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1. Introduction

The first appearance of Jordan superalgebras goes back to the late 70-s, [8], [10], [11]. 

Recall that a Z2-graded algebra J = J0̄⊕J1̄ over a field C is called a Jordan superalgebra 

if it satisfies the graded identities:

a · b = (−1)|a||b|a · b,

((a · b) · c) · d + (−1)|b||c|+|b||d|+|c||d|((a · d) · c) · b

+(−1)|a||b|+|a||c|+|a||d|+|c||d|((b · d) · c) · a =

= (a · b) · (c · d) + (−1)|b||c|(a · c) · (b · d) + (−1)|d|(b+c)(a · d) · (b · c),
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where a, b, c, d ∈ J and |a| = i if a ∈ Jī. The subspace J0̄ is a Jordan subalgebra of J , 

while J1̄ is a Jordan bimodule over J0̄, they are referred as the even and the odd parts 

of J , respectively.

As in the case of Jordan algebras a lot of examples of Jordan superalgebras come 

from associative superalgebras, or associative superalgebras with superinvolutions. Let 

A = A0̄ ⊕ A1̄ be an associative superalgebra with product ab then

a · b =
1

2
(ab + (−1)|a||b|ba), (1)

is the Jordan product on A. The corresponding Jordan superalgebra is usually denoted 

by A+. Furthermore, if ⋆ is a superinvolution on A, then H(A, ⋆) = {a ∈ A | a⋆ = a} is 

a Jordan superalgebra with respect to the product a · b.

The classification of simple finite-dimensional Jordan superalgebras over a field C

of characteristic zero was obtained in [8] and then completed in [10]. Then main tool 

used in both papers was the seminal Tits-Kantor-Koecher (TKK) construction, which 

associates to a Jordan superalgebra J a certain Lie superalgebra Lie(J). Let us recall 

this classification; we use notations from [19]. There are four series of so called Hermitian 

superalgebras related to the matrix superalgebra Mm,n := End(C(m|n)): M+
m,n, m, n ≥ 1, 

Q+(n), n ≥ 2, Ospm,2n, m, n ≥ 1 and JP (n), n ≥ 2; the Kantor series Kan(n), n ≥ 2, 

exceptional superalgebras introduced in [10]; a one-parameter family of 4-dimensional 

Jordan superalgebras Dt, t ∈ C; the Jordan superalgebra J(V, f) of a bilinear form 

f and, in addition, the 3-dimensional non-unital Kaplansky superalgebra K3 and the 

exceptional 10-dimensional superalgebra K10 introduced by V. Kac in [8].

A superspace V = V0̄ ⊕ V1̄ with the linear map β : J ⊗ V → V is a (super)bimodule 

over a Jordan superalgebra J if J(V ) := J ⊕ V with the product · on J extended by

v · w = 0, a · v = v · a = β(a ⊗ v) for v, w ∈ V, a ∈ J

is a Jordan superalgebra. The category of finite-dimensional J-bimodules will be denoted 

by J-mod. Furthermore if J is a unital superalgebra the category J-mod decomposes 

into the direct sum of three subcategories

J-mod = J-mod0 ⊕ J-mod 1
2

⊕ J-mod1 (2)

according to the action of the identity element e ∈ J , see [16]. The category J-mod0

consists of trivial bimodules only and is not very interesting. The category of special 

(or one-sided) J-modules, J-mod 1
2
, consists of J-bimodules on which e ∈ J acts as 1

2 id. 

Finally, the last category consists of bimodules on which e acts as id, they are called 

unital bimodules. For the categories of special and unital bimodules one may introduce 

the corresponding associative universal enveloping algebras characterized by the property 

that the categories of their representations are isomorphic to the categories J-mod1
2

and 

J-mod1.
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The classification of bimodules for simple Jordan superalgebras was started in [25]

and [26] where unital irreducible bimodules were studied for the exceptional superalge-

bras K10 and Kan(n) respectively. The method used in these papers was to apply the 

TKK-construction to bimodules, i.e. to associate to any unital Jordan J-bimodule a cer-

tain graded Lie(J)-module. However the answer for Kan(n) was not complete, since in 

order to describe J-mod1 one has to consider modules over the universal central exten-

sion L̂ie(J) instead of Lie(J), this was noticed in [18]. In [20], [19] the coordinatization 

theorem was proved and classical methods from Jordan theory were applied to classify 

representations of Hermitian superalgebras. In [16] using the universal enveloping alge-

bras authors deduced the problem of describing bimodules over Jordan superalgebra to 

associative ones. Finally Lie theory proved to be very useful, as already was mentioned 

the TKK functors can be extended to representations of J and Lie(J) [19], [18]. Observe 

that the TKK method can only be used in characteristic zero.

In [19], [16], [17], [20], [29], [27] finite-dimensional irreducible modules were classified 

for all simple Jordan superalgebras. Moreover it was shown that both categories J-mod1
2

and J-mod1 are completely reducible for all simple Jordan superalgebras except JP (2), 

Kan(n), M+
1,1, Dt and superalgebras of bilinear forms. The series Dt for t �= ±1 was 

studied in [17], the authors showed that all special bimodules are completely reducible 

and unital bimodules are completely reducible if t �= − m
m+2 , −m+2

m for some m ∈ Z>0. In 

the latter case all indecomposable unital bimodules were classified in [17]. For t = ±1 we 

have D−1 ≃ M+
1,1, and D1 is isomorphic to the Jordan superalgebra of a bilinear form. 

We study these cases in the present paper.

We will describe the categories J-mod 1
2

and J-mod1 when J is one of the following 

algebras: JP (2), Kan(n), M+
1,1 and superalgebras of bilinear form. Our main tool is the 

functors Lie and Jor between categories

J-mod 1
2

↔ ĝ-mod 1
2

and J-mod1 ↔ ĝ-mod1 (3)

where ĝ is the universal central extension of g = Lie(J), ĝ-mod1 is the category of 

ĝ-modules admitting a short grading M = M [−1] ⊕ M [0] ⊕ M [1], while ĝ-mod 1
2

the 

category of ĝ-modules admitting a very short grading M = M [−1/2] ⊕ M [1/2]. For the 

latter pair the functors Lie and Jor establish the equivalence of categories, in the former 

case the categories J-mod1 and ĝ-mod1 are not equivalent due to the fact that ĝ-mod1

contains the trivial module. More precisely, the splitting (2) J-mod0 ⊕ J-mod1 can not 

be lifted to the Lie algebra ĝ since some ĝ-modules in ĝ-mod1 have non-trivial extensions 

with the trivial module.

In all non-semisimple cases considered in this paper ĝ �= g. This has two consequences. 

There are more irreducible representations with non-trivial central charge and there are 

self extensions on which the center does not act diagonally. In particular, the categories 

ĝ-mod 1
2

and ĝ-mod1 do not have enough projective objects and we have to consider the 

chain of subcategories defined by restriction of the nilpotency degree of central elements.
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The paper is organized as follows. In section 2 we recall the Tits-Kantor-Koecher con-

struction, introduce functors Jor and Lie between the categories in (3) and discuss their 

properties. Section 3 contains some miscellaneous facts on ext quivers of the categories 

and Lie cohomology which we use in the rest of the paper. In Sections 4–7 we study 

ĝ-mod1 and ĝ-mod 1
2

for g = Lie(J) with J equal to JP (2), Kan(n), n ≥ 2, M+
1,1 and 

the Jordan superalgebra of a bilinear form respectively.

We will use several different gradings on a Lie superalgebra g and fix notations here 

to avoid the confusion. The Z2-grading will be denoted as g = g0̄ ⊕ g1̄. The short Z-

grading corresponding to the Tits-Kantor-Koecher construction will be denoted as g =

g[−1] ⊕ g[0] ⊕ g[−1]. We would like to point out here that this grading is not compatible 

with the Z2-grading. Finally some superalgebras have another grading consistent with 

the superalgebra grading, which will be denoted as g = g−2 ⊕ g−1 ⊕ · · · ⊕ gl.

2. TKK construction for (super)algebras and their representations

The Tits-Kantor-Koecher construction was introduced independently in [28], [10], [14]. 

We recall it below. For superalgebras it works in the same way as for algebras.

A short grading of an (super)algebra g is a Z-grading of the form g = g[−1] ⊕ g[0] ⊕
g[1]. Let P be the commutative bilinear map on a Jordan superalgebra J defined by 

P (x, y) = x · y. Then we associate to J a vector space g = Lie(J) with short grading 

g = g[−1] ⊕g[0] ⊕g[1] in the following way. We put g[1] = J , g[0] = 〈La, [La, Lb] | a, b ∈ J〉, 
where La denotes the operator of left multiplication in J , and g[−1] = 〈P, [La, P ] | a ∈ J〉
with the following bracket

• [x, y] = 0 for x, y ∈ g[1] or x, y ∈ g[−1];

• [L, x] = L(x) for x ∈ g[1], L ∈ g[0];

• [B, x](y) = B(x, y) for B ∈ g[−1] and x, y ∈ g[1];

• [L, B](x, y) = L(B(x, y)) − (−1)|L||B|B(L(x), y) +(−1)|x||y|B(x, L(y)) for B ∈ g[−1], 

L ∈ g[0], x, y ∈ g[1].

Then Lie(J) is a Lie superalgebra. Note that by construction Lie(J) is generated as a 

Lie superalgebra by Lie(J)1 ⊕ Lie(J)−1.

Let g = g[−1] ⊕ g[0] ⊕ g[1] be a Z-graded Lie superalgebra and let f ∈ g[−1] be even 

element of g (f ∈ g0̄), then Z2-graded space g[1] =: Jor(g) is a Jordan superalgebra 

with respect to the product

x · y = [[f, x], y] x, y ∈ g[1]. (4)

A short subalgebra of a Lie superalgebra g is an sl2 subalgebra spanned by elements 

e, h, f , satisfying [e, f ] = h, [h, e] = e, [h, f ] = −f , such that the eigenspace decomposi-

tion of ad h defines a short grading on g. Consider a Jordan superalgebra J with unit 

element e. Then e, hJ = Le and fJ = P span a short subalgebra αJ ⊂ Lie(J). A Z-
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graded Lie superalgebra g = g[−1] ⊕g[0] ⊕g[1] is called minimal if any non-trivial ideal I

of g intersects g[−1] non-trivially, i.e. I ∩ g[−1] is neither 0 nor g[−1]. Then Jor and Lie

establish a bijection between Jordan unital superalgebras and minimal Lie superalgebras 

with short subalgebras, [1]. Furthermore, a unital Jordan superalgebra J is simple if and 

only if Lie(J) is a simple Lie superalgebra.

Let J be a Jordan superalgebra and g = Lie(J). By ĝ we denote the universal central 

extension of g. Note that the injective homomorphism αJ →֒ g can be lifted to the 

injective homomorphism αJ →֒ ĝ since all finite-dimensional representations of αJ are 

completely reducible. In particular, ĝ also has a short grading, the center of ĝ is in ĝ[0], 

and ĝ[±1] = g[±1].

Let ĝ-mod 1
2

denote the category of finite-dimensional ĝ-modules V over ĝ such that 

h ∈ αJ acts on V with eigenvalues ±1
2 and hence induces the grading V = V [−1

2 ] ⊕V [ 1
2 ]. 

In non-graded case functors Jor and Lie between ĝ-mod 1
2

and J-mod 1
2

were introduced 

in [12]. The super case is analogous. Define an J-action on V [ 1
2 ] by the formula

X ◦ v = Xfv = [X, f ]v for any X ∈ J, v ∈ V.

Then for any Y ∈ J

X ◦ (Y ◦ v) + (−1)|X||Y |Y ◦ (X ◦ v) = (XfY + (−1)|X||Y |Y fX)fv.

On the other hand,

(X◦Y )◦v =
1

2
((Xf−fX)Y −(−1)|X||Y |Y (Xf−fX))fv =

1

2
(XfY +(−1)|X||Y |Y fX)fv.

Therefore V [ 1
2 ] is a special J-module. Set Jor(V ) := V [ 1

2 ]. Then Jor : ĝ-mod 1
2

→
J-mod 1

2
is an exact functor between abelian categories.

Next we construct the inverse functor Lie : J-mod 1
2

→ ĝ-mod 1
2
. Assume that M is 

a special J-module. Let V = M ⊕ M , for any X ∈ ĝ[1] = J , Z = 1
2 [f, [f, Y ]] ∈ ĝ[−1], 

where Y ∈ ĝ[1] = J and (m1, m2) ∈ V set

X(m1, m2) = (0, X ◦ m1), Z(m1, m2) = (Y ◦ m2, 0).

Let h be the Lie subalgebra of End V generated by ĝ[±1]. Note that

[X, Z](m1, m2) = ((−1)|X||Y |Y ◦ (X ◦ m1), X ◦ (Y ◦ m2)).

If A ∈ ĝ[1], then

[[X, Z], A](m1, m2) = (0, X ◦ (Y ◦ (A ◦ m1))

+ (−1)|X||Y |+|X||A|+|A||Y |A ◦ (Y ◦ (X ◦ m1))) =

= (0, ((X · Y ) · A − (−1)|X||Y |Y · (X · A) + X · (Y · A)) ◦ m1).
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Similarly if C = 1
2 [f, [f, B]] for some B ∈ ĝ[1], then

[[X, Z], C](m1, m2) = (X ◦ (Y ◦ (B ◦ m2))

+ (−1)|X||Y |+|X||B|+|B||Y |B ◦ (Y ◦ (X ◦ m2)), 0) =

= (((X · Y ) · B − (−1)|X||Y |Y · (X · B) + X · (Y · B)) ◦ m1, 0).

Let ρ : J → End(M) denote the homomorphism of Jordan superalgebras corresponding 

to the structure of the special J-module on M , it induces the epimorphism Lie(ρ) : g →
Lie(ρ(J)), see Theorem 5.15 in [1]. The above calculation shows that Jor(h) = ρ(J). By 

construction of Lie we have the exact sequence

0 → Z(h) → h → Lie(Jor(h)) → 0.

Then Lie(ρ) can be lifted to an epimorphism ĝ → h. The latter morphism defines a 

structure of ĝ-module on V . We put Lie(M) := V .

Proposition 2.1. The functors Lie and Jor define an equivalence of the categories J-mod 1
2

and ĝ-mod 1
2
.

Proof. One has to check Lie(Jor(V )) ≃ V and Jor(Lie(M)) ≃ M . Both are straight-

forward. �

Let ĝ-mod1 denote the category of ĝ-modules N such that the action of αJ induces a 

short grading on N , recall that J-mod1 is the category of unital J-modules. In [12] the 

two functors

Jor : ĝ-mod1 → J-mod1, Lie : J-mod1 → ĝ-mod1

were constructed for Jordan algebra J . Analogously, one defines these functors in the 

supercase. Namely, if N ∈ ĝ-mod1, then N = N [1] ⊕N [0] ⊕N [−1]. We set Jor(N) := N [1]

with action of J = g[1] = ĝ[1] given by

x(m) = [f, x]m, x ∈ J = g[1], m ∈ N [1].

It is clear that Jor is an exact functor.

Let M ∈ J-mod1. Consider the associated null split extension J ⊕ M . Let A =

Lie(J ⊕ M). Then we have an exact sequence of Lie superalgebras

0 → N → A π−→ g → 0, (5)

where N is an abelian Lie superalgebra and N [1] = M . By Lemma 3.1, [12] M is ĝ[0]-

module. Now let p = ĝ[0] ⊕g[1] and we extend the above ĝ0-module structure on M to a 

p-module structure by setting g[1]M = 0. Finally we define Lie(M) to be the maximal 

quotient in Γ(M) = U(ĝ) ⊗U(p) M which belongs to ĝ-mod1.
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Proposition 2.2. [12] Functors Jor and Lie have the following properties

• Let M ∈ ĝ-mod1 and K ∈ J-mod1

Homĝ(Lie(M), K) ≃ HomJ(M, Jor(K)),

• If P is a projective module in J-mod1, then Lie(P ) is a projective module in ĝ-mod1.

• Jor ◦ Lie is isomorphic to the identity functor in J-mod1.

• Let P be a projective module in ĝ-mod1 such that ĝP = P . Then Jor(P ) is projective 

in J-mod1.

• Let L be a simple non-trivial module in ĝ-mod1. Then Jor(L) is simple in J-mod1.

Remark 2.3. Note that the correspondence J �→ Lie(J) does not define a functor from 

the category of Jordan superalgebras to the category of Lie superalgebras with short 

sl(2)-subalgebra. In construction of our functors Jor and Lie we use the following prop-

erty of TKK construction proven in [1], Section 5. An epimorphism J → J ′ of Jordan 

superalgebras induces the epimorphism Lie(J) → Lie(J ′). One can think about anal-

ogy with Lie groups and Lie algebras. There is more than one Lie group with given Lie 

algebra. Pushing this analogy further, ĝ plays the role of a simply connected Lie group.

Let Z denote the center of ĝ. For every χ ∈ Z∗ we denote by ĝ-mod χ
1 and ĝ-modχ

1
2

the full subcategories of ĝ-mod1 and ĝ-mod 1
2

respectively consisting of the modules 

annihilated by (z − χ(z))N for sufficiently large N . We have the decompositions

ĝ-mod1 =
⊕

χ∈Z∗

ĝ-mod χ
1 , ĝ-mod 1

2
=

⊕

χ∈Z∗

ĝ-modχ
1
2

. (6)

We define J-modχ
1
2

(resp., J-mod χ
1 ) the full subcategory of J-mod 1

2
(resp., J-mod1) 

consisting of objects lying in the image of ĝ-mod χ
1
2

(resp., ĝ-mod χ
1 ) under Jor. It is easy 

to see that Jor is a full functor. Therefore (6) provides the decompositions

J-mod1 =
⊕

χ∈Z∗

J-mod χ
1 , J-mod 1

2
=

⊕

χ∈Z∗

J-modχ
1
2

. (7)

Remark 2.4. Note that Jor : ĝ-modχ
1
2

→ J-modχ
1
2

is an equivalence of categories. If 

χ �= 0, then by Proposition 2.2 Jor establishes a bijection between isomorphism classes 

of simple objects in ĝ-mod χ
1 and J-mod χ

1 . Hence in this case it also defines an equivalence 

of categories.

Furthermore, the categories ĝ-mod χ
1 and ĝ-modχ

1
2

have the filtrations

F 1(ĝ-modχ
i ) ⊂ F 2(ĝ-modχ

i ) ⊂ · · · ⊂ F m(ĝ-modχ
i ) ⊂ . . . , i = 1,

1

2
,
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where F m(C) is the full subcategory of C consisting of modules annihilated by (z − χ)m. 

Very often the category ĝ-mod χ
1 and ĝ-modχ

1
2

do not have projectives but F m(ĝ-mod χ
1 )

and F m(ĝ-modχ
1
2

) always have enough projective objects.

3. Auxiliary facts

3.1. Quiver of abelian category

Let C be an abelian category and P be a projective generator in C. It is a well-known 

fact (see [5] ex.2 section 2.6) that the functor HomC(P, M) provides an equivalence 

of C and the category of right modules over the ring A = HomC(P, P ). In case when 

every object in C has finite length, C has finitely many non-isomorphic simple objects 

and every simple object has a projective cover, one reduces the problem of classifying 

indecomposable objects in C to the similar problem for modules over a finite-dimensional 

algebra A (see [3,4]). If L1, . . . , Lr is the set of all up to isomorphism simple objects in C
and P1, . . . , Pr are their projective covers, then A is a pointed algebra which is usually 

realized as the path algebra of a certain quiver Q with relations. The vertices of Q

correspond to simple (resp. projective) modules and the number of arrows from vertex i

to vertex j equals to dim Ext1(Lj , Li) (resp. dim Hom(Pi, rad Pj/ rad2 Pj)).

We apply this approach to the case when C is ĝ-modχ
1 (respectively J-modχ

1 ) and 

ĝ-modχ
1
2

(respectively J-modχ
1
2

). There is the following relation between quivers of ĝ-modχ
i

and J-mod χ
i

Proposition 3.1.

(1) The Ext quivers corresponding to ĝ-mod χ
1
2

and J-mod χ
1
2

coincide.

(2) If χ �= 0 the Ext quivers corresponding to ĝ-mod χ
1 and J-mod χ

1 coincide.

(3) Let χ = 0, Q′ (resp. Q) be the Ext quiver of the category J-mod 0
1 , (resp ĝ-mod 0

1 ) 

and A′ (resp. A) be its corresponding path algebra with relations. Then A′ = (1 −
e0)A(1 − e0), where e0 is the idempotent of the vertex v0 corresponding to the trivial 

representation.

Proof. First two items follow from Proposition 2.1 and Remark 2.4 respectively. The last 

part is proved in Lemma 4.10, [12] for non-graded case and the proof trivially generalizes 

to supercase. �

Remark 3.2. Observe that Q′ is obtained from Q by removing the vertex v0 and replacing 

some paths v → v0 → v′ by the edge v → v′.
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3.2. Relative cohomology and extensions

Let g be a superalgebra and M, N be two g-modules. Then the extension group 

Exti(M, N) can be computed via Lie superalgebra cohomology

Exti(M, N) ≃ Hi(g, HomC(M, N))

see, for example, [2]. Let h be a subalgebra of g and C be the category of g-modules 

semisimple over h. Then the extension groups between objects in C are given by relative 

cohomology groups:

Exti
C(M, N) ≃ Hi(g, h; HomC(M, N)).

The relative cohomology groups Hi(g, h; X) are the cohomology groups of the cochain 

complex

0 → X → Homh(Λ1(g/h), X) → Homh(Λ2(g/h), X) → Homh(Λ3(g/h), X) → . . . .

We use relative cohomology to compute Ext1(M, N) when M, N are finite-dimensional 

g-modules and h is a simple Lie algebra. The 1-cocycle ϕ ∈ Homh(g/h, X) satisfies the 

condition

ϕ([g1, g2]) = g1(ϕ(g2)) − (−1)ḡ1ḡ2g1(ϕ(g2)).

We also going to use the following version of Shapiro’s lemma for relative cohomology. 

Let p be the subalgebra of g containing h, M be a p-modules and N be a g-module, then

Hi(g, h; HomC(Indg
p M, N)) ≃ Hi(p, h; HomC(M, N)). (8)

3.3. Some general statements about representations of Lie superalgebras

Let g be a Lie superalgebra and h be the Cartan subalgebra of g, i.e. a maximal 

self-normalizing nilpotent subalgebra. Then one has a root decomposition g = h ⊕
⊕

gα

where gα is the generalized eigenspace of the adjoint action of h0̄. Let g be a simple 

Lie superalgebra. Assume that h1̄ = 0. It follows from the classification of simple Lie 

superalgebras that this assumption does not hold only for q(n) or H(2n + 1). Then for 

every root α either (gα)0̄ = 0 or (gα)1̄ = 0. Furthermore, if Q is a root lattice of g, one 

can define a homomorphism p : Q → Z2 such that p(α) equals the parity of gα.

Lemma 3.3. Assume that g is simple and h1̄ = 0. If M is an indecomposable finite-

dimensional ĝ-module, then every generalized weight space of M is either purely even or 

purely odd. Hence for a simple module L we have that L and Lop are not isomorphic and 

do not belong to the same block in the category of finite-dimensional ĝ-modules.
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Proof. Let Mμ denote the generalized weight space of weight μ. We have gα(Mμ) ⊂
Mμ+α. Therefore all weights of M belong to μ + Q. Hence the statement follows from 

existence of parity homomorphism p. �

Lemma 3.4. Let g be a Lie superalgebra with semisimple even part and M be a sim-

ple finite-dimensional g-module. Then Ext1
g(M, M) = 0. Furthermore, if sdim M =

dim M0̄ − dim M1̄ �= 0 then Ext1
ĝ(M, M) = 0.

Proof. Consider a short exact sequence of g-modules

0 → M → M̃ → M → 0.

Then M̃ is generated by a highest weight vectors of some weight λ with respect to some 

Borel subalgebra of g. Since the action of Cartan subalgebra of g0̄ on M̃ is semisimple 

the weight space M̃λ is a span of two highest weight vectors v1, v2. Then M̃ = U(g)v1 ⊕
U(g)v2 ≃ M ⊕ M and the sequence splits.

Now we prove the second identity. We have to show that H1(g, g0̄, End(M)) = 0. Let 

ϕ be a non-trivial one-cocycle. By the previous proof ϕ is not identically zero on the 

center of ĝ. On the other hand [x, ϕ(z)] = 0 for every x ∈ ĝ and the central element z. 

By Schur’s lemma we have ϕ(z) is the scalar operator. Furthermore, there exists x ∈ g1̄

such that z = [x, x]. That implies

ϕ(z) = 2[x, ϕ(x)].

That implies str(ϕ(z)) = 0. If sdim M �= 0 we obtain ϕ(z) = 0. That gives a contradic-

tion. �

4. Representations of JP (2)

Superalgebras JP (n) and P (n) both emerge from the associative superalgebra Mn,n

with the superinvolution

[

A B

C D

]∗

=

[

DT BT

−CT AT

]

,

namely JP (n) is the Jordan superalgebra of symmetric elements, while P (n) is the Lie 

superalgebra of skewsymmetric elements of (M+
n+n, ∗). These superalgebras also related 

to each other via the TKK construction Lie(JP (n)) = P (2n − 1), where

JP (n) =

{[

A B

C AT

]

| A, B, C ∈ Mn(C), BT = B, CT = −C

}

=

[

A 0

0 AT

]

0̄

+

[

0 B

C 0

]

1̄
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and

P (2n − 1) =

{[

A B

C −AT

]

| A, B, C ∈ M2n(C), trA = 0, BT = B, CT = −C

}

.

The short grading on P (2n − 1) is defined by element

h =

n
∑

i=1

Ei,i − Ei+n,i+n + Ei+2n,i+2n − Ei+3n,i+3n

and the short sl(2) algebra is given by the elements h, e, f , where

e =
n

∑

i=1

Ei,i+n − E3n+i,2n+i, f =
n

∑

i=1

Ei+n,i − E2n+i,3n+i.

Observe that we follow notations in [9] and [19] where P (n) is the Lie superalgebra of 

rank n. Both JP (n), n ≥ 2 and P (n), n ≥ 3 are simple superalgebras.

Another way to describe P (n) is to consider the (n +1|n +1)-dimensional superspace V

equipped with odd symmetric non-degenerate form β, i.e., the map S2(V ) → C
op which 

establishes an isomorphism V ∗ ≃ V op. Then P̃ (n) is the Lie superalgebra preserving 

this form and P (n) = [P̃ (n), P̃ (n)]. The following isomorphisms of P̃ (n)-modules are 

important to us

S2(V ∗) ≃ S2(V op) ≃ Λ2(V ), S2(V ) ≃ adop . (9)

The second isomorphism is given by the formula

v ⊗ w �→ Xv,w, Xv,w(u) := β(w, u)v + (−1)|v||w|β(v, u)w for all u, v, w ∈ V. (10)

Finally, denote by P̂ (n) the universal central extension of P (n), then for n ≥ 4

P (n) = P̂ (n), while the superalgebra P̂ (3) has a one-dimensional center.

4.1. Construction of P̂ (3)-modules with short grading and very short grading

When n ≥ 3 both categories JP (n)-mod 1
2
, JP (n)-mod1 are semi-simple, [19] and 

[16]. In [16] it was shown that the category JP (2) − mod 1
2

is isomorphic to the category 

of finite-dimensional modules over the associative superalgebra M2,2(C[t]), i.e. there 

exists a one-parameter family of irreducible special JP (2)-modules. Unital irreducible 

JP (2)-modules were described in [19], for each α ∈ C there are two non-isomorphic 

modules R(α) and S(α) and their opposite. Modules R(α) and S(α) are constructed as 

a subspaces in M2+2(A), where A is a certain Weyl algebra. In this section we define a 

family W (t), t ∈ C of special irreducible JP (2)-modules and provide another realization 
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of unital irreducible modules, namely S2(W (t/2)) and Λ2(W (t/2)). We also construct 

the ext quiver for JP (2)-mod 1
2

and JP (2)-mod1.

Let ̂g be the central extension of the simple Lie superalgebra P (3). There is a consistent 

(with Z2-grading) Z-grading

ĝ = g−2 ⊕ g−1 ⊕ g0 ⊕ g1,

where g−2 is a one-dimensional center, g0 is isomorphic to so(6) and g−1 is the standard 

so(6)-module. Furthermore, g1 is isomorphic to one of the two irreducible components of 

Λ3(g−1) (the choice of the component gives isomorphic superalgebra). The commutator 

g−1 × g−1 → g−2 is given by the g0-invariant form.

Fix z ∈ g−2. In [21] a (4|4)-dimensional simple ĝ-module V (t) on which z acts by 

multiplication by t, t ∈ C was introduced. Let V = C
4|4 and define a representation 

ρt : ĝ → EndC(V ) by

ρt

[

A B
C −At

]

:=

[

A B + tC∗

C −At

]

, ρt(z) := t,

where c∗
ij = (−1)σckl for the permutation σ = {1, 2, 3, 4} → {i, j, k, l}. We denote the 

corresponding ĝ-module by V (t). When t = 0 this module coincides with the standard 

ĝ-module. Observe that for any t, s ∈ C, V (t) ≃ V (s) as g0 + g1-modules.

Remark 4.1. The other realization of V (t) is as follows. Let D(3) be the superalgebra of 

differential operators on Λ(ξ1, ξ2, ξ3) with the odd generators ξ1, ξ2, ξ3, d1, d2, d3 satisfying 

the relation:

[di, ξj ] = δij , [ξi, ξj ] = [di, dj ] = 0.

Observe that D(3) is isomorphic to the Clifford algebra. It is easy to see that the Lie sub-

superalgebra of D(3) generated by 1, di, ξj , ξiξj , didj , ξ1ξ2ξ3 is isomorphic to ĝ. As follows 

from the general theory of Clifford superalgebras D(3) has a unique (4|4)-dimensional 

simple module V (1) = Λ(ξ1, ξ2, ξ3). Since D(3) is generated by di, ξj as the associative 

algebra, the restriction of V (1) is a simple ĝ-module.

Let σt denote the automorphism of ĝ such that σt(x) = tix for every x ∈ gi, then 

V (t) ≃ V (1)σ
t−1/2 . Note that V (1)σ−1 is isomorphic to V (1). Hence the construction 

does not depend on a choice of the square root.

Observe also that V (t)∗ is isomorphic to V (−t)op.

It is easy to see that V (t) admits a very short grading with respect to the action 

of h thus V (t) ∈ ĝ-mod 1
2
. Moreover from the equivalence of categories M2,2(C[t])-mod, 

JP (2)-mod 1
2

and ˆP (3)-mod 1
2
, [16], and Proposition 2.1, it follows that V (t) together 

with its opposite exhaust all possibilities for simple objects in ˆP (3)-mod 1
2
.



I. Kashuba, V. Serganova / Advances in Mathematics 370 (2020) 107218 13

Proposition 4.2. Let t ∈ C. On W = C
2|2 define a representation ρt : JP (2) → EndC(W )

by

ρt

[

A B
C −AT

]

:=

[

A B + tC
C −AT

]

.

Then any irreducible module in JP (2)-mod 1
2

is isomorphic either to W (t) = (W, ρt) or 

W (t)op.

Proof. V (t) ∈ ĝ-mod 1
2
, thus it is enough to check that W (t) = Jor(V (t)). �

The next theorem follows from the equivalence of categories M2,2(C[t])-mod and 

JP (2)-mod 1
2
, [16], we give a proof here for the sake of completeness.

Theorem 4.3. (a) Every block in the category ĝ-mod 1
2

(JP (2)-mod 1
2
) has a unique up to 

isomorphism simple object.

(b) The category ĝ-mod 1
2

(JP (2)-mod 1
2
) is equivalent to the category of finite-

dimensional Z2-graded representations of the polynomial ring C[x].

Proof. To prove (a) we just note that Ext1(V (s), V (t)) = Ext1(V (s), V (t)op) = 0 if t �= s

since the modules have different central charge. Furthermore, from Lemma 3.3 we have 

Ext1(V (t), V (t)op) = 0.

To prove (b) we consider the family V (x) defined as above where x is now a formal 

parameter. Then V (x) is a module over U(ĝ) ⊗C[x]. Let M be a finite-dimensional C[x]-

module. Set F (M) := V (x) ⊗C[x] M . Obviously F (M) is a ĝ-module. Moreover, F defines 

an exact functor from the category of finite-dimensional Z2-graded C[x]-modules to the 

category ĝ-mod 1
2
. The functor G := Homg(V (x), ?) is its left adjoint. The functors F and 

G provide a bijection between isomorphism classes of simple objects in both categories 

and hence establish their equivalence. �

Now we will describe the simple modules in the category ĝ-mod1. Let us consider the 

decomposition

V (t/2) ⊗ V (t/2) = S2V (t/2) ⊕ Λ2V (t/2).

Then clearly both S2V (t/2) and Λ2V (t/2) are objects in ĝ-mod1 and have central 

charge t.

Lemma 4.4. (a) If t �= 0, then S2V (t/2) and Λ2V (t/2) are simple.

(b) If t = 0 we have the following exact sequences

0 → L+(0) → S2(V ) → C
op → 0, 0 → C

op → Λ2(V ) → L−(0) → 0,

where L±(0) are some simple g-modules.
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Proof. Let us prove (b). The first exact sequence follows from existence of g-invariant 

odd symmetric form β on V , (10), the second is the dualization. Moreover L+(0)op is 

the adjoint representation in P (3), hence simple. But then L+(0) is obviously simple, 

L−(0) is simple by duality.

To prove (a) we observe that S2V (t/2) is a polynomial deformation of S2(V ). More-

over, for all t �= 0 the corresponding modules are related by twisting with an automor-

phism. Thus, either S2V (t/2) is simple or it has a 1-dimensional quotient. But there is 

no one dimensional module with non-zero central charge. Hence S2V (t/2) is simple. The 

proof for Λ2V (t/2) follows by duality. �

For t �= 0 we set L+(t) = S2V (t/2), L−(t) = Λ2V (t/2).

Theorem 4.5. A simple object in ĝ-mod1 is isomorphic to one of the following: 

L±(t), L±(t)op, C or Cop.

Proof. It follows from Theorem 3.10, [16] that for an arbitrary t ∈ C there are exactly 

four non-isomorphic simple objects in J-mod t
1 . Comparing their dimensions one can see 

that the image of these modules via the TKK-constructions is one of L±(t) or L±(t)op. 

Adding the one-dimensional trivial module and its opposite to g-mod1 we finish the 

proof. �

Recall that W (t), t ∈ C is the irreducible special JP (2)-module defined in Lemma 4.2. 

Then W (t) ⊗ W (t) has a structure of unital JP (2)-module, [7]. As a superspace W (t) ⊗
W (t) = S2(W (t)) ⊕ Λ2(W (t)).

Corollary 4.6. Both S2(W (t/2)), Λ2(W (t/2)) are simple JP (2)-modules. A simple mod-

ule in JP (2)-mod1 is isomorphic to one of the following: S2(W (t/2)), Λ2(W (t/2)) and 

their opposites.

Proof. One can easily check that Jor(L+(t)) = S2(W (t/2)), Jor(L−(t)) = Λ2(W (t/2))

for any t ∈ C. The rest follows from previous theorem and from Proposition 2.2. �

Recall that ĝ-mod t
1 is the full subcategory of ĝ-mod1 consisting of modules on which 

z acts with generalized eigenvalue t. Note that if t, s �= 0 then ĝ-mod t
1 and ĝ-mods

1 are 

equivalent, by twist with σt1/2s−1/2 .

Lemma 4.7. Let t �= 0. We have the following isomorphisms of g0-modules

H0(g1, L−(t)) ≃ Λ2(V0̄) ⊕ C, H0(g1, L+(t)) ≃ S2(V0̄),

H0(g1, L−(t)) ≃ S2(V1̄), H0(g1, L+(t)) ≃ Λ2(V0̄) ⊕ C.

Remark 4.8. Observe that g0 ≃ sl(4) and V0̄ (resp., V1̄) are the standard (resp., costan-

dard) g0-modules.
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Proof. Consider the subalgebra g+ := g0 ⊕ g1. Recall that V (t) is isomorphic to V as a 

g+-module. Therefore L+(t) = S2(Vt/2) is isomorphic to S2(V ) and L−(t) is isomorphic 

to Λ2(V ) as g+-modules. Hence the statement follows from Lemma 4.4(b). �

Let p = g−2 ⊕g0 ⊕g1 and Ct be the (0|1)-dimensional p-module with central charge t. 

Consider the induced module

K(t) := Indg
p Ct ≃ Coindg

p Ct.

Proposition 4.9. The category ĝ-mod t
1 has two equivalent blocks Ω+

t and Ω−
t . The equiva-

lence of these blocks is established by the change of parity functor. If t �= 0, then Ω+
t has 

two simple objects L+(t) and L−(t). The block Ω+
0 has three simple objects Cop, L+(0)

and L−(0).

Proof. By the weight parity argument, Lemma 3.3, Ext1(L±(t), L±(t)op) = 0. For t = 0

the statement follows from the fact that the sequences in Lemma 4.4 do not split. It 

remains to show Ext1(L+(t), L−(t)) �= 0 if t �= 0. It follows from Lemma 4.7 that

Homg0
(Ct, H0(g1, L+(t))) = C, Homg0

(Ct, H0(g1, L−(t))) = C.

By Frobenius reciprocity we have a surjection K(t) → L−(t) and injection L+(t) → K(t). 

A simple check of dimensions implies the exact sequence

0 → L+(t) → K(t) → L−(t) → 0

and it remains to prove that it does not split. Indeed,

Homg(K(t), L+(t)) = Homp(Ct, L+(t)) = Homg0⊕g−2
(Ct, H0(g1, L+(t))) = 0. �

Lemma 4.10. We have isomorphisms

L+(t)∗ ≃ L−(−t), L−(t)∗ ≃ L+(−t), K(t)∗ ≃ K(−t).

Proof. Follows from the isomorphism V ∗(t/2) ≃ V op(−t/2). �

4.2. Unital modules with non-zero central charge

Lemma 4.11. If t �= 0 we have

(1) Ext1(L+(t), L+(t)) = Ext1(L−(t), L−(t)) = C;

(2) Ext1(L−(t), L+(t)) = C;

(3) Ext1(L+(t), L−(t)) = 0.
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Proof. For (1) first we show that Ext1(L−(t), L−(t)) �= 0. For this consider a non-trivial 

self-extension

0 → V (t/2) → V̄ (t/2) → V (t/2) → 0.

The action of z on V̄ (t/2) is given by the Jordan blocks of size 2. Now consider Λ2V̄ (t/2). 

Then the Jordan-Hoelder multiplicities are as follows:

[Λ2V̄ (t/2) : L−(t)] = 3, [Λ2V̄ (t/2) : L+(t)] = 1.

Moreover, the action of z on Λ2V̄ (t/2) is given by Jordan blocks of size 3 and 1. This 

implies that Λ2V̄ (t/2) contains a non-trivial self-extension of L−(t).

Now we show that Ext1(L−(t), L−(t)) is one-dimensional. Indeed, let ψ : g →
EndC(L−(t)) be a cocycle defining the extension. The cocycle condition implies that 

ψ(z) ∈ Endĝ(L−(t)) = C. Therefore if dim Ext1(L−(t), L−(t)) > 1, then there exists a 

non-trivial cocycle ψ such that ψ(z) = 0. Consider the corresponding self-extension

0 → L−(t) → M → L−(t) → 0.

Note that Mg1+g0 is isomorphic to Ct⊕Ct as g0+g−2-module. Therefore M is a quotient 

of K(t) ⊕K(t) and hence M ≃ L−(t) ⊕L−(t). Thus, the corresponding extension is trivial. 

Finally, since L−(−t)∗ ≃ L+(t), we obtain by duality that Ext1(L+(t), L+(t)) = C.

Next we will prove (2). Consider a non-split extension

0 → L+(t) → M → L−(t) → 0.

Since coinvariants is a right exact functor, there exists a surjection H0(g1, M) →
H0(g1, L−(t)). Hence by Lemma 4.7 Homp(M, Ct) �= 0. By the Frobenius reciprocity 

we must have a non-zero map

φ : M → Coindg
p Ct = K(t).

Since the socles of M and K(t) are isomorphic and both modules have length 2, φ is an 

isomorphism. Hence Ext1(L−(t), L+(t)) is one-dimensional.

Finally we will show (3). Assume that there is a non-split exact sequence

0 → L−(t) → M → L+(t) → 0.

Consider the following piece of the long exact sequence

· · · → H0(g1, M)
r−→ H0(g1, L+(t))

r′

−→ H1(g1, L−(t)) → . . . .

By Lemma 4.7 we have H0(g1, L+(t)) = S2(V0̄). We use the decomposition of L−(t) as 

an g0 = sl(4)-module:
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L−(t) ≃ C ⊕ Λ2(V0̄) ⊕ sl(4) ⊕ S2(V1̄).

Since H1(g1, L−(t)) is a submodule in

g∗
1 ⊗ L−(t) = S2(V1̄) ⊗ (C ⊕ Λ2(V0̄) ⊕ sl(4) ⊕ S2(V1̄)),

we conclude that H1(g1, L−(t)) does not contain an g0-submodules, isomorphic to 

S2(V0̄). Since r and r′ are morphisms of g0-modules, r′ = 0. Thus, we obtain that r

is surjective and therefore M is a quotient of the induced module Indg
p S2(V0̄), (here we 

assume that z acts on S2(V0̄) as t and g1 acts by zero). Next consider an isomorphism 

of g0-modules

Indg
p S2(V0̄) ≃ Λ·(Λ2(V1̄)) ⊗ S2(V0̄)

which implies

Homg0
(Indg

p S2(V0̄), C) = Homg0
(Λ·(Λ2(V1̄), S2(V1̄)) = C.

On the other hand, Homg0
(M, C) = C

2 and we obtain a contradiction. �

Theorem 4.12. If t �= 0, then the category Ω+
t is equivalent to the category of nilpotent 

representations of the quiver

•

α

β

•

γ

with relations βα = γβ.

Proof. Consider the subcategories F m(ĝ-modt
1) of ĝ-modt

1 defined in Section 2.

Lemma 4.13. Let K(t)(m) := Indg
p(C[z]/((z − t)m) and L+(t)(m) be the indecomposable 

module of length m with all composition factors isomorphic to L+(t). Then K(t)(m)

and L+(t)(m) are projective covers of L−(t) and L+(t), respectively, in the category 

F m(ĝ-modt
1).

Proof. The projectivity of L+(t)(m) follows easily by induction on m. Indeed, in the 

case m = 0, we have Ext1(L+(t), L−(t)) = 0 and in the only non-trivial self-extension 

of L+(t) the action of the center is not semisimple. Then by induction and the long 

exact sequence we get Ext1(L+(t)(m), L
−(t)) = 0 and the only non-trivial extension 

Ext1(L+(t)(m), L
+(t)), the action of the center is given by the Jordan block of length 

m + 1.

To prove the projectivity of K(t)(m) we have to show

Ext1
(1)(K(t), L±(t)) = 0
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where Ext(1) stand for extension in the category F (1)(ĝ-modt
1) and then again proceed 

by induction as in the previous case. We recall the exact sequence

0 → L+(t) → K(t) → L−(t) → 0.

Consider the corresponding long exact sequences for computing Ext1
(1)(K(t), L±(t)). For 

Ext1
(1)(K(t), L−(t)) we get

0 = Ext1
(1)(L

−(t), L−(t)) → Ext1
(1)(K(t), L−(t)) → Ext1

(1)(L
+(t), L−(t)) = 0

and for Ext1
(1)(K(t), L+(t)) we get

0 = Hom(K(t), L+(t)) → Hom(L+(t), L+(t)) → Ext1
(1)(L

−(t), L+(t)) →
→ Ext1

(1)(K(t), L+(t)) → Ext1
(1)(L

+(t), L+(t)) = 0,

Hom(L+(t), L+(t)) ≃ Ext1
(1)(L

−(t), L+(t)) = C.

Thus Ext1
(1)(K(t), L+(t)) = 0. �

Finally the relation βα = γβ follows from the calculation of the second and the third 

terms of the radical filtration for K(t)(m) and L+(t)(m) for the large m. Indeed,

rad K(t)(m)/ rad2 K(t)(m) = rad2 K(t)(m)/ rad3 K(t)(m) = L+(t) ⊕ L−(t),

and

rad L+(t)(m)/ rad2 L+(t)(m) = rad2 L+(t)(m)/ rad3 L+(t)(m) = L+(t). �

4.3. The case of zero central charge

Lemma 4.14. For t = 0 we have

(1) Ext1(L+(0), L+(0)) = Ext1(L−(0), L−(0)) = Ext1(L+(0), L−(0)) = 0;

(2) Ext1(L−(0), L+(0)) = C;

(3) Ext1(L±(0), Cop) = C;

(4) Ext1(Cop, L±(0)) = C.

Proof. In view of Lemma 3.4 we already have that Ext1(L±(0), L±(0)) = 0. Let us show 

that Ext1(L+(0), L−(0)) = 0. Recall the proof of Lemma 4.11(3). By the same argument 

as in this proof, we obtain that if the sequence

0 → L−(0) → M → L+(0) → 0
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does not split then M is a quotient of the induced module Indg
p S2(V0̄). By (13) Section 4.3 

in [21] this induced module does not have a simple constituent isomorphic to L−(0). 

Therefore there is no such non-split exact sequence. This completes the proof of (1).

By Lemma 4.4 (b) Ext1(L−(0), Cop) �= 0 and Ext1(Cop, L+(0), ) �= 0. To prove that 

other extensions are not zero, consider the Kac module Kop(0). We claim that it has the 

following radical filtration

Kop(0)/ rad Kop(0) = C
op, rad Kop(0)/ rad2 Kop(0) = L−(0),

rad2 Kop(0)/ rad3 Kop(0) = L+(0), rad3 Kop(0)/ rad4 Kop(0) = C
op,

rad4 Kop(0) = 0.

Indeed, Kop(0) = U(g−1)v for a g0-invariant vector v. Moreover,

Homg(Kop(0), L±(0)) = 0,

since (L±(0))g0 = 0. That proves Kop(0)/ rad Kop(0) = C
op. Furthermore, g1g−1v = 0, 

hence the maximal submodule N of Kop(0) is generated by g−1v. Thus, N is a quotient 

of the induced module Indg
p Λ2(V1̄) and hence N has a simple cosocle isomorphic to 

L−(0). That implies rad Kop(0)/ rad2 Kop(0) = L−(0). Finally the rest follows from the 

self-duality of Kop(0).

By considering different subquotients of length 2 of Kop(0) we obtain non-trivial 

elements in Ext1(Cop, L−(0)), Ext1(L−(0), L+(0)) and Ext1(L+(0), Cop). To finish the 

proof of Lemma we have to show that all above Ext1 groups are one-dimensional.

Recall that L−(0) ≃ adop. Using the duality and change of parity functor it suffices 

to check that Ext1(C, ad), Ext1(C, ad∗) and Ext1(ad∗, ad) are one-dimensional. First we 

have Ext1(C, ad) = Der(g)/g = C, see [9]. Next,

dim Ext1(C, ad∗) ≤ dim Homg0
(g1 ⊕ g1, ad∗) = 1.

Now let us prove that dim Ext1(ad∗, ad) ≤ 1. The Lie superalgebra g has a root decom-

position with even roots

∆0̄ = {(±(εi ± εj) | 1 ≤ i < j ≤ 3},

and the odd roots

∆1̄ = {±ε1, ±ε2, ±ε3, ε1 + ε2 + ε3, ε1 − ε2 − ε3, −ε1 − ε2 + ε3, −ε1 + ε2 − ε3}.

Note that the odd roots ±εi have multiplicity 2 and the roots ε1 + ε2 + ε3, ε1 − ε2 −
ε3, −ε1 − ε2 + ε3, −ε1 + ε2 − ε3 are not invertible. Let ∆+ (respectively, ∆−) be the 

set of roots aε1 + bε2 + cε3 such that a + 2b + 4c > 0 (respectively, a + 2b + 4c < 0). 

The decomposition ∆ = ∆+ ∪ ∆− defines a triangular decomposition g = n− ⊕ h ⊕ n+. 

Every finite-dimensional simple g-modules has a unique up to proportionality lowest 
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weight vector. The lowest weight of ad is ν = −ε2 − ε3 and the lowest weight of ad∗ is 

λ = −ε1 − ε2 − ε3. Let M be an indecomposable g-module of length 2 with socle ad and 

cosocle ad∗. Then M is generated by the lowest weight vector of weight λ. Hence M is 

a quotient of the Verma module M(λ) := U(g) ⊗U(h⊕n−) Cλ. Multiplicity of weight ν in 

M(λ) equals 2 since the multiplicity of the simple root ε1 is 2. However, ν appears as a 

weight of ad∗ as well as a weight of ad, hence ad appears in M(λ with multiplicity at 

most one. The proof is complete. �

Theorem 4.15. The Ext quiver of the category Ω+
0 is

•

μ

α • δ

β
•γ

Therefore the category Ω+
0 is equivalent of the category of nilpotent representations of 

the path algebra of the above quiver modulo some relations. These relations include δα =

βγ = 0, μβα = δγμ.

Remark 4.16. We suspect that there is no other relations but this fact is not needed for 

the description of the corresponding category for the Jordan algebra.

Proof. Lemma 4.14 implies that the above quiver is the Ext quiver of Ω+
0 , where the left 

vertex corresponds to L+(0), the right vertex to L−(0) and the middle vertex to Cop. 

We have to prove the relations.

Showing that δα = 0 is equivalent to proving that there is no g-module R with socle 

isomorphic to L+(0) and cosocle isomorphic to L−(0) with middle layer of the radical 

filtration Cop. In the proof of Lemma 4.14 we constructed a module M of length 2 with 

socle L+(0) and cosocle L−(0) which is a quotient of the Verma module M(λ). Since 

the multiplicity of weight ν in M(λ), M and R is the same and equals 2, we obtain that 

M = M(λ)/N and R = M(λ)/Q, where N and Q are maximal submodules of M(λ)

which intersect weight spaces of weights λ and ν trivially. Since Q +N satisfies the same 

property, maximality of N and Q implies N = Q.

Next we show that βγ = 0. It suffices to prove that there is no g-module F with socle 

isomorphic to L−(0) and cosocle isomorphic to L+(0) with middle layer of the radical 

filtration Cop. Assume that such F exists. Then zF = 0. We have an isomorphism of 

g-modules

(F/ soc F )op ≃ g.

Choose a non-zero v ∈ F g0 . Then by above isomorphism for any x ∈ g−1 such that 

[x, x] �= 0 we have v ∈ Im x. Since zF = 0 and [x, x] = 2x2 = cz, we obtain xv = 0. 

Therefore g−1v = 0. On the other hand, g1v = 0 as L−(0) does not have g0 components 

isomorphic to g1. That implies v ∈ F g, that leads to a contradiction.
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Finally we show the relation μβα = δγμ. If for the sake of contradiction we assume 

that this relation does not hold, then there exists a g-module T with the following radical 

filtration:

L−(0)

Cop ⊕ L+(0)

L−(0) ⊕ Cop

L+(0) ⊕ L+(0)

(11)

In particular we have rad T = T ′ ⊕ T ′′, where T ′ has cosocle Cop and T ′′ has cosocle 

L+(0). Note that zT �= 0 and z2T = 0. This implies that the submodule zT has length 

2 with cosocle L−(0) and socle L+(0). Therefore zT ⊂ T ′. On the other hand, zT ′′ �= 0. 

A contradiction. �

Theorem 4.17. The category J-mod1 consists of infinite number of equivalent blocks, each 

block is equivalent to the category of nilpotent representations of the quiver

•

α

β

•

γ

with relations βα = γβ.

Proof. It follows immediately by applying Proposition 3.1 to quivers obtained in Theo-

rem 4.12 and Theorem 4.15 �

Remark 4.18. This quiver has wild representation type, see (12), Table W in [6].

5. Representations of Kan(n), n ≥ 2

Let Λ(n) be the Grassmann superalgebra generated by n ≥ 2 odd generators 

{ξ1, . . . , ξn} such that ξiξj + ξjξi = 0. Define odd superderivations ∂
∂ξi

, i = 1, . . . , n

on Λ(n)

∂

∂ξi

∂ξj

∂ξi
= δij ,

∂(uv)

∂ξi
=

∂u

∂ξi
v + (−1)|u|u

∂v

∂ξi
. (12)

Then the linear superspace Jn = Λ(n) ⊕ Λ(n), is a Jordan superalgebra with respect to 

the product “·”

f · g = fg f · g = fg, f · g := {f, g} = (−1)|f |
n

∑

i=1

∂f

∂ξi

∂g

∂ξi
. (13)

Here Λ(n) is a copy of Λ(n), f, g ∈ Λ(n), both homogeneous and {f, g} is Poisson 

bracket. The Z2-grading of Jn = (Jn)0̄ + (Jn)1̄ is given by (Jn)0̄ = Λ(n)0̄ + Λ(n)1̄
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and (Jn)1̄ = Λ(n)1̄ + Λ(n)0̄. The superalgebra Jn is called the Kantor double of the 

Grassmann Poisson superalgebra and it is simple Jordan superalgebra for any n ≥ 1. 

Observe that J1 is isomorphic to the general linear superalgebra M+
1,1 (this superalgebra 

will be considered in next Section) and for n ≥ 2, Jn is exceptional.

To determine the TKK construction of Kan(n) we will introduce another set of gen-

erators of Jn, namely if n = 2k define

ηi =
1√
2

(

∂f

∂ηi
+

∂f

∂ηk+i

)

, ηi+k =
1√
2

(

∂f

∂ηi
− ∂f

∂ηk+i

)

, i = 1, . . . , k, (14)

while if n = 2k + 1 add η0 = 1√
2
ξ2k+1. The Poisson bracket may be rewritten as

{f, g} = (−1)|f |
(

k
∑

i=1

(

∂f

∂ηi

∂g

∂ηi+k
+

∂f

∂ηi+k

∂g

∂ηi

)

+
1

2

∂f

∂η0

∂g

∂η0

)

, (15)

where the last summand only appears for odd n.

The Poisson Lie superalgebra po(0 | n) can be describe as Λ(n) endowed with the 

bracket [f, g] = −{f, g}. Let spo(0 | n) = [po(0 | n), po(0 | n)], then H(n) = spo(0 | n)/C

can be identified with the set of f ∈ Λ(n), such that f(0) = 0 and deg f < n. To 

define a short grading on g = H(n) denote by g1 (g−1) the subspace generated by 

the monomials which contain ηk+1 and do not contain η1 (η1 and ηk+1, respectively). 

For n = 2k + 1 the subspaces Λ1 and Λ2 generated by all monomials from g−1 which 

contain or do not contain generator η0, respectively, may be identified with two copies 

of Λ(2k − 2) in η2, . . . , ηk, ηk+2, η2k. Moreover Λ1 + Λ2 is a Jordan superalgebra with 

respect to multiplication

x · y = [[a, x], y], a = η0ηk+1.

Observe that · corresponds to the usual associative product in Λ1 and the Poisson bracket 

in Λ2. For the case of even n = 2k choose a different set of generators η1, η′
2 = η2 −ηn+1, 

η3, . . . , ηn+1, η′
n+2 = η2 + ηm+1, ηn+3, . . . , η2n. The subspace Λ1 (the space Λ2) is 

generated by monomials that contain (don’t contain) η′
2. Then Λ1 ⊕ Λ2 is the Kantor 

double J2n−3.

5.1. Construction of spo(0, n)-modules with short grading

As we already mentioned in Introduction representations of Kantor double superal-

gebra were studied in [26]. The authors have shown that Kan(n) n > 4 (over field of 

characteristic zero) is rigid, i.e. has only regular irreducible supermodule and its op-

posite. The fact that the H(n), the TKK of Kan(n), has non-trivial central extension 

spo(n) was not taken into consideration. In [18] it was corrected, the authors proved that 

under the same restriction on characteristic of field and number of variables there exists 
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(up to change of parity) only one-parameter family V (α) of irreducible supermodules. 

Finally in [27] it was shown that every irreducible finite dimensional Jordan Kan(n)

supermodule for n ≥ 2 and characteristic of field is different from 2 is isomorphic (up to 

change of parity) to V (α). In this section we study indecomposable Kan(n)-modules.

Assume that g = H(n), n > 4 then the universal central extension of g, ĝ is isomorphic 

to the special Poisson algebra: spo(0, n). It is useful to recall that po(0, n) is equipped 

with invariant bilinear form ω

ω(f, g) =
∂

∂ξ1
. . .

∂

∂ξn
(fg).

The form ω is symmetric and even (resp. odd) if n is even (resp. odd). It induces the 

invariant form on g = H(n).

We also equip g and ĝ with a Z-grading (consistent with Z2-grading):

ĝ = ĝ−2 ⊕ g = g−2 ⊕ g−1 ⊕ g0 ⊕ · · · ⊕ g(n−3), (16)

where the linear space gi is generated by monomials of degree i +2, i ≥ −2. Then ĝ−2 = C

is one-dimensional center, g0 is orthogonal algebra o(n) and gi is o(n)-module Λi+2V , V

the standard o(n)-module. This grading is called standard. We use the notation

g+ :=
⊕

i≥0

gi, g++ =
⊕

i>0

gi.

Consider the subalgebra p = g+ ⊕ ĝ−2 ⊂ ĝ. Let N be a g0-module, extend it to p-

module by setting giN = 0, i > 0, z = t IdN . Then Indĝ
pN = U(g) ⊗U(p) N is a ĝ-module 

by construction and it is a g-module if t = 0. One has the following isomorphism of 

g0-modules

Indĝ
pN ≃ N ⊗ ΛV. (17)

Let Mt(λ) be an even simple g0 + g−2-module with o(n)-highest weight λ and central 

charge t. We extend it to a simple p-module by setting g++Mt(λ) = 0. Every simple 

finite dimensional p-module is isomorphic to Mt(λ) or Mt(λ)op.

Finite dimensional irreducible representations of both g and ĝ were described by 

A. Shapovalov in [23], [24]. Let us formulate these results here.

Theorem 5.1. Let n ≥ 4, ĝ = spo(n).

(1) Every simple ĝ-module is a quotient of the induced module Indĝ
pMt(λ) or

Indĝ
pMt(λ)op. If t = 0, this quotient is unique, we denote it by Lλ.

(2) Let ω1 denote the first fundamental weight of g0 = o(n). If the highest weight λ is 

different from lω1, l ∈ Z
≥0 then the induced module Indĝ

pMt(λ) is simple for every t. 

If t �= 0 then Indĝ
pMt(0) is also simple.
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(3) If k > 1 then Indĝ
pM0(kω1) is an indecomposable module length 4 with simple socle 

and cosocle isomorphic to Lkω1
and two other simple subquotients isomorphic to 

Lop
(k−1)ω1

and Lop
(k+1)ω1

.

(4) There exists a homomorphism γ : Indg

g+M0(2ω1)op → Indg

g+M0(ω1) and Im γ is an 

indecomposable module of length 2 with socle Lω1
and cosocle Lop

2ω1
.

(5) Indĝ
pM0(0) has length 3 with one dimensional socle and cosocle.

(6) If k > 0 and t �= 0 then Indĝ
pMt(kω1) is a direct sum of two non-isomorphic simple 

modules. There exists an exact complex

Indĝ
pMt(0) → Indĝ

pMt(ω1) → Indĝ
pMt(2ω1) → . . .

such that the image of every differential is a simple ĝ-module.

Let It = Indĝ
pCt be the smallest induced module. Since It ≃ Λ(V ) as a o-module, It

has a short grading. For t �= 0, the It is simple and we denote it by S(t). On the other 

hand, I0 is the restriction of the coadjoint module po to spo and hence it has length 3

with one-dimensional trivial module in the cosocle and socle and the coadjoint g-module 

at the middle layer of the radical filtration. If we denote by S(0) the coadjoint module 

of g = H(n), then we have the following diagram for the radical filtration of I0

C

S(0)

C

for even n and

C

S(0)

Cop

for odd n.

Using the form ω it is easy to check that I∗
0 ≃ I0 for even n and I∗

0 ≃ Iop
0 for odd n.

Proposition 5.2. Let n ≥ 4.

(1) There are no spo(n) modules which admit very short grading.

(2) A simple object in spo(n) − mod1 is isomorphic to C, Cop, S(t) or Sop(t).

Proof. The short sl2-subalgebra of ĝ lies in g0 = o(n). Therefore an irreducible quotient 

of Indĝ
ρMt(λ) has a chance to have a short grading only if Mt(λ) has a short grading as a 

module over g0. On the other hand, the isomorphism of o-modules Indĝ
pMt(λ) ≃ Mt(λ) ⊗

Λ(V ) implies that the induced module never has a very short grading. Furthermore, for 

non-zero λ the induced module does not have a short grading. On the other hand, the 

induced module is not irreducible only for λ = kω1. Thus, it remains to consider the 

cases λ = 0 and λ = ω1. We already considered the former case. Let λ = ω1 and t �= 0. 

By Theorem 5.1(6) Indĝ
pMt(ω1) = S(t) ⊕ S′ for some simple module S′ not isomorphic 

to S(t). Since Indĝ
pMt(ω1) does not have the short grading, the same is true for S′. For 

t = 0 S(0) is isomorphic to Lop
ω1

and the statement follows from Theorem 5.1(1). �
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Remark 5.3. It follows from Proposition 5.2(1) that category Kan(n)-mod 1
2

is trivial. 

This is a consequence of the fact that Kan(n) for n ≥ 2 is exceptional, [13].

Remark 5.4. Note that S(t) is isomorphic to ΛV = ⊕n
i=0ΛiV as a g0-module and S(0)

is isomorphic to ⊕n−1
i=1 ΛiV .

5.2. The case of non-zero central charge

Lemma 5.5. If t �= 0 then

Ext1(S(t), Sop(t)) = 0, Ext1(S(t), S(t)) = C.

Proof. Note that for even n the first assertion follows from Lemma 3.3. Let us prove the 

first assertion for odd n. By (8) we have

Ext1(S(t), Sop(t)) = Ext1
p(Ct, Sop(t)) = Ext1

g+(C, Sop(t)).

The latter equality follows from the fact that the center always acts semisimply on an 

extension of two non-isomorphic simple modules.

Every finite-dimensional g0-module is semisimple. Therefore we have to show that the 

relative Lie algebra cohomology H1(g+, g0; Sop(t)) vanishes. Let us write the cochain 

complex calculating this cohomology:

0 → C0 = Homg0
(C, Sop(t))

d1−→ C1 = Homg0
(g++, Sop(t))

d2−→ C2

= Homg0
(Λ2g++, Sop(t))

d3−→ . . .

By Remark 5.4 dim C0 = 1. By Theorem 5.1 H0(g+, g0; Sop(t)) = C
op. Therefore d1 �= 0. 

To determine the kernel of d2 we observe that g1 generates g++, hence any 1-cocycle is 

determined by its value on g1. Thus, Ker d2 is a subspace in Homg0
(g1, S(t)op) and the 

latter space is one-dimensional. Hence Im d1 = Ker d2 and the assertion is proved.

Now we will deal with the second assertion. We observe that S(t) has a non-trivial 

self-extension given by the induced module Indĝ
pC[z]/(z − t)2. Therefore it suffices to 

prove that there is no self-extensions of S(t) on which z acts semisimply. Then again by 

Shapiro’s lemma it suffices to prove H1(g+, g0; S(t)) = 0.

Consider again the chain complex:

0 → C0 = Homg0
(C, S(t))

d1−→ C1 = Homg0
(g++, S(t))

d2−→ C2

= Homg0
(Λ2g++, S(t))

d3−→ . . . .

If n is odd then dim C0 = 1 and H0(g+, g0, S(t)) = C, hence d1 = 0. By the 

same argument as above a 1-cocycle is determined by its value on g1. By Remark 5.4
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dim Homg0
(g1, S(t)) = 1, which gives dim Ker d2 ≤ 1, in other words, there is exactly 

one up to proportionality ϕ ∈ Homg0
(g1, S(t)). In the monomial basis of ĝ the map ϕ

can be written in the following form: fix v ∈ Ct then

ϕ(ξiξjξk) = ξi(ξj(ξkv)).

We claim that ϕ can not be extended to a one cocycle in C1. Indeed, let u = ξ1ξ2ξ3, then 

{u, u} = 0 and the cocycle condition on ϕ implies uϕ(u) = 0. But the direct computation 

shows

u(ξ1(ξ2(ξ3v))) = {u, ξ1}(ξ2(ξ3v)) − ξ1({u, ξ2}(ξ3v) + ξ1ξ2({u, ξ3}v)).

Since {u, ξ3} ⊂ g0v = 0, the last summand is zero. Continue the computation and get

u(ξ1(ξ2(ξ3v))) = (ξ2ξ3)(ξ2(ξ3v)) − ξ1((ξ1ξ3)(ξ3v)) = ξ2
3v − ξ2

2v + ξ2
1v = tv �= 0.

That proves Ker d2 = 0.

If n is even the proof goes similarly to the case of an odd n. In this case we have 

H0(g+, g0, S(t)) = C, dim C0 = 2 and hence Im d1 is one-dimensional. Furthermore 

dim Homg0
(g1, S(t)) = 2. We can choose a basis ϕ, ψ in Homg0

(g1, S(t)) such that ϕ is 

given by the same formula as in the odd case and ψ ∈ d1(C0). The same calculation 

shows ϕ does not extend to a cocycle. This completes the proof. �

Proposition 5.6. If t �= 0 the category ĝ-mod t
1 has two equivalent blocks Ω+

t and Ω−
t . The 

equivalency of these blocks is established by the change parity functor. Both Ω+
t and Ω−

t

contain only one up to isomorphism simple object S(t) and S(t)op respectively. Moreover, 

Ω+
t is equivalent to the category C[x]-modules with nilpotent action of x.

Proof. The first two assertions follow immediately from Proposition 5.2 and Lemma 5.5. 

To prove the last assertion we consider the subcategory F n(ĝ-mod t
1) of modules annihi-

lated by (z − t)n. Then Indĝ
pC[z]/(z − t)n is projective in F n(ĝ-mod t

1) by Lemma 5.5

and its indecomposability. Since every object of ĝ-mod t
1 lies in some F n(ĝ-mod t

1) the 

statement follows. �

Corollary 5.7. If t �= 0 every indecomposable module in ĝ-mod t
1 is isomorphic to 

Indĝ
pC[z]/(z − t)n or (Indĝ

pC[z]/(z − t)n)op.

Corollary 5.8. If t �= 0, then every block in the category J-mod t
1 is equivalent to the 

category of C[x]-modules with nilpotent action of x.
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5.3. The case of zero central charge

Lemma 5.9.

(1) If n is even then Ext1(C, S(0)) = Ext1(S(0), C) = C
2 and Ext1(Cop, S(0)) =

Ext1(S(0), Cop) = 0.

(2) If n is odd then Ext1(C, S(0)) = Ext1(S(0), C) = Ext1(Cop, S(0)) = Ext1(S(0), Cop)

= C.

Proof. It suffices to show that Ext1(C, S(0)) = C
2 for even n and Ext1(C, S(0)) =

C = Ext1(Cop, S(0)) since the rest follows from duality and Lemma 3.3. Both statement 

follow from the well-known fact about derivation superalgebra. Indeed, it is shown in [9]

that Der g/g = C
2 for even n and Der g/g = C

1|1 for odd n. These derivations are given 

by the Poisson bracket with ξ1 . . . ξn and by the commutator with the Euler vector field 
∑n

i=1 ξi∂i. The latter derivation defines the standard grading of g and ĝ. �

To compute other extensions between simple modules we first consider only extensions 

in g-mod1 which we denote Ext1
g.

Lemma 5.10. Let M = Indg

g+M0(ω1) and n > 5. Then Ext1
g(M, S(0)) = Ext1

g(M, S(0)op)

= 0. In the case of n = 5 we have Ext1
g(M, S(0)op) = 0 and Ext1

g(M, S(0)) = C.

Proof. Let us start with the case of even n. The weight argument, Lemma 3.3, implies 

Ext1
g(M, S(0)op) = 0. Let us show that Ext1

g(M, S(0)) = 0. By Shapiro’s lemma

Ext1
g(M, S(0)) = Ext1

g+(M0(ω1), S(0)) = H1(g+, M0(ω1)∗ ⊗ S(0))

= H1(g+, g0; M0(ω1)∗ ⊗ S(0)).

The computations are similar to ones in the proof of Lemma 5.5. We are looking for 

ϕ ∈ Homg0
(g1 ⊗ M0(ω1), S(0)) which can be extended to a cocycle in Homg0

(g++ ⊗
M0(ω1), S(0)). We use the fact that M0(ω1) = V is the standard representation of 

g0 = o(n) and

S(0) =

n−1
⊕

i=1

Λi(V ).

Therefore it is not hard to compute that Homg0
(g1 ⊗ M0(ω1), S(0)) is a 4-dimensional 

and we can write down a basis {ϕj | j ≤ 4} homogeneous with respect to the standard 

grading. We identify V with Λ1(V ) ⊂ S(0) and denote by ¯ : V → Λn−1(V ) ⊂ S(0) the 

natural g0-isomorphism. We set for every f ∈ g1, x ∈ V

ϕ1(f, x) = Lf (x), ϕ2(f, x) = fx, ϕ3(f, x) = L
(2)
f (x̄), ϕ4(f, x) = L

(3)
f (x̄),
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where

Lf =
n

∑

i=1

∂i(f)∂i, L
(2)
f =

∑

i<j

(∂i∂j(f))∂j∂i, L
(3)
f =

∑

i<j<k

(∂i∂j∂k(f))∂k∂j∂i.

We first notice that ϕ1 is a coboundary by construction, thus we can assume without loss 

of generality that the restriction of our cocycle on g1 is given by ϕ = c2ϕ2 + c3ϕ3 + c4ϕ4. 

Let us show that if ϕ extends to a cocycle then c1 = c2 = c3.

First, we take f = ξ1ξ2ξ3, x = ξ1, then {f, f} = 0. Hence ϕ({f, f}, x) =

2{f, ϕ(f, x)} = 0. But ϕ2(f, x) = ϕ4(f, x) = 0 and

2{f, ϕ(f, x)} = 2c3{f, ϕ3(f, x)} = 2c3{ξ1ξ2ξ3, ξ1ξ4ξ5 . . . ξn} = 2c3ξ2ξ3ξ4ξ5 . . . ξn.

This implies c3 = 0. Next we take x = ξ1, f = ξ1ξ5ξ6 + ξ2ξ3ξ4. Again we must have 

2{f, ϕ(f, x)} = 0. Therefore

{f, ϕ(f, x)} = −c2{ξ1ξ5ξ6 + ξ2ξ3ξ4, ξ1ξ2ξ3ξ4} + c4{ξ1ξ5ξ6 + ξ2ξ3ξ4, ξ5ξ6 . . . ξn}
= −c2ξ5ξ6ξ2ξ3ξ4 = 0.

Thus c2 = 0.

It remains to check that ϕ4 can not be extended to a cocycle. Let f = ξ1(ξ2ξ3 + ξ4ξ5), 

u = {f, f} = 2ξ2ξ3ξ4ξ5, x = ξ2. Then

ϕ4(f, x) = ξ3α, α = ξ6 . . . ξn,

ϕ4(u, x) = 2{f, ϕ4(f, x)} = 2{f, ξ3α} = 2ξ1ξ2α.

Let g = ξ2(ξ1ξ3 + ξ4ξ5), v = {g, g} = 2ξ1ξ3ξ4ξ5. Then ϕ4(g, x) = 0, hence ϕ4(v, x) = 0. 

On the other hand, {u, v} = 0, therefore

0 = ϕ4({u, v}, x) = {u, ϕ4(v, x)} − {v, ϕ4(u, x)} = −{2ξ1ξ3ξ4ξ5, 2ξ1ξ2α} = 4ξ3ξ4ξ5ξ2α.

A contradiction.

The case of odd n for n ≥ 7 can be proven similarly. The only difference is that both 

Homg0
(M0(ω1), S(0)) and Homg0

(M0(ω1), S(0)op) are 2-dimensional, the former space 

is spanned by ϕ3, ϕ4 and the latter is spanned by ϕ1, ϕ2.

Finally, for n = 5 all above arguments are applicable except the proof that c2 = 0. 

In this case if we set ϕ2(g2, M0(ω1)) = 0 we obtain a cocycle which gives a non-trivial 

extension in Ext1
g(M, S(0)op). �

It follows from [23] Theorem 3 that there exists a homomorphism γ : Indg

g+M0(2ω1)op

→ Indg

g+M0(ω1) and Im γ is an indecomposable module of length 2 with socle Lω1
and 

cosocle Lop
2ω1

. Let Q denote the quotient of M = Indg

g+M0(ω1) by Im γ.
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Lemma 5.11. Let n > 5. We have Ext1
g(Q, S(0)) = Ext1

g(Q, S(0)op) = 0.

Proof. Consider the exact sequence

0 → Im γ → M → Q → 0.

Let S = S(0) or S(0)op. Consider the corresponding long exact sequence

· · · → Homg(Im γ, S) → Ext1
g(Q, S) → Ext1

g(M, S) → . . . (18)

We have Homg(Im γ, S) = 0 and Ext1
g(M, S) = 0 if n > 5 or S = S(0). Therefore 

Ext1
g(Q, S) = 0. �

Proposition 5.12. Let t = 0 and n > 5. Then Q is projective in the category g-mod1.

Proof. It suffices to check that Ext1
g(Q, S) = 0 for all simple S in g-mod1. For S = S(0) or 

Sop(0) this is Lemma 5.11. For S = C consider the exact sequence 0 → R → Q → F → 0

where F = S(0)op and R = C
2 for even n, R = C ⊕ C

op for odd n. The corresponding 

long exact sequence degenerates

0 → Homg(R, C)
θ−→ Ext1

g(F, C) → Ext1
g(Q, C) → Ext1

g(R, C) = 0.

By Lemma 5.9 θ is an isomorphism and hence Ext1
g(Q, C) = 0. The case S = C

op is 

similar. �

Let I(m) := Indĝ
pC[z]/(zm+1) and J (m) be the unique maximal submodule of I(m) and 

Q(m−1) be the quotient of J (m) by the unique maximal submodule in Indĝ

g+zm ⊂ I(m).

Lemma 5.13. Let n > 5, m ≥ 1. Then ziQ(m−1)/zi+1Q(m−1) is isomorphic to Q for 

i = 0, . . . , m. Moreover, Q(m−1) is projective in F 1(ĝ-mod 0
1 ).

Proof. The first assertion is a consequence of the isomorphism zjQ(m−1)/zj+1Q(m−1) ≃
ziQ(m−1)/zi+1Q(m−1) and the observation that Q(m−1)/zQ(m−1) is indecomposable of 

length 3 with the cosocle S(0)op and socle C2 (resp. C ⊕ C
op) for even (resp., odd) n. 

Lemma 5.9 implies that the module with these properties is unique up to isomorphism, 

hence it is isomorphic to Q.

The second assertion follows from Lemma 5.11 by induction on m. �

Now we are going to prove the following

Theorem 5.14. Let n ≥ 5. The category J-mod 0
1 has two blocks, each of these blocks is 

equivalent to the category of C[x]-modules with nilpotent action of x.
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Proof. For n ≥ 6 it follows from the fact that Jor(Q(m−1)) is projective in the corre-

sponding subcategory J-mod1. Now we consider the case n = 5. We would like to show 

that the module Q is a projective cover of S(0)op in g-mod 0
1 . It suffices to show that 

Ext1
g(Q, S(0)) = 0.

Consider a unique up to proportionality

ϕ ∈ Homg0
(g1 ⊗ M0(ω1), M0(ω1)op).

This map defines g+ module structure on M̄0(ω1) := M0(ω1) ⊕ M0(ω1)op, assuming 

that g2 acts by zero. Note that the extension of Indg

g+M0(ω1) by S(0) is a quotient 

of Indg

g+M̄0(ω1) by the maximal proper submodule of Indg

g+M0(ω1)op. Therefore the 

exact sequence (18) implies that a non-trivial extension of Q by S(0) is a quotient of 

Indg

g+M̄0(ω1). We will show that every quotient of Indg

g+M̄0(ω1) which lies in g-mod 0
1

is in fact a quotient of Indg

g+M0(ω1). Indeed, consider a quotient Indg

g+M̄0(ω1)/N for 

some submodule N . Let v and v′ be g0 highest weight vectors in M0(ω1) and M0(ω1)op

respectively and x ∈ g−1 be a g0-highest vector. Then N contains xv and xv′ as the 

weight of these vectors is 2ω1. Let y ∈ g2 be the lowest weight vector. Then

yxv = xyv + [x, y]v = [x, y]v = v′.

Therefore the whole Indg

g+M0(ω1)op is contained in N . Now one can complete the proof 

of the theorem as in the case n ≥ 6. �

Corollary 5.15. Let n ≥ 5. Every indecomposable module in the category J-mod 0
1 is 

isomorphic to Jor(Q(m−1)) or Jor(Q(m−1))op.

6. Representations of M+
1,1

Let Mn,m be the associative superalgebra

Mn,m =

{[

A B

C D

]

| A ∈ Mn, D ∈ Mm, B ∈ Mn×m, C ∈ Mm×n

}

=

[

A 0

0 D

]

0̄

⊕
[

0 B

C 0

]

1̄

.

Jordan (resp. Lie) superalgebra M+
n,m (resp. gl(m, n)) has the same underlying vector 

superspace and multiplication is a symmetric (resp. Lie) product A · B = 1
2 (AB + BA)

(resp. [A, B] = AB − BA). These superalgebras are also related to each other via the 

TKK construction.

Denote by Eij 1 ≤ i, j ≤ 4, the standard basis of gl(2|2) consisting of the elementary 

matrices. We have the direct sum decomposition
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gl(2|2) = sl(2|2) ⊕ C(E11 + E22 − E33 − E44),

where sl(2|2) is the subalgebra of gl(2|2) of matrices with zero supertrace.

Next, the element z0 = 1
2(E11 +E22 +E33 +E44) is central in sl(2|2) and the quotient 

of sl(2|2) by the ideal generated by z0 is the simple Lie superalgebra g = psl(2|2). 

Then Lie(M+
1,1) = psl(2|2), see [8]. The short (Jordan) sl(2)-grading is given by h =

E11 − E22 + E33 − E44 and sl(2) subalgebra is spanned by h, E12 + E34 and E21 + E43.

We fix the standard basis of the Cartan subalgebra of g:

h1 = E11 − E22, h2 = E33 − E44.

Note that g has an invariant symmetric form ( , ) induced by the form str XY on gl(2|2). 

Therefore H2(g, C) and H1(g, g) = Der(g)/g are isomorphic. Furthermore, [9], Der(g)/g

is isomorphic to sl(2), and the action of sl(2) on H2(g, C) equips the latter with the 

structure of the adjoint representation. Therefore the universal central extension ĝ has 

a 3-dimensional center Z with the basis z−1, z0, z1 such that

[E13, E24] = −[E23, E14] = z1, [E31, E42] = −[E32, E41] = z−1. (19)

Furthermore, the Lie algebra sl(2) acts on ĝ by derivations, [22]. If E, H, F form the 

standard sl(2)-triple, then

H(zi) = 2izi, E(zi) = zi+1, F (zi) = zi−1,

E

[

A B

C D

]

=

[

0 B + C∗

0 0

]

, H

[

A B

C D

]

=

[

0 B

−C 0

]

,

F

[

A B

C D

]

=

[

0 0

C + B∗ 0

]

,

where A, B, C, D are 2 × 2-matrices and 

[

a b

c d

]∗

=

[

d −b

−c a

]

.

The eigenspace decomposition of ad H defines a short grading on ĝ consistent with 

the superalgebra grading

ĝ = ĝ−2 ⊕ ĝ−1 ⊕ ĝ0 ⊕ ĝ1 ⊕ ĝ2,

where

ĝ−1 =

[

0 0

C 0

]

, ĝ0 =

[

A 0

0 D

]

⊕ Cz0, ĝ1 =

[

0 B

0 0

]

and ĝ±2 = Cz±.
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This action can be lifted the action of the group SL(2) as follows. For any φ =
[

u v

w z

]

∈ SL(2) each element in g0̄ is stable under φ while the action on g1̄ is deter-

mined by

φ(E14) = uE14 + vE32, φ(E32) = wE14 + zE32. (20)

Let M be a finite-dimensional irreducible representation of ĝ then by twisting the 

action of ĝ on M by φ we obtain another irreducible representation Mφ of ĝ. Moreover, 

since M is irreducible, it admits central character χ, i.e., every central element z acts on 

M as the scalar χ(z). If χ(z0) = c, χ(z−1) = p and χ(z1) = k, then Mφ admits central 

character φ(χ) defined by new coordinate components c′ p′ and k′

[

c′ −k′

p′ −c′

]

=

[

u v

w z

] [

c −k

p −c

] [

u v

w z

]−1

.

6.1. Simple modules in ĝ-mod1 and ĝ-mod 1
2

Irreducible modules for M+
1,1 were studied in [19] and recently in [15]. The classification 

is obtained for any field of characteristic �= 2. In this section we describe categories 

M+
1,1-mod 1

2
and M+

1,1-mod1 via corresponding categories ĝ-mod1 and ĝ-mod 1
2

over the 

field C.

The category ĝ-mod of all finite dimensional representations decomposes into blocks 

ĝ-modχ and (ĝ-modχ)op according to the generalized central character. The action of 

SL(2) allows to define the canonical equivalence of blocks ĝ-mod χ and ĝ-mod φ(χ). Form 

the description of SL(2)-orbits in the adjoint representation it is clear that we can reduce 

the study of blocks to the three essential cases

(1) Semisimple: k = p = 0, c �= 0;

(2) Nilpotent: c = k = 0, p �= 0;

(3) Trivial central character k = p = c = 0,

The Lie superalgebra ĝ/ Ker χ is isomorphic to sl(2|2), spo(0, 4) and psl(2|2) respectively.

The following Lemma is straightforward but very important.

Lemma 6.1. The group SL(2) acts on the isomorphism classes of modules in ĝ-mod1 and 

in ĝ-mod 1
2

by twist M �→ Mg, g ∈ SL(2). Moreover, if M ∈ ĝ-mod χ
1 (resp., ĝ-mod χ

1
2

) then 

Mg ∈ ĝ-mod
g(χ)
1 (resp., ĝ-mod

g(χ)
1
2

). In particular, the categories ĝ-mod χ
1 and ĝ-mod χ

1
2

are equivalent to the categories ĝ-mod
g(χ)
1 and ĝ-mod

g(χ)
1
2

respectively.

Now we are going to classify simple objects of ĝ-mod χ
1 and ĝ-mod χ

1
2

. Denote by O1

(resp. O2) the SL(2)-orbit defined by the equation c2 − kp = 1 (resp. c2 − kp = 4).
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Theorem 6.2. ĝ-mod χ
1
2

is nonempty if and only if χ is semisimple and lies on O1. If 

c = 1, k = p = 0, then ĝ-mod χ
1
2

has two up to isomorphism simple object V and V op, 

where V is the standard sl(2|2)-module. For any χ ∈ O1, the subcategory ĝ-mod χ
1
2

has two 

up to isomorphism simple objects V g and (V op)g for a suitable automorphism g ∈ SL(2).

Proof. In the nilpotent and trivial case we can use the results of Shapovalov and the 

previous Section to see that po(0, 4) and H(4) ≃ psl(2|2) do not have modules with very 

short grading.

Assume now that χ is semisimple and furthermore k = p = 0. We can make these 

assumptions without loss of generality due to Lemma 6.1. Thus, our problem is reduced 

to the classification of simple sl(2|2)-modules with very short grading. Let L be such 

a module. Consider a Borel subalgebra g0 ⊕ g1 of sl(2|2) with two even simple roots 

β1, β2 and one odd simple root α. We may choose the simple coroots β∨
1 and β∨

2 so that 

h = β∨
1 + β∨

2 . Let λ be a highest weight of L with respect to this Borel subalgebra. 

Observe that

c = (λ, 2α + β1 − β2) (21)

The condition of L to have a very short grading implies λ(h) = 1, hence we have two 

possibilities

(1) λ(β∨
1 ) = 1, λ(β∨

2 ) = 0;

(2) λ(β∨
1 ) = 0, λ(β∨

2 ) = 1.

Note that we also have α(h) = −2. Thus, if v is highest weight vector and X ∈ g−α is 

a root vector. We must have Xv = 0. Therefore (λ, α) = 0. Hence in the first case L

isomorphic to the standard representation of sl(2|2) and in the second case L is isomor-

phic to the dual of the standard representation with switched parity. The action by the 

element 

[

0 1

−1 0

]

∈ SL(2) maps one representation to another. Hence the statement of 

the Lemma. �

Corollary 6.3. J-mod χ
1
2

is nonempty if and only if χ is semisimple and lies on O1. Let 

χ = (c, p, k) ∈ O1, c �= 0 then there are two up to isomorphism simple object W and 

W op in J-mod χ
1
2

where W = 〈w1, w2〉 is (1, 1)-dimensional space and the action of M+
1,1

is given

Eiiwj = δi,jwj i, j = 1, 2

E12w1 = (c − 1)w2 E21w1 = pw2 E12w2 = kw1 E21w2 = (c − 1)w1

Proof. Let c = 1, p = 0 = k. Consider standard sl(2|2) module V then Jor(V ) = W , 

where W is standard module for M+
1,1. Suppose that χ′ = (c′, p′, k′) ∈ O1 then the 
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element of SL(2) which takes χ to χ′ is 

[

k′ c′ − 1

c′ − 1 p′

]

. The rest follows from applying 

this automorphism to W . �

Now let us assume that k = 0. Let p = g0 ⊕ g1 ⊕ Cz0 ⊕ Cz−1. We denote by Kχ the 

induced module Indg
pCχ. Note that Kχ is an object in ĝ-mod χ

1 .

Theorem 6.4. (a) If χ �= 0 and χ/∈ O2, then ĝ-mod χ
1 has two up to isomorphism simple 

modules. In the case k = 0 these modules are isomorphic to Kχ and Kop
χ . If k �= 0, the 

simple objects of ĝ-mod χ
1 are obtained by a suitable twist.

(b) If χ = 0, then ĝ-mod χ
1 has four up to isomorphism simple modules: ad, adop, C, Cop.

(c) If c = 2, k = p = 0, then ĝ-mod χ
1 has four up to isomorphism simple modules 

S2V , Λ2V , (S2V )op and (Λ2V )op. For an arbitrary χ ∈ O2 simple objects of ĝ-mod χ
1 are 

obtained from those four by a suitable twist.

Proof. If χ is nilpotent or trivial the result is indeed a consequence of Proposition 5.2.

Now we will deal with semisimple case and assume that k = p = 0. We use notation 

of the proof of Theorem 6.2. Assume that L is simple g = sl(2|2)-module with short 

grading. Then as in the proof of the theorem we can easily conclude there are at most 

four possibilities for the highest weight λ of L:

(1) λ(β∨
1 ) = 2, λ(β∨

2 ) = 0;

(2) λ(β∨
1 ) = 0, λ(β∨

2 ) = 2;

(3) λ(β∨
1 ) = λ(β∨

2 ) = 1;

(4) λ(β∨
1 ) = λ(β∨

2 ) = 0.

By the same argument as in the proof of Theorem 6.2 we obtain the condition (λ, α) = 0

in the first three cases. This gives L ≃ S2V , L ≃ Λ2V ∗ and L ≃ adop in the cases (1), (2) 

and (3) respectively. In case (4) L is the unique quotient of the Kac module Kχ. Recall 

that the latter module is simple if and only if λ is typical, i.e.,

(λ, α) �= 0, (λ, α + β1) + 1 �= 0, (λ, α + β2) − 1 �= 0, (λ, α + β1 + β2) �= 0.

For atypical case we have the following three possibilities

(1) (λ, α) = 1, then L is isomorphic to Λ2V ;

(2) (λ, α) = −1, then L is isomorphic to S2V ∗;

(3) (λ, α) = 0, then L is the trivial module C.

The first two cases will give c = ±2. The twist by SL(2) completes the proof. �
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Next we will calculate Jor(Kχ). Let χ, p and Cχ as above. Then Cχ = Cv where 

h1v = h2v = E12v = E34v = z1v = 0, while z0v = c and z−1v = p. Then the basis of 

Kχ ≃ Indg
pCχ is formed by the vectors

Eθ1

41Eθ2

31Eθ3

42Eθ4

32v where θi ∈ {0, 1}.

Then R = Jor(Kχ) is generated by R11 = E42E32v, R22 = E31E32v, R12 = E32v and 

R21 = E31E42E32v. If Eij 1 ≤ i, j ≤ 2 is the standard basis for M+
1,1 we have the 

following action on R.

EiiRjj = δi,jRjj EkkRij = 1
2Rij i, j, k = 0, 1

E12R11 = 1
2 (1 − c)R12 E21R11 = 1

2R21

E12R22 = 1
2 (1 + c)R12 E21R22 = 1

2R21 − 1
2pR12

E12R12 = 0 E21R12 = 1
2R22 − R11

E12R21 = 1
2 (1 + c)R11 − 1

2 (1 − c)R22 E21R21 = −1
2pR11

Rescaling, applying automorphism given by matrix 

[

0 −1

1 0

]

which interchange action 

of z1 and z−1 we obtain the following action on Rop

EiiRjj = δi,jRjj EkkRij = 1
2Rij i, j, k = 0, 1

E12R11 = 1
2R12 E21R11 = 1

2R21

E12R22 = 1
2(1 + c)R12 + 1

2kR21 E21R22 = 1
2 (1 − c)R21 − 1

2pR12

E12R12 = −1
2kR11 E21R12 = 1

2R22 − (1 − c)1
2R11

E12R21 = 1
2(1 + c)R11 − 1

2R22 E21R21 = −1
2pR11

If χ = 0, R is a regular representation of M+
1,1. If c = 2, p = 0 = k then Jor(S2V ) =

〈R11 + R22, R12〉 is a submodule in R, while Jor(Λ2V ) = R/Jor(S2V ). We now can 

formulate the following

Corollary 6.5. (a) If χ = (c, p, k) and χ /∈ O2, then J-mod χ
1 has two up to isomorphism 

simple modules R and Rop.

(b) If c = 2, k = p = 0, then J-mod χ
1 has four up to isomorphism simple modules 

Jor(S2V ), Jor(Λ2V ) and their opposite. For an arbitrary χ ∈ O2 simple objects of 

J-mod χ
1 are obtained from those four by a suitable twist.

6.2. Description of ĝ-mod 1
2

Lemma 6.6. There are no non-trivial self-extensions of V in the category of sl(2|2)-

modules semisimple over z0.

Proof. See Lemma 3.4. �
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Theorem 6.7. Every block of J-mod 1
2

is equivalent to the category of finite-dimensional 

C[x, y]-modules with nilpotent action of x, y,

Proof. Theorem 6.2 implies that ĝ-modχ
1
2

has two up to isomorphism simple object L and 

Lop and we may assume without loss of generality that L = V . Moreover, by Lemma 3.3

each block has one simple object. Thus, we may assume that this simple object is V . 

Let R = C[[x, y]] and I ⊂ R be the maximal ideal. We will define R ⊗ ĝ-module V̂

such that for every m the ĝ-module V (m) := V̂ /ImV̂ is indecomposable of finite length 

with all simple subquotient isomorphic to V . Let g(x, y) =

[

1 x

y 1 + xy

]

be an element 

of SL(2, R). Set V̂ := (R ⊗ V )g. By a straightforward computation we obtain that the 

action of Z on V̂ is given by the formulae:

z0 �→ 1 + 2xy, z1 �→ −2x, z−1 �→ 2y(1 + xy).

This implies the desired properties of V̂ . We also see that V̂ is a free rank 1 module 

over R and that z0 − 1, z1, z−1 act nilpotently on V (m) with the degree of nilpotency m. 

We claim that V (m) is projective in the category F m(ĝ-modχ
1
2

) consisting of modules on 

which (z − χ(z))m acts trivially. It suffices to show that every short exact sequence in 

F m(ĝ-modχ
1
2

) of the form

0 → V → M → V (m) → 0

splits. Indeed, this sequence splits over R/Im, and hence Lemma 6.6 implies splitting over 

ĝ. Categories ĝ-mod 1
2

and J-mod 1
2

are equivalent therefore the statement follows. �

6.3. Typical blocks

We call χ typical if Kχ is simple or equivalently if ĝ-mod χ
1 has two up to isomorphism 

simple modules Kχ and Kop
χ . The condition that χ is typical is given by

c2 − kp �= −4, χ �= 0.

First, we assume that χ is semisimple and p = k = 0, c �= 0. We construct a certain 

deformation of K̂χ over the local ring S := C[[x, y, t]]. Our construction is similar to the 

one in the proof of Theorem 6.7. Let K̃χ := Indg
pC[[z0 − c − t]] and K̂χ := (R ⊗ K̃χ)g

where g is the same as in the proof of Theorem 6.7. The action of Z on K̂χ is given by 

the formula

z0 �→ (1 + 2xy)(c + t), z1 �→ −2x(c + t), z−1 �→ 2y(1 + xy)(c + t). (22)

Let J denote the maximal ideal of S and K̂
(m)
χ := K̂χ/J m. Let F m(ĝ-mod χ

1 ) denote 

the full subcategory of ĝ-mod χ
1 consisting of modules on which (z −χ(z))m acts trivially.
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Lemma 6.8. Assume p = k = 0 and c �= 0. Then there are no non-trivial self-extensions 

of Kχ in the category F 1(ĝ-mod1).

Proof. We need to show that H1(ĝ, ̂g0̄; K∗
χ ⊗ Kχ) vanishes. Since Kχ is the induced 

module, by the Shapiro Lemma it suffices to prove H1(p, p0̄; Kχ). Write down the corre-

sponding cochain complex:

0 → Homg0
(C, Kχ) = C

2 d0−→ Homg0
(g1, Kχ) = C

2 → . . . . (23)

Furthermore, H1(p, p0̄; Kχ) = C. Hence the image of d0 is one dimensional. Modulo this 

image we can assume that our cocycle has the form ϕ(x) = x∗v for all x ∈ g1, where v

is the highest weight vector. Let us write the cocycle condition

xϕ(x) = xx∗v = −[x, x∗]v = (c det x)v = 0.

Clearly it does not hold for c �= 0. Hence the statement. �

Lemma 6.9. Let k = p = 0 and c �= 0. The module K̂
(m)
χ is projective in F m(ĝ-mod χ

1 )

and Endĝ(K̂
(m)
χ ) ≃ S/J m.

Proof. For projectivity we note that an exact sequence in F m(ĝ-mod χ
1 ) of the form

0 → K̂(m)
χ → M → K̂χ → 0

splits over g0 ⊕ Z. On the other hand, Lemma 6.8 implies the splitting over ĝ. The 

second assertion is a simple consequence of the fact that dim Endĝ(K̂
(m)
χ ) coincides with 

the length of Kχ and hence equals dim S/J m. �

Theorem 6.10. Assume that χ is typical and semisimple. Then the category ĝ-mod χ
1 is 

a direct sum of two blocks, each block is equivalent to the category of finite dimensional 

modules over polynomial algebra C[x, y, t] with nilpotent action of x, y, t.

Proof. The first assertion is a consequence of Lemma 3.3 and the second follows from 

Lemma 6.9. �

Now let us assume that χ is non-zero nilpotent. Without loss of generality we assume 

that k = c = 0 and p �= 0.

Lemma 6.11. Assume k = c = 0 and p �= 0. Then there exists a unique up to isomor-

phism non-trivial self-extensions K̄χ of Kχ in the category F 1(ĝ-mod1). Moreover, K̄χ

is projective in F 1(ĝ-mod1).
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Proof. Retain the notations of the proof of Lemma 6.8. The argument with the cochain 

complex goes exactly as in this proof except the last step where we indeed obtain a 

non-trivial one-cocycle ϕ(x) = x∗v. Hence we have one non-trivial self-extension.

For the second assertion we would like to show

H1(ĝ, ĝ0̄; K∗
χ ⊗ K̄χ) = H1(p, p0̄; K̄χ) = 0.

From the long exact sequence we have isomorphisms

H0(p, p0̄; Kχ) ≃ C ≃ H0(p, p0̄; K̄χ),

H0(p, p0̄; Kχ) ≃ C ≃ H1(p, p0̄; Kχ)

and hence an injective map

H1(p, p0̄; K̄χ) → H1(p, p0̄; Kχ).

Consider ĝ0̄ ⊕ g−1 decomposition K̄χ = Kχ ⊕ Kχ. Then we may assume that the action 

of g1 is given by the formula x(w, w′) = (xw, ϕ(x)w + xw′). Let ψ ∈ Homg0
(g1, K̄χ) be a 

1-cocycle. We may assume that ψ(x) = (x∗v, 0). Then the cocycle condition xψ(x) = 0

becomes

(xx∗v, (x∗)2v) = (0, p det x∗z1v) = 0.

That implies p = 0. Contradiction. �

We define a ĝ⊗C[[t]]-module Tχ as follows: Tχ = (Kχ ⊕Kχ) ⊗C[[t]] as a module over 

g0 ⊕ g−1 ⊕ Cz0 and define the action of g1 by

x(u, w) = (xu + tx∗w, xw + x∗u) x ∈ g1, u, w ∈ Kχ.

Finally we set that z1 acts as pt. It is straightforward that Tχ is indeed a ĝ⊗C[[t]]-module 

and Tχ/tTχ is isomorphic to K̄χ.

Next, let g =

[

(1 + x)−1 y

0 1 + x

]

be an element of SL(2, R). Define S ⊗ ĝ-modules 

Qχ and Q
(m)
χ by

Qχ := (R ⊗ Tχ)g, Q(m)
χ := Qχ/J m.

The action of Z on Qχ is given by

z0 �→ (1 + x)py, z1 �→ −y2p, z−1 �→ pt + p(1 + x)2. (24)
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Lemma 6.12. The module Q
(m)
χ is projective in F m(ĝ-mod χ

1 ) and

Endĝ(Q(m)
χ ) ≃ (S/J m) ⊗ C[θ]/(θ2 − t).

Proof. The proof of the first assertion is similar to the proof of Lemma 6.9 with use 

of Lemma 6.11. For the second, define action of θ on Q
(m)
χ by θ(u, w) = (tw, u). This 

defines a ĝ-endomorphism of Q
(m)
χ satisfying θ2 = t. The rest follows from comparison 

of dimensions. �

The following theorem is a consequence of the previous Lemma and Lemma 3.3.

Theorem 6.13. Let χ be typical nilpotent, then ĝ-mod χ
1 (and thus J-mod χ

1 ) has two blocks, 

each of them is equivalent to the category of finite-dimensional C[x, y, θ]-modules with 

nilpotent action of x, y, θ.

6.4. Geometry of 3-parameter family of representations of ĝ

We provide here a geometric construction which shades some light on the results of 

the previous subsection. We will construct a three-dimensional family of representation 

of ĝ. We have

g1̄ = U × C
2,

where U is the 4-dimensional irreducible representation of g0̄ = sl(2) ⊕sl(2) with highest 

weight (1, 1). For every line ℓ ⊂ C
2, we have a commutative subalgebra gℓ ⊂ g1̄, and it 

can be lifted to the subalgebra ĝℓ with one-dimensional center Zℓ ⊂ Z. Note that Zℓ is a 

line C3 = Z, thus, we have the map ψ : P
1 → P (Z) ≃ P

2. Now let χ ∈ Z
∗, we say that 

ℓ is χ-compatible if χ([gℓ, gℓ]) = χ(ψ) = 0. To compute ψ consider the realization

gℓ =

{

XB =

[

0 t1B

t2B∗ 0

]}

where (t1, t2) are homogeneous coordinates of ℓ. Then

[XB , XB ] = det B(t2
1z1 + 2t1t2z0 + t2

2z−1).

Thus, ψ is the Veronese map. Therefore for every χ �= 0 there exists at most two choices 

of a compatible ℓ. More precisely, for a semisimple χ we have two χ-compatible lines, 

and for a nilpotent χ a χ-compatible ℓ is unique. Let

Mχ := Indĝ

ĝ0̄+gℓ
Cχ.

If k = 0 then Mχ is isomorphic to Kχ. Let
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M = {(χ, ℓ) | χ �= 0, χ(ψ(ℓ)) = 0}

with obvious structure of smooth complex manifold. By construction M is isomorphic to 

a non-trivial SL(2)-equivariant two-dimensional vector bundle on P 1. Our construction 

defines a vector bundle on M with fiber isomorphic to Mχ. For every open set U ⊂ M, we 

thus obtain a representation of the Lie superalgebra O(U) ⊗ĝ. For every point (χ, ℓ) ∈ M
we obtain a representation of Oχ,ℓ ⊗ g, where Oχ,ℓ is the local ring of the point. If 

Jχ,ℓ denote the unique maximal ideal of Oχ,ℓ, the quotient Oχ,ℓ/J m
χ,ℓ is isomorphic to 

C[x1, x2, x3]/(x1, x2, x3)m. In the previous section we have proved that for a non-zero 

semisimple χ the ĝ-module

M (m)
χ ⊗Oχ,ℓ

Oχ,ℓ/J m
χ,ℓ

is projective in F (m)(ĝ-mod1).

6.5. Atypical blocks

We proceed to the description of ĝ-mod χ
1 in the case of an atypical χ. This amounts 

to considering two cases k = p = 0, c = 2 and χ = 0. We start with the first case.

Lemma 6.14. Let k = p = 0, c = 2. There is the following non-split exact sequence

0 → S2V → Kχ → Λ2V → 0.

Proof. The map Cχ → Λ2V0 → Λ2V is a homomorphism of p-modules. Hence by Frobe-

nius reciprocity we have a surjection Kχ → Λ2V . On the other hand, Kχ ≃ Coindg
p(Cχ)

and S2V → S2V1 → Cχ is an homomorphism of p-modules. Hence we have an injection 

S2V → Kχ. Finally, Kg1
χ = Cχ which implies indecomposability of Kχ. �

By Lemma 3.3 we obtain that ĝ-mod χ
1 has two blocks obtained from each other 

by parity switch. By Lemma 6.9 K̂
(m)
χ is a projective cover of Λ2V in F m(ĝ-mod χ

1 ). 

To construct a projective cover of S2V consider the automorphism π of ĝ defined by 

π
[

A
C

B
D

]

=
[

D
B

C
A

]

, π(z0) = z0, π(z±1) = z∓1. We have V π ≃ V op and hence (Λ2V )π ≃ S2V . 

Thus, (K̂
(m)
χ )π is a projective cover of S2V in F m(ĝ-mod χ

1 ). The algebra Endĝ(K̂
(m)
χ ⊕

(K̂
(m)
χ )π) is isomorphic to the path algebra of the quiver

Q •

α

ζ

β

•

γ

η
δ

with relations R =

{

βα = γβ, βζ = ηβ, ζδ = δη

αδ = δγ, αζ = ζα, γη = ηγ

}

Therefore we obtain the following
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Theorem 6.15. Let χ be semisimple atypical. Each of two blocks of ĝ-mod χ
1 (and J-mod χ

1 ) 

is equivalent to the category of finite-dimensional nilpotent representations of the quiver 

Q with relations R.

Observe that the algebra obtained in Theorem 4.17 is a quotient of (Q, R). Hence (Q, R)

has wild representation type.

Now let us consider the case χ = 0. We start by describing the projective cover of 

ad in g-mod1. Recall that g = psl(2|2). We set g+ := g0 ⊕ g1. Consider the g+-module 

S := g1 ⊕ C with action of x ∈ g1 given by x(y, 1) = (0, tr(xy)).

Lemma 6.16. Ext1
g+(S, C) = Ext1

g+(S, ad) = 0.

Proof. A simple computation shows that

Ext1
g+(g1, C) = H1(g+, g0; g1) = C,

Ext1
g+(C, C) = H1(g+, g0; C) = 0.

Using the long exact sequence associated with the short exact sequence of g+-modules 

0 → C → S → g1 → 0 we get

0 → Homg+(C, C) → Ext1
g+(g1, C) → Ext1

g+(S, C) → 0,

which implies Ext1
g+(S, C) = 0.

To prove the second vanishing we note that K0 is both injective and projective in the 

category of g+-modules. Let K ′
0 be the submodule defined the exact sequence 0 → K ′

0 →
K0 → C → 0. Since Homg+(S, C) = 0 and Ext1

g+(S, K0), we obtain Ext1
g+(S, K ′

0) = 0. 

Next we consider the exact sequence

0 → C → K ′
0 → ad → 0.

Form the corresponding long exact sequence we have an embedding Ext1
g+(S, ad) →

Ext2
g+(S, C). We will show that Ext2

g+(S, C) = H2(g+, g0; S∗) = 0. Indeed, we have

Homg0
(g1 ⊗ S, C) = Homg0

(Λ2g1 ⊗ S, C) = C.

On the other hand H1(g+, g0; S∗) = Ext1
g+(S, C) = 0, therefore the differential

d : Homg0
(g1 ⊗ S, C) → Homg0

(Λ2g1 ⊗ S, C)

is an isomorphism and there are no non-trivial two cocycles. The proof of lemma is 

complete. �
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Let P be the maximal quotient of Indg

g+(S) which lies in g-mod1. By the Shapiro 

lemma we have

Ext1
g(Indg

g+(S), ad) = Ext1
g(Indg

g+(S), C) = 0.

If N is the kernel of the canonical projection Indg

g+(S) → P , then Homg(N, ad) =

Homg(N, C) = 0 and hence Ext1
g(P, ad) = Ext1

g(P, C) = 0. Thus, P is projective in 

g-mod1. Furthermore, it is not difficult to see that N is generated by a highest weight 

vector of weight (2, 2) and the structure of P can be described by the exacts sequence

0 → C
3 → P → ad → 0.

Next we define P (m) as the maximal quotient of the induced module Indĝ
p(S ⊗

(S(Z)/(Z)m)). Repeating the argument of the proof of Lemma 6.9 one can show that 

P (m) is projective in F m(ĝ-mod0
1). It is always straightforward S(Z)/(Z)m is isomor-

phic to Endĝ(P (m)). Finally Jor(P (m)) is projective in F m(J-mod0
1) and we obtain the 

following

Theorem 6.17. The category J-mod 0
1 is equivalent to the category of finite-dimensional 

representations of the polynomial ring C[x, y, t] with nilpotent action of x, y, t.

7. Jordan superalgebra of a bilinear form

Let V = V0̄ + V1̄ be a Z2-graded vector space equipped with a bilinear form (·|·) :

V × V → C which is symmetric on V0̄, skewsymmetric on V1̄ and satisfies (V0̄|V1̄) = 0 =

(V1̄|V0̄). Then superspace J = C1 ⊕V , where 1 ∈ J0 has a Jordan superalgebra structure 

with respect to a product

(α1 + a) · (β1 + b) = (αβ + (a|b))1 + αb + βa, α, β ∈ C, a, b ∈ V.

Moreover if (·|·) is non-degenerate then J is simple. Let dim V0̄ = m − 3, dim V1̄ = 2n

then the TKK construction of J gives the orthosymplectic Lie superalgebra

osp(m|2n) =
{

A ∈ gl(m|2n) | (Ax, y) + (−1)|A||x|(x, Ay) = 0, x, y ∈ V
}

.

Denote g = osp(m|2n) with m ≥ 3 and n ≥ 1. In what follows we need the description 

of the roots of g

∆0̄ = {±(εi ± εj) | 1 ≤ i < j ≤ k} ∪ {±(δi ± δj) | 1 ≤ i < j ≤ n},

∆1̄ = {±(εi ± δj) | 1 ≤ i ≤ k, 1 ≤ j ≤ n} if m = 2k is even

and
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∆0̄ = {±(εi ± εj), ±εi | 1 ≤ i < j ≤ k} ∪ {±(δi ± δj) | 1 ≤ i < j ≤ n},

∆1̄ = {±(εi ± δj), ±δj | 1 ≤ i ≤ k, 1 ≤ j ≤ n}

if m = 2k + 1 is odd.

The semisimple element which defines the short grading on g is h := ε∨
1 . The short 

sl(2)-subalgebra is spanned by h and e, f . The definition of e, f depends on the parity 

of m. If m = 2k + 1 e ∈ gε1
, f ∈ gε1

are roots vector corresponding to the short roots, 

for m = 2k let α = ε1 − ε2, β = ε1 + ε2 and e ∈ gα ⊕ gβ , f ∈ g−α ⊕ g−β . In both cases 

the short grading g = g[−1] ⊕ g[0] ⊕ g[1] satisfies the condition gγ ∈ g[i] iff (γ, ε1) = i. 

We set J := Jor(g).

7.1. Modules in g-mod1

We choose the Borel subalgebra of g associated with the set of simple roots

δ1 − δ2, . . . , δn−1 − δn, δn − ε1, ε1 − ε2, . . . , εk−1 − εk, εk−1 + εk for m = 2k

and

δ1 − δ2, . . . , δn−1 − δn, δn − ε1, ε1 − ε2, . . . , εk−1 − εk, εk for m = 2k + 1.

Denote by L(λ) the simple g-module with highest weight λ with respect to this Borel 

subalgebra. The invariant bilinear form on g induces the form on h and h∗, the latter is 

defined in ε, δ-basis by

(εi, εj) = δi,j , (δi, δj) = −δi,j , (εi, δj) = 0.

For μ ∈ h∗ such that (μ, μ) �= 0 we define μ∨ ∈ h satisfying ν(μ∨) = 2(μ,ν)
(μ,μ) . The Casimir 

element Ω ∈ U(g) is defined by the invariant form acts on L(λ) by the scalar (λ + 2ρ, λ)

where

ρ =
1

2

∑

α∈∆0̄

α − 1

2

∑

α∈∆1̄

α.

It was shown in [9] that ĝ = g.

According to [16] the Jordan superalgebra J does not have finite-dimensional one 

sided modules due to the fact that the universal enveloping of J is the tensor product 

of the Clifford and Weyl algebras. Thus, g-mod 1
2

is empty. The classification of simple 

objects of g-mod1 is done in [19]. We give the proof using TKK here for the sake of 

completeness.

Lemma 7.1. A simple finite-dimensional g-module L(λ) lies in g-mod1 if and only if 

λ = aδ1 for a ∈ Z≥0. In this case L(λ) is isomorphic to Λa(V ) where V is the standard 

g-module.
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Proof. Let λ =
∑n

j=1 aiδi +
∑k

i=1 biεi. Since L(λ) is finite-dimensional we have by the 

dominance condition

a1 ≥ · · · ≥ an ≥ 0, ai ∈ Z,

bi ∈ Z/2, b1 ≥ · · · ≥ bk ≥ 0 if m = 2k + 1,

bi ∈ Z/2, b1 ≥ · · · ≥ |bk| if m = 2k,

and finally if l is the maximal index for which bl �= 0 we have an ≥ l. On the other hand, 

since L(λ) has a short grading, we have b1 = (λ, ε1) = 0 or 1.

First, assume that b1 = 1. Consider the odd simple root α = δn − ε1, then λ − α is 

not a weight of L(λ). That is possible only if (λ, α) = 0. But (λ, α) = an + b1 > 0. A 

contradiction.

Therefore, b1 = 0. Hence λ =
∑n

i=1 aiδi. To finish the proof we compute the highest 

weight of L(λ) with respect to the Borel subalgebra obtained from our Borel subalgebra 

by the reflections with respect to the isotropic roots δn − ε1, . . . , δ1 − ε1. Recall the 

formula

rα(μ) =

{

μ − α if (μ, α) �= 0,

μ if (μ, α) = 0.

Thus, we have

μ := rδ1−ε1
. . . rδn−ε1

(λ) = λ + lε1 −
l

∑

j=1

δi,

where l is the maximal index such that al �= 0. Since (μ, ε1) = ±1, 0 we obtain l = 1

or l = 0. Therefore λ = aδ1. That proves the first assertion. The second assertion is 

straightforward. �

Theorem 7.2. The category g-mod1 is semisimple. Hence the category J-mod1 is semisim-

ple.

Proof. We have to show that

Ext1(L(aδ1), L(bδ1)) = 0. (25)

First we note that if Ext1(L(aδ1), L(bδ1)) �= 0 then the Casimir element acts on both 

modules by the same scalar. In our case it amounts to the condition

a(a + 2n − m) = b(b + 2n − m).
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Since both a, b are non-negative integers this is only possible if a + b = m − 2n. All 

modules in question are self-dual it suffices to prove (25) in the case when b > a or 

equivalently

H1(g, g0̄; ΛaV ⊗ ΛbV ) = 0.

We have the decomposition

Λc(V ) =
⊕

p+q=c

Sp(V1̄) ⊗ Λq(V0̄). (26)

The highest weight vector v of Λa(V ) lies in the component Sa(V1̄). We claim that if ϕ ∈
Homg0̄

(g1̄ ⊗ Λa(V ), Λb(V )) is a non-trivial cocycle then ϕ(g1̄, v) �= 0. Indeed, assume the 

opposite. Consider the sequence 0 → L(bδ1) → M → L(aδ1) → 0 defined by the cocycle 

ϕ. The g-submodule of M generated by v is isomorphic to L(aδ1) and the sequence splits. 

Thus, if there is a non-trivial extension we must have Homg0̄
(g1̄ ⊗ Sa(V1̄), Λb(V )) �= 0. 

Furthermore, g1̄ ≃ V1̄ ⊗ V0̄ as a g0̄-module, therefore (26) implies that Λb(V ) must have 

a component isomorphic to Sa+1(V1̄) ⊗ V0̄ or to Sa−1(V1̄) ⊗ V0̄. This is possible only if 

b = a + 2, b = a + 1 + m, b = a or b = a − 1 + m. The case b = a can be dismissed 

right away since there is no self-extension. The condition (25) helps to exclude the cases 

b = a + 1 + m, b = a − 1 + m. The following lemma completes the proof. �

Lemma 7.3.

Ext1(ΛaV, Λa+2V ) = 0.

Proof. We will show that there is no cocycle ϕ ∈ Homg0̄
(g1̄⊗Λa(V ), Λb(V )). Consider the 

restriction ϕ : g1̄⊗Sa(V1̄) → Sa+1(V1̄) ⊗V0̄. Let Xu⊗w ∈ g1̄ be the element corresponding 

to u ⊗ w for u ∈ V1̄ and w ∈ V0̄. Then without loss of generality we may assume

ϕ(Xu⊗w, x) = u ∧ w ∧ x.

In the case when Xu⊗w belongs to the Borel subalgebra and x = v is a highest weight 

vector of Λa(V ) the cocycle condition implies

Xu⊗wϕ(Xu⊗w, v) = Xu⊗w(u ∧ w ∧ v) = 0.

Since Xu⊗wv = 0, the above condition actually implies Xu⊗w(u ∧ w) = 0. Now we use 

the formula

Xu⊗w(u ∧ w) = (w|w)u ∧ u.

Let u be a weight vector of weight δ1 and w = w′ + w′′ where w′, w′′ are weight vector 

of weights ε1 and −ε1 respectively. Then Xu⊗w is a sum of root vectors in gδ1+ε1
and 
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gδ1−ε1
, hence Xu⊗w belongs to the Borel subalgebra. But (w|w) �= 0. Thus we obtain a 

contradiction with the cocycle condition. �
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