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Abstract We introduce a symmetric monoidal category of modules over the direct limit
queer superalgebra q(∞). This category can be defined in two equivalent ways with the aid
of the large annihilator condition. Tensor products of copies of the natural and the conatural
representations are injective objects in this category. We obtain the socle filtrations and
formulas for the tensor products of the indecomposable injectives. In addition, it is proven
that the category is Koszul self-dual.
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1 Introduction

Recently new symmetric monoidal categories have attracted considerable attention. Among
them are the categories Trep g of modules over direct limit g of classical Lie algebras gen-
erated as abelian tensor categories by the natural and conatural representations. Namely, g
is one of the following: gl(∞) = lim−→ gl(n), o(∞) = lim−→ o(n) and sp(∞) = lim−→ sp(n).

In [2] it is proven that these categories have enough injective objects and that every object
has a finite injective resolution. Furthermore, the algebra of endomorphisms of an injective
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cogenerator can be described explicitly. With the aid of this description, it follows that the
categories are Koszul. In addition, it is shown in [14] that these categories satisfy a natural
universality property.

The categories Trep g of direct limits of basic classical Lie superalgebras g = gl(∞|∞)

and g = osp(∞|∞) were studied in [15]. It was shown there that no new categories
appear, namely that the categories Trep gl(∞|∞) and Trep gl(∞) are equivalent and that
the categories Trep osp(∞|∞) and Trep o(∞) are equivalent as symmetric monoidal cat-
egories. Furthermore, one can use the properties of the category Trep osp(∞|∞) to prove
that Trep o(∞) and Trep sp(∞) are equivalent as monoidal abelian categories.

In contrast with gl(∞|∞) and osp(∞|∞), for the strange Lie superalgebras q(∞) and
p(∞) we obtain new interesting symmetric monoidal categories. We believe that these cat-
egories satisfy certain universality conditions analogous to the the category Trep gl(∞) and
Trep o(∞). The case of p(∞) is discussed in [15] and [16].

The goal of this paper is to investigate in detail the category Trep q(∞) of the direct limit
queer Lie superalgebra q(∞). We give two equivalent intrinsic definitions of Trep q(∞)

using the large annihilator condition. Then we classify the simple and indecomposable
injective modules of Trep q(∞) and show that the category is Koszul self-dual. The latter is
especially interesting since it is known that the category of finite-dimensional modules over
q(n) is not Koszul, even more - the algebra of endomorphisms of an injective cogenerator
is not quadratic, see [9]. In the present paper we also classify the blocks of Trep q(∞) and
express the Ext-groups between the simple objects using the shifted Littlewood–Richardson
coefficients, [4, 19].

Another motivation to study the category Trep gl(∞) arises from the fact that the Lie
superalgebras q(n) have very interesting representation theory and combinatorics. Repre-
sentations of q(n) in the tensor algebra of the natural representation were originally studied
by A. Sergeev, [17, 18]. He discovered a duality analogous to the celebrated Schur-Weyl
duality, which often is referred as the Sergeev duality. The Sergeev duality relates the rep-
resentations in question with projective representations of the symmetric group. Recall that
the characters of the latter representations are given by Schur Q-functions, see for example
[7]. If one considers representations of q(n) in the tensor algebra of the natural representa-
tion and its dual, the situation is more complicated. In particular, the representations are not
completely reducible and the algebras of intertwining operators are not semisimple. This
situation was studied in [6], where the latter algebras are presented in a diagrammatic form.
These algebras are generalizations of Brauer and walled Brauer algebras. The Koszul alge-
bra which appears in our category, is a subalgebra of this diagrammatic algebra. This is
related to the fact, that we have a tensor functor �n from our category Trep q(∞) to the cat-
egory of finite-dimensional q(n)-modules but this functor does not map simple objects to
simple objects.

We would like to remark that the category Trep gl(∞|∞) was used in [3] as a technical
tool for constructing the abelian envelope of the Deligne’s category RepGl(t) when t is
integer. It seems that a similar construction can be obtained for typeQwhich we will address
in a subsequent paper.

The organization of the paper is the following. In Section 2 we collect some useful
results on associative superalgebras and finite-dimensional representations of q(n). The two
equivalent definitions of Trep q(∞) and a classification of its simple objects are included
in Section 3. In Section 4 we classify the indecomposable injective objects of Trep q(∞)

and obtain their socle filtration. In this section we also prove that the category is a symmet-
ric monoidal category. In Section 5 we compute the extension groups between the simple
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objects in Trep q(∞) and show that every object has a final injective resolution. We also
derive a formula of the tensor product of the indecomposable injectives in terms of shifted
Littlewood-Richardson coefficients. The Koszulity and self-dual Koszulity of the category
is proven in Section 6.

2 Preliminaries

In this paper we work in the categories ofA-modules for a Lie superalgebra or an associative
superalgebraA over C. Thus, all objects are equipped with Z2-grading. We use the notation
Hom(·, ·) for the supervector space of allA-equivariant linear maps. For abelian categories
we consider only morphisms that preserve parity, which we denote by hom(·, ·). The Ext-
groups in the abelian category of A-modules will be denoted by exti (·, ·).

All multiplicities and dimensions will be considered as elements of Z[ε]/(ε2 − 1). We
set θ = 1 + ε. Note that the multiplication by θ is an injective map Z≥0[ε]/(ε2 − 1) →
Z≥0[ε]/(ε2 − 1). Hence we say that ζ ∈ Z≥0[ε]/(ε2 − 1) is divisible by θ if ζ = ξθ for
some (unique) ξ ∈ Z≥0[ε]/(ε2 − 1) and we set ξ = ζ

θ
. At the level of Grothendieck rings

we let ε[M] = [�M], where � is the switch of parity functor.
We next state the super-analogue of the classical Schur’s Lemma. For the proof, see

§1.1.6 in [10].

Lemma 2.1 Let A be a finite or countable-dimensional superalgebra over C and M be a
simple A-module. Then either End(M) = C or End(M) is isomorphic to the superalgebra
C[ξ ]/(ξ2 − 1) with an odd generator ξ .

We say that a simple A-module is of M-type if End(M) = C or, equivalently, if M

and �M are not isomorphic. Alternatively, a simple A-module is of Q-type if End(M) =
C[ξ ]/(ξ2 − 1) or, equivalently, if M and �M are isomorphic. From now on we set C1 =
C[ξ ]/(ξ2 − 1).

Let A and B be two superalgebras, M be a simple A-module and N be a simple B-
module. If both M and N are of Q-type, we set

M̂�N := M ⊗C1 N.

Then M̂�N is a simpleA ⊗ B-module. We have the natural decomposition

M�N � M̂�N ⊕ �(M̂�N).

We also have a natural embedding C1 ↪→ EndA⊗B(M̂�N) defined by ξ 	→ ξ ⊗ 1.
LetA = U(k) be the universal enveloping of a superalgebra k, thenA is a Hopf superal-

gebra and M ⊗ N is equipped with anA-module structure. If M and N are of Q-type, then
we define

M̂⊗N := M ⊗C1 N.

We will also need the following general lemma.

Lemma 2.2 Let A be a semisimple associative unital superalgebra over C and let e ∈ A
be a primitive idempotent of A.
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(i) The following identity holds

A =
⊕

L∈IrrA
L �End(L) L∗, (2.1)

where IrrA denote the set of isomorphism classes of irreducible left A-modules.
(ii) Ae is an irreducible A-module.
(iii) Let M be a finite-dimensional A-module. Then

[M : Ae] = dim eM

dimEndA(Ae)

and
dim eM = dimHomA(Ae,M).

In what follows we recall several facts about the representation theory of the Lie superal-
gebra q(n). We call a weight κ integral dominant if the irreducible q(n)-module Ln(κ) with
highest weight κ is finite-dimensional and can be lifted to the representation of the alge-
braic supergroup Q(n). It follows from [11] that the integral dominant weights are of the
form a1δ1 + · · · + anδn, with ai ∈ Z satisfying the conditions

(1) if ai �= 0, then ai > ai+1;
(2) if ai = 0, then ai ≥ ai+1.

Let Mn(κ) denote the Verma module with highest weight κ and Xn(κ) be the maximal
finite-dimensional quotient of Mn(κ). Then Xn(κ) has the following geometric inter-
pretation. Let Pκ be the maximal parabolic subgroup of Q(n) such that κ induces a
one-dimensional representation of the even subgroup (Pκ)0 of Pκ . Let O(κ) be the vector
bundle over Q(n)/Pκ corresponding to the irreducible representation of Pκ with character
−κ . Then

Xn(κ) � H 0(Q(n)/Pκ,O(κ))∗

(see for example Lemma 2 in [5]). Certain bounds for the multiplicities of the simple Q(n)-
subquotients of Hi(Q(n)/Pκ,O(κ))∗ can be deduced from [12]. We will use the following
statement about the structure of Xn(κ) which follows from these bounds.

Proposition 2.3 Let κ = a1δ1 + · · · + anδn be an integral dominant weight such that
a1 > a2 > · · · > ak > 0, ak+1 = · · · = ak+r = 0, 0 > ak+r+1 > · · · > an. The length of
Xn(κ) is at most 2a1+···+ak−ak+r+1−···−an ;

3 Category Trepq(∞)

3.1 Lie Superalgebra q(∞).

Let V = V0 ⊕ V1 and W = W0 ⊕ W1 be two countable-dimensional supervector spaces,
equipped with an even non-degenrate pairing

(·, ·) : W × V → C.

Denote by 1W and 1V the identity endomorphisms on W and V , respectively. Let P : V →
V be an odd linear operator such that P 2 = −1V . Define the action of P on W by setting

(Pw, v) = −(−1)p(w)(w, Pv).

Note that P 2|W = 1W .
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Following [8], we fix dual bases {ei, i ∈ Z \ 0} of V0 and {fi, i ∈ Z \ 0} of W0 such that
(fi, ej ) = δij . Set ēi = Pei and f̄i = Pfi . Then we have (f̄i , ēj ) = δij .

Let q(∞) be the Lie superalgebra of finitary linear operators in End(V )⊕End(W) which
satisfy

(Xw, v) = −(−1)p(w)p(X)(w,Xv), [X, P ] = 0.

Henceforth we set g = q(∞).
One can easily see that V and W are g-modules. We denote by T p,q the tensor product

V ⊗p ⊗ W⊗q which is also a g-module. One can easily check that

T 1,1 = V ⊗ W � g ⊕ �g,

where g is considered as the adjoint g-module. We also have that

g = SpanC{ei ⊗ fj + ēi ⊗ f̄j , ei ⊗ f̄j + ēi ⊗ fj | i, j ∈ Z \ 0}.
Let gn � q(n) be the Lie subalgebra spanned by ei ⊗ fj + ēi ⊗ f̄j and ei ⊗ f̄j + ēi ⊗ fj

for all −� n
2 
 ≤ i, j ≤ � n

2 �. Then q(∞) is the direct limit

q(∞) = lim−→ gn.

Denote by cn the subalgebra of codimension 1 in the centralizer of gn in g such that g =
gn ⊕ cn. Note that for all n, cn is isomorphic to q(∞).

3.2 Large Annihilator Condition

Define a left exact functor �n : g − mod → gn − mod by setting

�n(M) := Mcn .

The direct limit
� := lim−→ �n : g − mod → g − mod

is also a left exact functor.
Clearly, we have a canonical embedding �(M) ↪→ M . We say that M satisfies the large

annihilator condition if �(M) = M . Note that modules satisfying this condition form an
abelian subcategory of g − mod. Furthermore, one can easily see that if M and N satisfy
the large annihilator condition, the tensor product M ⊗ N also satisfies it. In particular,
V , W , and hence T p,q , satisfy the large annihilator condition. The following lemma is
straightforward.

Lemma 3.1 Let M and Y be g-modules. Assume that M satisfies the large annihilator
condition. Then there is a canonical isomorphism

Homg(M, Y ) � Homg(M,�(Y )).

We call a g-module M integrable if for any n > 0 it can be lifted to a representation of
the algebraic group GL(n).

Definition 3.2 The category Trep g of tensor representations of g is the full subcategory of
g − mod whose objects M satisfy the following properties.

(1) M is an integrable g-module.
(2) M has finite length.
(3) M satisfies the large annihilator condition.

871



D. Grantcharov, V. Serganova

It is clear that T p,q satisfies (1) and (3). Furthermore, the restriction of T p,q to g0 has
finite length, see Theorem 2.3 in [13]. Hence T p,q has finite length as a g-module. Therefore
T p,q is an object of Trep g.

Consider the Cartan subalgebra h of g spanned by ei ⊗fi +ēi ⊗f̄i and ei ⊗f̄i +ēi ⊗fi for
i ∈ Z \ 0. Note that the even part h0 of h is the diagonal subalgebra of g. Let {εi, i ∈ Z \ 0}
be the system in h∗

0 dual to the basis ei ⊗ fi + ēi ⊗ f̄i of h0. Denote by � the Z-linear span
of {εi, i ∈ Z \ 0}.

Lemma 3.3 If M ∈ Trep g, then M is h0-semisimple and the weights of M belong to �.

Proof Note that M is semisimple over the Cartan subalgebra hn of gn. Together with the
large annihilator condition this implies that M is h-semisimple since h is the direct limit of
hn.

3.3 Highest Weight Category

Throughout the paper we will use the following “exotic” total order on Z \ 0:
1 ≺ 2 ≺ · · · ≺ −2 ≺ −1.

In particular, the positive numbers are smaller than the negative ones.
Let n ⊂ g be the subalgebra spanned by ei ⊗ fj + ēi ⊗ f̄j and ei ⊗ f̄j + ēi ⊗ fj for all

i ≺ j . Then b = n ⊕ h is a Borel subalgebra of g and we can define the category O with
respect to b. More precisely, O is the full subcategory of g-modules consisting of finitely
generated modules that are semisimple over h0, and that are n-locally nilpotent.

We denote byO′ the full subcategory ofO consisting of modules which satisfy the large
annihilator condition, and by O′

int the subcategory of O′ of integrable modules. It is easy
to check that Lemma 3.3 holds for the category O′

int , namely, that that the weights of all
modules in O′

int belong to �.
SupposeL is a simple highest weight module inO′

int . Then, as shown in [11], the highest
weight of L is of the form

a1ε1 + · · · + akεk − a−lε−l − · · · − a−1ε−1 (3.1)

with positive integers ai such that a1 > · · · > ak and a−1 > · · · > a−l . Hence we have
a bijection between the dominant weights in � and the strict bipartions (λ, μ), where λ =
(a1, . . . , ak) and μ = (a−1, . . . , a−l ).

For any strict partition λ of r we set |λ| = r , denote by l(λ) the number of parts (nonzero
components) of λ, and by p(λ) the parity of l(λ). For a strict bipartition (λ, μ) we set

p(λ,μ) = p(λ) + p(μ).

For simplicity, for small (bi)partitions, we will use their corresponding Young tableau.
For example � will denote the strict partition (1), and (�,�) will stand for the strict
bipartition ((1), (1)).

Lemma 3.4 If p(λ,μ) = 0, then there exist two up to isomorphism simple modules V (λ, μ)

and �V (λ,μ) in O′
int with highest weight (λ, μ). If p(λ, μ) = 1 then there is a unique up

to isomorphism simple module V (λ,μ) inO′
int with highest weight (λ, μ), and this module

is of Q-type.
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Proof Let k = l(λ) and l = l(μ). Let M be a simple module of highest weight (λ, μ),
and let C(λ, μ) be the (λ, μ)-weight space of M . Then C(λ, μ) is a simple U(h)-module.
It is easy to see that ei ⊗ fi + ēi ⊗ f̄i and ei ⊗ f̄i + ēi ⊗ fi act trivially on C(λ, μ) if
k ≺ i ≺ −l. ThusC(λ, μ) is a simple module over the Clifford algebra with k+l generators.
The statement follows from the representation theory of Clifford algebras. Namely, if k +
l is even, then the corresponding Clifford algebra is a matrix algebra equipped with Z2-
grading and hence it has two up to isomorphism simple modules, V and �V . If k + l is
odd, the Clifford algebra is a direct sum of two matrix algebras, however it is simple as a
superalgebra and has a unique up to isomorphism simple module V � �V .

Lemma 3.5 Every module in O′
int has finite length.

Proof For a bipartition (λ, μ), denote by M(λ, μ) the corresponding Verma module. Let
X(λ, μ) be the maximal quotient of M(λ, μ) which is in O′

int . Since every module in O′
int

has a finite filtration by highest weight modules, it suffices to check that X(λ, μ) has finite
length.

Let n > |λ| + |μ|. Let Yn(λ, μ) be the gn-submodule of X(λ, μ) generated by a highest
weight vector of X(λ, μ). Then

X(λ, μ) = lim−→ Yn(λ, μ).

On the other hand, Yn(λ, μ) is a quotient of Xn(λ, μ). By Proposition 2.3 the length of
Xn(λ, μ) stabilizes. Hence X(λ, μ) has finite length.

3.4 Polynomial Representations and Sergeev Duality

By definition, the polynomial representations of g are those that occur in tensor powers of
V . We recall some facts related to the Sergeev duality. It is proven in [17] that the centralizer
Hr of g in V ⊗r is a semisimple superalgebra which we call the Sergeev algebra. Irreducible
representations ofHr (up to change of parity) are parametrized by strict partitions of size r .
We denote by S(λ) the irreducible representation of the Sergeev algebraHr associated with
λ. Note that S(λ) is of M-type (respectively, Q-type) if p(λ) = 0 (respectively, p(λ) = 1).
By e(λ) we denote a primitive idempotent ofHr such thatHr e(λ) � S(λ).

For any r > 0 we have a decomposition:1

V ⊗r =
⊕

p(λ)=0

V (λ,∅) � S(λ) ⊕
⊕

p(λ)=1

V (λ,∅)̂�S(λ), (3.2)

where, in both sums, λ runs over the set of all strict partition of r .
Similarly, we have

W⊗r =
⊕

p(λ)=0

V (∅, λ) � S(λ) ⊕
⊕

p(λ)=1

V (∅, λ)̂�S(λ). (3.3)

For simplicity, we set V (λ) := V (λ,∅) and W(λ) := V (∅, λ).

1Although the result of Sergeev is for finite-rank queer Lie superalgebras, it is easy to extend it to ‘(′∞) by
taking direct limits.
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3.5 Littlewood-Richardson Coefficients

By f
μ
λ,ν we denote the Littlewood-Richardson coefficients of type Q:

f
μ
λ,ν = dimHomg(V (μ), V (λ) ⊗ V (ν)).

Another way to define Littlewood-Richardson coefficients is by using the branching law
for the Sergeev algebra. Henceforth we setHp,q = Hp ⊗ Hq .

Lemma 3.6 If |λ| = p and |ν| = r , then

f
μ
λ,ν = dimHomHp,r (S(λ) � S(ν), S(μ)) = dimHomHp+r (Ind

Hp+r

Hp,r
S(λ) � S(ν), S(μ)).

Proof Then we have
V (λ) = e(λ)V ⊗p, V (ν) = e(ν)V ⊗r

and
V (λ) ⊗ V (ν) = e(λ) ⊗ e(ν)(V ⊗(p+r)).

By Sergeev duality we obtain

V (λ) ⊗ V (ν) =
⊕

|μ|=p+r,p(μ)=0

V (μ) � (e(λ) ⊗ e(ν)(S(μ))) ⊕
⊕

|μ|=p+r,p(μ)=1

×V (μ)̂�(e(λ) ⊗ e(ν)(S(μ))).

If p(λ)p(ν) = 0, then e(λ)⊗ e(ν) is a primitive idempotent inHp,r . By Lemma 2.2(iii) we
have that

dim e(λ) ⊗ e(ν)(S(μ)) = dimHomHp,r (S(λ) � S(ν), S(μ)).

If p(λ)p(ν) = 1, then e(λ) ⊗ e(ν) is a sum of two primitive idempotents corresponding to
two irreducible representations of Hp,r such that one is obtained from the other by parity
switch. We again have that

dim e(λ) ⊗ e(ν)(S(μ)) = dimHomHp,r (S(λ) � S(ν), S(μ)).

The second equality is a consequence of the Frobenius reciprocity.

Corollary 3.7 If f μ
λ,ν �= 0, then |λ| + |ν| = |μ|.

Recall that θ is introduced in Section 2. Note that by Theorem 1.11 in [4],

f
μ

�,ν
=

{

0, if ν /∈ μ − �,

θp(ν)p(μ)θ, if ν ∈ μ − �.
(3.4)

3.6 The CategoriesO′
int

and Trepg Coincide

Lemma 3.8 Let M be a g-module isomorphic to V ⊕n. Then there exists a subspace U ⊂ V

with dimU = nθ , such that the symmetric algebra S(V ⊕n) is generated by S(U⊕n) as a
g-module.

Proof We use the isomorphism of g-modules

S(M) �
⊕

r1,...,rn∈Z≥0

Sr1(V ) ⊗ · · · ⊗ Srn(V ).
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Furthermore, if V (λ) occurs in Sr1(V ) ⊗ · · · ⊗ Srn(V ), then λ has at most n rows. To show
this, we use the fact that all V (μ) that appear as direct summands of V (η)⊗Sr(V ) have the
property that μ−η is contained in a horizontal r-strip. For the latter we use the Pieri formula
for Schur P -functions (see for example (5.7) in §III.5 of [7]) and the fact that the character
of V (λ) is a multiple of the corresponding Schur P -function (and also of the Q-function).

Therefore the highest weight vectors belong to Sr1(U) ⊗ · · · ⊗ Srn(U), where U is the
span of ei and ēi for i = 1, . . . , n.

Remark 3.9 Let G be the group of all linear operators on V ⊕ W that preserve the pairing
(·, ·), and that commute with P . Then G is a subgroup of the group of automorphisms
of g. Like in the case of gl(∞) (see Theorem 3.4 in [2]) , the large annihilator condition
implies that for any γ ∈ G, the twisted module Mγ is isomorphic to M . Let W denote the
normalizer of h in G. Then for any s ∈ W, if M is a highest weight module with respect to
s(b), it is also a highest weight module with respect to b.

Lemma 3.10 Every simple module in Trep g is isomorphic to V (λ, μ) or �V (λ,μ).

Proof Let L be a simple module in Trep g. It suffices to prove the existence of a b-singular
vector in L.

Let v ∈ L be a non-zero weight vector. It is annihilated by some cn. We consider the
parabolic subalgebra p of g with Levi part l = gn ⊕ cn and whose abelian nilradical m is
isomorpic to Wn

̂�V ′, where V ′ is the standard cn-module and Wn is the costandard gn-
module. In particular, m is isomorphic to (V ′)⊕n as a cn-module. By Lemma 3.8, there
exists a finite-dimensional subspace m′ ⊂ m such that U(m) = S(m) is generated over
cn by S(m′). Since L is integrable, the abelian subalgebra m′ acts locally nilpotently and
therefore for some N ≥ 0 we have SN(m′)v = 0. But then SN(m)v = 0. The latter implies
that the space Lm of m-singular vectors in L is nontrivial..

Since L is irreducible, Lm is an irreducible l-module. On the other hand we note that Lm is
isomorphic to a cn-submodule of Sk(m) for some k. HenceLm contains a (b∩l)-singular vector.

We now pick a nonzero b ∩ l-singular vector w in Lm. Let b′ = (b ∩ l) ⊕ m. Then w

is a b′-singular vector, and hence L is a highest weight module with respect to the Borel
subalgebra b′.

It is not difficult to see that b′ = s(b) for some s ∈ W. The statement follows from
Remark 3.9.

Theorem 3.11 The category Trep g coincides with the categoryO′
int .

Proof Lemma 3.5 implies that O′
int is a subcategory of Trep g. On the other hand, the

inclusion Trep g ⊂ O′
int follows from Lemma 3.10.

4 Injective Modules in Trepg

4.1 Decomposition of Mixed Tensor Powers

For any strict bipartition (λ, μ) we define the g-module

Z(λ,μ) :=
{

V (λ) ⊗ W(μ), if p(λ)p(μ) = 0,
V (λ)̂⊗W(μ), if p(λ)p(μ) = 1.
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It is clear from the Sergeev duality that Z(λ,μ) is a submodule of T p,q for p = |λ|,
q = |μ|.

Let S(λ, μ) be theH|λ|,|μ|-module defined by

S(λ, μ) :=
{

S(λ) � S(μ), if p(λ)p(μ) = 0,
S(λ)̂�S(μ), if p(λ)p(μ) = 1.

Sergeev’s duality (3.2) implies the following decomposition

T p,q =
⊕

|λ|=p,|μ|=q,p(λ,μ)=0

Z(λ,μ) � S(λ, μ) ⊕
⊕

|λ|=p,|μ|=q,p(λ,μ)=1

Z(λ,μ)̂�S(λ, μ).

(4.1)

Moreover, we have the following identities involving the primitive idempotents.

e(λ) ⊗ e(μ)
(

T p,q
) =

{

Z(λ,μ), if p(λ)p(μ) = 0,
Z(λ, μ) ⊕ �Z(λ,μ), if p(λ)p(μ) = 1.

(4.2)

4.2 General Properties of the Functor �n

We now prove a lemma that is somewhat surprising.

Lemma 4.1 Let M be a g-module satisfying the large annihilator condition. Then Homg

(C, M) = Homg0(C, M).

Proof We have the obvious inclusion Homg(C,M) ⊂ Homg0(C,M). To prove that equal-
ity holds we show that Mg0 ⊂ Mg. Let v ∈ Mg0 . By the large annihilator condition
(cn)1v = 0 for some n. But (cn)1 and g0 generate g. Hence gv = 0.

Corollary 4.2 For any n > 0 and any module M in Trep g we have �n(M) = M(cn)0 .

Proof The statement follows by restricting M to cn and using Lemma 4.1.

Consider the restriction functor Trep g → Trep g0. If we define Trepk g as the sub-
category of modules in Trep g whose simple submodules are of the form V (λ, μ) with
|λ| + |μ| ≤ k, then the restriction functor maps Trepk g to Trepk g0.

In a similar way we define the subcategory (gn − mod)k of gn − mod. It is clear that �n

maps Trepk g to (gn − mod)k .

Lemma 4.3 If n � k, then the functor �n : Trepk g → (gn − mod)k is exact.

Proof Consider the restriction to g0. It is easy to see that the statement is true for Trepk g0
by the semisimplicity of the latter category. Now the lemma follows from Corollary 4.2.

4.3 Injectivity of T p,q

Sergeev’s duality implies that Z(λ,μ) contains a highest weight vector of weight (λ, μ).
Therefore we know that V (λ,μ) is a subquotient of Z(λ,μ) and hence of T p,q .

Let V̇ (λ, μ) denote the maximal integrable highest weight g0-module with highest
weight (λ, μ). This module is simple (see §4 of [2]).
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Lemma 4.4 The highest weight g-module V (λ, μ) contains a g0-submodule isomorphic to
V̇ (λ, μ).

Proof Pick up a highest weight vector v ∈ V (λ, μ) and consider the submodule U(g0)v.
This is a simple g0-module with highest weight (λ, μ).

Lemma 4.5 (i) If Homg(V (λ, μ), T p,q) �= 0, then |λ| = p and |μ| = q.
(ii) If Homg(T p,q , T r,s) �= 0, then p − r = q − s ≥ 0.

Proof (i) Let Ṫ p,q = V
⊗p

0 ⊗ W
⊗q

0 . By Proposition 5.4 in [2], if Homg0(V̇ (λ, μ), Ṫ p,q) �=
0, then |λ| = p and |μ| = q. Since T p,q is a direct sum of several copies of Ṫ p,q the
statement follows from Lemma 4.4. Part (ii) follows by a similar reasoning.

Lemma 4.6 Let M, N,L be modules in Trep g. Then:

Hom(M ⊗ L, N) � Hom(M,�(HomC(L,N))).

Proof Recall the following isomorphism for all g-modules M, N,L:

Hom(M ⊗ L,N) � Hom(M,HomC(L,N)).

Using this isomorphism, the statement follows directly from Lemma 3.1.

Lemma 4.7 We have the following isomorphisms of g-modules

�(HomC(V , T p,q)) = T p,q+1 ⊕ (T p−1,q )⊕pθ , �(HomC(W, T p,q))

= T p+1,q ⊕ (T p,q−1)⊕qθ .

Proof We have V = Vn⊕V ′ andW = Wn⊕W ′ where Vn (respectively,Wn) is the standard
(respectively, costandard) gn-module and V ′ (respectively, W ′) is the standard (respectively,
costandard) cn-module. Recall that Homcn(V

′, (V ′)⊗r ⊗ (W ′)⊗s) �= 0 only if r = 1, s = 0
by Lemma 4.5. Hence we have

�n HomC(V , T p,q) = Homcn

(

V, V ⊗p ⊗ W⊗q
)

= Homcn

(

V ′ ⊕ Vn, (V
′ ⊕ Vn)

⊗p ⊗ (W ′ ⊕ Wn)
⊗q

)

� Homcn

(

V ′, V ′ ⊗ V
⊗(p−1)
n ⊗ W

⊗q
n

)⊕p⊕ Homcn

(

Vn, V
⊗p
n ⊗ W

⊗q
n

)

� (V
⊗(p−1)
n ⊗ W

⊗q
n )⊕pθ ⊕ V

⊗p
n ⊗ W

⊗(q+1)
n .

Then the first identity in the lemma follows by applying direct limits. We similarly establish
the second identity.

Lemma 4.8 We have that Endg(T p,q) � Hp,q .
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Proof We have a natural injective map Hp,q ↪→ End(T p,q). In order to prove that this is
an isomorphism, we compute the dimensions of the two spaces. Using Lemma 4.7 we have

Homg(T p,q , T p,q) � Homg(T p−1,q ,HomC(V , T p,q))

= Homg(T p−1,q , �HomC(V , T p,q))

� Homg(T p−1,q , T p−1,q )⊕pθ ⊕ Homg(T
p−1,q , T p,q+1)

= Homg(T p−1,q , T p−1,q )⊕pθ .

Now by induction on p + q we prove that dimHomg(T
p,q , T p,q) = θp+qp!q! which

coincides with the dimension ofHp,q .

Lemma 4.9 If Homg(T
p,q ,C ⊕ �C) �= 0, then p = q and in the latter case any ϕ ∈

Homg(T p,q ,C⊕�C) is a linear combination of products of p contractions (even and odd).

Proof The proof is similar to the proof of the previous lemma and we will leave it to the
reader.

Lemma 4.10 Let (λ, μ) be a strict bipartition, |λ| = p, |μ| = q. Denote by R the intersec-
tion of kernels of all contractions T p,q → T p−1,q−1. Then M := Z(λ,μ) ∩ R is a highest
weight module with highest weight (λ, μ).

Proof Let vλ,μ denote a highest weight vector and X(λ, μ) be the g-submodule of T p,q

generated by vλ,μ. Since vλ,μ is annihilated by all contractions, we have X(λ, μ) ⊂ M . In
order to prove that X(λ, μ) = M we set Mn = �n(M) and Xn(λ, μ) = �n(X(λ,μ)).

It suffices to check thatMn = Xn(λ, μ) for n � p+q. Recall that every indecomposable
injective gn-module appears as a direct summand in T

r,s
n = �n(T

r,s) for some r and s.
Therefore we can write

Xn(λ, μ) = Zn(λ, μ) ∩
⋂

i

Kerϕi,

for some finite set of ϕi ∈ Homgn(T
p,q
n , T

ri ,si
n ). Every ϕi can be written as a sum

ϕi =
∑

j

τjhjσj ,

τj is a product of some cocontractions and σj is a product of some contractions, see [6].
SinceM is annihilated by all contractions, we may assume thatXn(λ, μ) = Mn∩⋂

i Kerψi

where ψi = ∑

τshs is a sum of terms in the decomposition of ϕi which do not contain
contractions. But then ψi = hτ for some product τ of k cocontractions and h ∈ Hp+k,q+k .
We claim that the restriction of ψi on Zn(λ, μ) is either zero or injective, which imme-
diately implies that in our case all ψi are zero. Indeed, τ(Zn(λ, μ)) � Zn(λ, μ) and
the U(gn) ⊗ Hp+k,q+k-module Hp+k,q+kτ (Zn(λ, μ)) is isomorphic to Zn(λ, μ) � F for
some Hp+k,q+k-module F . Therefore either hτ(Zn(λ, μ)) is isomorphic to Zn(λ, μ) or
hτ(Zn(λ, μ)) = 0.

Corollary 4.11 The module M = X(λ, μ) defined in Lemma 4.10 is isomorphic to
V (λ, μ).
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Proof If the statement is false, then X(λ, μ) contains a submodule isomorphic to V (λ′, μ′)
with |λ′| < |λ| and |μ′| < |μ|. This contradicts with Lemma 4.5.

Corollary 4.12 We have

[T p,q : C] = dimHomg(T
p,q ,C).

Proof We prove the statement by induction on r = p + q. The base case r = 0 is trivial.
By Corollary 4.11 the kernel of all contractions does not have a trivial subquotient. Hence
we have an exact sequence

0 → R → T p,q → R′ → 0,

where [R : C] = 0 and R′ is a submodule in a direct sum of several copies of T p−1,q−1. By
induction assumption we have

[R′ : C] = dimHomg(R
′,C).

Therefore the statement is true for T p,q .

Proposition 4.13 The trivial modules C and �C are injective in Trep g.

Proof To prove the statement it is enough to show that for any strict bipartition (λ, μ) any
two exact sequences

0 → C → X → V (λ, μ) → 0

and
0 → �C → X → V (λ,μ) → 0

split.
First we prove the statement for the case |λ| + |μ| > 2. In this case we just prove that

H1(g, V (λ, μ)) = 0. Indeed, the space C1 of 1-cycles is a submodule in g ⊗ V (λ,μ) ⊂
T p+1,q+1, where p = |λ|, q = |μ|. The homology is a quotient ofC1 with trivial action of g.
Hence [C1 : C] �= 0 and Corollary 4.12 implies existence of ϕ ∈ Homg(T

p+1,q+1,C⊕�C)

such that ϕ(C1) �= 0. Therefore, p = q and ϕ is a linear combination of products of p + 1
contractions, see Lemma 4.9. Since V (λ,μ) is annihilated by any contraction we must have
p + 1 ≤ 2. Thus, the statement holds for |λ| + |μ| > 2. Moreover, to finish the proof it
remains to consider the cases p = q = 0 and p = q = 1.

If p = q = 1, then V (λ, μ) = sq(∞). Note that X is a highest weight module and
therefore �n(X) remains a highest weight module for n ≥ 4. However, it follows easily
from [12] that sq(n) is the maximal integrable highest weight module.

Finally we will show that the sequences

0 → C → X → C → 0

and
0 → �C → X → C → 0

split.
For the first sequence, we observe that g1 acts trivially on X and g0 = [g1, g1]. Thus, X

is a trivial g-module isomorphic to C ⊕ C.
For the second exact sequence, we have a decompositon X = C ⊕ �C of g0-modules.

By Lemma 4.1 we obtain Homg(C, X) = Homg0(C, X) = C
1|1. Hence X is isomorphic to

C ⊕ �C.
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Proposition 4.14 The module T p,q is injective in Trep g for all p and q.

Proof In the case p = q = 0 the statement follows from Proposition 4.13. We first assume
that q > 0. Then using Lemma 4.7 we obtain:

Homg(M ⊗ V, T p,q−1) � Homg

(

M,�(HomC(V , T p,q−1)
)

� Homg

(

M,T p,q ⊕ (T p−1,q−1)⊕pθ
)

� Homg

(

M,T p,q
) ⊕

(

Homg

(

M,T p−1,q−1
))⊕pθ

.

We proceed with induction on q. The induction hypothesis implies that the functors
Homg(·, T p−1,q−1) and Homg(· ⊗ V, T p,q−1) are exact. Hence, Homg(·, T p−1,q ) is an
exact functor. The base case q = 0 follows by induction on p and by applying the same
identities as those above replacing V by W .

Proposition 4.15 The module Z(λ,μ) is indecomposable injective in Trep g with simple
socle V (λ, μ).

Proof Let p = |λ| and q = |μ|. The injectivity of Z(λ,μ) follows from Proposition 4.14
and the fact that Z(λ,μ) is a direct summand of T p,q . The indecomposability of Z(λ,μ)

follows from Lemma 4.8 and (4.2), since e(λ) and e(μ) are primitive idempotents on Hp

andHq , respectively.
It remains to show that the socle of Z(λ,μ) is isomorphic to V (λ,μ). Assume that

V (λ′, μ′) is in the socle of Z(λ,μ) and (λ′, μ′) �= (λ, μ). Then looking at the weights of
Z(λ, μ) we conclude that λ ≥ λ′ and μ ≥ μ′ relative to the dominance order of partitions.
Moreover |λ′| = p, |μ′| = q by Lemma 4.5(i). We now apply induction on λ and μ with
respect to the dominance order. For the minimal pair of partitions λ, μ the statement is clear.
By the induction hypothesis on λ′, μ′, Z(λ′, μ′) has socle V (λ′, μ′). Since V (λ′, μ′) is a
submodule of Z(λ,μ), by the injectivity of Z(λ′, μ′), we have an injective homomorphism
Z(λ′, μ′) → Z(λ,μ). This contradicts with the indecomposability of Z(λ,μ).

Corollary 4.16 Let X ∈ Trep g be a highest weight module with highest weight (λ, μ).
Then X is isomorphic to V (λ,μ) or �V (λ, μ).

Proof Assume that V (λ′, μ′) is in the socle of X. Then λ ≥ λ′ and μ ≥ μ′ relative to the
dominance order of partitions and we have a nonzero homomorphism ϕ : X → Z(λ′, μ′).
If (λ, μ) �= (λ′, μ′), then a highest weight vector v of X lies in kerϕ. But X is generated by
v, therefore ϕ = 0 which leads to a contradiction. Hence λ = λ′, μ = μ′ and the statement
follows.

Corollary 4.17 We have

soc T p,q =
⊕

|λ|=p,|μ|=q,p(λ,μ)=0

V (λ,μ)�S(λ, μ)⊕
⊕

|λ|=p,|μ|=q,p(λ,μ)=1

V (λ,μ)̂�S(λ, μ).

Proof The decomposition follows from Proposition 4.15 and (4.1).
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Corollary 4.18 Trep(g) is a symmetric monoidal category (but not rigid!). Furthermore,
the functor

�n : Trep g → gn − mod

is a tensor functor.

Proof We have to check that Trep(g) is closed under tensor products. This follows from the
injectivity of T p,q and the fact that any module in Trep(g) is a submodule of a finite direct

sum
s

⊕

i=1

T pi,qi . Since �n is left exact it suffices to check that �n(M ⊗ N) � �nM ⊗ �nN

for M = T p,q and N = T r,s . The latter is straightforward.

5 On Tensor Products and Extensions in Trepg

5.1 Diagrammatic Description of Homg(T p,q, T r,s)

Recall that by Lemma 4.5 Homg(T
p,q , T r,s) �= 0 implies that p − r = q − s ≥ 0.

Let C(p, q, r) = Homg(T p,q , T p−r,q−r ) and c(p, q, r) = dimC(p, q, r).

Lemma 5.1 For any p, q, r such that r ≤ min(q, p) we have that:

c(p, q, r) = p!q!θp+q−r

r!

Proof We will prove the following recursive relation

c(p, q, r) = c(p − 1, q, r − 1) + (p − r)θc(p − 1, q, r),

c(p, q, r) = c(p, q − 1, r − 1) + (q − r)θc(p, q − 1, r).

Indeed, we have

Homg(T
p,q , T p−r,q−r ) = Homg(T

p,q−1,HomC(W, T p−r,q−r ))

= Homg

(

T p,q−1, �(HomC(W, T p−r,q−r )
)

= Homg

(

T p,q−1, T p−r+1,q−r ⊕ (T p−r,q−r−1)⊕(q−r)θ
)

.

This implies the second recursive relation. The proof of the first one is similar. Now the
statement follows easily by induction.

Our next step is to describe precisely the superspace C(p, q, r) = Homg(T
p,q ,

T p−r,q−r ). For this we will use diagrams, similar to the ones introduced in [6].
Let D(p, q, r) denote the set of diagrams described as follows. Every diagram in

D(p, q, r) has two horizontal rows of nodes with exactly p white and q black nodes in the
top row, and exactly p − r white and q − r black nodes in the bottom row. The nodes are
connected by edges that are subject to the following rules.

• Every node is connected to exactly one node by one edge. In other words we have a
prefect pairing.

• Every node in the bottom row is connected to exactly one node of the same color in the
top row.
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• Every node in the top row is connected either to a node of the same color in the bottom
row or to a node of the opposite color in the top row.

• Every edge is either marked or unmarked.

If d ∈ D(p, q, r) and d ′ ∈ D(p − r, q − r, s), then we define d ′ · d ∈ D(p, q, r + s) by
concatenating the diagrams d and d ′ and removing the middle row. An edge of the concate-
nated diagram is marked if the number of marked edges involved in the concatenation of
that edge is odd. An edge is unmarked if it is not marked. An example of a concatenation of
three diagrams is presented below.
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.............................................................................................................
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•
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...........

◦

◦

•

•

....................................................................................

....................................................................................

.............................................................
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......
..........
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........................................

Next we define a map γ : D(p, q, r) → C(p, q, r). Let d ∈ D(p, q, r). Enumerate
the nodes of d in the bottom and in the top row, so that in the top row the white nodes are
labelled by the numbers 1, . . . , p and the black nodes are labelled by p + 1, . . . , p + q,
while in the bottom row, the white nodes are labelled by 1, . . . , p − r and the black nodes
are labelled by p + 1− r, . . . , p + q − 2r . Denote by H+(d) (respectively, H−(d)) the set
of pairs (i, j), i < j , of nodes in the top row joined by an unmarked (respectively, marked)
edge. For any node i in the bottom row by s(i) we denote the paired to i node in the top
row. We let m(i) = 0 (respectively, m(i) = 1) if the edge joining i and s(i) is unmarked
(respectively, marked).

Next we introduce the canonical decomposition of d into elementary diagrams s(p, q, i),
o(p, q, i), t (p, q) as follows.

The first type of elementary diagrams are s(p, q, i) ∈ D(p, q, 0), i �= p, p + q, defined
by the conditions s(j) = j if j �= i, i + 1, s(i) = i + 1, s(i + 1) = i, and all edges of

s(p, q, i) are unmarked. For example s(2, 0, 1) is the diagram:
◦

◦◦

◦.........
.........
.........
.........
.........
.........
.........
.........
......................................................................................

while s(0, 2, 1)

is:
•

••

•.........
.........
.........
.........
.........
.........
.........
.........
......................................................................................

. We call a permutation diagram any diagram formed by the concatenation of

diagrams s(p, q, i). The set of all permutation diagrams form a group isomorphic to Sp×Sq .
Next, o(p, q, i) ∈ D(p, q, 0) is the diagram with s(j) = j for all j = 1, . . . p + q and

with one marked edge joining i with i. For example, o(1, 0, 1) is:

◦

◦

........................................................................

.......

.......

.......

.......

..............

...........

Finally, let t (p, q) ∈ D(p, q, 1) be defined by the conditions H+(t (p, q)) = (p, p + 1)
and s(i) = i for all i = 1, . . . p − 1, s(i) = i + 2 for i = p, . . . , p + q − 2. For example,

t (1, 1) = ◦ •.........
...............

........................................
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For any u1, . . . , up ∈ V and up+1, . . . , up+q ∈ W we set

u = u1 ⊗ · · · ⊗ up+q ∈ T p,q

and define

s̃(p, q, i)(u) := (−1)p(ui )p(ui+1)u1 ⊗ · · · ⊗ ui−1 ⊗ ui+1 ⊗ ui ⊗ ui+2 ⊗ · · · ⊗ up+q,

õ(p, q, i)(u) := (−1)p(u1)+···+p(ui−1)u1 ⊗ · · · ⊗ P(ui) ⊗ · · · ⊗ up+q,

t̃(p, q)(u) := (−1)p(up)p(up+1)(up+1, up)u1 ⊗ · · · ⊗ up−1 ⊗ up+2 ⊗ · · · ⊗ up+q .

Note that every d ∈ D(p, q, r) can be written as a concatenation of elementary diagrams:

d = t (p−r+1, q−r+1)·· · ··t (p, q)·o(p, q, i1)·· · ··o(p, q, ik)·s(p, q, j1)·· · ··s(p, q, jl).

For any d ∈ D(p, q, r), we fix one such decomposition and we set

γ (d) := t̃ (p − r + 1, q − r + 1) ◦ · · · ◦ t̃ (p, q) ◦ õ(p, q, i1) ◦ · · · ◦ õ(p, q, ik)

◦ s̃(p, q, j1) ◦ · · · ◦ s̃(p, q, jl).

Then γ (d) ∈ C(p, q, r) and we have

γ (d)(u) = (−1)σ(u,d)
∏

(i,j)∈H+(d)

(uj , ui)
∏

(i,j)∈H−(d)

(uj , Pui)P
m(1)us(1) ⊗ · · · ⊗

×P m(p+q−2r)us(p+q−2r),

where the formula for σ(u, d) is rather long and is not needed in this paper. From this
formula we see that γ (D(p, q, r)) is a linearly independent set in C(p, q, r). On the other
hand, Lemma 5.1 implies that c(p, q, r) = |D(p, q, r)|. Therefore, γ (D(p, q, r)) forms a
basis of C(p, q, r). Moreover, from the decomposition of d above we see that C(p, q, r) is
generated by

u(p, q, r) := t (p − r + 1, q − r + 1) ◦ · · · ◦ t (p, q)

as a right H(p, q)-module. The following lemma gives a precise description of C(p, q, r)

as anHp−r,q−r -Hp,q -bimodule.

Lemma 5.2 Consider the embeddingHr,r ↪→ Hp,q defined by

s(r, r, 1) 	→ s(p, q, p − r), . . . , s(r, r, r − 1) 	→ s(p, q, p − 1),

s(r, r, r + 1) 	→ s(p, q, p + 1), . . . , s(r, r, 2r − 1) 	→ s(p, q, p + r − 1),

o(r, r, 1) 	→ o(p, q, p − r), . . . , o(r, r, 2r) 	→ s(p, q, p + r).

Then we have the following isomorphism ofHp−r,q−r -Hp,q -bimodules:

C(p, q, r) � Ind
Hp,q

Hr,r
C(r, r, r),

where the definition of the left action of Hp−r,q−r on Ind
Hp,q

Hr,r
C(r, r, r) is defined by using

thatHp−r,q−r andHr,r are commuting subalgebras ofHp,q .

Proof SinceC(p, q, r) is generated by all u(p, q, r) as a rightHp,q -module and the dimen-

sions of C(p, q, r) and of Ind
Hp,q

Hr,r
C(r, r, r) coincide, it remains to verify that the right

Hr,r -submodule generated by all u(p, q, r) is isomorphic to C(r, r, r). The latter follows
directly from the diagrammatic presentation of u(p, q, r).
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Remark 5.3 The map γ is not a homomorphism of diagrammatic algebras. However, if
d1 ∈ D(p, q, r) and d2 ∈ D(p − r, q − r, s), then

γ (d1 · d2) = (−1)〈d1,d2〉γ (d1) ◦ γ (d2)

for some function 〈·, ·〉 : D(p, q, r) × D(p − r, q − r, s) → Z2.

5.2 Socle Filtrations of T p,q and Z(λ,μ)

Proposition 5.4 We have

socr T p,q =
⋂

ϕ∈homg(T p,q ,T p−r,q−r )

kerϕ.

Proof It is sufficient to prove the statement for r = 1 since then we can proceed by induc-
tion. By Corollary 4.17 all simple subquotients of T p,q/ soc T p,q are of the form V (λ, μ)

or �V (λ,μ) with |λ| < p and |μ| < q. Therefore we have an inclusion of T p,q/ soc T p,q

into a direct sum of several copies of T p−r,q−r for different r . Hence

soc1 T p,q =
⋂

r≤min(p,q)

⋂

ϕ∈homg(T p,q ,T p−r,q−r )

kerϕ.

But, using the diagrammatic presentation of C(p, q, r), every ϕ ∈ homg(T
p,q , T p−r,q−r )

can be factored through some map ψ ∈ homg(T
p,q , (T p−1,q−1)⊕l ). Hence kerϕ ⊂ kerψ

and we obtain

soc1 T p,q =
⋂

ϕ∈homg(T p,q ,T p−1,q−1)

kerϕ.

Our next goal is to determine the socle filtration of the indecomposable injective modules
Z(λ, μ). For this we need three lemmas.

Lemma 5.5 The following identity ofHp,q -bimodules holds:

Hp,q =
⊕

|λ|=p,|μ|=q

S(λ, μ)̂�S(λ, μ).

Proof The identity follows from Lemma 2.2(i).

Lemma 5.6 We have

dimHomg(Z(λ, μ),C) = δλ,μ.

Proof By Lemma 4.6 we obtain

Homg(V (λ) ⊗ W(μ),C) = Homg(V (λ), �(HomC(W(μ),C))).

Lemma 4.7 implies

�(HomC(T 0,q ,C)) = T q,0.
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Since W(μ) is a direct summand in T 0,q , it follows that �(HomC(W(μ),C)) = V (μ).
Therefore we obtain

dimHomg(Z(λ, μ),C) �
{

dimHomg(V (λ), V (μ)), if p(λ)p(μ) = 0
1
θ
dimHomg(V (λ), V (μ)), if p(λ)p(μ) = 1

,

which implies the statement.

Lemma 5.7 The following isomorphism of rightHr,r -modules holds:

C(r, r, r) �
⊕

|γ |=r

S(γ, γ ).

Proof Substituting p = q = r in Eq. 4.1 we obtain the decomposition:

T r,r =
⊕

|λ|=r,|μ|=r

Z(λ, μ)̂�S(λ, μ). (5.1)

Now, Eq. 5.1 together with Lemma 5.6 implies

C(r, r, r) =
⊕

|γ |=r

Homg(Z(γ, γ ),C) ⊗ S(γ, γ ) =
⊕

|γ |=r

S(γ, γ ).

Theorem 5.8 The following identity holds for |λ| − |λ′| = |μ| − |μ′| = r:

dimHomg(Z(λ, μ), Z(λ′, μ′)) = 1

θp(λ)p(μ)θp(λ′)p(μ′)

∑

|γ |=r

1

θp(γ )
f λ

λ′,γ f
μ

μ′,γ .

Proof Let |λ| = p and |μ| = q. Using Lemma 5.2 and (4.2) we obtain

dimHomg(Z(λ, μ), Z(λ′, μ′)) = dim e(λ′) ⊗ e(μ′)C(p, q, r)e(λ) ⊗ e(μ)

θp(λ)p(μ)θp(λ′)p(μ′) .

Recall that for any rightHp,q -module M ,

dimMe(λ) ⊗ e(μ) = dimHomHp,q (M, S(λ) � S(μ)).

Next, Lemma 5.2 implies

e(λ′) ⊗ e(μ′)C(p, q, r) = e(λ′) ⊗ e(μ′)
(

Ind
Hp,q

Hr,r
C(r, r, r)

)

= e(λ′) ⊗ e(μ′)
(

Ind
Hp,q

Hr,r⊗Hp−r,q−r
C(r, r, r) �Hp−r,q−r

)

= Ind
Hp,q

Hr,r⊗Hp−r,q−r
C(r, r, r) � e(λ′) ⊗ e(μ′)Hp−r,q−r

= Ind
Hp,q

Hr,r⊗Hp−r,q−r
C(r, r, r) � S(λ′) � S(μ′).
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Finally, using Lemma 5.7 and Lemma 3.6 we obtain

dimHomHp,q

(

Ind
Hp,q

Hr,r⊗Hp−r,q−r
C(r, r, r) � S(λ′) � S(μ′), S(λ) � S(μ)

)

=
∑

|γ |=r

1

θp(γ )
dimHomHp,q

(

Ind
Hp

Hr⊗Hp−r
(S(γ ) � S(λ′)) � Ind

Hq

Hr⊗Hq−r

(S(γ ) � S(μ′)), S(λ) � S(μ)
)

=
∑

|γ |=r

1

θp(γ )
dimHomHp

(

Ind
Hp

Hr⊗Hp−r
S(γ ) � S(λ′), S(λ)

)

dimHomHq

(

Ind
Hq

Hr⊗Hq−r
(S(γ ) � S(μ′)), S(μ)

)

=
∑

|γ |=r

1

θp(γ )
f λ

λ′,γ f
μ

μ′,γ ,

which completes the proof.

We set socr M = socr+1 M/socrM .

Corollary 5.9

[socr Z(λ, μ) : V (λ′, μ′)] = 1

θp(λ)p(μ)θp(λ′)p(μ′)θp(λ,μ)p(λ′,μ′)+p(λ,μ)+p(λ′,μ′)

∑

|γ |=r

× 1

θp(γ )
f λ

λ′,γ f
μ

μ′,γ .

Proof The identity follows from Theorem 5.8 and the relation

[socr Z(λ, μ) : V (λ′, μ′)] = dimHom(Z(λ, μ), Z(λ′, μ′))
θp(λ,μ)p(λ′,μ′)+p(λ,μ)+p(λ′,μ′) .

5.3 Extensions and Blocks

Corollary 5.10 If ext1(V (λ′, μ′), V (λ, μ)) �= 0, then λ ∈ λ′ + � and μ ∈ μ′ + �.
Furthermore we have the following cases:

(1) If both V (λ′, μ′) and V (λ, μ) are of M-type, then

C=
{

ext1(V (λ′, μ′), V (λ, μ))=ext1(V (λ′, μ′), V (λ, μ)), if p(λ) = p(λ′), p(μ) = p(μ′)
ext1(V (λ′, μ′), V (λ, μ)) ⊕ ext1(V (λ′, μ′), �V (λ, μ)), otherwise,

(2) If V (λ′, μ′) is of Q-type and V (λ,μ) is of M-type, then

ext1(V (λ′, μ′), V (λ, μ)) ⊕ ext1(V (λ′, μ′),�V (λ,μ)) = C,

(3) If V (λ′, μ′) is of M-type and V (λ,μ) is of Q-type, then

ext1(V (λ′, μ′), V (λ, μ)) ⊕ ext1(�V (λ′, μ′), V (λ, μ)) = C,
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(4) If both V (λ′, μ′) and V (λ, μ) are of Q-type, then

ext1(V (λ′, μ′), V (λ, μ)) =
{

C
2, if p(λ) = p(λ′), p(μ) = p(μ′)

C, otherwise.

Proof All identities follow by a straightforward computation using Corollary 5.9 and (3.4).

Let Trepm g be the full subcategory of Trep g with simple objects V (λ, μ),�V (λ,μ) for
all (λ, μ) such that |λ| − |μ| = m. The following is a consequence of Corollary 5.10.

Corollary 5.11 We have that

Trep g =
⊕

m∈Z
Trepm g.

Proposition 5.12 For any m ∈ Z the subcategory Trepm g is an indecomposable block.

Proof We define an equivalence relation on isomorphism classes of simple modules of
Trepm g. We say X ≺ Y if ext1(X, Y ) �= 0, and set ∼ be the minimal equivalence relation
containing ≺. We have to prove that isomorphism classes of simple modules of Trepm g

form one equivalence class. Note that

X ∼ Y ⇒ �X ∼ �Y. (5.2)

Using symmetry we can assume without loss of generality thatm ≥ 0. We first claim that
V (λ, μ) is equivalent to V (η, ∅) or �V (η, ∅) for some partition η with |η| = m. Indeed,
take λ′ ∈ λ−� and μ′ ∈ μ−�, then we have V (λ′, μ′) ≺ V (λ,μ). Thus, we can decrease
|λ| and |μ| by 1 and proceed by induction.

Next we show that V (η, ∅) ∼ �V (η, ∅). Indeed, the statement is non-trivial only if
V (η, ∅) is of M-type, If m > 0 consider η′ obtained from η by adding � in the first row.
Then V (η′,�) is of Q-type and we have

V (η, ∅) ≺ V (η′,�), �V (η,∅) ≺ V (η′,�).

If m = 0 we have to show �C ∼ C. For this set

λ = , μ = .

Then V (λ, μ) is of Q-type and equivalent to both C and �C.
If we start with the partition η having one row with m boxes, we can obtain from it

any other strict partition of size m in several steps, where each step consists of moving
a box from the top row to some other row. If η′′ is obtained from η′ in one step, con-
sider the partition ν obtained from η′′ be adding a box in the first row. Then we have
V (η′′,∅) ∼ V (ν,�) ∼ V (η′,∅). Therefore V (κ, ∅) ∼ V (η, ∅) for all κ of size m. The
proof is complete.

Lemma 5.13 Any M ∈ Trep g has a finite injective resolution. If M = V (λ,μ) and

0 → R0 → R1 → · · · → Rk → 0

is the minimal injective resolution of M , then [Ri : Z(λ′, μ′)] �= 0 implies |λ| − |λ′| =
|μ| − |μ′| ≥ i. In particular, k ≤ min(|λ|, |μ|) + 1.
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Proof Since Trep g has enough injectives we only need to check finiteness of the minimal
injective resolution. Let V (λ,μ) be a simple submodule of socM with maximal |λ|+|μ| =
s. Consider an embedding ϕ : M ↪→ R0, where R0 is the injective hull of socM , then
by Corollary 5.9 all simple subquotients V (λ′, μ′) in cokerϕ satisfy |λ′| + |μ′| < s. That
shows that the length of resolution is at most s + 1 and in the case M = V (λ,μ) implies
the last assertion.

Corollary 5.14 If exti
(

V (λ′, μ′), V (λ, μ)
) �= 0 then |λ| − |λ′| = |μ| − |μ′| ≥ i.

5.4 Tensor Products

In this subsection we find formulas for the tensor products of the indecomposable injectives
in Trep g. The formulas are relatively easy to obtain.

Lemma 5.15 We have

Z(λ,μ) ⊗ Z(λ′, μ′) =
⊕

|λ”|=|λ|+|λ′|,|μ′′|=|μ|+|μ′|
Z(λ′′, μ′′)⊕s(λ′′,μ′′),

where

s(λ′′, μ′′) = θp(λ′′)p(μ′′)f λ′′
λ,λ′f

μ′′
μ,μ′

θp(λ)p(μ)θp(λ′)p(μ′)θp(λ′′)θp(μ′′)

Proof The identity follows by direct computation using the definitions of Z(λ,μ) and f ν
λ,μ.

Corollary 5.16 We have

Z(λ,μ) ⊗ V =
⊕

λ′∈λ+�
Z(λ′, μ)⊕u(λ′,λ,μ), Z(λ, μ) ⊗ W =

⊕

μ′∈μ+�
Z(λ,μ′)⊕u(μ′,μ,λ),

where

u(α′, α, β) =
{

1, if p(α, β) = 0, p(α′, β) = 1,
θ, otherwise.

Proposition 5.17 The tensor products V (λ,μ) ⊗ V and V (λ,μ) ⊗ W have Loewy length
at most 2. Furthermore,

soc(V (λ, μ) ⊗ V ) =
⊕

λ′∈λ+�
V (λ′, μ)⊕u(λ′,λ,μ),

soc(V (λ, μ) ⊗ W) =
⊕

μ′∈μ+�
V (λ,μ′)⊕u(μ′,μ,λ),

and

soc2(V (λ, μ) ⊗ V ) =
⊕

μ′∈μ−�
V (λ, μ′)⊕u(μ,μ′,λ),

soc2(V (λ, μ) ⊗ W) =
⊕

λ′∈λ−�
V (λ′, μ)⊕u(λ,λ′,μ),

where u(α′, α, β) is defined in Corollary 5.16.
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Proof Let |λ| = p, |μ| = q. Recall that V (λ,μ) is a submodule of soc T p,q . Hence
V (λ, μ) ⊗ V is a submodule of T p+1,q . We now use Proposition 5.4. Note that

V (λ,μ) ⊗ V ⊂ kerϕ

for any ϕ ∈ C(p + 1, q, 2) since any such ϕ involves two contractions. Hence the Loewy
length of V (λ, μ) ⊗ V is at most 2.

To obtain soc(V (λ, μ) ⊗ V ) we use that

soc(V (λ, μ) ⊗ V ) = soc(Z(λ, μ) ⊗ V )

and Corollary 5.16.
To compute soc2(V (λ, μ) ⊗ V ) we first note that

[soc2(V (λ, μ) ⊗ V ) : V (λ′′, μ′′)] �= 0 ⇒ |λ′′| = |λ|, |μ′′| = |μ| − 1.

Furthermore,

hom(V (λ, μ) ⊗ V,Z(λ′′, μ′′)) = hom(V (λ, μ), �(HomC(V , Z(λ′′, μ′′))))
and

�(HomC(V , Z(λ′′, μ′′))) = Z(λ′′, μ′′) ⊗ W ⊕ S

for some S ⊂ (T p−1,q−1)⊕pθ . Taking into account that hom(V (λ, μ), S) = 0, we obtain

hom(V (λ, μ) ⊗ V,Z(λ′′, μ′′)) = hom(V (λ, μ), Z(λ′′, μ′′) ⊗ W).

By Corollary 5.16 we know the decomposition of Z(λ′′, μ′′) ⊗ W . As a result, we see that

hom(V (λ, μ), Z(λ′′, μ′′) ⊗ W) �= 0 ⇒ λ′′ = λ, μ ∈ μ′ + �.

Moroever,

[soc2(V (λ, μ) ⊗ V ) : V (λ′′, μ′′)] = dim hom(V (λ, μ), Z(λ′′, μ′′) ⊗ W) = u(μ,μ′, λ).

This completes the proof for the identities involving V (λ, μ) ⊗ V . The identities involving
V (λ, μ) ⊗ W follow by similar reasoning.

6 Koszulity of Trepg

Theorem 6.1 The category Trep g is Koszul.

Proof For any bipartition (λ, μ) we set

d(λ, μ) := min(|λ|, |μ|).
Let

0 → R0(λ, μ) → R1(λ, μ) → · · · → Rk(λ, μ) → 0

be the minimal injective resolution of V (λ, μ) (note that the resolution is finite by Lemma
5.13). The Koszulity of Trep g is equivalent to each of the following two equivalent
statements:

(1) [Ri(λ, μ) : Z(λ′, μ′)] �= 0 implies d(λ, μ) = d(λ′, μ′) + i;
(2) exti (V (λ′, μ′), V (λ, μ)) �= 0 implies d(λ, μ) = d(λ′, μ′) + i.

Indeed, (1) is equivalent to Koszulity since d(·, ·) induces the grading on Trep g. Further-
more, (1) obviously implies (2). To show that (2) implies (1) assume the opposite, i.e. that
there exists (λ′, μ′) such that d(λ, μ) = d(λ′, μ′) + i and [Rj (λ, μ) : Z(λ′, μ′)] �= 0
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for some j �= i. Lemma 5.13 implies j < i. Let us choose the minimal such j . Since
extj (V (λ, μ), V (λ′, μ′)) = 0, the map Z(λ′, μ′) → Rj+1(λ, μ) must be injective, which
contradicts the minimality of the resolution.

Without loss of generality we assume that |λ| ≤ |μ|, i.e. d(λ, μ) = |λ|. We prove (2)
for all λ, μ by induction on |λ|. The base case λ = ∅ follows from the fact that V (∅, μ)

is injective. To prove the inductive step pick up ν ∈ λ − �. Recall that V (ν, μ) ⊗ V has
Loewy length 2 by Proposition 5.17. Consider the exact sequence

0 → soc(V (ν, μ) ⊗ V ) → V (ν, μ) ⊗ V → soc2(V (ν, μ) ⊗ V ) → 0 (6.1)

and the minimal resolution

0 → R0(ν, μ) → R1(ν, μ) → · · · → Rk(ν, μ) → 0

of V (ν, μ). Note that by Proposition 5.17, all simple components of soc2(V (ν, μ) ⊗ V )

satisfy the induction hypothesis. Therefore,

extj (V (λ′, μ′), soc2(V (ν, μ) ⊗ V )) �= 0 ⇒ i = |ν| − |λ′| = |λ| − |λ′| − 1. (6.2)

This resolution satisfies (1) by the induction hypothesis. We have that

0 → R0(ν, μ) ⊗ V → R1(ν, μ) ⊗ V → · · · → Rk(ν, μ) ⊗ V → 0.

is an injective resolution of V (ν, μ) ⊗ V . Since [Ri(ν, μ) : Z(ν′, μ′)] �= 0 implies i =
|ν| − |ν′|, by Corollary 5.16 we have that

[Ri(ν, μ) ⊗ V : Z(λ′, μ′)] �= 0 ⇒ i = |ν| − |λ′| + 1 = |λ| − |λ′|. (6.3)

Equivalently,

extj (V (λ′, μ′), V (ν, μ) ⊗ V )) �= 0 ⇒ i = |λ| − |λ′|.
Therefore, by Eqs. 6.2 and 6.3 the long exact sequence for ext·(V (λ′, μ′), ·) associated

to Eq. 6.1 gives exti (V (λ′, μ′), soc(V (ν, μ) ⊗ V )) = 0 for i �= |λ| − |λ′|. Since V (λ, μ) is
a direct summand in soc(V (ν, μ) ⊗ V ), we prove that condition (2) holds for V (λ,μ).

Recall that T = ⊕

T p,q . Set T>k = ⊕

p+q>k T p,q and T≤k = ⊕

p+q≤k T p,q . Let also

A(k) = {

ϕ ∈ Endg T | ϕ(T>k) = 0
}

.

Clearly, A(k) � End
(

T≤k

)

. By A(k)-mod we denote the category of finite-dimensional
Z2-graded A(k)-modules.

We have a chain of monomorphisms

A(1) ⊂ A(2) ⊂ . . .

Note that the unit of A(k) does not map to the unit of A(k+1) under the embedding A(k) ↪→
A(k+1). We set

A = lim−→ A(k).

Let
J(k) = {

ϕ ∈ A | ϕ(T≥k) = 0
}

.

Then J(k) is an ideal in A and A(k) = A/J(k). Let A- mod consists of all finite-dimensional
Z2-graded A-modules X obtained by pull back from Ak- mod for some k.

Theorem 6.2 The functorsHomg(·,T) andHomA(·,T) establish an antiequivalence of the
categories Trep g and A-mod.
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Proof Recall that Trep g = lim−→Trepk g. By Proposition 4.14 and Corollary 4.17, T≤k is an

injective cogenerator of Trepk g. In order to prove the statement, it is sufficient to show that
the functors � := Homg(·,T≤k) and � := HomA(k)

(·,T≤k) establish an antiequivalence
of the categories Trepk g and A(k)- mod. We have that � is an exact functor since T≤k is an
injective module in Trepk g. Therefore, �� is a left exact functor, and �� is a right exact
functor.

We next note that for all X ∈ A(k)- mod and M ∈ Trepk g we have isomorphisms

HomA(X,�M) � HomA×g(X ⊗ M,T≤k) � Homg(M,�X).

Using the isomorphisms

Homg(�X,�X) � HomA(X,��X), HomA(�M,�M) � Homg(M,��M),

we define morphisms αX : X → ��X and βM : M → ��M . To complete the proof,
it is sufficient to verify that αX and βM are isomorphisms for all X ∈ A(k)- mod and all
M ∈ Trepk g. Note that this is true for simple modules by Corollary 4.17.

We first prove that βM is an isomorphism using induction on the length of M . As men-
tioned above, βM is isomorphism for simple modules M which implies the base case.
Let

0 −−−−→ N −−−−→ M
σ−−−−→ L −−−−→ 0

be a short exact sequence of modules in Trepk g. Consider the induced diagram

0 −−−−→ N −−−−→ M
σ−−−−→ L −−−−→ 0

⏐

⏐

�
βN

⏐

⏐

�
βM

⏐

⏐

�
βL

⏐

⏐

�

0 −−−−→ ��N −−−−→ ��M
��(σ)−−−−→ ��L

By the induction hypothesis, βN and βL are isomorphisms. Therefore βLσ is surjective
which implies that ��(σ) is surjective. By the Five Lemma, βM is an isomorphism.

It remains to show that αX is an isomorphism. Note that αA(k)
is an isomorphism and

hence αZ is an isomorphism for any free A(k)-module Z of finite rank. Any X in A(k)-mod
can be included in a short exact sequence

0 −−−−→ Y
τ−−−−→ Z

ϕ−−−−→ X −−−−→ 0

for some free A(k)-module Z of finite rank. Consider the induced diagram

0 −−−−→ Y
τ−−−−→ Z

ϕ−−−−→ X −−−−→ 0

αY

⏐

⏐

�
αZ

⏐

⏐

�
αX

⏐

⏐

�

⏐

⏐

�

��Y
��(τ)−−−−→ ��Z

��(ϕ)−−−−→ ��X −−−−→ 0

Since αZ is an isomorphism, αX is surjective for any module X. In particular, αY is surjec-
tive. On the other hand, ��(τ)αY = αZτ is injective and thus αY and ��(τ) are injective
as well. By the Five Lemma, αX is an isomorphism.

Proposition 6.3 A(k) is a Koszul self-dual superalgebra.
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Proof We follow the notation and definitions of Section 2 of [1]. The Koszulity of Ak

follows from the Koszulity of Trepk g. Then

A(k) =
⊕

r≥0

Ar
(k)

where Ar
(k) = ⊕

p+q≤r C(p, q, r). In particular, A0
(k) = ⊕

p+q≤r Hp,q is a semisimple
superalgebra. From Lemma 5.2,

C(1, 1, 1) ⊗H1,1 Hp,q � C(p, q, 1).

Furthermore,

C(p − 1, q − 1, 1) ⊗Hp−1,q−1 C(p, q, 1) � (C(1, 1, 1) � C(1, 1, 1)) ⊗H1,1⊗H1,1 Hp,q .

Therefore,

A1
(k) ⊗A0

(k)
A1

(k) �
⊕

p+q≤k

(C(1, 1, 1) � C(1, 1, 1)) ⊗H1,1⊗H1,1 Hp,q .

and the quadratic relations submodule of A1
(k) ⊗A0

(k)
A1

(k) is generated by the elements x ⊗
y − (−1)p(x)p(y)y ⊗ x, x, y ∈ C(1, 1, 1). Let B(k) =

(

A!
(k)

)opp
be the Koszul dual of A(k).

Then A(0) = B(0), A(1) = B(1), and

B1
(k) ⊗B0

(k)
B1

(k) � A1
(k) ⊗A0

(k)
A1

(k).

The quadratic relations submodule of B1
(k) ⊗B0

(k)
B1

(k) is generated by the elements x ⊗ y +
(−1)p(x)p(y)y ⊗ x, x, y ∈ C(1, 1, 1).

Let U = A1
(k) = B1

(k). Then A(k) = T (U)/(R) and B(k) = T (U)/(R⊥). Consider

the automorphism γ of A0
(k) defined by s(p, q, i) 	→ s(p, q, i) if i > p, s(p, q, i) 	→

−s(p, q, i) if i < p, o(p, q, j) 	→ o(p, q, j). Then Uγ = U and γ extends to an
automorphism γ̃ : T (U) → T (U) such that γ̃ (R) = R⊥. Hence A(k) is isomorphic to
B(k).

Corollary 6.4 We have that

dim exti (V (λ′, μ′), V (λ, μ)) = [soci+1 Z(λ,μ) : V (λ′, μ′)],
and the latter are computed in Corollary 5.9.
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