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1. Introduction

The first appearance of Jordan superalgebras goes back to the late 70-s, [8], [10], [11].
Recall that a Zs-graded algebra J = J5@ J; over a field C is called a Jordan superalgebra
if it satisfies the graded identities:

a-b= (-1 )Iallb\a - b,

((a-b)-c)-d+ (- )\bllc\+|bHd\+lclldl((a.d) )b

+(— 1)\a\|b|+|a||v|+\a\|d\+|c|\d|((b d)-c)-a=

(a-b)-(c-d) + (=)l (@) - (b-d) + (=) "¢+ (a-d) - (b- ),
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where a,b,¢,d € J and |a| = i if a € J;. The subspace Jj is a Jordan subalgebra of J,
while J7 is a Jordan bimodule over Jg, they are referred as the even and the odd parts
of J, respectively.

As in the case of Jordan algebras a lot of examples of Jordan superalgebras come
from associative superalgebras, or associative superalgebras with superinvolutions. Let
A = Ay & Az be an associative superalgebra with product ab then

a-b= %(ab—l—(—l)‘a‘lblba), (1)

is the Jordan product on A. The corresponding Jordan superalgebra is usually denoted
by AT. Furthermore, if x is a superinvolution on A, then H(A,x) = {a € A|a* = a} is
a Jordan superalgebra with respect to the product a - b.

The classification of simple finite-dimensional Jordan superalgebras over a field C
of characteristic zero was obtained in [8] and then completed in [10]. Then main tool
used in both papers was the seminal Tits-Kantor-Koecher (TKK) construction, which
associates to a Jordan superalgebra J a certain Lie superalgebra Lie(J). Let us recall
this classification; we use notations from [19]. There are four series of so called Hermitian
superalgebras related to the matrix superalgebra My, ,, :== End(C (7”'”)): Mnt,n, m,n > 1,
QT (n), n > 2, Ospm 2n, m,n > 1 and JP(n), n > 2; the Kantor series Kan(n), n > 2,
exceptional superalgebras introduced in [10]; a one-parameter family of 4-dimensional
Jordan superalgebras Dy, t € C; the Jordan superalgebra J(V, f) of a bilinear form
f and, in addition, the 3-dimensional non-unital Kaplansky superalgebra K3 and the
exceptional 10-dimensional superalgebra Kig introduced by V. Kac in [8].

A superspace V = V5 @ V; with the linear map §: J®V — V is a (super)bimodule
over a Jordan superalgebra J if J(V) := J @ V with the product - on J extended by

vow=0,a-v=v-a=pa®v) forv,weV, aecJ

is a Jordan superalgebra. The category of finite-dimensional J-bimodules will be denoted
by J-mod. Furthermore if J is a unital superalgebra the category J-mod decomposes
into the direct sum of three subcategories

J-mod = J-modo & J-mod1 & J-mod, (2)

according to the action of the identity element e € J, see [16]. The category J-mod,
consists of trivial bimodules only and is not very interesting. The category of special
(or one-sided) J-modules, J—mod%, consists of J-bimodules on which e € J acts as %id.
Finally, the last category consists of bimodules on which e acts as id, they are called
unital bimodules. For the categories of special and unital bimodules one may introduce
the corresponding associative universal enveloping algebras characterized by the property
that the categories of their representations are isomorphic to the categories J—mod% and
J-mod;.
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The classification of bimodules for simple Jordan superalgebras was started in [25]
and [26] where unital irreducible bimodules were studied for the exceptional superalge-
bras Kjo and Kan(n) respectively. The method used in these papers was to apply the
TKK-construction to bimodules, i.e. to associate to any unital Jordan J-bimodule a cer-
tain graded Lie(J)-module. However the answer for Kan(n) was not complete, since in
order to describe J-mod; one has to consider modules over the universal central exten-
sion 17'6—(7 ) instead of Lie(J), this was noticed in [18]. In [20], [19] the coordinatization
theorem was proved and classical methods from Jordan theory were applied to classify
representations of Hermitian superalgebras. In [16] using the universal enveloping alge-
bras authors deduced the problem of describing bimodules over Jordan superalgebra to
associative ones. Finally Lie theory proved to be very useful, as already was mentioned
the TKK functors can be extended to representations of J and Lie(.J) [19], [18]. Observe
that the TKK method can only be used in characteristic zero.

In [19], [16], [17], [20], [29], [27] finite-dimensional irreducible modules were classified
for all simple Jordan superalgebras. Moreover it was shown that both categories J-mod 1
and J-mod; are completely reducible for all simple Jordan superalgebras except JP(2),
Kan(n), Mf 1> D¢ and superalgebras of bilinear forms. The series D, for ¢ # £1 was
studied in [17], the authors showed that all special bimodules are completely reducible
and unital bimodules are completely reducible if ¢ # — 5, —mTH for some m € Z~g. In
the latter case all indecomposable unital bimodules were classified in [17]. For ¢ = +1 we
have D_; ~ MfL 1, and D, is isomorphic to the Jordan superalgebra of a bilinear form.
We study these cases in the present paper.

We will describe the categories J-mod 1 and J-mod; when J is one of the following
algebras: JP(2), Kan(n), M1+ , and superalgebras of bilinear form. Our main tool is the
functors Lie and Jor between categories

J—mod% YRS @—mod% and J-mod; <+ §-mod; (3)

where § is the universal central extension of g = Lie(J), g-mod; is the category of
g-modules admitting a short grading M = M[-1] ® M[0] & M[1], while g-mod, the
category of g-modules admitting a very short grading M = M[—1/2] & M[1/2]. For the
latter pair the functors Lie and Jor establish the equivalence of categories, in the former
case the categories J-mod; and g-mod; are not equivalent due to the fact that g-mod;
contains the trivial module. More precisely, the splitting (2) J-mody @ J-mod; can not
be lifted to the Lie algebra g since some g-modules in §-mod; have non-trivial extensions
with the trivial module.

In all non-semisimple cases considered in this paper § # g. This has two consequences.
There are more irreducible representations with non-trivial central charge and there are
self extensions on which the center does not act diagonally. In particular, the categories
g-mod 1 and g-mod; do not have enough projective objects and we have to consider the
chain of subcategories defined by restriction of the nilpotency degree of central elements.
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The paper is organized as follows. In section 2 we recall the Tits-Kantor-Koecher con-
struction, introduce functors Jor and Lie between the categories in (3) and discuss their
properties. Section 3 contains some miscellaneous facts on ext quivers of the categories
and Lie cohomology which we use in the rest of the paper. In Sections 4-7 we study
g-mod; and g-mod, for g = Lie(J) with J equal to JP(2), Kan(n), n = 2, Mffl and
the Jordan superalgebra of a bilinear form respectively.

We will use several different gradings on a Lie superalgebra g and fix notations here
to avoid the confusion. The Zs-grading will be denoted as g = g5 @® g7. The short Z-
grading corresponding to the Tits-Kantor-Koecher construction will be denoted as g =
g[—1] @ g[0] @ g[—1]. We would like to point out here that this grading is not compatible
with the Zs-grading. Finally some superalgebras have another grading consistent with
the superalgebra grading, which will be denoted as g=g_2®g_1®--- P g;-

2. TKK construction for (super)algebras and their representations

The Tits-Kantor-Koecher construction was introduced independently in [28], [10], [14].
We recall it below. For superalgebras it works in the same way as for algebras.

A short grading of an (super)algebra g is a Z-grading of the form g = g[—1] & g[0] &
g[l]. Let P be the commutative bilinear map on a Jordan superalgebra J defined by
P(z,y) = x - y. Then we associate to J a vector space g = Lie(J) with short grading
g = g[—1]®g[0]®g[1] in the following way. We put g[1] = J, g[0] = (L4, [La, L] | a,b € J),
where L, denotes the operator of left multiplication in J, and g[—1] = (P, [Ly, P]|a € J)
with the following bracket

[x,y] =0 for x, y € g[1] or z, y € g[-1];
o [L,z] = L(x) for z € g[1], L € g[0];
(B, z](y) = B(z,y) for B € g[—1] and z,y € g[1];
[L, Bl(z,y) = L(B(z,y)) — (~1)MIFIB(L(x), y) + (1)l B(x, L(y)) for B € g[-1],

Then Lie(J) is a Lie superalgebra. Note that by construction Lie(J) is generated as a
Lie superalgebra by Lie(J); @ Lie(J)_1.

Let g = g[—1] @ g[0] ® g[1] be a Z-graded Lie superalgebra and let f € g[—1] be even
element of g (f € gg), then Zs-graded space g[1] =: Jor(g) is a Jordan superalgebra
with respect to the product

x'y:[[.ﬂx]’y] x7y€g[1]' (4)

A short subalgebra of a Lie superalgebra g is an sl subalgebra spanned by elements
e, h, f, satisfying le, f] = h,[h,e] = e, [h, f] = —f, such that the eigenspace decomposi-
tion of adh defines a short grading on g. Consider a Jordan superalgebra J with unit
element e. Then e, hy = L. and f; = P span a short subalgebra oy C Lie(J). A Z-
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graded Lie superalgebra g = g[—1]®g[0] © g[1] is called minimal if any non-trivial ideal T
of g intersects g[—1] non-trivially, i.e. I Ng[—1] is neither 0 nor g[—1]. Then Jor and Lie
establish a bijection between Jordan unital superalgebras and minimal Lie superalgebras
with short subalgebras, [1]. Furthermore, a unital Jordan superalgebra .J is simple if and
only if Lie(J) is a simple Lie superalgebra.

Let J be a Jordan superalgebra and g = Lie(J). By § we denote the universal central
extension of g. Note that the injective homomorphism a; < g can be lifted to the
injective homomorphism «; < § since all finite-dimensional representations of «; are
completely reducible. In particular, g also has a short grading, the center of § is in g[0],
and g[£1] = g[£1].

Let g-mod 1 denote the category of finite-dimensional g-modules V' over g such that
h € a; acts on V with eigenvalues +3 and hence induces the grading V = V[-1]® V[3].
In non-graded case functors Jor and Lie between @—mod% and J—mod% were introduced
in [12]. The super case is analogous. Define an .J-action on V/[3] by the formula

Xov=Xfv=[X, flvforany X € JjveV.
Then for any Y € J
XoYou)+ ()XY o (X ov) = (XfY 4+ (=D)XIVIy £X) fo.

On the other hand,

L (XY +(—=1)XIMly £x) fo.

(Xo¥Jou = o (X f—FX)Y ~(~)N Iy (X f— f3)) o =

Therefore V[1] is a special J-module. Set Jor(V) := V[i]. Then Jor : g-mod; —
J-mod 1 is an exact functor between abelian categories.

Next we construct the inverse functor Lie : J—mod% — g-mod 1 Assume that M is

a special J-module. Let V.= M @ M, for any X € g[l] = J, Z = %[f, [/, Y]] € g[-1],
where Y € §[1] = J and (mq,mz) € V set

X(my,me) = (0, X omy), Z(my,ma) = (Y oms,0).
Let b be the Lie subalgebra of End V generated by g[+1]. Note that
(X, Z)(m1,ms) = ()XY o (X omy), X o (Y omy)).
If A € g[1], then
[[X, Z], Al(m1,m2) = (0,X o (Y o (Aomy))

F (=) XIVIHIXTAHAIYT A 6 (Y o (X 0my))) =
=0,(X-Y)-A— (—)XIVly (X - A)+ X - (Y - A)) omy).
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Similarly if C' = 1[f,[f, B]] for some B € §[1], then

[[X, Z],C’](ml,mg) = (X @) (Y (e} (B Omz))
+ (_1)\XIIY\+|X\\BIHBIIY\B o(Y o (X omy)),0) =
=((X-Y)-B—(-1)XIVly .(X-B)+ X - (Y - B)) omy,0).

Let p: J — End(M) denote the homomorphism of Jordan superalgebras corresponding
to the structure of the special J-module on M, it induces the epimorphism Lie(p) : g —
Lie(p(J)), see Theorem 5.15 in [1]. The above calculation shows that Jor(h) = p(J). By
construction of Lie we have the exact sequence

0— Z(h) —» b — Lie(Jor(h)) — 0.

Then Lie(p) can be lifted to an epimorphism § — h. The latter morphism defines a
structure of g-module on V. We put Lie(M) :=V.

Proposition 2.1. The functors Lie and Jor define an equivalence of the categories J-mod%
and @-mod%.

Proof. One has to check Lie(Jor(V)) ~ V and Jor(Lie(M)) ~ M. Both are straight-
forward. O

Let g-mod; denote the category of g-modules N such that the action of «; induces a
short grading on N, recall that J-mod; is the category of unital J-modules. In [12] the
two functors

Jor : g-mod; — J-mod;, Lie: J-mod; — g-mod;

were constructed for Jordan algebra J. Analogously, one defines these functors in the
supercase. Namely, if N € g-mod;, then N = N[1]®&N[0]®N[—1]. We set Jor(N) := N[1]
with action of J = g[1] = g[1] given by

x(m) = [f,zjm, xzeJ=g[l], me N[1].

It is clear that Jor is an exact functor.
Let M € J-mod;. Consider the associated null split extension J @& M. Let A =
Lie(J & M). Then we have an exact sequence of Lie superalgebras

0-+N—-ADg—0, (5)

where N is an abelian Lie superalgebra and N[1] = M. By Lemma 3.1, [12] M is g[0]-
module. Now let p = g[0] @ g[1] and we extend the above §o-module structure on M to a
p-module structure by setting g[1]M = 0. Finally we define Lie(M) to be the maximal
quotient in T'(M) = U(8) ®y(py M which belongs to g-mod;.
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Proposition 2.2. [12] Functors Jor and Lie have the following properties
e Let M € g-mod; and K € J-mod;
Homgy(Lie(M), K) ~ Hom ;(M, Jor(K)),

o If P is a projective module in J-mody, then Lie(P) is a projective module in §-mod; .

e Jor o Lie is isomorphic to the identity functor in J-mod; .

o Let P be a projective module in §-mod; such that §P = P. Then Jor(P) is projective
in J-mod; .

o Let L be a simple non-trivial module in §-mody. Then Jor(L) is simple in J-mod;.

Remark 2.3. Note that the correspondence J — Lie(J) does not define a functor from
the category of Jordan superalgebras to the category of Lie superalgebras with short
5[(2)-subalgebra. In construction of our functors Jor and Lie we use the following prop-
erty of TKK construction proven in [1], Section 5. An epimorphism J — J’ of Jordan
superalgebras induces the epimorphism Lie(J) — Lie(J’). One can think about anal-
ogy with Lie groups and Lie algebras. There is more than one Lie group with given Lie
algebra. Pushing this analogy further, § plays the role of a simply connected Lie group.

Let Z denote the center of g. For every x € Z* we denote by g-mod;* and g-mod¥

2

the full subcategories of g-mod; and g-mod 1 respectively consisting of the modules
annihilated by (z — x(z)) for sufficiently large N. We have the decompositions

g-mod; = @ g-mod ¥, g-mod: = @ g-mod¥. (6)
XEZ* XEZ* 2

We define J-modX (resp., J-mod;*) the full subcategory of J-mod (resp., J-mod)
2
consisting of objects lying in the image of g-mody (resp., g-mod;*) under Jor. It is easy

to see that Jor is a full functor. Therefore (6) provides the decompositions

J-mod; = @ J-mod,  J-mod; = € J-mod}. (7)
xX€Z* XE€Z* ’

Remark 2.4. Note that Jor : g-modY — J-mod¥ is an equivalence of categories. If
x # 0, then by Proposition 2.2 Jor establishes a bizjection between isomorphism classes
of simple objects in g-mod{* and J-mod*. Hence in this case it also defines an equivalence
of categories.

Furthermore, the categories g-mod;* and g-mod?¥ have the filtrations
2

F'(g-mod}) C F?(g-mod)) C --- C F™(g-mod}) C ..., i

Il
—_
DN | =
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where F™(C) is the full subcategory of C consisting of modules annihilated by (z — x)™.

Very often the category g-mod;* and g-mod¥ do not have projectives but F(g-mody")
2

and F™(§-mod?¥) always have enough projective objects.
2

3. Auxiliary facts

3.1. Quiver of abelian category

Let C be an abelian category and P be a projective generator in C. It is a well-known
fact (see [5] ex.2 section 2.6) that the functor Home (P, M) provides an equivalence
of C and the category of right modules over the ring A = Hom¢ (P, P). In case when
every object in C has finite length, C has finitely many non-isomorphic simple objects
and every simple object has a projective cover, one reduces the problem of classifying
indecomposable objects in C to the similar problem for modules over a finite-dimensional
algebra A (see [3,4]). If Ly, ..., L, is the set of all up to isomorphism simple objects in C
and Py,..., P. are their projective covers, then A is a pointed algebra which is usually
realized as the path algebra of a certain quiver () with relations. The vertices of @
correspond to simple (resp. projective) modules and the number of arrows from vertex ¢
to vertex j equals to dim Ext'(L;, L;) (resp. dim Hom(P;, rad P;/rad® P;)).

We apply this approach to the case when C is g-mody (respectively J-mod}) and
g-mod¥ (respectively J —mod%‘ ). There is the following relation between quivers of g-mod}

2
and J-mod;*

Proposition 3.1.

(1) The Ext quivers corresponding to §-mody and J-mody coincide.

(2) If x # 0 the Ext quivers corresponding t; g-mod;* and2 J-mod* coincide.

(3) Let x = 0, Q' (resp. Q) be the Ext quiver of the category J-mod), (resp g-mod,)
and A’ (resp. A) be its corresponding path algebra with relations. Then A" = (1 —
e0)A(1 —eq), where eg is the idempotent of the vertex vy corresponding to the trivial

representation.

Proof. First two items follow from Proposition 2.1 and Remark 2.4 respectively. The last
part is proved in Lemma 4.10, [12] for non-graded case and the proof trivially generalizes
to supercase. 0O

Remark 3.2. Observe that )’ is obtained from Q) by removing the vertex vg and replacing
some paths v — vg — v’ by the edge v — v'.
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3.2. Relative cohomology and extensions

Let g be a superalgebra and M, N be two g-modules. Then the extension group
Exti(M ,N) can be computed via Lie superalgebra cohomology

Ext(M,N) ~ H'(g, Homc (M, N))

see, for example, [2]. Let h be a subalgebra of g and C be the category of g-modules
semisimple over h. Then the extension groups between objects in C are given by relative
cohomology groups:

Extl (M, N) ~ H(g,h; Homc (M, N)).

The relative cohomology groups H'(g,bh; X) are the cohomology groups of the cochain
complex

0 — X — Homp(A'(g/h), X) — Homy(A*(g/h), X) — Homy(A3(g/h), X) — ....

We use relative cohomology to compute Extl(M ,N) when M, N are finite-dimensional
g-modules and § is a simple Lie algebra. The 1-cocycle ¢ € Homy(g/h, X) satisfies the
condition

©([91,92]) = 91((g2)) — (=1)79 g1 (0(g2))-

We also going to use the following version of Shapiro’s lemma for relative cohomology.
Let p be the subalgebra of g containing h, M be a p-modules and N be a g-module, then

H'(g, b; Home (Ind} M, N)) ~ H'(p, h; Homg (M, N)). (8)
3.3. Some general statements about representations of Lie superalgebras

Let g be a Lie superalgebra and h be the Cartan subalgebra of g, i.e. a maximal
self-normalizing nilpotent subalgebra. Then one has a root decomposition g = h @ P g
where g, is the generalized eigenspace of the adjoint action of hz. Let g be a simple
Lie superalgebra. Assume that h; = 0. It follows from the classification of simple Lie
superalgebras that this assumption does not hold only for q(n) or H(2n + 1). Then for
every root « either (gq)5 = 0 or (go)7 = 0. Furthermore, if @ is a root lattice of g, one
can define a homomorphism p : Q — Zs such that p(a) equals the parity of g,.

Lemma 3.3. Assume that g is simple and h; = 0. If M is an indecomposable finite-
dimensional §-module, then every generalized weight space of M is either purely even or
purely odd. Hence for a simple module L we have that L and L°P are not isomorphic and
do not belong to the same block in the category of finite-dimensional §-modules.
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Proof. Let M, denote the generalized weight space of weight p. We have go(M,) C
M, 1. Therefore all weights of M belong to p 4 (. Hence the statement follows from
existence of parity homomorphism p. O

Lemma 3.4. Let g be a Lie superalgebra with semisimple even part and M be a sim-
ple finite-dimensional g-module. Then Exté(M, M) = 0. Furthermore, if sdim M =
dim Mg — dim My # 0 then Ex‘cé(M7 M) =0.

Proof. Consider a short exact sequence of g-modules
0— M — M— M — 0.

Then M is generated by a highest weight vectors of some weight A with respect to some
Borel subalgebra of g. Since the action of Cartan subalgebra of gz on M is semisimple
the weight space My is a span of two highest weight vectors v1,vs. Then M = U(g)v, @
U(g)va ~ M & M and the sequence splits.

Now we prove the second identity. We have to show that H(g, g5, End(M)) = 0. Let
¢ be a non-trivial one-cocycle. By the previous proof ¢ is not identically zero on the
center of g. On the other hand [z, ¢(z)] = 0 for every z € g and the central element z.
By Schur’s lemma we have ¢(z) is the scalar operator. Furthermore, there exists = € g1
such that z = [z, z]. That implies

p(2) = 2[z, p(x)].

That implies str(p(z)) = 0. If sdim M # 0 we obtain ¢(z) = 0. That gives a contradic-
tion. O

4. Representations of JP(2)

Superalgebras JP(n) and P(n) both emerge from the associative superalgebra M, ,
with the superinvolution

’ pT BT
_CT AT

A B
C D

)

namely JP(n) is the Jordan superalgebra of symmetric elements, while P(n) is the Lie
superalgebra of skewsymmetric elements of (M: tn» *). These superalgebras also related
to each other via the TKK construction Lie(JP(n)) = P(2n — 1), where

Jp(n):{ 21 f; |A, B, C € M,(C), BT =B, CT:_C}
a0 0 B
“lo AT T |c o]
0 1
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and

A B

AT |A, B, C € My, (C), trA=0, BT =B, CTC}.

P@2n-1)= {

The short grading on P(2n — 1) is defined by element

n

h = E Eii = Eitnitn + Eitonivon — Eitan,itan
i=1

and the short s[(2) algebra is given by the elements h, e, f, where

n n
e= Z Eiivn — E3ntionti, f= Z Eitni— Eonyisnti-

i=1 i=1

Observe that we follow notations in [9] and [19] where P(n) is the Lie superalgebra of
rank n. Both JP(n), n > 2 and P(n), n > 3 are simple superalgebras.

Another way to describe P(n) is to consider the (n+1|n+1)-dimensional superspace V'
equipped with odd symmetric non-degenerate form £, i.e., the map S?(V) — C°P which
establishes an isomorphism V* ~ V°P. Then P(n) is the Lie superalgebra preserving
this form and P(n) = [P(n), P(n)]. The following isomorphisms of P(n)-modules are
important to us

S2(V*) ~ S2(VoP) ~ A2(V), S%(V)~ad®. (9)
The second isomorphism is given by the formula
VW Xy, Xow(w) = Bw,u)v + (=1)IIB(w, w)w for all u,v,w € V. (10)

Finally, denote by P(n) the universal central extension of P(n), then for n > 4
P(n) = P(n), while the superalgebra P(3) has a one-dimensional center.

4.1. Construction of 13(3)-m0dules with short grading and very short grading

When n > 3 both categories JP(n)-modi, JP(n)-mod; are semi-simple, [19] and
[16]. In [16] it was shown that the category JP(2) —mod, is isomorphic to the category
of finite-dimensional modules over the associative superalgebra M 2(CJt]), i.e. there
exists a one-parameter family of irreducible special JP(2)-modules. Unital irreducible
JP(2)-modules were described in [19], for each a@ € C there are two non-isomorphic
modules R(a) and S(«) and their opposite. Modules R(«) and S(«a) are constructed as
a subspaces in M o(A), where A is a certain Weyl algebra. In this section we define a
family W (t), t € C of special irreducible .JP(2)-modules and provide another realization
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of unital irreducible modules, namely S?(W(t/2)) and A?(W(¢/2)). We also construct
the ext quiver for JP(2)-mod; and JP(2)-mod;.

Let § be the central extension of the simple Lie superalgebra P(3). There is a consistent
(with Zs-grading) Z-grading

=929 g_1D g0 Do,

where g_» is a one-dimensional center, gq is isomorphic to s0(6) and g_; is the standard
50(6)-module. Furthermore, g; is isomorphic to one of the two irreducible components of
A3(g_1) (the choice of the component gives isomorphic superalgebra). The commutator
g-1 X g—1 — g_2 is given by the go-invariant form.

Fix z € g_o. In [21] a (4|4)-dimensional simple §-module V' (¢) on which z acts by
multiplication by ¢, t € C was introduced. Let V = C** and define a representation
pt + § — Endc (V) by

A B | |A B+tC* — ¢
Pt C —At| T o _At s Pt('z) =1,

where ¢j; = (—1)%cy for the permutation o = {1,2,3,4} — {i,j,k,l}. We denote the
corresponding g-module by V(¢). When ¢ = 0 this module coincides with the standard
g-module. Observe that for any ¢, s € C, V(t) ~ V(s) as go + g1-modules.

Remark 4.1. The other realization of V'(¢) is as follows. Let D(3) be the superalgebra of
differential operators on A (&7, &2, &3) with the odd generators &1, &2, €3, d1, do, ds satisfying
the relation:

[di, &5] = 0ij, 1§, €3] = [di, dj] = 0.

Observe that D(3) is isomorphic to the Clifford algebra. It is easy to see that the Lie sub-
superalgebra of D(3) generated by 1, d;, &5, &5, didj, £162€3 is isomorphic to §. As follows
from the general theory of Clifford superalgebras D(3) has a unique (4|4)-dimensional
simple module V(1) = A(&,&2,&3). Since D(3) is generated by d;, &, as the associative
algebra, the restriction of V(1) is a simple g-module.

Let oy denote the automorphism of § such that oy(x) = tiz for every x € g;, then
V(t) ~ V(1)71/2. Note that V(1)°-* is isomorphic to V(1). Hence the construction
does not depend on a choice of the square root.

Observe also that V(t)* is isomorphic to V(—t)°P.

It is easy to see that V(t) admits a very short grading with respect to the action
of h thus V(t) € g-mods. Moreover from the equivalence of categories Ma »(C|t])-mod,

JP(2)-mod; and P(3)—mod%, [16], and Proposition 2.1, it follows that V() together

~

with its opposite exhaust all possibilities for simple objects in P(3)-mod 1.
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Proposition 4.2. Lett € C. On W = C?2 define a representation p; : JP(2) — Endc (W)
by

A B ] [A B+tC
Pt C —AT T C —AT .

Then any irreducible module in JP(2)-mody is isomorphic either to W (t) = (W, p;) or
W (t)°p.

Proof. V(t) € g-mod;, thus it is enough to check that W(t) = Jor(V(t)). O

The next theorem follows from the equivalence of categories M o(Clt])-mod and
JP(2)-mod 1, [16], we give a proof here for the sake of completeness.

Theorem 4.3. (a) Fvery block in the category g-mod (JP(Q)-mod%) has a unique up to
isomorphism simple object.

(b) The category g-mody (JP(Q)-mod%) is equivalent to the category of finite-
dimensional Zy-graded representations of the polynomial ring C[z].

Proof. To prove (a) we just note that Ext*(V(s), V(t)) = Ext' (V(s), V(t)?) = 0if t # s
since the modules have different central charge. Furthermore, from Lemma 3.3 we have
Ext'(V(t), V(t)°P) = 0.

To prove (b) we consider the family V(z) defined as above where x is now a formal
parameter. Then V(z) is a module over U(g) ® C[z]. Let M be a finite-dimensional C[z]-
module. Set F((M) := V(x)®c|, M. Obviously F/(M) is a g-module. Moreover, F' defines
an exact functor from the category of finite-dimensional Zs-graded C[z]-modules to the
category g-mod; . The functor G := Homg(V (z),?) is its left adjoint. The functors F' and
G provide a bijection between isomorphism classes of simple objects in both categories
and hence establish their equivalence. O

Now we will describe the simple modules in the category g-mod;. Let us consider the
decomposition

V(t/2) @ V(t/2) = S*V(t/2) & A*V (t/2).

Then clearly both S2V(¢/2) and A2V (t/2) are objects in g-mod; and have central
charge t.

Lemma 4.4. (a) If t # 0, then S?V (t/2) and A%V (t/2) are simple.
(b) If t = 0 we have the following exact sequences

0— LT(0) = S*(V) - C? =0, 0—CP—A*(V)— L (0)—=0,

where L*(0) are some simple g-modules.
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Proof. Let us prove (b). The first exact sequence follows from existence of g-invariant
odd symmetric form 8 on V, (10), the second is the dualization. Moreover L*(0)°? is
the adjoint representation in P(3), hence simple. But then L*(0) is obviously simple,
L~(0) is simple by duality.

To prove (a) we observe that S2V (¢/2) is a polynomial deformation of S?(V'). More-
over, for all ¢ # 0 the corresponding modules are related by twisting with an automor-
phism. Thus, either S?V (¢/2) is simple or it has a 1-dimensional quotient. But there is
no one dimensional module with non-zero central charge. Hence S?V (¢/2) is simple. The
proof for A2V (t/2) follows by duality. O

For t # 0 we set LT (t) = S2V (t/2), L~ (t) = A2V (t/2).

Theorem 4.5. A simple object in §-mody is isomorphic to one of the following:
L*(t), L*(t)°P,C or C°P.

Proof. It follows from Theorem 3.10, [16] that for an arbitrary ¢t € C there are exactly
four non-isomorphic simple objects in J —modf . Comparing their dimensions one can see
that the image of these modules via the TKK-constructions is one of L*(t) or LT (t)°P.
Adding the one-dimensional trivial module and its opposite to g-mod; we finish the
proof. O

Recall that W (t), t € C is the irreducible special JP(2)-module defined in Lemma 4.2.
Then W (t) ® W(t) has a structure of unital JP(2)-module, [7]. As a superspace W (t) ®
W(t) = S*(W(t)) & A>(W(t)).

Corollary 4.6. Both S?(W (t/2)), A2(W (t/2)) are simple JP(2)-modules. A simple mod-
ule in JP(2)-mody is isomorphic to one of the following: S*(W(t/2)), A2(W(t/2)) and
their opposites.

Proof. One can easily check that Jor(LT(t)) = S2(W(t/2)), Jor(L(t)) = A2(W(¢/2))
for any t € C. The rest follows from previous theorem and from Proposition 2.2. 0O

Recall that g-mod] is the full subcategory of g-mod; consisting of modules on which
z acts with generalized eigenvalue t. Note that if ¢, s # 0 then g-mod; and g-mod; are
equivalent, by twist with o,1/2,-1/2.

Lemma 4.7. Let t # 0. We have the following isomorphisms of go-modules

H(g1, L™ (1)) = A*(Vp) ® C,  H (g1, L7 (1)) = S*(Vp),
Ho(g1, L™ (t)) =~ $*(V1), Ho(g1, L™ (t)) =~ A*(V5) @ C.

Remark 4.8. Observe that go ~ sl(4) and V5 (resp., V7) are the standard (resp., costan-
dard) go-modules.
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Proof. Consider the subalgebra g* := go ® g1. Recall that V(¢) is isomorphic to V as a
g"-module. Therefore L*(t) = 5?(V;2) is isomorphic to S?(V) and L™ (¢) is isomorphic
to A2(V) as g*t-modules. Hence the statement follows from Lemma 4.4(b). O

Let p=g_2@go® g1 and C; be the (0]1)-dimensional p-module with central charge t.
Consider the induced module

K(t) := Indy C; ~ Coind C;.
Proposition 4.9. The category §-mod; has two equivalent blocks QF and Q; . The equiva-
lence of these blocks is established by the change of parity functor. If t # 0, then Q has
two simple objects L*(t) and L= (t). The block Qf has three simple objects C°P, L*(0)
and L~(0).
Proof. By the weight parity argument, Lemma 3.3, Ext' (L= (t), L=(t)°?) = 0. For t = 0

the statement follows from the fact that the sequences in Lemma 4.4 do not split. It
remains to show Ext'(L*(t), L~ (t)) # 0 if t # 0. It follows from Lemma 4.7 that

Homgo ((Ctv H0(917L+(t))) =C, Homgo (Ctv Ho(ghL_(t))) =C.

By Frobenius reciprocity we have a surjection K (t) — L™ (¢) and injection L™ () — K(t).
A simple check of dimensions implies the exact sequence

0= LT(t)— K@) — L (t)—0
and it remains to prove that it does not split. Indeed,
Homg (K (t), L1 (t)) = Hom,(Cy, LT (t)) = Homgyeg ,(Ci, H(g1, LT (2))) =0. O

Lemma 4.10. We have isomorphisms

Proof. Follows from the isomorphism V*(¢/2) ~ V°P(—t/2). O
4.2. Unital modules with non-zero central charge

Lemma 4.11. If t # 0 we have

(1) Ext'(L*(t), LT (t)) = Ext* (L (t),L~(t)) = C;

(2) Ext!(L~(t),L*(t)) =C;
(3) Ext*(L*(t), L= (t)) = 0.

~
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Proof. For (1) first we show that Ext' (L~ (t), L~ (t)) # 0. For this consider a non-trivial
self-extension

0— V(t/2) = V(t/2) = V(t/2) — 0.

The action of z on V (t/2) is given by the Jordan blocks of size 2. Now consider A2V (¢/2).
Then the Jordan-Hoelder multiplicities are as follows:

[A2V(t/2) : L~ (t)] =3, [A®V(t/2):LT(t)] =1.

Moreover, the action of z on A2V (¢/2) is given by Jordan blocks of size 3 and 1. This

implies that A2V (#/2) contains a non-trivial self-extension of L~ (t).

Now we show that Ext'(L~(t),L~(t)) is one-dimensional. Indeed, let ¢ : g —
Endc (L (t)) be a cocycle defining the extension. The cocycle condition implies that
¥(2) € Endg(L™(t)) = C. Therefore if dim Ext' (L~ (t), L= (t)) > 1, then there exists a
non-trivial cocycle ¢ such that ¥(z) = 0. Consider the corresponding self-extension

0L (t)>M— L (t)—0.

Note that M 9179 is isomorphic to C; ®C; as go+g_s-module. Therefore M is a quotient

of K(t)®K (t) and hence M ~ L~ (t)®L~ (t). Thus, the corresponding extension is trivial.

Finally, since L~ (—t)* ~ L*(t), we obtain by duality that Ext'(L*(t), Lt (¢)) = C.
Next we will prove (2). Consider a non-split extension

0— LT(t)— M — L (t) = 0.

Since coinvariants is a right exact functor, there exists a surjection Hy(gy, M) —
Hoy(gi, L™ (t)). Hence by Lemma 4.7 Hom,(M,C;) # 0. By the Frobenius reciprocity
we must have a non-zero map

¢ : M — Coindy C; = K(t).
Since the socles of M and K (¢) are isomorphic and both modules have length 2, ¢ is an
isomorphism. Hence Ext'(L~(t), L*(t)) is one-dimensional.
Finally we will show (3). Assume that there is a non-split exact sequence
0— L (t)— M — LT (t) = 0.
Consider the following piece of the long exact sequence
e HO (g, M) 5 HO (g1, LH () 5 H (@, L7(0) = ...

By Lemma 4.7 we have H%(gy, LT (t)) = S?(Vy). We use the decomposition of L~ (t) as
an go = sl(4)-module:
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L™ (t) ~ C & A*(V5) @ sl(4) @ S*(V5).
Since H(gy, L™ (t)) is a submodule in
o1 ® L (1) = §%(V1) @ (C @ A* (V) @ sl(4) © S%(V1),

we conclude that H'(gy, L~ (t)) does not contain an go-submodules, isomorphic to
S2(Vy). Since r and ' are morphisms of go-modules, ' = 0. Thus, we obtain that r
is surjective and therefore M is a quotient of the induced module Ind§ 5*(Vj), (here we
assume that z acts on S?(Vj) as t and g; acts by zero). Next consider an isomorphism
of go-modules

Ind$ 52(V5) ~ A (A% (Vh)) ® S*(Vp)
which implies
Homg, (Ind§ $%(V5), C) = Homyg, (A" (A*(V3), S*(V7)) = C.
On the other hand, Homg, (M, C) = C? and we obtain a contradiction. 0O

Theorem 4.12. If t # 0, then the category S is equivalent to the category of milpotent
representations of the quiver

o 2
(s ()
e ~ e
with relations Ba = v[f3.

Proof. Consider the subcategories F™(g-mod}) of g-mod} defined in Section 2.

Lemma 4.13. Let K(t) () := Indj(C[2]/((z — t)™) and L*(t)(m) be the indecomposable
module of length m with all composition factors isomorphic to L™ (t). Then K(t)m)
and LT (t)(m) are projective covers of L™(t) and L*(t), respectively, in the category
F™(§-mody).

Proof. The projectivity of L*(t)(y) follows easily by induction on m. Indeed, in the
case m = 0, we have Ext'(L*(t), L= (t)) = 0 and in the only non-trivial self-extension
of L*(t) the action of the center is not semisimple. Then by induction and the long
exact sequence we get Ext'(L*(t)(m), L7 (t)) = 0 and the only non-trivial extension
Extl(L“‘(t)(m), L*(t)), the action of the center is given by the Jordan block of length
m+ 1.

To prove the projectivity of K (t)(,) we have to show

Ext(y)(K(t), L*(t)) =0
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where Ext () stand for extension in the category F' m(@—modtl) and then again proceed
by induction as in the previous case. We recall the exact sequence

0— LT (t) > K(t) — L™ (t) = 0.

Consider the corresponding long exact sequences for computing Ext%l) (K(t), L*(t)). For
Ex‘c%l)(K(ﬁ)7 L=(t)) we get

0 = Ext(y) (L™ (), L™ (t)) = Ext{yy (K(t), L™ (t)) = Ext{) (LT (t),L™(t)) =0
and for Ext%l)(K(t), LT (t)) we get

0 = Hom(K (t), LT (t)) = Hom(L*(t), LT (t)) — Ext{yy (L™ (t), L*(t)) —
— Ext(y) (K (t), LT (t)) — Ext(yy (LT (t), L*(t)) = 0,

Hom(L*(t), L*(t)) ~ Ext(yy (L™ (t), L*(t)) = C.
Thus Ext(yy(K(t), L*(t)) =0. O

Finally the relation Sa = 70 follows from the calculation of the second and the third
terms of the radical filtration for K (t)(,,) and L*(t)(y) for the large m. Indeed,

rad K (t) () / 1ad® K () () = rad® K (t) (1ny/ rad® K () (m) = LT (t) & L™ (1),
and
rad Lt (t) (m)/ rad® LT (t) (m) = rad® LT () () /1ad® LT () (y = LT (t). O
4.8. The case of zero central charge

Lemma 4.14. For t = 0 we have

(1) Ext!(LT(0), LT(0)) = Ext'(L~(0), L~ (0)) = Ext'(LT(0), L~ (0)) = 0;
(2) Ext'(L~(0), L1(0)) = C;

(3) Ext'(L*(0),C?) =C;

(4) Ext*(CoP,L*(0)) =C

Proof. In view of Lemma 3.4 we already have that Ext'(L*(0), L=(0)) = 0. Let us show
that Ext'(L*(0), L~ (0)) = 0. Recall the proof of Lemma 4.11(3). By the same argument
as in this proof, we obtain that if the sequence

0— L (0)—=M—L"0)—=0
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does not split then M is a quotient of the induced module Ind} $%(V5). By (13) Section 4.3
in [21] this induced module does not have a simple constituent isomorphic to L~(0).
Therefore there is no such non-split exact sequence. This completes the proof of (1).

By Lemma 4.4 (b) Ext'(L~(0),C°) # 0 and Ext'(C°?, L*(0),) # 0. To prove that
other extensions are not zero, consider the Kac module K°P(0). We claim that it has the
following radical filtration

K°P(0)/rad K°(0) = C°P, rad K°P(0)/rad® K°P(0) = L~(0),
rad® K°P(0)/rad® K°P(0) = L*T(0), rad® K°P(0)/rad* K°P(0) = C°P,
rad* K°P(0) = 0.

Indeed, K°P(0) = U(g_1)v for a go-invariant vector v. Moreover,
Homg (K (0), L*(0)) = 0,

since (L*(0))% = 0. That proves K°P(0)/rad K°P(0) = CP. Furthermore, g1g_1v = 0,
hence the maximal submodule N of K°P(0) is generated by g_jv. Thus, N is a quotient
of the induced module Indy A%(V;) and hence N has a simple cosocle isomorphic to
L~(0). That implies rad K°P(0)/rad? K°?(0) = L~(0). Finally the rest follows from the
self-duality of K°P(0).

By considering different subquotients of length 2 of K°P(0) we obtain non-trivial
elements in Ext'(C°?, L=(0)), Ext’(L~(0), LT (0)) and Ext'(L*(0),C). To finish the
proof of Lemma we have to show that all above Ext! groups are one-dimensional.

Recall that L~(0) ~ ad”. Using the duality and change of parity functor it suffices
to check that Ext'(C,ad), Ext' (C,ad*) and Ext'(ad*,ad) are one-dimensional. First we
have Ext'(C,ad) = Der(g)/g = C, see [9]. Next,

dim Ext'(C,ad*) < dim Homg, (g1 ® g1,ad*) =

Now let us prove that dim Extl(ad*, ad) < 1. The Lie superalgebra g has a root decom-
position with even roots

and the odd roots
A = {+e1, teg, 3,61 +ea + 3,61 — €2 — €3, —€1 — €g + €3, —€1 + 2 — €3}

Note that the odd roots +¢; have multiplicity 2 and the roots 1 + e + €3, €1 — €2 —
€3, —€1 — €2 + €3, —€1 + €2 — €3 are not invertible. Let A™ (respectively, A™) be the
set of roots aey + bea + ces such that a + 2b + 4¢ > 0 (respectively, a + 2b + 4c < 0).
The decomposition A = A* U A~ defines a triangular decomposition g =n~ & hSnT.
Every finite-dimensional simple g-modules has a unique up to proportionality lowest
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weight vector. The lowest weight of ad is v = —e3 — €3 and the lowest weight of ad™ is
A = —&1 — €9 —e3. Let M be an indecomposable g-module of length 2 with socle ad and
cosocle ad®. Then M is generated by the lowest weight vector of weight A\. Hence M is
a quotient of the Verma module M (A) := U(g) ®upen-) Ca. Multiplicity of weight v in
M(X) equals 2 since the multiplicity of the simple root €1 is 2. However, v appears as a
weight of ad™ as well as a weight of ad, hence ad appears in M (A with multiplicity at
most one. The proof is complete. 0O

Theorem 4.15. The Ext quiver of the category Qf is

m

=N
[ ]

~p— ~v—

Therefore the category Qd is equivalent of the category of milpotent representations of
the path algebra of the above quiver modulo some relations. These relations include o =

By =0, pBa = dypu.

Remark 4.16. We suspect that there is no other relations but this fact is not needed for
the description of the corresponding category for the Jordan algebra.

Proof. Lemma 4.14 implies that the above quiver is the Ext quiver of {)f , where the left
vertex corresponds to LT (0), the right vertex to L™(0) and the middle vertex to C°P.
We have to prove the relations.

Showing that da = 0 is equivalent to proving that there is no g-module R with socle
isomorphic to L™ (0) and cosocle isomorphic to L~ (0) with middle layer of the radical
filtration C°P. In the proof of Lemma 4.14 we constructed a module M of length 2 with
socle L*(0) and cosocle L™ (0) which is a quotient of the Verma module M()). Since
the multiplicity of weight v in M (), M and R is the same and equals 2, we obtain that
M = M(M\)/N and R = M(\)/Q, where N and @ are maximal submodules of M (\)
which intersect weight spaces of weights A and v trivially. Since @ + N satisfies the same
property, maximality of NV and @ implies N = Q.

Next we show that 8y = 0. It suffices to prove that there is no g-module F' with socle
isomorphic to L~(0) and cosocle isomorphic to L*(0) with middle layer of the radical
filtration C°P. Assume that such F' exists. Then zF = 0. We have an isomorphism of
g-modules

(F/soc F)°P ~ g.

Choose a non-zero v € F9. Then by above isomorphism for any x € g_; such that
[,2] # 0 we have v € Imz. Since zF = 0 and [z,z] = 22? = cz, we obtain zv = 0.
Therefore g_jv = 0. On the other hand, g;v = 0 as L~ (0) does not have gy components
isomorphic to g;. That implies v € F'®, that leads to a contradiction.
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Finally we show the relation pSa = dyu. If for the sake of contradiction we assume
that this relation does not hold, then there exists a g-module T" with the following radical
filtration:

L~(0)
Cora LH(0)
L—(0) @ Cep

I (0) @ LT (0)

(11)

In particular we have radT = T’ @ T", where T’ has cosocle C°P and T” has cosocle
L*(0). Note that 2T # 0 and 22T = 0. This implies that the submodule 2T has length
2 with cosocle L™ (0) and socle L*(0). Therefore 27" C T'. On the other hand, 27" # 0.
A contradiction. O

Theorem 4.17. The category J-mody consists of infinite number of equivalent blocks, each
block is equivalent to the category of nilpotent representations of the quiver

o 2
()s ()
| ¥ ]
with relations Ba = 0.

Proof. It follows immediately by applying Proposition 3.1 to quivers obtained in Theo-
rem 4.12 and Theorem 4.15 0O

Remark 4.18. This quiver has wild representation type, see (12), Table W in [6].
5. Representations of Kan(n), n > 2

Let A(n) be the Grassmann superalgebra generated by n > 2 odd generators
{&,...,&} such that &€ + & = 0. Define odd superderivations %7 1=1,...,n
on A(n)

0 0§ _s J(uwv)  Ou

o Ow) _ Ou v
0&; 0¢; Yr0g 04

+ (fl)lu‘uafi.

(12)

Then the linear superspace J, = A(n) @ A(n), is a Jordan superalgebra with respect to
the product “.”

[ "~ O0f Og
f-9=1fg f-9="Ffg f‘g::{f,g}:(*l)‘f'E :
— 08 0&;

(13)

Here A(n) is a copy of A(n), f,g € A(n), both homogeneous and {f,g} is Poisson
bracket. The Zs-grading of J, = (Jn)5 + (Ja)7 is given by (Jn)5 = A(n)s + A(n)1
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and (J,)7 = A(n); + A(n)g. The superalgebra J, is called the Kantor double of the
Grassmann Poisson superalgebra and it is simple Jordan superalgebra for any n > 1.
Observe that J; is isomorphic to the general linear superalgebra M 1+ 1 (this superalgebra
will be considered in next Section) and for n > 2, J,, is exceptional.

To determine the TKK construction of Kan(n) we will introduce another set of gen-
erators of J,,, namely if n = 2k define

L (of  Of > 1 <8f of > ,
P = 5 o, Nitk=—F7% - , i=1,...,k, 14
K V2 (3771' M+ itk V2 \0n  Ongai ! (14)

while if n =2k 4+ 1 add ny = %g%ﬂ. The Poisson bracket may be rewritten as

k
of dg af dg 190f 9dg
Lg} = (~1)/f! <——+ 29) 42 2L29 ) 15
gk = (1) (; Oni ik Oy Oy 2 Ono Ono (15)

where the last summand only appears for odd n.

The Poisson Lie superalgebra po(0|n) can be describe as A(n) endowed with the
bracket [f,g] = —{f, g}. Let spo(0|n) = [po(0|n),po(0|n)], then H(n) = spo(0|n)/C
can be identified with the set of f € A(n), such that f(0) = 0 and deg f < n. To
define a short grading on g = H(n) denote by g1 (g—1) the subspace generated by
the monomials which contain 741 and do not contain 7, (71 and 741, respectively).
For n = 2k + 1 the subspaces A; and As generated by all monomials from g_; which
contain or do not contain generator 7, respectively, may be identified with two copies
of A(2k — 2) in n2,..., Nk, Nkt2, N2k Moreover A; + Ag is a Jordan superalgebra with
respect to multiplication

vy =lla,x,yl, a=nonks1.

Observe that - corresponds to the usual associative product in A; and the Poisson bracket
in As. For the case of even n = 2k choose a different set of generators 71, 75, = 12 — Npt1,
N3y -5 Mnls Mpyo = N2 + Nmt1, g3, ---» N2n. The subspace A; (the space Ag) is
generated by monomials that contain (don’t contain) n5. Then Ay @ Az is the Kantor
double Ja,,_3.

5.1. Construction of spo(0,n)-modules with short grading

As we already mentioned in Introduction representations of Kantor double superal-
gebra were studied in [26]. The authors have shown that Kan(n) n > 4 (over field of
characteristic zero) is rigid, i.e. has only regular irreducible supermodule and its op-
posite. The fact that the H(n), the TKK of Kan(n), has non-trivial central extension
spo(n) was not taken into consideration. In [18] it was corrected, the authors proved that
under the same restriction on characteristic of field and number of variables there exists
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(up to change of parity) only one-parameter family V(«) of irreducible supermodules.
Finally in [27] it was shown that every irreducible finite dimensional Jordan Kan(n)
supermodule for n > 2 and characteristic of field is different from 2 is isomorphic (up to
change of parity) to V(«). In this section we study indecomposable Kan(n)-modules.

Assume that g = H(n), n > 4 then the universal central extension of g, g is isomorphic
to the special Poisson algebra: spo(0,n). It is useful to recall that po(0,n) is equipped
with invariant bilinear form w

wify =22

o€+ o5,

The form w is symmetric and even (resp. odd) if n is even (resp. odd). It induces the
invariant form on g = H(n).
We also equip g and § with a Z-grading (consistent with Zo-grading):

0=0200=90 209 199D DJn-3), (16)

where the linear space g; is generated by monomials of degree i+2,¢ > —2. Theng_o = C
is one-dimensional center, g is orthogonal algebra o(n) and g; is o(n)-module A**2V |V
the standard o(n)-module. This grading is called standard. We use the notation

gt = @gu g = @gi-

i>0 i>0

Consider the subalgebra p = g+ @ §_o C §. Let N be a go-module, extend it to p-
module by setting g; N = 0,7 > 0, 2 = tIdy. Then IndgN = U(9)®u(p) N is a g-module
by construction and it is a g-module if ¢ = 0. One has the following isomorphism of
go-modules

IndiN ~ N @ AV. (17)

Let M;(X) be an even simple gg + g—2-module with o(n)-highest weight A and central
charge t. We extend it to a simple p-module by setting g*+M;(\) = 0. Every simple
finite dimensional p-module is isomorphic to M;(A) or M;(A)°P.

Finite dimensional irreducible representations of both g and § were described by
A. Shapovalov in [23], [24]. Let us formulate these results here.

Theorem 5.1. Let n > 4, § = spo(n).

(1) Every simple §-module is a quotient of the induced module Indth()\) or
Indth()\)"p. Ift =0, this quotient is unique, we denote it by L.

(2) Let wy denote the first fundamental weight of go = o(n). If the highest weight X\ is
different from lwi, 1 € ZZ9 then the induced module Indth(/\) is simple for every t.
Ift # 0 then Indth(O) is also simple.
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(3) If k > 1 then IndgMo(kwl) is an indecomposable module length 4 with simple socle

and cosocle isomorphic to Ly, and two other simple subquotients isomorphic to
op op
Lik—1)w, @nd Lijyqy,, -
(4) There exists a homomorphism 7 : Indg+Mo(2w1)°p — Indg+Mo(w1) and Im~y is an
indecomposable module of length 2 with socle L, and cosocle L;le'
(5) IndpMy(0) has length 3 with one dimensional socle and cosocle.
(6) If k>0 and t # 0 then IndyM;(kw:) is a direct sum of two non-isomorphic simple

modules. There exists an exact complex
IndSMy(0) — Ind§My(wy) — IndSMy(2wy) — ...
such that the image of every differential is a simple g-module.

Let I; = Indf,’@t be the smallest induced module. Since I; ~ A(V) as a o-module, I
has a short grading. For ¢ # 0, the I; is simple and we denote it by S(¢). On the other
hand, Ij is the restriction of the coadjoint module po to spo and hence it has length 3
with one-dimensional trivial module in the cosocle and socle and the coadjoint g-module
at the middle layer of the radical filtration. If we denote by S(0) the coadjoint module
of g = H(n), then we have the following diagram for the radical filtration of I

C C
S(0) forevenn  and S(0) for odd n.
C Cor

Using the form w it is easy to check that I} ~ I, for even n and I ~ I? for odd n.
Proposition 5.2. Let n > 4.

(1) There are no spo(n) modules which admit very short grading.
(2) A simple object in spo(n) — mody is isomorphic to C, C°P, S(t) or S°P(t).

Proof. The short sly-subalgebra of § lies in go = 0(n). Therefore an irreducible quotient
of I nd%Mt()\) has a chance to have a short grading only if M;(\) has a short grading as a
module over gg. On the other hand, the isomorphism of o-modules Ind%Mt()\) ~ M;(\)®
A(V') implies that the induced module never has a very short grading. Furthermore, for
non-zero A the induced module does not have a short grading. On the other hand, the
induced module is not irreducible only for A = kw;. Thus, it remains to consider the
cases A = 0 and A = w;. We already considered the former case. Let A = w; and t # 0.
By Theorem 5.1(6) Indth(wl) = S(t) @ S’ for some simple module S’ not isomorphic
to S(t). Since Indth (w1) does not have the short grading, the same is true for S’. For
=0 5(0) is isomorphic to L? and the statement follows from Theorem 5.1(1). O
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Remark 5.3. It follows from Proposition 5.2(1) that category K an(n)—mod% is trivial.
This is a consequence of the fact that Kan(n) for n > 2 is exceptional, [13].

Remark 5.4. Note that S(¢) is isomorphic to AV = &7 A’V as a go-module and S(0)
is isomorphic to @' ATV

5.2. The case of non-zero central charge
Lemma 5.5. If t # 0 then
Ext'(S(t),S°P(t)) =0, Ext'(S(t),S(t)) =C.

Proof. Note that for even n the first assertion follows from Lemma 3.3. Let us prove the
first assertion for odd n. By (8) we have

Ext!(S(t), 5 (t)) = Exty(Cy, S(t)) = Ext: (C, S(t)).

The latter equality follows from the fact that the center always acts semisimply on an
extension of two non-isomorphic simple modules.

Every finite-dimensional gg-module is semisimple. Therefore we have to show that the
relative Lie algebra cohomology H'(g",go; S°P(t)) vanishes. Let us write the cochain
complex calculating this cohomology:

0= C° = Homg, (€, (1)) 25 €' = Homg, (g7+, 57 (1)) 2 €7

= Homg, (A2g*, 59()) 2

By Remark 5.4 dim C° = 1. By Theorem 5.1 H°(g™", go; S°P(t)) = C°P. Therefore d; # 0.
To determine the kernel of dy we observe that g; generates g™+, hence any 1-cocycle is
determined by its value on g;. Thus, Kerds is a subspace in Homg,(g1,.5(¢)°?) and the
latter space is one-dimensional. Hence Im d; = Ker dy and the assertion is proved.

Now we will deal with the second assertion. We observe that S(¢) has a non-trivial
self-extension given by the induced module [ ndg(C[z] /(z — t)2. Therefore it suffices to
prove that there is no self-extensions of S(¢) on which z acts semisimply. Then again by
Shapiro’s lemma it suffices to prove H (g™, go; S(t)) = 0.

Consider again the chain complex:

0 — C° = Homg, (C, S(t)) & €' = Homy, (g, S(t)) 22 C2

= Homy, (A%gt+, S(t) 2 ...

If n is odd then dimC® = 1 and H%(g",go,5(t)) = C, hence d; = 0. By the
same argument as above a l-cocycle is determined by its value on g;. By Remark 5.4
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dim Homg, (g1, S(t)) = 1, which gives dimKerd, < 1, in other words, there is exactly
one up to proportionality ¢ € Homg, (g1, S5(t)). In the monomial basis of § the map ¢
can be written in the following form: fix v € C; then

P(&i&i&k) = &i(&;(&xv))-

We claim that ¢ can not be extended to a one cocycle in C*. Indeed, let u = £;£5€3, then
{u,u} = 0 and the cocycle condition on ¢ implies up(u) = 0. But the direct computation
shows

u(&1(62(83v))) = {u, &1} (€2(83v)) — &1({w, §21(E3v) + §162({u, E31v)).

Since {u, &3} C gov = 0, the last summand is zero. Continue the computation and get

u(€1(£(&))) = (£283)(&(&v)) — &1((&163)(E3v)) = v — Gu+ Efv =tv # 0.

That proves Kerd, = 0.

If n is even the proof goes similarly to the case of an odd n. In this case we have
H%g%,90,5(t)) = C, dimC® = 2 and hence Imd; is one-dimensional. Furthermore
dim Homg, (g1, S(t)) = 2. We can choose a basis ¢, in Homg, (g1, S(t)) such that ¢ is
given by the same formula as in the odd case and ¢ € d1(C°). The same calculation
shows ¢ does not extend to a cocycle. This completes the proof. 0O

Proposition 5.6. Ift # 0 the category g-mod; has two equivalent blocks Q0 and Q; . The
equivalency of these blocks is established by the change parity functor. Both Q and Q;
contain only one up to isomorphism simple object S(t) and S(t)°P respectively. Moreover,
Qf is equivalent to the category C[x]-modules with nilpotent action of x.

Proof. The first two assertions follow immediately from Proposition 5.2 and Lemma 5.5.
To prove the last assertion we consider the subcategory F™(g-mod;) of modules annihi-
lated by (z — t)"™. Then Indg(C[z}/(z — t)™ is projective in F™(g-mod;) by Lemma 5.5
and its indecomposability. Since every object of §-mod/ lies in some F™(g-mod}) the
statement follows. O

Corollary 5.7. If t # 0 every indecomposable module in g-mod] is isomorphic to
IndyClz]/(z — )™ or (IndyClz]/(z —t)™)°P.

Corollary 5.8. If t # 0, then every block in the category J-mod; is equivalent to the
category of Clx]-modules with nilpotent action of x.
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5.8. The case of zero central charge
Lemma 5.9.

(1) If n is even then Ext'(C,S(0)) = Ext'(S(0),C) = C? and Ext'(C°,S5(0)) =
Ext'(S(0),C) = 0.

(2) Ifn is odd then Ext'(C, S(0)) = Ext'(S(0),C) = Ext!(C°?, $(0)) = Ext! (5(0), C°P)
=C.

Proof. Tt suffices to show that Ext'(C,S(0)) = C2? for even n and Ext'(C,S(0)) =
C = Ext*(C°?, 5(0)) since the rest follows from duality and Lemma 3.3. Both statement
follow from the well-known fact about derivation superalgebra. Indeed, it is shown in [9]
that Der g/g = C? for even n and Derg/g = C'" for odd n. These derivations are given
by the Poisson bracket with &7 ...&, and by the commutator with the Euler vector field
S, &0;. The latter derivation defines the standard grading of g and §. O

To compute other extensions between simple modules we first consider only extensions
in g-mod; which we denote Exté.

Lemma 5.10. Let M = Ind§, Mo(w1) andn > 5. Then Exty (M, 5(0)) = Ext, (M, S(0)°)
= 0. In the case of n =5 we have Exté(M,S(O)Op) =0 and Exté(M,S(O)) =C.

Proof. Let us start with the case of even n. The weight argument, Lemma 3.3, implies
Exté(M, S5(0)°P) = 0. Let us show that Exté(M7 S5(0)) = 0. By Shapiro’s lemma

Exty (M, 5(0)) = Extyy (Mo(w1), S(0)) = H' (g7, Mo(w1)* ® S(0))
= H'(g", go; Mo(w1)* ® S(0)).

The computations are similar to ones in the proof of Lemma 5.5. We are looking for
¢ € Homyg, (g1 ® Mp(w1),S(0)) which can be extended to a cocycle in Homg, (gt ®
Mpy(w1),S(0)). We use the fact that My(wy) = V is the standard representation of
go = o(n) and

S(0) = éB A(V).

Therefore it is not hard to compute that Homg, (g1 ® Mo(w1),S(0)) is a 4-dimensional
and we can write down a basis {¢; | j < 4} homogeneous with respect to the standard
grading. We identify V with A}(V) C S(0) and denote by ~ : V — A" 1(V) C S(0) the
natural gg-isomorphism. We set for every f € g1, x € V

p1(f,2) = Le(2), @a(f,2) = fz, @s(fi0) =LY (@), walf,2) = LD (@),
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where

Ly =Y 0N, LY =3 (0:0;(M0, LY = Y (9:0;00(f)30;0:.
i=1

i<j i<j<k

We first notice that 4 is a coboundary by construction, thus we can assume without loss
of generality that the restriction of our cocycle on g; is given by ¢ = caps + ¢33 + C494.
Let us show that if ¢ extends to a cocycle then ¢; = ¢ = c3.

First, we take f = &&&, * = &, then {f,f} = 0. Hence o({f,f},z) =
2{f,o(f,z)} = 0. But ¢a(f,2) = pa(f,x) = 0 and

2{f,o(f,2)} = 2¢c3{f, p3(f,7)} = 2c3{£1&263,£16485 - - . &} = 20362838485 - - &n-

This implies ¢g = 0. Next we take z = &1, f = 16586 + 28384, Again we must have
2{f,o(f,x)} = 0. Therefore

{f,0(fi2)} = —c2{€1€586 + 28384, 61628384} + ca{€1€586 + €28384, 8586 - - - En}
= —28586628384 = 0.

Thus ¢y = 0.
It remains to check that ¢4 can not be extended to a cocycle. Let f = &1 (&2€s +€4&5),

u={f, [} = 28&384&5, ® = &. Then

pa(f, ) =30, a=E&...&n,
@4(u’x) = 2{f7 @4(.]07 I)} = 2{f7 5304} = 2§1§2@~

Let g = &(61&3 + 4&5), v = {g, 9} = 261£3€4&5- Then ¢4(g, x) = 0, hence p4(v,z) = 0.
On the other hand, {u,v} = 0, therefore

0=ws({u,v},2) = {u, pa(v,2)} — {v, pa(u, )} = —{261€36485, 261620} = 4638485800

A contradiction.

The case of odd n for n > 7 can be proven similarly. The only difference is that both
Homyg, (Mo(w1),S(0)) and Homg, (My(w1), S(0)°?) are 2-dimensional, the former space
is spanned by s, ¢4 and the latter is spanned by ¢1, ©s.

Finally, for n = 5 all above arguments are applicable except the proof that co = 0.
In this case if we set p2(g2, Mo(w1)) = 0 we obtain a cocycle which gives a non-trivial
extension in Exté(M, S(0)°P). O

It follows from (23] Theorem 3 that there exists a homomorphism 7 : Indg, Mo(2w:)
— 1T nd§+ Mpy(wr) and Im+y is an indecomposable module of length 2 with socle L,,, and

cosocle L3P . Let Q denote the quotient of M = Indg+M0(w1) by Im .

20)1
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Lemma 5.11. Let n > 5. We have Exté(Q, S(0)) = Ex‘cé(Q7 S(0)°P) = 0.
Proof. Consider the exact sequence
0—>Imy—-M—Q—0.
Let S = 5(0) or S(0)°P. Consider the corresponding long exact sequence
-+« — Homg(Im~, S) — Exty(Q, S) — Exty (M, S) — ... (18)

We have Homg(Im~,S) = 0 and Exté(M, S)=01ifn > 5 o0r S = S(0). Therefore
Exty(Q,5)=0. O

Proposition 5.12. Let t =0 and n > 5. Then Q is projective in the category g-mod;.

Proof. Tt suffices to check that Exté(Q, S) = 0 for all simple S in g-mod;. For S = S(0) or
S°P(0) this is Lemma 5.11. For S = C consider the exact sequence0 - R — Q — F — 0
where F' = S(0)°? and R = C? for even n, R = C @ C° for odd n. The corresponding
long exact sequence degenerates

0 — Homg(R,C) % Extl(F,C) - Ext}(Q,C) — Ext}(R,C) = 0.

By Lemma 5.9 6 is an isomorphism and hence Ext;(Q,C) = 0. The case S = C is
similar. O

Let (™) .= Indg(C [2]/(z™*+1) and J™ be the unique maximal submodule of 7™ and
Q=Y be the quotient of J(™) by the unique maximal submodule in Indg+ Zm c M),

Lemma 5.13. Let n > 5, m > 1. Then ziQ(m’l)/z”lQ(m*l) is isomorphic to @ for
i=0,...,m. Moreover, QU1 is projective in Fl(ﬁ-modlo).

Proof. The first assertion is a consequence of the isomorphism z7/Q(m=1) /z7+1Q(m=1) ~
22Qm=1 /i 4+1Q(m=1) and the observation that Q™1 /2Q(™~1) is indecomposable of
length 3 with the cosocle S(0)° and socle C? (resp. C @ C°P) for even (resp., odd) n.
Lemma 5.9 implies that the module with these properties is unique up to isomorphism,
hence it is isomorphic to Q.

The second assertion follows from Lemma 5.11 by induction on m. 0O

Now we are going to prove the following

Theorem 5.14. Let n > 5. The category J—modlo has two blocks, each of these blocks is
equivalent to the category of C|x]-modules with nilpotent action of x.
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Proof. For n > 6 it follows from the fact that Jor(Q(™~1) is projective in the corre-
sponding subcategory J-mod;. Now we consider the case n = 5. We would like to show
that the module @ is a projective cover of S(0)° in g-mod}. It suffices to show that
1
Exty(Q, S(0)) = 0.
Consider a unique up to proportionality

¢ € Homg, (g1 ® Mo(w1), Mo(w1)).

This map defines gt module structure on My(w;) := My(w1) @ My(w1)°P, assuming
that go acts by zero. Note that the extension of Indg+M0(w1) by S(0) is a quotient
of Ind§+ Mpy(wy) by the maximal proper submodule of Indg+M0(w1)0p. Therefore the
exact sequence (18) implies that a non-trivial extension of by S(0) is a quotient of
Indg+ My (wy). We will show that every quotient of Inalg+ Mo (w1) which lies in g-mod/
is in fact a quotient of Indﬁ+ My(wr). Indeed, consider a quotient Ind§+MO (w1)/N for
some submodule N. Let v and v’ be gy highest weight vectors in My(w;) and My (w;)°P
respectively and € g_; be a go-highest vector. Then N contains zv and xv’ as the
weight of these vectors is 2w;. Let y € go be the lowest weight vector. Then

yrv = zyv + [z, ylv = [,y]v = V.

Therefore the whole I ndg+M0 (w1)°P is contained in N. Now one can complete the proof
of the theorem as in the casen > 6. O

Corollary 5.15. Let n > 5. Fvery indecomposable module in the category J—modlO 1
isomorphic to Jor(Q™=1) or Jor(Qm—1)op,

6. Representations of Mf: 1

Let M, ., be the associative superalgebra

A B
M, = |Ae M,, D& M,, BE Muxm,C € Mpxn
’ C D
1A o 0 B
|0 D c 0.7
0 1

Jordan (resp. Lie) superalgebra M, (resp. gl(m,n)) has the same underlying vector
superspace and multiplication is a symmetric (resp. Lie) product A - B = $(AB + BA)
(resp. [A, B] = AB — BA). These superalgebras are also related to each other via the
TKK construction.

Denote by E;; 1 <1,j < 4, the standard basis of gl(2|2) consisting of the elementary
matrices. We have the direct sum decomposition
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0l(2[2) = sl(2]2) ® C(Ey1 + Ez2 — Es3 — Eua),

where s[(2|2) is the subalgebra of gl(2]2) of matrices with zero supertrace.

Next, the element zy = %(Eu + Fao + FE33+ Ey4) is central in 5[(2]2) and the quotient
of s1(2]2) by the ideal generated by zp is the simple Lie superalgebra g = psl(2]2).
Then Lie(Mffl) = psl(2|2), see [8]. The short (Jordan) sl(2)-grading is given by h =
E11 — Ey + E33 — Eyq and sl(2) subalgebra is spanned by h, F13 + F34 and Eoy + Eys.

We fix the standard basis of the Cartan subalgebra of g:

hi = En1 — Eaz,  hy = Es3 — Eya.
Note that g has an invariant symmetric form (, ) induced by the form str XY on gl(2]2).
Therefore H?(g,C) and H!(g, g) = Der(g)/g are isomorphic. Furthermore, [9], Der(g)/g
is isomorphic to s[(2), and the action of s[(2) on H?(g,C) equips the latter with the

structure of the adjoint representation. Therefore the universal central extension g has
a 3-dimensional center Z with the basis z_1, 29, 21 such that

[E1s, Eay] = —[Eas3, E14] = 21, [E31, Ego] = —[E32, Eq1] = z_1. (19)

Furthermore, the Lie algebra sl(2) acts on g by derivations, [22]. If E, H, F form the
standard s[(2)-triple, then

H(ZZ) = 2222, E(Zl) = Zi41, F(Zz) = Zi—1,

A B 0 B+C* A B 0 B
ECD_OO’HCD_—CO’
FAB_ 0 0
C D| |Cc+B* 0|’

where A, B,C, D are 2 x 2-matrices and a b = d b] .
c d —c a

The eigenspace decomposition of ad H defines a short grading on § consistent with
the superalgebra grading

§=0-2D0-1D 80D g1 ® go,
where

A 0
0 D

, 80 = 0 0

N 0 B N
@ Cxzo, 912[ 1 and @402 = Czy.
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This action can be lifted the action of the group SL(2) as follows. For any ¢ =

u v
w z

mined by

€ SL(2) each element in gg is stable under ¢ while the action on g7 is deter-

#(E14) = uE14 + vEs39, d(Es2) = wE4 + 2E3s. (20)

Let M be a finite-dimensional irreducible representation of § then by twisting the
action of § on M by ¢ we obtain another irreducible representation M? of §. Moreover,
since M is irreducible, it admits central character x, i.e., every central element z acts on
M as the scalar x(z). If x(20) = ¢, x(2_1) = p and x(z1) = k, then M? admits central
character ¢(x) defined by new coordinate components ¢’ p’ and &’

—1
d K| |u v|l|lc —k||u v
p | |w z|l|lp —c||w =z '
6.1. Simple modules in §-mody and §-mody

Irreducible modules for M;", were studied in [19] and recently in [15]. The classification
is obtained for any field of characteristic # 2. In this section we describe categories
M{fl—mod% and Ml'fl—modl via corresponding categories g-mod; and @—mod% over the
field C.

The category g-mod of all finite dimensional representations decomposes into blocks
g-modX and (g-mod*)°? according to the generalized central character. The action of
SL(2) allows to define the canonical equivalence of blocks §-mod* and g-mod ¢ Form
the description of SL(2)-orbits in the adjoint representation it is clear that we can reduce
the study of blocks to the three essential cases

(1) Semisimple: k =p =10, ¢ # 0;
(2) Nilpotent: ¢ =k =0, p # 0;
(3) Trivial central character k =p =c =0,

The Lie superalgebra §/ Ker x is isomorphic to s1(2(2), spo(0,4) and psl(2|2) respectively.
The following Lemma is straightforward but very important.

Lemma 6.1. The group SL(2) acts on the isomorphism classes of modules in §-mod; and

in g-mody by twist M — M9, g € SL(2). Moreover, if M € g-mod;* (resp., §-mody) then
2

M9 € @—modlg(X) (resp., ﬁ—modf(X)), In particular, the categories §-mod and g-mody

2 2

are equivalent to the categories @—modf(X) and ﬁ—modf(X) respectively.
2

Now we are going to classify simple objects of g-mod{* and g-mody. Denote by O,
2
(resp. Oz) the SL(2)-orbit defined by the equation ¢ — kp = 1 (resp. ¢? — kp = 4).
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Theorem 6.2. §-mody is nonempty if and only if x is semisimple and lies on Op. If
2
c=1,k=p=0, then §-mody has two up to isomorphism simple object V and VP,
2
where V is the standard s1(2|2)-module. For any x € O1, the subcategory §-mody has two
2

up to isomorphism simple objects V9 and (VP)I for a suitable automorphism g € SL(2).

Proof. In the nilpotent and trivial case we can use the results of Shapovalov and the
previous Section to see that po(0,4) and H(4) ~ ps((2]|2) do not have modules with very
short grading.

Assume now that y is semisimple and furthermore & = p = 0. We can make these
assumptions without loss of generality due to Lemma 6.1. Thus, our problem is reduced
to the classification of simple sl(2|2)-modules with very short grading. Let L be such
a module. Consider a Borel subalgebra gy @ g1 of s[(2|2) with two even simple roots
B1, B2 and one odd simple root o. We may choose the simple coroots 8) and 33 so that
h = BY + B5. Let A be a highest weight of L with respect to this Borel subalgebra.
Observe that

c=(\2a+ B — fBo) (21)

The condition of L to have a very short grading implies A(h) = 1, hence we have two

possibilities
(1) MBY) =1, M(B5) =0;

Note that we also have a(h) = —2. Thus, if v is highest weight vector and X € g_,, is
a root vector. We must have Xv = 0. Therefore (A, ) = 0. Hence in the first case L
isomorphic to the standard representation of sl(2|2) and in the second case L is isomor-
phic to the dual of the standard representation with switched parity. The action by the

0 1
element l € SL(2) maps one representation to another. Hence the statement of

-1 0
the Lemma. O

Corollary 6.3. J-mody is nonempty if and only if x is semisimple and lies on O;. Let
2

x = (¢,p, k) € O1, ¢ # 0 then there are two up to isomorphism simple object W and

WP in J-modX where W = (wy,ws) is (1,1)-dimensional space and the action of M,

. 2 ;

is given

Eiiwj = 57;7]"(1)]' ’L,] = 1, 2
E12U)1 = (C — 1)’[1)2 E21w1 = pwa2 E12w2 = kw1 EQle = (C — ].)U)l

Proof. Let ¢ = 1, p = 0 = k. Consider standard s(2]2) module V then Jor(V) = W,
where W is standard module for Mf:l. Suppose that x' = (¢/,p', k') € Op then the
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k' d—1

oo oo The rest follows from applying

element of SL(2) which takes x to x’ is [

this automorphism to W. 0O

Now let us assume that £ = 0. Let p = go @ g1 ® Czp ® Cz_,1. We denote by K, the
induced module IndjC,. Note that K, is an object in §-mod;".

Theorem 6.4. (a) If x # 0 and x¢ Os, then §-mod{* has two up to isomorphism simple
modules. In the case k = 0 these modules are isomorphic to K, and KP. If k # 0, the
simple objects of §-mod* are obtained by a suitable twist.
(b) If x = 0, then §-mod;* has four up to isomorphism simple modules: ad,ad?,C,C°P.
(c) If ¢ = 2,k = p = 0, then §-mod* has four up to isomorphism simple modules
SV, A2V, (S2V)°P and (A2V)°P. For an arbitrary x € Oz simple objects of §-mod;* are
obtained from those four by a suitable twist.

Proof. If x is nilpotent or trivial the result is indeed a consequence of Proposition 5.2.

Now we will deal with semisimple case and assume that £k = p = 0. We use notation
of the proof of Theorem 6.2. Assume that L is simple g = s[(2]2)-module with short
grading. Then as in the proof of the theorem we can easily conclude there are at most
four possibilities for the highest weight A of L:

(1) A(BY) =2, A(B5) = 0;
(2) A(BY) =0, A(BS) = 2;
(3) A(BY) = A(By) = 1;
(4) A(BY) = A(By) = 0.

By the same argument as in the proof of Theorem 6.2 we obtain the condition (A, ) =0
in the first three cases. This gives L ~ S?V, L ~ A2V* and L ~ ad°? in the cases (1), (2)
and (3) respectively. In case (4) L is the unique quotient of the Kac module K, . Recall
that the latter module is simple if and only if \ is typical, i.e.,

()\,O[) 7&07 (Aaa—’—ﬁl)'i_]- 750, ()\704—"_52) -1 #07 ()‘7054_51 +52> 750
For atypical case we have the following three possibilities
(1) (A\,@) = 1, then L is isomorphic to A%V
(2) (A\,a) = —1, then L is isomorphic to S?V*;

(3) (A\,) =0, then L is the trivial module C.

The first two cases will give ¢ = +2. The twist by SL(2) completes the proof. O
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Next we will calculate Jor(K,). Let x, p and C, as above. Then C,, = Cv where
hiv = hov = E19v = E34v = z1v = 0, while zgv = ¢ and z_yv = p. Then the basis of
Ky ~ IndyC, is formed by the vectors

EQERESESy  where 6, € {0,1}.
Then R = Jor(K,) is generated by Ri1 = E42E32v, Roy = E31FE39v, Rip = E3ov and

Ro1 = Es1EgpFE3v. If By 1 < 4,5 < 2 is the standard basis for M1+,1 we have the
following action on R.

EiiRjj = bijRj; EwRij = $Ri; 4,5,k =0,1
EisRy = %(1 — )Ry Ey Ry = %R21

E19Rg = %(1 + )Ry Ey 1 Ryp = %R21 - %pRlz
E1aR12 =0 Es1Ris = $Reo — Riy
E12Ry1 = (14 ¢)Ri1 — (1 — )Ry E3 Ry = —3pR1

0 -1
Rescaling, applying automorphism given by matrix 1 0 ] which interchange action

of z; and z_; we obtain the following action on R

EiRj; =6 ;Rj; EwRij=3iRy; i,j,k=0,1
E13Ry1 = 3Ry Exn Ry = 3Rn

E12Rg0 = 5(1+ ¢)Riz + 5kRa EnRyy = 3(1 — ¢)Ry1 — $pRi2
E12Ri2 = —1kRyy EyRip = §Ry — (1 — ¢)35R1y
E12Ro = (14 ¢)Riy — 3R En Ry = —3pRiy

If x = 0, R is a regular representation of Mffl. If c=2,p=0=k then Jor(S?V) =
(R11 + Rao, Ry3) is a submodule in R, while Jor(A2V) = R/Jor(S?V). We now can
formulate the following

Corollary 6.5. (a) If x = (¢,p, k) and x ¢ O2, then J-mod]* has two up to isomorphism
simple modules R and R°P.

(b) If c = 2,k = p = 0, then J-mod{* has four up to isomorphism simple modules
Jor(S2V), Jor(A?V) and their opposite. For an arbitrary x € Oy simple objects of
J-mod* are obtained from those four by a suitable twist.

6.2. Description of §-mody

Lemma 6.6. There are no non-trivial self-extensions of V in the category of s1(2]2)-
modules semisimple over z.

Proof. See Lemma 3.4. O
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Theorem 6.7. Fvery block of J-mod% is equivalent to the category of finite-dimensional
Clz, y]-modules with nilpotent action of x,y,

Proof. Theorem 6.2 implies that g-modX has two up to isomorphism simple object L and
L°P and we may assume without loss of 2generality that L = V. Moreover, by Lemma 3.3
each block has one simple object. Thus, we may assume that this simple object is V.
Let R = C[[z,y]] and T C R be the maximal ideal. We will define R ® g-module V
such that for every m the g-module V(™) = V/ImV is indecomposable of finite length
1 x

y l+zy
of SL(2,R). Set V := (R ® V)9. By a straightforward computation we obtain that the
action of Z on V is given by the formulae:

with all simple subquotient isomorphic to V. Let g(z,y) = [ be an element

zo = 14+ 2zy, 21 = =2z, z_1 — 2y(1 + zy).

This implies the desired properties of V. We also see that V is a free rank 1 module

over R and that zg — 1, 21, z_1 act nilpotently on V(") with the degree of nilpotency m.

We claim that V(™) is projective in the category F™(g-mod¥) consisting of modules on
2

which (z — x(2))™ acts trivially. It suffices to show that every short exact sequence in
F™(§-mod¥) of the form
2

0=V -sM-=Vm 50

splits. Indeed, this sequence splits over R /Z™, and hence Lemma, 6.6 implies splitting over
g. Categories @—mod% and J—mod% are equivalent therefore the statement follows. 0O

6.3. Typical blocks

We call x typical if K, is simple or equivalently if §-mod;* has two up to isomorphism
simple modules K, and K}?. The condition that x is typical is given by

F—kp#—4, x#0.

First, we assume that x is semisimple and p = k = 0,¢ # 0. We construct a certain
deformation of K, over the local ring S := C|[[x,, t]]. Our construction is similar to the
one in the proof of Theorem 6.7. Let K := IndiC[[zg — ¢ — t]] and K, := (R ® K,)?

where g is the same as in the proof of Theorem 6.7. The action of Z on K, is given by
the formula

20—~ (L4 2zy)(c+t), 21— —2z(c+1t), 2_1 — 2y(1 + zy)(c+ t). (22)

Let J denote the maximal ideal of S and IAQ((m) = K,/J™. Let F™(g-mod)) denote
the full subcategory of §-mod;* consisting of modules on which (z —x(z))™ acts trivially.
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Lemma 6.8. Assume p =k =0 and ¢ # 0. Then there are no non-trivial self-extensions
of Ky in the category F'(§-mody).

Proof. We need to show that H'(g,§s; K} ® K ) vanishes. Since K, is the induced

module, by the Shapiro Lemma it suffices to prove H'(p, pg; K,). Write down the corre-
sponding cochain complex:

0 — Homg, (C, K, ) = C2 2 Homy, (g1, K,) = C2 — ... (23)
Furthermore, H!(p,pg; K ) = C. Hence the image of dy is one dimensional. Modulo this

image we can assume that our cocycle has the form p(z) = 2*v for all = € g, where v
is the highest weight vector. Let us write the cocycle condition

zpo(x) = xx*v = —[z,z"]v = (cdet x)v = 0.
Clearly it does not hold for ¢ # 0. Hence the statement. 0O

Lemma 6.9. Let k = p = 0 and ¢ # 0. The module IAQ((m) is projective in F™(§-mod;*)
and Endg(K',((m)) ~S/Jm.

Proof. For projectivity we note that an exact sequence in F™(g-mod;*) of the form
0= K™ M- K, —0

splits over gg @ Z. On the other hand, Lemma 6.8 implies the splitting over §. The
second assertion is a simple consequence of the fact that dim End@(f(;m)) coincides with
the length of K, and hence equals dimS/J™. O

Theorem 6.10. Assume that x is typical and semisimple. Then the category §-mod;* is
a direct sum of two blocks, each block is equivalent to the category of finite dimensional
modules over polynomial algebra Clx,y,t] with nilpotent action of x,y,t.

Proof. The first assertion is a consequence of Lemma 3.3 and the second follows from
Lemma 6.9. O

Now let us assume that x is non-zero nilpotent. Without loss of generality we assume
that Kk =c=0 and p # 0.

Lemma 6.11. Assume k = ¢ = 0 and p # 0. Then there exists a unique up to isomor-
phism non-trivial self-extensions Rx of K, in the category F(§-mody). Moreover, Kx
is projective in F*(g-mody).



38 I. Kashuba, V. Serganova / Advances in Mathematics 370 (2020) 107218

Proof. Retain the notations of the proof of Lemma 6.8. The argument with the cochain
complex goes exactly as in this proof except the last step where we indeed obtain a
non-trivial one-cocycle p(z) = z*v. Hence we have one non-trivial self-extension.

For the second assertion we would like to show

H'(8,80: K; ® Ky) = H' (p,pg; Ky ) = 0.
From the long exact sequence we have isomorphisms

H(p,pg; Ky) ~ C ~ H(p, pg; Ky ),
H(p,pg; Ky) ~ C ~ H'(p, pg; Ky)

and hence an injective map

H(p,pg; Ky) — H' (p, pg; Ky).

Consider g5 @ g_; decomposition K v = K, ® K. Then we may assume that the action
of gy is given by the formula z(w,w’) = (zw, p(x)w +2w’). Let ¢ € Homg, (g1, Ky ) be a
1-cocycle. We may assume that ¢(z) = (z*v,0). Then the cocycle condition zi(zx) = 0

becomes
(zx*v, (z*)%v) = (0, pdet 2*21v) = 0.
That implies p = 0. Contradiction. O

We define a g ® C[[t]]-module T}, as follows: T}, = (K, ® K,) ® C[[t]] as a module over
go P g_1 ® Czp and define the action of g; by

z(u, w) = (zu +tz*w, 2w + z*u) ¢ € g1, u,w € K.

Finally we set that z; acts as pt. It is straightforward that T} is indeed a §® C|[[t]]-module
and T /tT), is isomorphic to K.
I+z)~" oy

Next, let g = 0 14
x

1 be an element of SL(2,R). Define S ® g-modules
Qy and Q™ by

Qy = (R®Ty), Q&m) =Qy/T™.
The action of Z on @, is given by

2o (L+2)py, 210 —y°p, 21— pt+p(l+ )2 (24)
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Lemma 6.12. The module Q;m) is projective in F™(§-mod}*) and
Endg(QU™) ~ (S/J™) ® C[4]/(6% —1).

Proof. The proof of the first assertion is similar to the proof of Lemma 6.9 with use
of Lemma 6.11. For the second, define action of § on Q&m) by 0(u,w) = (tw,w). This
defines a g-endomorphism of Qgcm) satisfying #2 = t. The rest follows from comparison
of dimensions. O

The following theorem is a consequence of the previous Lemma and Lemma 3.3.

Theorem 6.13. Let x be typical nilpotent, then §-mod;* (and thus J-mod;*) has two blocks,
each of them is equivalent to the category of finite-dimensional C[z,y, 8]-modules with
nilpotent action of z,y,0.

6.4. Geometry of 3-parameter family of representations of §

We provide here a geometric construction which shades some light on the results of
the previous subsection. We will construct a three-dimensional family of representation
of §. We have

gi = U x C?,

where U is the 4-dimensional irreducible representation of gz = s1(2) @ s[(2) with highest
weight (1,1). For every line £ C C2, we have a commutative subalgebra g, C g1, and it
can be lifted to the subalgebra g, with one-dimensional center Z, C Z. Note that Z, is a
line C3 = Z, thus, we have the map v : P! — P(Z) ~ P2. Now let x € Z*, we say that
¢ is x-compatible if x([ge, g¢]) = x(¥) = 0. To compute 1) consider the realization

o= {30 - |

where (t1,t2) are homogeneous coordinates of ¢. Then
[Xp, Xp| = det B(t221 + 2t1ta20 + t22_1).

0 t1 B
toB* 0

Thus, 1 is the Veronese map. Therefore for every x # 0 there exists at most two choices
of a compatible £. More precisely, for a semisimple xy we have two y-compatible lines,
and for a nilpotent x a y-compatible £ is unique. Let

— g
M, = Indﬁa+gz C,.

If £ = 0 then M, is isomorphic to K. Let
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M ={(x,0)|x #0,x(¥(¢)) = 0}

with obvious structure of smooth complex manifold. By construction M is isomorphic to
a non-trivial SL(2)-equivariant two-dimensional vector bundle on P!. Our construction
defines a vector bundle on M with fiber isomorphic to M, . For every open set i C M, we
thus obtain a representation of the Lie superalgebra O(U)®g. For every point (x, ¢) € M
we obtain a representation of O, , ® g, where O, ; is the local ring of the point. If
Jy.e denote the unique maximal ideal of O, ¢, the quotient O, ¢/ Jy is isomorphic to
Clz1, x2, 23]/ (x1, 2, 23)™. In the previous section we have proved that for a non-zero
semisimple y the g-module

M{™ @0, Ox.e/ T
is projective in F(™ (g-mod;).
6.5. Atypical blocks

We proceed to the description of g-mod;* in the case of an atypical x. This amounts
to considering two cases k =p = 0,c = 2 and y = 0. We start with the first case.

Lemma 6.14. Let k = p = 0,c = 2. There is the following non-split exact sequence

0— S*V = K, = A’V = 0.

Proof. The map C, — A%V, — A2V is a homomorphism of p-modules. Hence by Frobe-
nius reciprocity we have a surjection K, — A?V. On the other hand, K, ~ Coindfgl (Cy)
and SV — $2?V; — C, is an homomorphism of p-modules. Hence we have an injection
52V — K,. Finally, K9 = C,, which implies indecomposability of K. O

By Lemma 3.3 we obtain that g-mod;{* has two blocks obtained from each other
by parity switch. By Lemma 6.9 IA()(Z”) is a projective cover of A2V in F™(g-mod*).
To construct a projective cover of S2V consider the automorphism 7 of § defined by
7 [88] = [BG], 7(20) = 20, T(241) = 251. We have V™ ~ V°P and hence (A?V)™ ~ 52V
Thus, (K}((m))“ is a projective cover of S?V in F™(g-mod;*). The algebra Endg (K}((m) &>
(K ;m))”) is isomorphic to the path algebra of the quiver

Q Y
B _ _ _
S X N [ e i
() ’ ’

Therefore we obtain the following
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Theorem 6.15. Let x be semisimple atypical. Each of two blocks of §-mod* (and J-mod{*)
is equivalent to the category of finite-dimensional nilpotent representations of the quiver
Q with relations R.

Observe that the algebra obtained in Theorem 4.17 is a quotient of (@, R). Hence (Q, R)
has wild representation type.

Now let us consider the case y = 0. We start by describing the projective cover of
ad in g-mod;. Recall that g = psl(2]2). We set g™ := go @ g1. Consider the g™-module
S := g1 ® C with action of x € g1 given by z(y,1) = (0, tr(zy)).

Lemma 6.16. Exté+ (5,C) = Exté+ (S,ad) = 0.

Proof. A simple computation shows that

EXtéJr(gl’C) = Hl(ngagO;gl) = (Ca
Ext; (C,C) = H'(g", g0;C) = 0.

Using the long exact sequence associated with the short exact sequence of g*-modules
0—>C— S — g — 0 we get

0 — Homg+ (C,C) — Exty (g1,C) — Extyy (S,C) — 0,
which implies Extb (5,C)=0.

To prove the second vanishing we note that Ky is both injective and projective in the
category of g*-modules. Let K, be the submodule defined the exact sequence 0 — K/}, —
Ky — C — 0. Since Homg+(S,C) = 0 and Ext;Jr (S, Kyp), we obtain Exté+ (S,K{) =0.
Next we consider the exact sequence

0—C— Kj—ad—0.

Form the corresponding long exact sequence we have an embedding Ext}r (S,ad) —
Ext2; (S, C). We will show that Ext2: (S,C) = H?(g*, go; $*) = 0. Indeed, we have

Homyg, (g1 ® S, C) = Homg, (A%*g; ® S,C) = C.
On the other hand Hl(g*, go; S*) = Extéﬁ (S,C) =0, therefore the differential
d : Homg, (g1 ® S,C) — Homg, (A%g; ® S, C)

is an isomorphism and there are no non-trivial two cocycles. The proof of lemma is
complete. O
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Let P be the maximal quotient of Indg+ (S) which lies in g-mod;. By the Shapiro
lemma we have

Extg(Indg, (5),ad) = Exty(Indg, (S5),C) = 0.

If N is the kernel of the canonical projection Indg+ (S) — P, then Homg(N,ad) =
Homgy(N,C) = 0 and hence Exté(P7 ad) = Exté(P,(C) = 0. Thus, P is projective in
g-mod;. Furthermore, it is not difficult to see that N is generated by a highest weight
vector of weight (2,2) and the structure of P can be described by the exacts sequence

0> C3—> P —ad—0.

Next we define P(™) as the maximal quotient of the induced module Indg(S ®
(S(Z)/(Z)™)). Repeating the argument of the proof of Lemma 6.9 one can show that
P(™) is projective in F™(g-mod)). It is always straightforward S(Z)/(Z)™ is isomor-
phic to Endg(P™). Finally Jor(P(™) is projective in F™(J-mod{) and we obtain the
following

Theorem 6.17. The category J—modlo is equivalent to the category of finite-dimensional
representations of the polynomial ring Clx,y,t] with nilpotent action of x,y,t.

7. Jordan superalgebra of a bilinear form

Let V = V5 + V§ be a Zy-graded vector space equipped with a bilinear form (-|-) :
V x V — C which is symmetric on Vg, skewsymmetric on V§ and satisfies (V5|V;) =0 =
(V7|V5). Then superspace J = C1@&V, where 1 € Jy has a Jordan superalgebra structure
with respect to a product

(al+a) - (B1+b)=(af+ (alb))l +ab+ Ba, «,B€C, a,beV.

Moreover if (|-) is non-degenerate then J is simple. Let dim V5 = m — 3, dimV; = 2n
then the TKK construction of J gives the orthosymplectic Lie superalgebra

osp(m|2n) = { A € gi(m|2n)| (Az,y) + (~)*)(z, Ay) =0, 2,y € V'}.

Denote g = osp(m|2n) with m > 3 and n > 1. In what follows we need the description
of the roots of g

A@Z{i(fliaj)|1§’L<j§k}U{:|:(5z:|:(5])|1§Z<]§n},

if m = 2k i
A ={E(e; ;) |1<i<k1<j<n} = S s even

and
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if m=2k+1is odd.

The semisimple element which defines the short grading on g is h := &Y. The short
s[(2)-subalgebra is spanned by h and e, f. The definition of e, f depends on the parity
of m.If m=2k+1e¢€g.,, f€ g, are roots vector corresponding to the short roots,
form=2kleta=¢e; —¢€2, B=¢c1+c2and e € go D gs, f € g—a ® g—p. In both cases
the short grading g = g[—1] @ g[0] @ g[1] satisfies the condition g, € g[i] iff (y,e1) = 1.
We set J := Jor(g).

7.1. Modules in g-mod;

We choose the Borel subalgebra of g associated with the set of simple roots
01— 02, 0y 0p_1 —Op, O — €1, €1 —E2,...,Ek_1 — Ek, E—1 + €& for m = 2k
and
01 —02,...,0p_1—O0pn, O — €1, €1 —E2y...,Ek_1 — €k, € for m = 2k + 1.

Denote by L(\) the simple g-module with highest weight A with respect to this Borel
subalgebra. The invariant bilinear form on g induces the form on h and h*, the latter is
defined in €, §-basis by

(€i:€5) = i3, (03,05) = =045, (€i,05) = 0.
For p € b* such that (u, u) # 0 we define ¥ € b satisfying v(u") = 2((;—:)) The Casimir
element ) € U(g) is defined by the invariant form acts on L(A) by the scalar (A +2p, A)
where

1 1
p=§Za—§Za.

aEAG a€A7

It was shown in [9] that § = g.

According to [16] the Jordan superalgebra J does not have finite-dimensional one
sided modules due to the fact that the universal enveloping of J is the tensor product
of the Clifford and Weyl algebras. Thus, g—mod% is empty. The classification of simple
objects of g-mod; is done in [19]. We give the proof using TKK here for the sake of
completeness.

Lemma 7.1. A simple finite-dimensional g-module L(\) lies in g-mody if and only if
A =ady for a € Z>g. In this case L(\) is isomorphic to A*(V') where V is the standard
g-module.
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Proof. Let A = >0 a;0; + Zle b;e;. Since L(A) is finite-dimensional we have by the
dominance condition
alZ"'ZanZOa (IiGZ,
bi €Z/2,by > - >bp,>0if m=2k+1,
b; GZ/Z, by > > ‘bk| ifm:2k,
and finally if [ is the maximal index for which b; # 0 we have a,, > [. On the other hand,
since L(A) has a short grading, we have by = (A\,e1) =0 or 1.

First, assume that b; = 1. Consider the odd simple root o« = §,, — €1, then A — «v is
not a weight of L(A). That is possible only if (A,a) = 0. But (A\,a) = a, +b; > 0. A
contradiction.

Therefore, by = 0. Hence A = 2?21 a;6;. To finish the proof we compute the highest
weight of L(\) with respect to the Borel subalgebra obtained from our Borel subalgebra

by the reflections with respect to the isotropic roots d,, — €1,...,01 — €1. Recall the
formula

r (N)Z {,LL—O[ if (,u,oz) 7&0,
“ wif (u, ) = 0.

Thus, we have

!
Wi=To ey - To,—e;(A) = A+ 11 — Zéi,
j=1

where [ is the maximal index such that a; # 0. Since (u,e1) = £1,0 we obtain [ = 1
or [ = 0. Therefore A = ad;. That proves the first assertion. The second assertion is
straightforward. O

Theorem 7.2. The category g-mod, is semisimple. Hence the category J-mody is semisim-
ple.

Proof. We have to show that
Ext!(L(ad,), L(bd1)) = 0. (25)

First we note that if Ext'(L(ad), L(bd;)) # 0 then the Casimir element acts on both
modules by the same scalar. In our case it amounts to the condition

ala+2n—m) =b(b+2n —m).
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Since both a,b are non-negative integers this is only possible if a + b = m — 2n. All
modules in question are self-dual it suffices to prove (25) in the case when b > a or
equivalently

H'(g,95; AV @ A'V) =0
We have the decomposition

= P s°(vp) @ A(Vy). (26)

p+g=c

The highest weight vector v of A%(V') lies in the component S*(V7). We claim that if ¢ €
Homg, (g7 ® A*(V), A*(V))) is a non-trivial cocycle then ¢(g;,v) # 0. Indeed, assume the
opposite. Consider the sequence 0 — L(bd1) — M — L(ad;) — 0 defined by the cocycle
©. The g-submodule of M generated by v is isomorphic to L(ad;) and the sequence splits.
Thus, if there is a non-trivial extension we must have Homg, (g7 ® S%(V3),A%(V)) # 0.
Furthermore, g7 ~ V7 ® Vj as a gg-module, therefore (26) implies that A?(V) must have
a component isomorphic to S¢1(Vf) ® Vg or to S*~1(V;) @ V. This is possible only if
b=a+2,b=a+14+m,b=aorb=a—1+m. The case b = a can be dismissed
right away since there is no self-extension. The condition (25) helps to exclude the cases
b=a+14+m,b=a—1+m. The following lemma completes the proof. O

Lemma 7.3.

Ext!'(A“V, A*T2V) = 0.
Proof. We will show that there is no cocycle ¢ € Homg, (g5 @A%(V), A*(V)). Consider the
restriction ¢ : gg@5%(V7) — S*TH(Vi)®@Vy. Let Xugw € g1 be the element corresponding
to u ® w for u € V7 and w € V5. Then without loss of generality we may assume

o( Xuguw, T) =uAwA x.

In the case when X,z belongs to the Borel subalgebra and x = v is a highest weight
vector of A%(V) the cocycle condition implies

Xugwe(Xugw, V) = Xugw(u Aw Av) =0.

Since X,gwv = 0, the above condition actually implies X, g (u A w) = 0. Now we use
the formula

Xugw(u Aw) = (wjw)u A u.

Let u be a weight vector of weight §; and w = w’ + w” where w’, w” are weight vector
of weights €1 and —e; respectively. Then X, g, is a sum of root vectors in gs, 4., and
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05, —e,» hence X, g, belongs to the Borel subalgebra. But (w|w) # 0. Thus we obtain a
contradiction with the cocycle condition. O
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