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Building Brain-Inspired Logic Circuits
from Dynamically Switchable Transition-Metal
Oxides
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Processing, storing, and transmitting information accounts for ~10% of global  Highlights
energy use; projections suggest that computational energy demands will be  The meta-insulator transitions  of
10x higher than the projected global energy supply by 2040. Realizing solid-  electron-correlated transition-metal ox-
state analogs of neural circuitry, using ‘neuromorphic’ materials, holds promise 4 provide a remarkably sensitive and
. C . . . versatile vector for achieving large con-
for er)a.lbllng a new energy-efficient computing p..alradlgm. The_ metal—|n§ulator clusiEnes swiEitg i e eree
transitions (MITs) of electron-correlated transition-metal oxides provide an dissipation. Such materials have been
attractive vector for achieving large conductance switching with minimal energy = amenable to being fashioned into
dissipation. Here, we review current understanding of the mechanisms "ewroemuatve crcuis.
underpinning electronic instabilities, discuss methods for modulation of spiking  cagiuring the complexity of neurons re-
behavior through tuning of atomistic and electronic structure, and highlight the  quires independent control over muttiple
need for establishing deterministic and independent control of transformation  transformation characteristics: the mag-
.- . . . P nitude and energy threshold of conduc-
characteristics such as switching magnitude, energy thresholds, heat dissipa- e o
3 3 ) . tance switching, heat dissipation,
tion, hysteresis, and dynamics of relaxation. switching time, relaxation dynamics,
. . . . . . and number of accessible internal states.
Brain-like Computing with Transition-Metal Oxides
The primary driver of the electronics revolution of the past 40 years, the exponential improvement ~ RENIOs and M,V>0s represent promis-
in silicon integrated circuits with time (known as Moore’s scaling), has saturated. This has oc- N9 Materials with expansive chermical
. o , . . design spaces and the potential for inde-
curred just as the era of ‘big data’ has arrived. We are now collecting more data than we can o 4ent control of transformation
transmit, store, and analyze. Projections suggest that the demand for computation would be  characteristics.
10x higher than the projected global energy supply can support by 2040 [1]. Without exponential
increases in computing power and efficiency, transformative visions such as the Internet of
Things, autonomous transportation, and personalized medicine will be throttled by the inability
of current computing technologies to handle the magnitude and complexity of human- and
machine-generated data. The energy inefficiency of existing computing architectures derives
from the fundamental constraints imposed by the physics of thermionic excitation of charge car-
riers across semiconductor conduction channels (Figure 1A) [2—4]. This translates to power de-
mand and accompanying heat dissipation that no longer decrease with reduction in the size of  'pepartment of Chemistry, Texas A&M
active elements; in the modern ‘age of dark silicon’, a significant fraction of the chip must be  University, College Station, TX 77843,

: . . . USA
left inoperative as a result of insurmountable power constraints [3]. 2Department of Materials Science and

Engineering, Texas A&M University,
The human brain processes complex information at least 10* times more efficiently than digital 3College Station, TX 77843, USA
computing on silicon [5,6]. Neurons combine information received across synaptic connections Flﬁséﬁgjg;esjgfh Center, Moffett
with many other dendrites and encode output information through specifically timed trans- 4Dep'a,tment of Electrical and Computer
synaptic pulses, called ‘action potentials.” Figure 1B shows the famous measurement by Hodgkin  Engineering, Texas A&M University,
and Huxley across a giant squid axon [7]. Specific spike timings further enable the retention of ~ College Station, TX77843, USA
multiple internal states (constituting memory), imbuing the ability to ‘learn” through the evolution
of internal neuronal weights [8]. Thus, unlike currently utilized von Neumann architectures

. . . ) . *Correspondence:

(see Glossary), computing and memory functions are colocated in the human brain, enabling im-  aneree@chem.tamu.edu (S. Banerjee).
proved energy efficiency and reducing the need to shuttle data. @Twitter: @SarbajitBanerj1 (S. Banerjee).
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Figure 1. Contrasting Biological and Electronic Circuits. (A) Switching characteristics of workhorse silicon-based
metal-oxide semiconductor field-effect transistors (MVOSFETSs) are shown in black; the Fermi-Dirac electron distribution of
electron energies at room temperature limits the steepness of switching characteristics to 60 mV (V) per decade increase
in current (/p) across the transistor channel. Such characteristics embody the inefficiencies of digital computing [4]. An
ideal logic switch with a much sharper slope is shown in red. (B) Action potential of a giant squid axon as originally
recorded by Huxley and Hodgkin (‘digitally remastered’ using graph-digitizer software). Four distinct regions of the action
potential are highlighted, comprising: (1) resting potential; (2) sodium-channel-driven hyperpolarization; (3) potassium-
channel-driven depolarization; and (4) a refractory recovery period. (C) Neuromorphic action potential generated using a
vanadium dioxide (VOo) memristor maps to the biological action potential in (B) with high fidelity. This neuromorphic
function is underpinned by the metal-insulator transition (MIT) of VO, and derives from the negative differential resistance
(NDR) of the device. (D) Demonstration of NDR in a niobium dioxide (NbO,) device. (B,C,D) adapted from [6,7,14],
respectively.

Time (ps)

Emulating Neuronal Circuitry Using Physical Devices

Neuromorphic computing aims to design logic circuity that emulates neuronal logic and memory
function. The possibility of emulating neuronal function using theorized circuit elements named
‘neuristors’ was first proposed in 1962, but full realization of such a notion necessitates
switching of the electrical conductance of solid-state compounds across orders of magnitude
in an energy-efficient manner [9]. Initial approaches to neuromorphic computing utilized standard
digital processors but were wasteful in terms of silicon area and power dissipation. Consequently,
the next advance was to design new silicon-based chip architectures such as complementary
metal-oxide semiconductors (CMOSs) explicitly for neural network applications [10,11],
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Glossary

Complementary metal-oxide semi-
conductor (CMOS): a type of
integrated circuit in which p- and n-
channel MOSFET transistors are
fabricated in close proximity on the same
silicon substrate.

Hubbard ‘U’: the on-site Coulombic
interaction between localized electrons;
alternatively defined as the energy
differential between the occupied (lower)
and unoccupied (upper) Hubbard band.
Leaky integrate-and-fire (LIF)
neuron: a model that attempts to
account for neuronal dynamics,
comprising: () a linear differential
equation to account for dynamical
summation/integration of the membrane
potential over time; and (i) a well-defined
threshold, which, when crossed,
triggers a firing event.

Memristor: a nonlinear circuit element
whose internal electrical resistance
captures not just the present state of the
system but also its history.
Mott-Hubbard bands: strong electron
correlation results in splitting of half-filled
bands and concomitant destabilization
of upper unoccupied states (UH band)
and stabilization of lower occupied
states (LH band).

Mott transition: an abrupt electronic
transition between a metallic and a
nonmetallic state whereby electrons
become localized in specific bands,
resulting in diminished conductivity; the
Mott transition marks a tipping point
between the kinetic energy gained by
delocalizing an electron across a band
and the potential energy penalty
extracted by the Coulombic repulsion
between electrons.
Negative-charge-transfer insulator:
a class of charge-transfer insulators
wherein the effective charge-transfer
energy is less than 0 (A < 0) due to
overlap of occupied ligand p states and
unoccupied transition metal d states.
The overlap of these states often leads
to hybridization and the formation of a p/
d—p/d pseudogap.

Negative differential resistance
(NDR): across some regions of a
current-voltage curve, current
decreases as voltage increases (i.e., dV/
dl < 0); NDR can be either voltage
controlled (‘N’-type) or current controlled
(‘S’-type) as is the case for NoOs in
Figure 1D.

Neuristor: a device first proposed by
Hewitt Crane in the 1960s that
represents the simplest possible


Image of Figure 1

seeking to mimic the leaky integrate-and-fire (LIF) behavior of neurons [12,13]. Nevertheless,
these attempts have failed to approach the energy efficiency of the human brain and are
constrained by the thermodynamic limitations of free-carrier-generation mechanisms in
electrostatically modulated semiconductors (Figure 1A). Another key limitation of neuronal
architectures emulated on conventional chips is their inability to mimic the chaotic current dynam-
ics observed in biological counterparts, which are key to the success of the latter in pattern
recognition [6,14,15].

A Better Way to Emulate Neurons in the Solid State

For the abovementioned reasons, there is a clear need to design solid-state compounds that ex-
hibit sharp spiking behavior characteristic of neurons; however, the palette of functional materials
that exhibit intrinsic switchability of conductance to perform ‘brain-like’ computing tasks is sparse
[16]. Emulating the complexity and diversity of neuronal characteristics requires independent con-
trol of multiple functional attributes of electronic phase transformations, including the magnitude
and energy threshold of conductance switching, heat dissipation, hysteresis, the dynamics of re-
laxation between states, and the number of accessible internal states [6,17-25]. Recent demon-
strations illustrate that electronic transitions within strongly correlated materials can be leveraged
to emulate biological neurons (Figure 1C) [6,14,20]. These neuroemulative capabilities are
underpinned by the tendency of such materials to manifest solid—solid metal-insulator transitions
(MITs) in response to specific external stimuli such as temperature (T¢) or applied electric field. As
exemplified in Figure 1D for niobium dioxide (NbO,), MITs represent an energy-efficient class of
‘memristive’ behavior, where the resistance value at a given point in time captures both the pres-
ent state of the system and its history, reflecting the capacity to evolve and learn [6,24,26]. De-
spite these recent successes [6,14,20], independent control of transformation characteristics
remains to be established [17,27]. For instance, NbO, has too high a transition temperature
(~1080 K) and thus consumes too much power [14,15,26], whereas vanadium dioxide (VO,)
has a transition temperature that is too low (~340 K) given the ~400-K operating temperatures
of modern computing architectures [6]. Here, four classes of MIT materials are discussed: VOo,;
NbOs; rare-earth nickelates (RENiIO3); and ternary vanadium oxides (MxV5>0s) [6,14,16,20]. In
particular, we focus on exploring means of a priori design of free-energy landscapes (e.g., the
landscape depicted in Figure 3D) to enable switching function depicted for the materials included
in Figure 2D, Key Figure [28,29].

Unstable by Design: Electronic Transitions in Correlated Oxides

In strongly electron-correlated materials, electrons can no longer be considered as noninteract-
ing, giving rise to complex many-body phenomena manifested as close coupling of structural,
electronic, and spin degrees of freedom [16,30-36]. This often gives rise to materials that have
localized charge carriers in the ground state but are at the cusp of transitioning to an itinerant
state following: (i) structural transformations that alter the chemical bonding and degree of hybrid-
ization; or (i) an increase in charge carrier density (e.g., through the application of an electric field,
through thermal broadening of occupied Hubbard bands) such that electron—electron repulsions
are screened. In contrast to systems where long-range ion diffusion or filament formation/disso-
lution underpins neuromorphic function [17,37], correlated oxides can exhibit relatively subtle
structural transformations, resulting in intrinsically lower entropy production and thereby greater
energy efficiency. The relative contributions of lattice distortions and electron correlation within
such systems determine the energetic costs of transformations and govern the accessible dy-
namics. Electronic transitions within such compounds can be considered to derive from a convo-
lution of structural (Peierls) and electronic (Mott) origins (Figure 2). In the Peierls case (Figure 2A),
the equivalent of a dimerization gives rise to the improved overlap of electronic states across ad-
jacent metal centers [38,39]. In the case of Mott insulators (Figure 2B), Coulombic repulsion

Cell

REVIEWS

configuration capable of capturing the
quintessential properties of a neuron,
including integration of input signals and
subsequent spiking above a ‘learned’
threshold.

Peierls’ transition: a type of structural
transition deriving from Peierls’ theorem,
which reasons that a 1D chain of equally
spaced ions with one free valence
electron each is unstable; as a
consequence, the ions form dimers to
lower the total energy of the system.
von Neumann architecture: the
workhorse of modern computing
comprising spatially separated central
processing, memory, and input/output
elements.
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Figure 2. Metal-insulator transitions (MITs) can be conceptualized to arise from a weighted coupling of structural
(i.e., Peierls) distortions and electronic (i.e., Mott) instabilities. (A) Schematic representation of a Peierls’ transition driven
by dimerization of adjacent metal centers. (B) An example of a Mott-type transition where electron correlation (U) gives rise
to upper (UH) and lower (LH) Hubbard bands. (C) An example of an electronic transition wherein increased transition metal
3d-0 2p hybridization at high temperature results in the closing of a p/d—p/d quasigap, as reported for rare-earth nickelates
[41]. Panel (i) provides a notional illustration of negative charge transfer before correlation drives opening of the p/d-p/d quasi-
gap. (D) Representation of the Mott-to-Peierls spectrum that describes the mechanistic origin of MITs in the materials
discussed here. (E) Graphical representation of the MIT behavior of several correlated oxide materials; the horizontal axis
shows MIT temperatures (T¢) and the vertical axes show reported changes in resistivity and conductivity. The height of
each floating bar corresponds to the change in resistivity/conductivity between the metallic (bottom) and insulating (top)
phases. Note that the change in resistivity for RENIO; materials to the right of samarium nickelate (SmNiOg) is held constant
since, in the absence of high-quality crystals, the achievable magnitudes of conductance switching remain to be determined
[30]. Vertical lines at room temperature (298 K) and at the typical operating temperature of a computing unit (~400 K) are
shown. A break in the x-axis (650-1050 K) is further included in light of the sparse examples in this range. Data shown in
(E) collated from [21-23,25,42,45-53,111].
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between electrons causes splitting of a half- or partially filed band into an upper Hubbard (UH)
and a lower Hubbard (LH) band separated by the Hubbard ‘U’, defining an energy gap propor-
tional to the on-site electrostatic repulsion and thereby lowering the overall energy of the system
[16]. For Mott—Hubbard insulators, when the width of the Hubbard bands is less than U (as is the
case in the ground state), insulating behavior is observed. Alternatively, when the width is greater
than U, metallic behavior is observed. In purely electronic transitions, broadening of Hubbard
bands can be affected through thermal broadening of the bandwidth [21,23] or the introduction
of additional charge carriers that screen repulsive interactions [40]. Mott insulators are distin-
guished from charge-transfer insulators by the nature of their bandgap. In charge-transfer insula-
tors, the LH band is situated below the ligand p-band (U > 4, the crystal field splitting) and the
effective bandgap (charge-transfer energy, Ag) is between the upper edge of the ligand p band
and the lower edge of the unoccupied metal d band (for Ags> 0) or between correlation-split p/d
hybridized states (for Agr < 0) (Figure 2C) [41,42]. Closing of the p—d or p/d—p/d gaps induced
through alteration of bandwidths or filling of the bands and concomitant shifting of the Fermi level
provides a means of inducing a MIT.

Although MITs have been evaluated in transition-metal chalcogenides, these materials tend to rely
on electric field pulses and show degradation under field stress [12,43,44]. Their quasi-2D elec-
tronic structure nevertheless holds potential for establishing deterministic control of conduction
pathways through surface functionalization. In this review, we focus on transition-metal oxides,
which offer improved robustness and better compatibility with foundry processes, in addition to
an extensive phase space where the extent of hybridization (bandwidths, overlap integrals) can
be readily tuned [16,21-23,25,42,45-53]. The four materials classes discussed here have been
approximately positioned along a ‘Mott—Peierls spectrum’ in Figure 2D, albeit that their specific
positioning along this spectrum is not without controversy. This illustration highlights increasing
realization of the importance of coupling between ionics, subtle structural distortions, and elec-
tron correlation in driving MITs. The massive phase space occupied by strongly correlated
oxide materials is reflected in Figure 2E, which relays the critical transition temperatures (T¢)
and the changes in resistivity of representative oxide materials. Many materials exhibit T¢ < 200
K, a sparse few near-room temperature, and still fewer above the 400-K threshold imperative
for computing. The lack of materials with T > 400 K underscores the need for mechanistic un-
derstanding and design of correlated systems. The four classes discussed here (Figure 2D)
have been selected from among those shown in Figure 2E for the diversity of their MIT mecha-
nisms, for recent demonstrations of their use as memory elements for brain-like computing,
and for exhibiting compositional tunability of switching characteristics.

The Binary Oxides of Vanadium and Niobium

VO, and NbO, represent model MIT materials well separated along the Mott—Peierls spectrum
with respect to the MIT mechanism (Figure 2D) and furthermore exhibit vastly different transition
temperatures (Figure 2E) [54]. The structural instability underpinning the MIT in VO, spans a com-
plex phase space (Figure 3D) [19,28,55,56]. Around T¢ = 340 K, VO, undergoes a first-order
diffusionless phase transformation from a high-symmetry rutile-type phase (>340 K) to one of
several stable (My) or metastable (Ms/Ms) low-symmetry phases (<340 K), as shown in
Figure 3A. The high-temperature rutile phase exhibits a singular V-V bond distance (2.851 A),
which is distinguished from the low-temperature phase that is characterized by V-V dimers,
with alternating long (3.125 A)—shor’[ (2.654 ,&) bonds (M) or alternating dimerized/undimerized
V-V chains (Mx>/Mjs), as shown in Figure 3D [57].

The degree of coupling between the electronic Mott transition and the structural transition
(i.e., positioning on the Mott—Peierls spectrum) has been the subject of much controversy.
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Figure 3. Metal-Insulator Transitions (MITs) in Vanadium Dioxide (VOy). (A) Thermally induced MIT of VO, nanowires
as measured by differential scanning calorimetry (DSC). The hysteresis becomes more pronounced with increasing ramp
rate. (B) VO, can be doped with homovalent (e.g., Ti**) or aliovalent (e.g., W®*) cations to alter the heating and cooling critical
temperature (T¢) of the MIT. Reports of T modulation on the incorporation of various dopants is summarized
[19,56,61-67,70]. Effort was made to obtain data only from DSC (powders) or electrical resistivity measurements (thin
films) and they were limited to studies providing diffraction data verifying retention of the M/M,- (insulating) to-R (metallic)
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Density functional theory (DFT) + dynamical mean-field theory (DMFT) calculations show that the
MIT is impacted by correlation-driven effects that dictate intradimer exchange [39,58]. A recent
neutron-scattering study provides a more quantitative accounting and suggests that phonons
account for approximately two-thirds of the total increase in entropy at the MIT [59].

Approaches to Modifying the MIT Threshold in VO,

Two aspects of VO, are particularly relevant to its use as a memristor in neuromorphic
computing applications: the transition temperature, T¢, and the thermal hysteresis width (AT =
Tcooling = THeating). Deterministic control over AT is particularly important since a smaller hystere-
sis is required to minimize energy dissipation and achieve fast dynamics, whereas a large hyster-
esis could enable nonvolatile on/off states [19,60]. Importantly, ATs in VO is critically dependent
on both intrinsic (doping, point defect concentration, and grain size; Figure 3B) [19,56,61-67] and
extrinsic (strain) considerations [68,69].

The influence of incorporating a range of dopants in VO, at vanadium sites, at oxygen sites, or in
tetrahedral holes has been investigated (Figure 3B) [19,56,61-67,70]. The inclusion of dopant
atoms modifies the ‘rugged’ free-energy landscape of VO, (Figure 3D) in terms of relative
phase stabilities and transformation barriers thereby nontrivially altering the coupling of lattice/
electronic/spin degrees of freedom. As an example, tungsten strongly depresses the MIT and
broadens the hysteresis [19,67,71]. In undoped VO,, the thermal hysteresis is rate dependent
and symmetric for both monoclinic=2rutile and rutile=»monoclinic transitions since the transitions
appear to be nucleated at point defects (Figure 3A). On tungsten doping, VO, exhibits an asym-
metric modulation of transition temperatures and dynamics (Figure 3C) [19,71]. Doping with tung-
sten [72] induces anisotropic lattice expansion and a local increase in symmetry around the
dopant site [73], stabilizing M, domains (Figure 3D). The insulator=>metal transition in W-doped
VO is therefore facile, being nucleated at twin planes and M;/M, stacking faults (wherein trans-
formation dislocations can readily be stabilized) [29], whereas the reverse MIT originates at point
defects such as oxygen vacancies that are suppressed on aliovalent tungsten doping. Tungsten
doping thus functions similarly to tensile strain by enabling facile nucleation of rutile domains dur-
ing the monoclinicdrutile transformation but renders the reverse rutile=*monoclinic transforma-
tion more difficult, thereby engendering anisotropic hysteresis [72].

Alternatively, homovalent titanium doping raises the transition temperature and diminishes
hysteresis width [74], which has been ascribed to the role of the dopant atoms in modifying the
local lattice symmetry to mitigate lattice mismatch between the monoclinic and tetragonal poly-
morphs [63]. Germanium doping strongly increases the transition temperature, almost to 400 K
(Figure 3B), which has been rationalized based on chemical pressure arguments, albeit that the
local structure around the dopant Ge atom and its impact on the electronic structure of VO, re-
mains to be elucidated [62]. Doping at the oxygen sites with fluorine or sulfur atoms is less ex-
plored and while modestly altering T¢ appears to degrade the magnitude of the transition [75].
An intriguing report illustrates nearly complete elimination of hysteresis on simultaneous incorpo-
ration of Cr®* and Nb>* in VO, [64]. In still other examples, dopants (e.g., H*, Ir**, Ru**) [56,64,76]

transition. The broken line acts as a reference indicating symmetric change in the heating/cooling hysteresis (AT¢) relative to
undoped VO,. The size and color of individual data points correspond to the crystal radius and the magnitude of hysteresis for
each dopant, respectively. T values have been selected based on the maximum solubility reported for a given dopant. Sev-
eral dopants (H*, Ir**, Ru**) stabilize insulating metastable polymorphs that do not transition to the metallic rutile phase
[66,76]. (C) The intrinsic MIT properties of VO, can be modulated through dopant incorporation, which alters the relative ther-
modynamic stabilities and electronic structure of the insulating M4 and metallic R phases. Tungsten doping has been shown
to significantly lower the T of VO, and alter the hysteresis width. (D) Structural relationships between the various reported
polymorphs of VO, are shown. (A,C) adapted from [19]. Data in (B) collated from [19,56,61-67,70]. Structures in
(D) collated from [56,116-118].
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stabilize altogether different polymorphs (Figure 3D). Finally, interstitial doping of elemental boron
into tetrahedral holes of the M4 phase of VO, has recently been demonstrated, providing a nota-
ble post-synthetic approach to tuning T¢ and hysteresis of VO, [66]. Clear-cut design principles
relating dopants to the transition temperature and hysteresis of VO, remain to be gleaned and will
be pivotal to the utilization of VO, in neuromorphic computing.

NbO.: An Unusual High-Temperature MIT Material

NbO, (Figure 4Ai) also exhibits a pronounced MIT, albeit at a much higher temperature in the
range 1000-1100 K [15,77]. Despite striking similarities to VO,, a mechanistic understanding of
the underlying MIT has emerged only recently [54,78,79]. On heating, NbO, transitions from a
distorted rutile structure with dimerized Nb—Nb pairs (2.685 A and 3.304 A; Figure 4Ai,ii) to a
high-symmetry rutile structure with uniform Nb—-Nb distances (3.032 A Figure 4Aiii,iv) [77,79].
Thus, the low-temperature Nb—Nb dimers are decoupled across this phase transition
(Figure 4A), resulting in quasilinear Nb chains and manifesting an order-of-magnitude spike in
conductivity [15,54,79,80]. Electron correlation is expected to play a less-significant role in
NbO, compared with VO, owing to the greater energy dispersion of 4d bands; Demkov has
noted the emergence of soft phonon modes in the Brillouin zone, a hallmark of the Peierls insta-
bility [79]. Even so, a comparative DFT+DMFT investigation has demonstrated that electronic cor-
relations, although less prominent, are non-negligible [54]. This is supported by observations of
strong renormalization of the t,4 levels, concurrent with the emergence of Hubbard sub-bands
in the metallic phases of both VO, and NbO, [54].

Given the strong parallels between NbO, and VO, attempts to alloy VO, and NbO, to achieve a
Tc intermediate between the two seems a straightforward solution. Doping NbO, with 5 at.% V
results in a ~100-K decrease in T. However, the lattice incongruence, coupled with the large dis-
crepancy in ionic radii, leads to the stabilization of a semiconducting phase (for 0.95 > x> 0.05 in
Nb_,V,O,), which does not undergo an MIT [77].

Leveraging the MIT in NbO, to Realize Brain-like Computing

Recent results for NbO, have highlighted its viability as a neuromorphic material [14,15,79,81],
emphasizing the importance of ‘negative differential resistance’ (NDR) (defined as dV/d/ < 0)
behavior as a hallmark of memristive properties (Figure 1D) [24,26,82]. Unlike traditional circuit
elements, voltage-driven memristors are nonlinear dynamical elements for which current (/) evolves
with time (t) as

I(t) =G(B,V)V(1) (1]
and
de/dt = (8, V), (2]

where Vis the time-dependent input voltage and G is the conductance, which is a function of Vand
an internal state variable © (in this case temperature). The rate of change of the state variable de-
pends on the value of the state variable (thus incorporating memory) and V [6,14,83].

Two distinct NDR regimes are observed in NbOs (Figure 1D) and are driven by nonlinear thermally
activated conduction and the MIT, potentially allowing decoupling of the nonlinear conductance
response from the atomic rearrangement. This, combined with the demonstration of ‘edge of
chaos’ dynamics reminiscent of neuronal function [14], has generated much interest in NbO,
as a neuromorphic computing material; however, the high transition temperature of NbO,
(1050-1100 K) [15,77,80] and the dominance of the Peierls-type transition results in excessive

8 Trendsin Chemistry, Month 2019, Vol. xx, No. xx

Cell

REVIEWS



A 14 P4,/mnm &
D » - . ~ 9 / \'/AVA\

] (X L1
£ B .
=) I
. N
S s Ty q i
E = iv) §ll d,=3.032A
B Insulating C 107
' Insulating

'g 10

£ 10°+

=)

g 10%+

4

£ 10° :

B a2 ;

.a 10 nanowire

]

e 10’

10
340 350 360 370 380 390 400
Temperature (K)

Trends In Chemistry

Figure 4. Metal-Insulator Transitions (MITs) in Niobium Dioxide (NbO,), RENIOz, and M,V50s. (A) The MIT of
NbO is underpinned by a phase transition between low- and high-symmetry tetragonal distortions. The low-temperature
(144/a) phase of NbO, exhibits distinct Nb-Nb dimers (alternating 2.685- and 3.304-A distances), whereas the high-
temperature phase (P4./mnm) exhibits a singular Nb-Nb distance (3.032 A). As discussed in the text, the structural
transition plays a considerably greater role in the MIT of NbO, compared with vanadium dioxide (VO5). (B) A simplified
representation of structural perturbations observed in samarium nickelate (SmNiIO3) across its MIT, showing only an
exaggerated change in the <O-Ni-O> bond angle across the MIT. Breathing distortions comprising alternating NiOg
octahedra are omitted. (C) As an exemplar of the electronic instabilities of M, V.05 phases, the MIT in 3/3'-Cu,V,0s is
observed to occur with retention of the 1D tunnel framework [23,115]. (C) adapted from [23].

energy consumption. By comparison, VO, consumes just 16% of the energy per switch and
can be switched 100x times faster than NbO,, [6,14]. This is succinctly reflected in their respective
volumetric free-energy cost to trigger an MIT (<1 fJ-spike™ for VO, and ~6 fJ-spike " for NbO,)
[6,84]. Despite promising results for VO, its T (~340 K) is low, reinforcing the importance of
understanding the mechanisms by which Ti, Ga, and Ge doping increase T and the identifica-
tion of methods that allow amplification of this effect [62,63,74]. In light of energy-efficiency
considerations, subsequent sections emphasize the design and stabilization of materials with
greater electronic (rather than lattice) contributions.

Towards an Expanded Palette: Rare-Earth Nickelates and Mixed-Valence
Vanadium Oxides as Neuromorphic Materials

Perovskites Take the Stage with Rare-Earth Nickelates

Rare-earth nickelates and ternary vanadium oxides provide a vastly expanded design space en-
abled by ternary and quaternary compositions, thereby expanding the scope for tuning electronic
instabilities and thus transition temperatures [16,30,85,86]. Rare-earth nickelates (RENiIO3) be-
long to a family of oxide perovskites that adopt distortions from a nominally cubic (Pm3m) struc-
ture [25,48,87]. With the exception of LaNiOg which is always metallic [87], RENiO3 (RE = Pr, Nd,
Sm, Eu, Gd, Dy, Ho, Er, Lu) compounds exhibit a sharp MIT that can be tuned across a wide
range (Tc = 130-599 K; Figure 2E) [25,30,88,89]. Strain in cubic perovskite structures can be

Cell

REVIEWS

Trends in Chemistry, Month 2019, Vol. xx, No. xx 9



Image of Figure 4

applied ‘chemically’ by varying the size of the rare-earth cation [48,90,91] or extrinsically by epi-
taxial mismatch [25,92-94]. Analogous to VO, and NbO,, the MIT of RENiOg is concomitant
with a structural transition distinguished by a loss of symmetry from orthorhombic (Pbnm) in
the metallic state to monoclinic (P2;/n) in the insulating state [48,90,95-98]. Locally, the MIT is
observed to coincide with a slight ‘breathing’ distortion that involves the concerted motion of
nickel-centered octahedra, inevitably altering Ni 3d—-O 2p hybridization [99] and stabilizing chains
of alternating inequivalent Ni polyhedra with long and short Ni-O bonds [41,100,101]. An early
proposed mechanism for the resistance-switching phenomenon invoked a charge disproportion-
ation mechanism, wherein the ‘breathing’ lattice distortion was accompanied by disproportion-
ation to a mixed Ni valence state [i.e., 2(d”) — d”*° + d’~°] [91,97,100]. However, a definitive
mechanism for the MIT in RENiOz has been difficult to ascertain.

Recent consensus delineates RENIO; materials as ‘negative-charge-transfer’ insulators
(Figure 2C) whereby hybridization between occupied O 2p and unoccupied Ni 3d states give rise
to a p/d-p/d quasigap [30,41,42,102]. Resonant inelastic X-ray scattering (RIXS) supported by
many-body cluster and single-impurity Anderson model (SIAM) calculations point to a negative-
charge-transfer scenario as the underlying electronic origin of the observed conductance modulation
(Figure 2C) [41,42,102]. Interestingly, Bisogni and colleagues [41] have proposed the emergence of
an O 2p-0 2p quasigap owing to an increased number of holes in the O 2p band, which deviates
somewhat from the explicit hybridization of overlapping O 2p-Ni 3d states invoked in other studies
[30,103,104]. In the insulating state, the migration of a Ni hole to hybridized oxygen 2p states is ob-
served [41]. Another model suggests that a pair of ligand holes (L?) strongly couples with the
breathing-type lattice distortion by occupying alternating NiOg octahedra (bipolaron condensation)
[101]. In this mechanism, Ni 3d electrons on one sublattice (3d°) are decoupled from nearby octahe-
dra undergoing the observed stretching motion (3d°L?) [105]. Each adjacent sublattice then distorts
along specific phonon modes to maximize delocalization of the holes between the O 2p and Ni 3d
states. The so-called ‘site-selective Mott transition” mechanism has gained recent experimental sup-
port [41,102]. While the precise underlying mechanisms remain to be elucidated, these compounds
ilustrate a distinctive mode of coupling of electronic structure (negative charge transfer, charge dis-
proportionation, site-selective Mott transitions) with lattice distortions (breathing distortions and octa-
hedral rotations) corroborating the idea of a mechanistic spectrum spanning structural and electronic
considerations coupled to different degrees [92,100-102)].

The extent of perturbation of bond angles required to close the negative charge-transfer gap is in
essence correlated with the Goldschmidt tolerance factors [48] of the perovskite structure and
thus smoothly varies across the lanthanide series. Thus, T¢ can be varied systematically either
through chemical substitution at the rare-earth site or through epitaxial strain [89,92,93]. Despite
the smooth variation of the MIT temperature across the lanthanide series and the generally high
miscibility of lanthanides, the formation of solid solutions remains underexplored. Huang and co-
workers have demonstrated the use of Sm and Nd miscibility to bridge the gap between the MITs
of samarium nickelate (SmNiIOgz) and NdNiOz [91]. Superlattices and random alloying on both
rare-earth and nickel lattices warrant further exploration to establish independent control of trans-
formation characteristics [91].

Alternatively, lattice mismatch by epitaxial growth of RENiOs thin films on different substrates pro-
vides a tool for tuning T¢ and has been extensively explored for SmNiO5 (Figure 4B). At relatively
modest strains, a large diminution of T is observed, from 380 K'to 140 K. Inducing a strain of € =
—2.3% by epitaxial growth on a yttrium orthoaluminate (YAIO3z) substrate completely suppresses
the insulating phase within the measured temperature range (T > 4 K) [25,93]. While evidently
powerful, modulation of the conductance response by epitaxial strain renders T static and the
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use of epitaxial strain to increase T¢ has not been demonstrated. By contrast, ionic liquid gating
provides a means of dynamically modulating T¢ [20,94,106]. Nickelates can reversibly accommo-
date large concentrations of oxygen vacancies [88,91]. Ramanathan has demonstrated that the
creation of oxygen vacancies through ionic-liquid-induced gating affords deterministic control of
the conductivity of SmNIO3 transistors on the application of a gate voltage, thereby yielding a
means of mimicking synaptic function with time-correlated spikes [20]. Despite much work
devoted to tuning T in RENIOg, little attention has been devoted to tuning hysteresis.

Ternary Vanadium Oxides as a Promising Design Space

Ternary vanadium oxides (M,V>Os) crystallize in a variety of low-dimensional motifs including
quasi-1D tunnels (Figure 5) and quasi-2D layered structures with varying stacking sequences
and extents of condensation (single/double layered) [16,21,23,24,107]. M,V,0s5 are nominally
mixed valence in the ground state; they are formed by the reductive intercalation of various cat-
ions that span the breadth of the periodic table (s-block, transition metal, p-block; Figure 5) as
well as organic cations in different frameworks of V,Os [21-23,107-111]. The rugged energy
landscape of V,Os is characterized by scores of possible metastable structures; upwards of six
have been experimentally stabilized [28,86,109,112]. On intercalation, the V,Os lattice is partially
reduced, resulting in a mixture of V**/A/** oxidation states. Given the strong degree of electron
correlation in V 3d bands, electrons tend to localize on vanadium sites adjacent to intercalating
cations, forming charge-ordered patterns characterized by the formation of Mott—Hubbard
bands rather than delocalized metals (Figure 1B) [113]. Many of these materials undergo a
Mott MIT with only a slight structural contribution derived from ionic rearrangement of the interca-
lated cations or pinching of the V.05 framework [21-23,107]. With increasing temperature, select
bond distances are decreased, leading to increased electronic coupling between adjacent metal
centers (Figure 2B). Thus, the MIT is critically dependent on V-V distances within the structure,
the carrier density, and the positioning of intercalated-ion-derived ‘midgap’ states [85,107,108,114].
This is evidenced in the M, V05 series for (M = alkali metals) wherein the transition temperature (T¢)
monotonically increases with decreasing ionic radius (for similar values of x), which is correlated with
the V-V bond distance along the b-axis [111]. The wealth of electronic phase transitions in M,V-O5 sys-
tems has been widely demonstrated in the form of MIT [22,23,49,107,111,114,115] and semiconduc-
tor-semiconductor transitions [21] facilitated by Mott instabiltties.

In contrast to the previous systems, the spin, orbital, and electronic degrees of freedom in
M,V>05 compounds are to a greater extent independently tunable through selection of the inter-
calated cation (M) [21-23,49,107], its stoichiometry (x), and the vanadium—-oxygen connectivity of
the polymorph (single/double-layered, quasi-1D, etc.). The frameworks are furthermore charac-
terized by distinctive interstitial sites that can accommodate specific cations, enabling stabilization
of quaternary compositions with ordered arrays of different intercalated cations. Topochemical
methods have been developed to extract ‘native’ cations, to stabilize metastable V.05 poly-
morphs [28,86], and to insert altogether different ions to access compounds inaccessible from
direct synthesis (Figure 5). 3-M,V>05 (M = Mg, Sn, Co, Ni) [108,109] have been prepared by
this route; p-block cations with stereoactive lone-pair electrons introduce a midgap state within
the bandgap rendering these compounds amenable to voltage-induced MITs [107,114]. Re-
cently, massive MITs have been observed for individual single-crystalline nanowires (Figure 4C)
[21,22,49], albeit that the sensitivity to stoichiometry, x, makes it difficult to fully unravel the cou-
pling of electronic structure and lattice distortions. One proposed mechanism suggests band-
width broadening owing to anharmonic copper oscillations [23,115]. In the case of 8-Ag,V20s,
high-resolution X-ray diffraction has been used to evaluate the structure above and below the
MIT. Subtle changes in the V-V distance indicate increased V d,, overlap as the origin of the
MIT, consistent with an increase in the bandwidth of the LH band bridging the Mott gap [21].

Cell

REVIEWS

Trends in Chemistry, Month 2019, Vol. xx, No. xx 11




L Compositional diversity
Exfoliation at the‘M’site Direct synthesis
6'I-szsro.s-xvzos

nter
0(;3&\0“

A

Metastable
B'Mxvzos

Trends In Chemistry

Figure 5. Intercalation-Induced Transformations in the M,V>05 Phase Space. Thermodynamically stable single-
layered a-V,0Os5 (center) can be intercalated with alkali metals (Li, Na, K), alkaline metals (Mg, Ca, Sr), transition metals (Co,
Ni, Cu, Zn, Ag), and p-block elements (Sn, Pb, Tl) to form ternary vanadium oxides (M,V»0s) with substantially altered
vanadium-oxygen frameworks. Depending on the size of the intercalating ion, M, and its stoichiometry, x, the framework
rearranges to form ‘double-layered’ (left) or tunnel-structured (right) phases. Soft chemistry can be utilized to induce
transformations that allow control over the extent of electronic coupling between adjacent vanadium metal centers. The
layered 6-M,V,0s structures can be reversibly hydrated to form hydrated materials, d-[M(H20)4],V2Os, that have been
shown to exhibit pinched //V/ hysteresis loops characteristic of memristors. These materials can be partially leached and
exfoliated to alter the extent of electronic coupling between adjacent V,01¢ double layers or fully leached to form a
metastable V05 polymorph [86,110,112]. Alternatively, tunnel-structured (3-M,V,0s phases can be stabilized (right) for
several intercalants (light blue, Periodic Table) [21,107]. Topochemical modification enables control over the stoichiometry, x,
and the crystallographic site (3/3) occupied by the metal cation and therefore the extent of charge ordering. The intercalated
ions can be completely leached to stabilize a new metastable polymorph, ¢-V.0Os, that exhibits significantly different V-O
hybridization compared with the thermodynamically stable a-V.Os phase [109]. This empty polymorph can finally be re-
intercalated with additional metals to form metastable ternary vanadium oxides (pink, Periodic Table), representing a method
for installing specific electronic states [108,109]. Structures in (E) based on original data reported in [23,24,108-110,112].

Exfoliation of these layered quasi-2D M,V,05 materials has been explored and provides an addi-
tional knob for tuning electron correlation and bandgap by alteration of local symmetry [110,112].
The intercalated ions in such 2D systems can further be solvated to form materials with the com-
position 0-[M(H20),4],V205 (M = Co, Ni, Zn), which have furthermore been shown to exhibit
memristive behavior ascribed tentatively to proton diffusion [24]. The insertion of solvated ions fur-
ther suggests that the discipline of coordination chemistry has much to contribute to controlling
electron delocalization on the V05 framework.

Concluding Remarks
Recently, using only two VO, memristors, Yi and colleagues were able to simulate 23 distinct
biological neuron spiking behaviors. By contrast, a CMOS artificial neuron made from 1300
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Outstanding Questions

While considerable recent attention
has focused on the use of Al to accel-
erate the design of novel materials,
can novel neuromorphic materials ac-
celerate the realization of the promise
of AI?

How can fundamental descriptors
of transformation characteristics be
formulated in terms of intrinsic materials
properties, mesoscale domain evolution,
and the interaction of defects and
domains with extemal fields?

How can transformation characteristics
such as magnitude of conductance
switching, threshold energy, heat
dissipation, switching time, hysteresis,
dynamics of relaxation, and number
of accessible internal states be
decoupled from each other and
independently modulated?

Can the critical transition temperature
of VO, be pushed above 400 K by
amplifying the influence of specific
dopants and coupling to external
fields?

How can codoping schemes be
developed to amplify or decouple
transformation characteristics?

Can diffusive interstitial dopants
introduced in close-packed structures
be used to obtain strongly time-variant
responses of the metal-insulator
transition? Can electronic structure
measurements of M,V,0Os compounds
performed as a function of composition
(M), stoichiometry (x), and framework
connectivity be used to benchmark
and improve the theoretical treatment
of electron correlation?

How best can the vast design space
of M,V,0s5 compounds spanning
composition, stoichiometry, and diverse
crystallographic sites be navigated to
arrive at compounds with the desired
transformation characteristics?

Can solid solutions of RENIO3
(e.g., Ndo 5Smo 5, Yo.3Smg ) be stabi-
lized across the entire phase space to
tailor transition temperatures determin-
istically between the end members?

What intrinsic and extrinsic factors
control hysteresis width and switching
magnitudes in rare-earth nickelates?
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Figure 6. The Coupling of Intrinsic Chemical Properties and Extrinsic Characteristics in Determining
Neuromorphic Function. Schematic delineating desired device characteristics (gray inner circle), tunable intrinsic
material properties derived from composition and structure (blue circle), and tunable extrinsic device/materials
characteristics (maroon circle, exterior circles). Images in maroon ‘Extrinsic device characteristics’ circles adapted in
part from [6,19,24,25].

logic gates was able to simulate only 11 neuronal behaviors [6]. The realization of the full promise
of neuromorphic computing requires the design of new dynamical materials and systems that di-
rectly emulate the functionality of neurons and synapses to weave memory, computation, and
communication into one fabric. Rather than build ‘better transistors’, we need to develop novel
dynamical materials with nonlinear conductance switching that directly emulate neuronal ele-
ments and to build entirely new circuit elements from such materials that can perform tasks
that presently require hundreds to thousands of transistors. Such an advance will increase the en-
ergy efficiency of computing by orders of magnitude; this is furthermore required since most com-
putation will need to be performed at ‘the edge of the internet’, in close proximity to where data
are collected and where power availability is likely to be low and intermittent. Such high-fidelity
neuronal emulation at ‘the edge’ will enable immediate system updating (learning) in response
to external events, thereby enabling realization of the full promise of artificial intelligence (Al) to
learn and respond in real time.
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What is the mechanistic basis for the
classical memristive behavior observed
for 8-[M(H20)4], V205 compounds?

Can machine learning methods enable
accelerated evaluation of free-energy
landscapes in search of proximate
wells with tunable transformation bar-
riers that can be utilized as
neuromorphic vectors?
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While considerable recent attention has focused on the use of Al to accelerate the design of
novel materials and syntheses, novel compounds and syntheses are urgently needed to allow re-
alization of the promise of Al in full measure. The design of materials that ‘turn on a dime’ requires
the elucidation of design principles underpinning electronic instabilities as well as independent
control of transformation characteristics such as the transition temperature, hysteresis width,
magnitude of conductance switching, dynamics of relaxation between states, and number of ac-
cessible internal states (Figure 6). Deterministic control of conduction pathways is further an ur-
gent imperative. The interplay between device properties, intrinsic chemical descriptors, and
extrinsic tunable properties is illustrated in Figure 6. Please see the Outstanding Questions for a
succinct summary of fundamental chemistry questions that must be addressed, practical chal-
lenges that must be met, and a summary of several promising and emerging directions that will
play a role in addressing these issues. The challenges described here span the discovery of
new compounds, synthetic approaches to stabilizing metastable compounds to obtain indepen-
dent control of transformation characteristics, and the understanding of dynamical processes
away from equilibrium, which represents a rich new frontier at the intersection of chemistry and
information science.
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