)
such that Lie(K) = ¢.

Proposition C.4 The orbit map of ve factors through an embedding (p,,. pfe) G/ =V
whose image is an open subsupermanifold of V.

Proof This follows from the fact that the differential of the orbit map (p,,, p’ ,) is a bijection
for all g € G, which is a consequence of Lemma C.3 and G-equivariance of (p,,, pﬁe). O

Remark C.5 Using the embedding G/K < V of Proposition C.4 and the natural injection
P (V) — 0p(]V]), we obtain a G-equivariant embedding

P (WD) )+ 2 (V) = Ogyic 1G/KD) -

Furthermore, connectedness of |G| implies 2 2(V)? = 29 (V)g. Therefore we can restrict
every D € 222(V)8 to the open subsupermanifold G/ of V, and indeed D|g Ik € 2G/K).

For the next proposition, recall that every linear functional ¢ : 6 — C induces a nat-
ural homomorphism of C-algebras $(h) — C given by xj---xx — @(x1) - @(x) for

X1, ..., € b Set 8@ (h) = @?:0 81(6)

Proposition C.6 Assume that (V') is a completely reducible and multiplicity-free g-module,
and let D € 299 (V)9. Then there exists an element xp € S(d)(h) such that for every

irreducible g-module W < 2(V), the action of D on W is by the scalar X(xp), where X is
the b-highest weight of W.

Proof Let G, V, and K be defined as above, and let (q, q#) : G — G/K be the ganonical
quotient map. Then g (|G/K)) : Og/k(1G/K]) — Og(G) is an injection. For any X € U(g),
let L (respectively, R¢) denote the action of X on Og(G) by left invariant (respectively,

right invariant) differential operators. By Proposition C.1, there exists D e U@ (g)’C such

that g* (IG/K)(Df) = La*(1G/K)(f) for every f € Ogic(IG/K)).
Now set f := pﬁe(|V|)(¢x) where ¢; € (V) is a highest weight vector of W, and let

= qf(lg/ KN (f). Let N'be the connected Lie subsupergroup of G such that Lie(N) = .
Then f is left N-invariant and right K-invariant. We can express D in the form D = D; +
D + D3, where

Dy € iUY"V(g), D, € U9 (h), and D3 € U~V (g)e.
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From K-invariance of f it follows that Lp, f = 0. Furthermore, we can write D as a sum
of elements of the form X D" where X € # and D" € U(g). Let H := (H, Oy) denote the
connected Lie subsupergroup of G such that Lie(H) = h. For h € H we have

Lo () = Lx (Lo ) (1) = Rosgyx (Lo F) .

Since Ly f is left AV-invariant and Ady, (ﬁ) C 1, itfollows that L x p f (h) = 0. Consequently,
we have shown that for xp := D>,

L f(h) = Lp, f(h) = A(D2) f(h) = i(xp) f(h).

It remains to prove that f # 0. To this end, note that the canonical multiplication morphism

NxHxK—G
is a local isomorphism at the identity element. Thus, from analyticity, left V-invariance, and
right C-invariance of f, it follows that f ‘  1s not identically zero. O
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