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Abstract
We classify irreducible finite-dimensional representations of a non-trivial central
extension of the Lie superalgebra p(3), and compute their characters.
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1 Introduction

Finite-dimensional simple Lie superalgebras over C have been classified in [8]. Some
of these superalgebras have non-trivial central extensions: sl(n|n) is a central extension
of psl(n|n), sq(n) is a central extension of psq(n), the Poisson Lie superalgebraSP(n)

is a central extension of the special Hamiltonian superalgebra SH(n), and finally the
Lie superalgebra p̂(3) is the unique (up to isomorphism) non-trivial central extension
of the Lie superalgebra p(3).

It is natural to study finite-dimensional representations of these central extensions
as well as representations of the corresponding simple superalgebras. For sl(n|n)

and sq(n) it is convenient to study representations of their respective Lie algebras of
derivations gl(n|n) and q(n). Finite-dimensional representations of these superalge-
bras are studied in detail in [2–4,10,11]. For the Lie superalgebra psl(2|2) there is a
three-dimensional space of central extensions, irreducible finite-dimensional represen-
tations over those central extensions are studied in [7]. Irreducible finite-dimensional
representations of the Poisson superalgebra are described in [12].
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As far as we know, the representations of p̂(3) with nonzero central charge have
not been previously studied. In the present paper we try to fill this gap: we compute
characters of irreducible finite-dimensional irreducible representations of p̂(3) with
nonzero central charge. The case of zero central charge follows from more general
results for the Lie superalgebra p(n) for arbitrary n in [1], see also [5,6].

We plan to use the results of the present paper to compute the Cartan matrix of the
category of finite-dimensional representations of ˆp(3) and classify the blocks of this
category.

2 The Lie superalgebra p̂(3)

2.1 Central extension of p(3)

Consider the superspace V = C
m|m equipped with a non-degenerate odd symmetric

form β : V × V → C. By p̃(m − 1) we denote the subalgebra of all endomorphisms
X ∈ EndC(V ) such that

β(Xξ, η) + (−1)X̄ ξ̄ β(ξ, Xη) = 0, for all ξ, η ∈ V .

This Lie superalgebra has a codimension-1 ideal p(m−1) consisting of matrices with
zero supertrace. For m ≥ 3 the Lie superalgebra p(m − 1) is simple and p̃(m − 1)
coincides with the Lie superalgebra of all derivations of p(m), see [8].

The case m = 4 is exceptional since p(3) has a nontrivial central extension which
we will denote by g = p̂(3). To describe this extension, note that in matrix form

p(3) is given by block matrices

(
A B
C −At

)
where A is a traceless 4 × 4 matrix, B is

symmetric and C is skew-symmetric. In particular, the even part of p(3) is the Lie
algebra sl(4) � so(6), and the odd part is the sum Λ2W ∗ ⊕ S2W where W denotes
the natural four dimensional sl(4)-module. It is clear that p(3) has a Z-grading

p(3) = p(3)−1 ⊕ p(3)0 ⊕ p(3)1, p(3)−1 = Λ2W∗, p(3)0 = sl(4), p(3)1 = S2W .

Note that p(3)−1 = Λ2W ∗ is isomorphic to the standard so(6)-module E with the
scalar product (·, ·). Define the cocycle ϕ : Λ2(p(3)) → C as follows: for any x ∈
p(3)i , x ∈ p(3) j , set

ϕ(x, y) :=
{

(x, y) if i = j = −1

0 otherwise
.

We denote by p̂(3) the central extension of p(3) defined by this cocycle.

2.2 The category of finite-dimensional representations

The goal of this paper is to understand finite-dimensional representation theory of
g in the case of nonzero central charge. We denote by Repg the category of finite-
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dimensional g-modules semisimple over g0̄, and by Reptg the full subcategory of
modules with central charge t , and concentrate on the case t �= 0. We assume that
all our categories are enriched over superspaces and we allow odd morphisms. In
particular, we assume that M � ΠM , where Π is the change of parity functor.
Working this way we obtain, generally speaking, a non-abelian category. However, if
the morphism ϕ between two objects is graded (even or odd) then Kerϕ and Coker ϕ
are well defined.

Note that g has a grading g = g−2 ⊕ g−1 ⊕ g0 ⊕ g1 with g−2 = Cz, where z is the
central element. Moreover, h = g−2 ⊕ g−1 ⊕ g0 is isomorphic to the superextension
of so(6) which we study in the next section. We will show that the category of finite-
dimensional h-modules with nonzero central charge is semisimple. It is useful to
consider the restriction functor Res : Reptg → Repth.

Proposition 1 The category Repg decomposes into direct sum
⊕

t Rep
t
g. If ts �= 0,

then Reptg and Repsg are equivalent.

Proof The first assertion is obvious. Let us prove the second assertion. For any u ∈ C
∗

denote by τu the automorphism which acts by u−i on the graded component gi . The
equivalence Reptg → Repsg is given by the twist with τu : M 	→ Mτu for u such that
u2 = ts−1. 
�

2.3 The standard representation

Let V = C
4|4, and define a representation ρt : g → EndC(V ) by

ρt

(
A B
C −At

)
:=

(
A B + tC∗
C −At

)
, ρ(z) := t,

where c∗
i j = (−1)σ ckl for the permutation σ = {1, 2, 3, 4} → {i, j, k, l}. We denote

the corresponding g-module by Vt . It is clear that Vt is a simple object of Reptg. When
t = 0 this module coincides with the standard p(3)-module V .

2.4 Root decomposition

The Cartan subalgebra of t ⊂ g is the direct sum of Cz and the Cartan subalgebra in
so(6). The Lie superalgebra g has a roots decomposition with even roots

Δ0̄ = {(±(εi ± ε j ) | 1 ≤ i < j ≤ 3},

and odd roots

Δ1̄ = {±ε1,±ε2,±ε3, ε1 + ε2 + ε3, ε1 − ε2 − ε3,−ε1 − ε2 + ε3,−ε1 + ε2 − ε3}.

Note that the odd roots ±εi have multiplicity 2 and the roots ε1 + ε2 + ε3, ε1 − ε2 −
ε3,−ε1 − ε2 + ε3,−ε1 + ε2 − ε3 are not invertible.
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Let us choose simple roots of g0 = sl(3) = so(6) by setting

α1 = ε2 − ε3, α2 = ε1 − ε2, α3 = ε2 + ε3.

We denote by ei , fi , hi , i = 1, 2, 3 the Chevalley generators of g0. For a weight
λ ∈ t∗ we use the notation λ = (a, b, c) if (λ, α1) = a, (λ, α2) = b and (λ, α3) = c.
We denote by L(a, b, c) the simple g0-module with highest weight λ = (a, b, c).

Example 1 With this labeling, L(0, 1, 0) is the natural 6-dimensional representation of
so(6), while L(1, 0, 0) and L(0, 0, 1) are spinor 4-dimensional representations dual
to each other.

3 Finite dimensional representations of the superextension of so(2n)

3.1 Lie superalgebra h(n)

Consider the Lie superalgebra h(n) such that h(n)0̄ = so(2n) ⊕ Cz, h(n)1̄ = E is
the standard so(2n)-module with trivial action of z and the bracket S2E → h(n)0̄ is
defined by

[v,w] := (v,w)z

where v,w ∈ E and (·, ·) denotes a symmetric form on E invariant under the so(2n)-
action. Note that h(n) has a Z-grading

h(n) = h(n)−2 ⊕ h(n)−1 ⊕ h(n)0,

where h−2 = Cz, h(n)−1 = E and h(n)0 = so(2n). For every s ∈ C
∗ we define the

automorphism τs of h(n) by the formula

τs(x) = si x, for all x ∈ h(n)i .

Recall that one can identify so(2n) with Λ2E as follows. Define Tv∧w ∈ EndC(E)

by
Tv∧w(u) = (v, u)w − (w, u)v (1)

for v,w, u ∈ E . Then Tv∧w ∈ so(2n) and the span of Tv∧w for all v,w ∈ E coincides
with so(2n).

Let Reph(n) denote the category of finite-dimensional h(n)-modules semisimple
over h(n)0̄, and by Repth(n)

we denote the full subcategory of modules on which z
acts by the scalar t ∈ C. As in Proposition 1, Reph(n) decomposes into direct sum of

Repth(n)
and if t1, t2 �= 0, then Rept1h(n)

and Rept2h(n)
are equivalent.
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3.2 Spinor representation

Let us define the spinor representationVt ofh(n). Fix the decomposition E = E+⊕E−
for two maximal isotropic subspaces E± ⊂ E and set Vt := Λ(E+). Assume that
t = s2 �= 0. Define the h(n)-module structure on Vt (denoted by ·) by setting for any
ξ ∈ Vt , v ∈ E+ and w ∈ E−

v · ξ := sv ∧ x, w · 1 = 0, w · (v ∧ x) = s(v,w)x − v ∧ w · x,
Tv∧w · ξ = v · (w · ξ), z · ξ = tξ.

It is easy to see that Vt is obtained from V1 by twisting with the automorphism τs .
The following statement is straightforward.

Proposition 2 If t �= 0, then Vt is a simple h(n)-module. For n = 3, Vt is the restriction
to h(3) of the standard g-module.

Lemma 1 LetCt denote the one-dimensional h(n)0̄-module with central charge t �= 0.
Then

Indh(n)

h(n)0̄
Ct � V⊕2n

t .

Proof Let Cliff(2n) denote the Clifford algebra with 2n generators. Consider the Lie
superalgebra map ψt : h(n) ↪→ Cliff(2n) such that ψt (z) = t , and the corresponding
surjective homomorphism ϕt : U (h(n)) → Cliff(2n) of associative superalgebras.
Then Vt is the pull back of the unique simple Cliffn-module and Indh(n)

h0̄
Ct is the

pullback of the free Cliff(2n)-module of rank 1. From the structure theory of Clifford
algebras we have

Cliff(2n) � V⊕2n
t .

This implies the lemma. 
�

3.3 Simple objects in Repth(n)

For every simple so(2n)-module L , we set L̃ t := L ⊗ Vt where we assume that the
action of h(n)−1 ⊕ h(n)−2 on L is trivial.

Theorem 1 Let t �= 0.

(a) The module L̃t is simple and every simple module in Repth(n)
is isomorphic to L̃t

for some, unique up to isomorphism, simple so(2n)-module L.
(b) The category Repth(n)

is semisimple.

Proof First, let us prove that L̃ t is simple. Indeed, the restriction of L̃ t to h(n)−1 ⊕
h(n)−2 is isomorphic to the direct sum of dimL copies of Vt . If M is a non-trivial
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submodule of L̃ t then M ′ := M ∩ (L ⊗ 1) �= 0, and hence by h(n)0-invariance of M
we obtain M ′ = M ⊗ 1. Therefore M = L̃ t .

Every simple h(n)0̄-module with central charge t is isomorphic to L �Ct for some
simple so(2n)-module L . By Lemma 1 we have

Indh(n)

h(n)0̄
(L � Ct ) � L ⊗ Indh(n)

h(n)0̄
Ct � L̃⊕2n

t .

Every simple object of Repth(n)
is a quotient of Indh(n)

h(n)0̄
(L�Ct ), hence it is isomorphic

to L̃ t for some L . Hence (a).
Since Indh(n)

h(n)0̄
(L � Ct ) is projective in Repth(n)

and L̃ t is a direct summand, we

obtain that every simple object in Repth(n)
is projective. This implies (b). 
�

4 Kacmodules in the category Reptg

We turn now to the representation theory of g = p̂(3).

4.1 Kacmodules

Let p = g−2 ⊕ g0 ⊕ g1, λ = (a, b, c) be a dominant g0-weight, and Lt (λ) denote the
irreducible p-module with central charge t , g0 highest weight λ, and trivial action of
g1. We define a Kac module Kt (λ) by

Kt (λ) := U (g) ⊗U (p) Lt (λ).

Proposition 3 Every simple module in Reptg is a quotient of some Kac module Kt (λ).

Proof Let S be a simple g-module. Since g1 is an abelian odd Lie superalgebra, we
have Sg1 �= 0. Then Sg1 contains a g0-submodule isomorphic to Lt (λ) and we have a
nonzero homomorphism Kt (λ) → S by Frobenius reciprocity. 
�
Remark 1 If t �= 0, the cosocle of Kt (λ) may be not simple and a simple module S
may appear in a cosocle of several Kac modules.

In what follows we use the following fact about Lie superalgebra.

Lemma 2 Let g be a finite-dimensional Lie superalgebra and p be a subalgebra which
contains g0 and such that g = p⊕m as a p-module. Then for every p-module M there
is an isomorphism between induced and coinduced modules

HomU (p)(U (g), M) � U (g) ⊗U (p) (M ⊗ Λtop(m∗)).

Proof Use the isomorphism of p-modules

HomU (p)(U (g), M) � M ⊗ Λ(m∗)
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to construct an injective homomorphism

M ⊗ Λtop(m∗) → HomU (p)(U (g), M)

of p-modules. By Frobenius reciprocity, the latter homomorphism induces an isomor-
phism

U (g) ⊗U (p) (M ⊗ Λtop(m∗)) → HomU (p)(U (g), M).


�
Lemma 3 Kt (a, b, c)∗ � K−t (c, b, a).

Proof Indeed, we have

Kt (a, b, c)∗ � HomU (p)(U (g), Lt (a, b, c)∗) � U (g) ⊗U (p)

(
Lt (a, b, c)∗ ⊗ Λtop(g∗−1)

)
.

Hence the statement follows from the following isomorphisms of g0̄-modules

Λtop(g∗−1) � C, Lt (a, b, c)∗ � L−t (c, b, a).


�
Lemma 4 If t �= 0, then the modules Λ2Vt/2 and S2Vt/2 are simple, and the structure
of Kt (0) can be described by the non-splitting exact sequence

0 → S2Vt/2 → Kt (0) → Λ2Vt/2 → 0.

Proof The simplicity of Λ2Vt/2 and S2Vt/2 follows from the isomorphisms

ResΛ2Vt/2 � L̃ t (0, 0, 1), ResS2Vt/2 � L̃ t (1, 0, 0).

Note that the modules Vt , considered as g0 ⊕ g1-modules, are isomorphic for all t .
In particular, Λ2Vt/2 is isomorphic to Λ2V and hence

Homp(Lt (0),Λ
2Vt/2) = Homg0⊕g1(C,Λ2V ) = C.

Using duality Λ2V ∗−t/2 � S2Vt/2 we get

Homp(S
2(Vt ), Lt (0)) = Homg0⊕g1(S

2V ,C) = C.

That gives us morphisms Kt (0) → Λ2Vt/2 and S2Vt/2 → Kt (0). Hence we have the
required exact sequence. The sequence does not split since

Homg(Kt (0), S
2Vt/2) = Homp(Lt (0), S

2Vt/2) = Homg0⊕g1(C, S2V ) = 0.


�
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Corollary 1 If t �= 0 then

ResKt (0) � Vt ⊗ L(0, 0, 1) ⊕ Vt ⊗ L(1, 0, 0).

Proof Follows from Lemma 4 since

ResKt (0) = ResΛ2Vt/2 ⊕ ResS2Vt/2.


�

4.2 The restriction functor

Recall that Res : Reptg → Repth denotes the restriction functor. For every g-module
M we denote by d(M) the length of ResM .

Lemma 5 Let t �= 0 then

ResKt (a, b, c) = L̃ t (a + 1, b, c) ⊕ L̃ t (a − 1, b + 1, c) ⊕ L̃ t (a, b − 1, c + 1)

⊕L̃ t (a, b, c − 1)

⊕L̃ t (a − 1, b, c) ⊕ L̃ t (a + 1, b − 1, c) ⊕ L̃ t (a, b + 1, c − 1)

⊕L̃ t (a, b, c + 1),

where we assume L̃t (a′, b′, c′) = 0 whenever a′, b′ or c′ is negative.
Proof Use the isomorphisms

ResKt (a, b, c) � Kt (0) ⊗ L(a, b, c), ResKt (0) � Vt ⊗ L(0, 0, 1) ⊕ Vt ⊗ L(1, 0, 0).

The statement follows by application of the Pieri rule for computing L(0, 0, 1) ⊗
L(a, b, c) and L(1, 0, 0) ⊗ L(a, b, c). 
�
Corollary 2 Let m(a, b, c) denote the number of zeros in (a, b, c). Then d(Kt (a, b, c))
= 8 − 2m(a, b, c).

For ag-moduleM inReptg,we introduce the generating functionG(M) ∈ Z[x, y, z]
by setting

G(M) =
∑

ma,b,cx
a ybzc,

where ma,b,c equals the multiplicity of L̃ t (a, b, c) in ResM . In particular,

G(Kt (a, b, c)) = [xa ybzc(x + yx−1 + zy−1 + z−1 + x−1 + xy−1 + yz−1 + z)]+,

where [·]+ denotes the polynomial part of a Laurent polynomial.

Corollary 3 If t �= 0, then Endg(Kt (λ)) is a semisimple commutative algebra.

Proof ResKt (λ) is multiplicity free semisimple h-module and Endg(Kt (λ)) is a sub-
algebra of Endh(Kt (λ)). 
�
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4.3 The case of zero central charge

Assume now that t = 0. Here we combine the results about the structure of Kac
modules from [1,9]. Note that the superalgebra g is an ideal of codimension 1 in its
algebra of derivations g̃ and in the case t = 0, one can define Kac modules over g̃.
This leads to an additional parameter in the definition of the Kac modules: K0(a, b, c)
is isomorphic to the small Kac module∇(μ) in [1], the corresponding weight diagram
μ has four black nodes and a, b, c stand for the number of white nodes between the
first and the second, the second and the third and the third and the fourth black nodes
respectively (counting from right left to right). Two diagrams obtained from each other
by a shift encode the same weight (a, b, c).

Theorem 2 [9]

1. K0(λ) is an indecomposable g-module with unique simple quotient V0(λ).
2. K0(λ) is simple if and only if abc �= 0.

Using Theorem 6.3.3 of [1] we can compute the Jordan–Hoelder multiplicities of
simplemodules inKacmodules. (Note that sincewe consider inducedmodules instead
of coinduced as in [1], our arrows go from left to right.) The following identities are
in the Grothendieck group of Reptg:

1. [K0(a, b, c)] = [V0(a, b, c)] iff abc �= 0;
2. If b ≥ 2, a ≥ 1, then [K0(a, b, 0)] = [V0(a, b, 0)] + [V0(a, b − 1, 0)] and

[K0(0, b, a)] = [V0(0, b, a)] + [V0(0, b + 1, a)];
3. [K0(a, 1, 0)] = [V0(a, 1, 0)] + [V0(a, 0, 0)] + [V0(a − 1, 0, 1)] if a ≥ 2;
4. [K0(0, 1, a)] = [V0(0, 1, a)] + [V0(0, 0, a + 2)] + [V0(0, 2, a)] if a ≥ 2;
5. [K0(1, 1, 0)] = [V0(1, 1, 0)] + [V0(1, 0, 0)] + [V0(0, 0, 1)] + [V0(0, 1, 1)];
6. [K0(0, 1, 1)] = [V0(0, 1, 1)] + [V0(0, 0, 1)] + [V0(0, 2, 1)] + [V0(0, 0, 3)];
7. If c ≥ 2, a ≥ 2, then [K0(a, 0, c)] = [V0(a, 0, c)] + [V0(a − 1, 0, c + 1)];
8. If a ≥ 2, then [K0(a, 0, 1)] = [V0(a, 0, 1)]+[V0(a−1, 0, 2)]+[V0(a−1, 0, 0)];
9. If a ≥ 2, then [K0(1, 0, a)] = [V0(1, 0, a)]+[V0(0, 1, a+1)]+[V0(0, 0, a+1)];

10. [K0(1, 0, 1)] = [V0(1, 0, 1)] + 2[V0(0, 0, 0)] + [V0(0, 1, 0)] + [V0(0, 0, 2)] +
[V0(0, 1, 2)];

11. If a ≥ 3, then [K0(a, 0, 0)] = [V0(a, 0, 0)]+[V0(a−2, 0, 0)]+[V0(a−1, 0, 1)]
and [K0(0, 0, a)] = [V0(0, 0, a)] + [V0(0, 0, a + 2)] + [V0(0, 1, a)];

12. [K0(2, 0, 0)] = [V0(2, 0, 0)] + [V0(0, 0, 0)] + [V0(1, 0, 1)] + [V0(0, 1, 0)];
13. [K0(0, 0, 2)] = [V0(0, 0, 2)] + [V0(0, 0, 0)] + [V0(0, 0, 4)] + [V0(0, 1, 2)];
14. [K0(1, 0, 0)] = [V0(1, 0, 0)] + [V0(0, 0, 1)] + [V0(0, 1, 1)];
15. [K0(0, 0, 1)] = [V0(0, 0, 1)] + [V0(0, 1, 1)] + [V0(0, 0, 3)];
16. If b ≥ 3 then [K0(0, b, 0)] = 2[V0(0, b, 0)]+[V0(0, b+1, 0)]+[V0(0, b−1, 0)];
17. [K0(0, 2, 0)] = 2[V0(0, 2, 0)] + [V0(0, 1, 0)] + [V0(0, 3, 0)] + [V0(0, 0, 2)];
18. [K0(0, 1, 0)] = 2[V0(0, 1, 0)] + [V0(0, 2, 0)] + [V0(0, 0, 0)] + 2[V0(0, 0, 2)];
19. [K0(0, 0, 0)] = 2[V0(0, 0, 0)] + [V0(0, 1, 0)] + [V0(0, 0, 2)].
The following trivial statement will be used later.

Lemma 6 dimHomg(K0(μ), K0(ν)) ≤ [K0(μ) : V0(μ)].
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4.4 Deformation

We consider Kt (λ) as a polynomial one-parameter deformation of K0(λ).

Lemma 7
dimHomg(Kt (λ), Kt (μ)) ≤ dimHomg(K0(λ), K0(μ)). (2)

Proof For any t, s �= 0, λ and μ, we have

Homg(Kt (λ), Kt (μ)) � Homg(Ks(λ), Ks(μ)). (3)

On the other hand,

Homg(Kt (λ), Kt (μ)) = Homp(Lt (λ), Kt (μ)) = [H0(g1, Kt (μ)) : L(λ)]. (4)

We fix an isomorphism Kt (μ) � K0(μ) of g0-modules. Then the isomorphisms (3)
and (4) yield

[H0(g1, Kt (μ)) : L(λ)] = [H0(g1, Ks(μ)) : L(λ)],

for all s, t �= 0. Finally, the semicontinuity of invariants implies

[H0(g1, Kt (μ)) : L(λ)] ≤ [H0(g1, K0(μ)) : L(λ)].


�
Proposition 4 Let t �= 0. Then

1. The module Kt (a, b, c) is simple whenever abc �= 0;
2. The module Kt (a, b, c) is indecomposable unless a = c = 0 and b �= 0.

Proof For (1) note that, if Homg(Kt (μ), Kt (a, b, c)) = 0 for all μ �= (a, b, c), then
Kt (a, b, c) is simple. By Theorem 2 (2) we have Homg(K0(μ), K0(a, b, c)) = 0 for
all μ �= (a, b, c). Hence (1) follows from Lemma 7.

Let us prove (2).We see fromformulas (1)–(19) andLemma6 thatEndg(K0(a, b, c))
= C unless a = c = 0. Hence the statement follows from Lemma 7. 
�

4.5 Complexes

Proposition 5 For every t ∈ C we have the following nonzero morphisms:

1. θb,a : Kt (0, b, a) → Kt (0, b − 1, a), for all b ≥ 1, a ≥ 0;
2. ξa,b : Kt (a, b, 0) → Kt (a, b + 1, 0), for all b ≥ 0, a ≥ 0;
3. ηa,c : Kt (a, 0, c) → Kt (a + 1, 0, c − 1), for all a ≥ 0, c ≥ 1.

Proof Let us choose nonzero vectors

Yi ∈ gεi ∩ g−1, i = 1, 2, 3,
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such that [e1,Y3] = Y2, [e2,Y2] = Y1. To construct θb,a , we have to show that
Kt (0, b − 1, a) contains a g1-invariant vector of weight (0, b, a), invariant under the
action of the maximal nilpotent subalgebra [b0, b0] of g0. Let v ∈ Kt (0, b − 1, a) be
the highest weight vector of weight (0, b − 1, a). Let u = Y1v. Note that [ei ,Y1] = 0
for i = 1, 2, 3. Hence ei u = 0. Let Z ∈ gε3−ε1−ε2 . Then Z is a b0-lowest weight vector
in g1. Hence it suffices to check that Zu = 0. Indeed, Zu = [Z ,Y1]v = f1v = 0 as
h1v = 0.

Using Lemma 3, we define ξa,b = θ∗
b+1,a .

Finally, let us construct ηa,c. Similarly to above we have to show that Kt (a +
1, 0, c − 1) contains a g1-invariant vector u of weight (a, 0, c), invariant under the
action of [b0, b0]. Let v ∈ Kt (a + 1, 0, c − 1) be a highest weight vector. Set

u = Y3v + 1

a + 1
(−Y2 f1 + Y1 f2 f1)v.

First, let us check that eiu = 0 for i = 1, 2, 3. Note that e3 commutes with Yi and
f1, f2. Therefore e3u = 0. Furthermore, we have

e1u = Y2v + 1

a + 1
(−Y2e1 f1v + Y1e1 f2 f1)v = 0

since f2v = 0 and e1 f1v = (a + 1)v. We also get

e2u = 1

a + 1
(−Y1 f1v + Y1e2 f2 f1v) = 0

since e2 f2 f1v = h2 f1v = f1v.
Now let us check that Zu = 0. We use the following relations: [Z ,Y3] = 0,

[Z ,Y2] = [ f2, f1] and [Z ,Y1] = f1. Therefore

Zu = 1

a + 1
(−[ f2, f1] f1 + f2 f1 f1)v,

again using f2v = 0 we get

Zu = 1

a + 1
(−[ f2, f1] f1 + f1[ f2, f1])v = 1

a + 1
[ f1, [ f2, f1]]v = 0.


�
Lemma 8 We have

θb−1,aθb,a = ξa,bξa−1,b = ηa+1,c−1ηa,c = 0.

Proof The identity θb−1,aθb,a = 0 follows from the identity Y 2
1 = 0. The identity

ξa,bξa,b−1 = 0 follows by duality.
Let us show thatηa+1,c−1ηa,c = 0.Assume the contrary.Then Kt (a+2, 0, c−2)has

a b0-semi-invariant vector of weight (a, 0, b). But [Kt (a+2, 0, c−2) : L(a, 0, c)] =
0, hence a contradiction. 
�
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The above lemma implies that we have the following complexes:

· · · → Kt (0, b, a) → Kt (0, b − 1, a) → · · · → Kt (0, 0, a) → 0,

0 → Kt (a, 0, 0) → Kt (a, 1, 0) → · · · → Kt (a, b − 1, 0) → Kt (a, b, 0) → . . . ,

and

0 → Kt (0, 0, a) → Kt (1, 0, a − 1) → · · · → Kt (a − 1, 0, 1) → Kt (a, 0, 0) → 0.

We denote these complexes by Ct,a ,Dt,a andBt,a respectively. Note thatD−t,a � C∗
t,a

and B−t,a � B∗
t,a .

Lemma 9 Let a ≥ 2. Then

Hi (Ct,a) = 0 for i > 0

and

Hi (Dt,a) = 0 for i > 0.

If a ≥ 1, then

Hi (Ct,a) = 0 for i > 1

and

Hi (Dt,a) = 0 for i > 1.

Proof Note that if ts �= 0, then Hi (Ct,a) = Hi (Cs,a). By semicontinuity of homology
it suffices to check that Hi (C0,a) = 0 for i > 0. Note that K0(a, i, 0) has length 2 for
i ≥ 2. Since both Kerθi,a and Imθi+1,a are proper nonzero submodules of K0(0, i, a)

and Imθi+1,a ⊂ Kerθi,a , we have Imθi+1,a = Kerθi−1,a . Hence Hi (C0,a) = 0 for
i > 1, (formula (2)). In the case i = 1 we still have that Imθ2,a is a simple g-module.
Using formula (4) we have the following nonsplit exact sequence

0 → V0(0, 0, a + 2) → Coker θ2,a → V0(0, 1, a) → 0.

We claim that the socle of K0(0, 0, a) is isomorphic to V0(0, 0, a + 2). This follows
from

soc K0(0, 0, a) � (cosoc K0(a, 0, 0))∗ � V0(a, 0, 0)∗ � V0(0, 0, a + 2),

where the last equality is a consequence of Proposition 5.3.1 in [1]. Therefore Imθ1,a
contains V0(0, 0, a + 2) and Imθ1,a � Coker θ2,a , which implies H1(Ct,a) = 0.

The statement about Dt,a follows by duality. 
�
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Lemma 10 Let a ≥ 1. The kernel of θi,a : Kt (0, i, a) → Kt (0, i − 1, a) for i > 1
and the kernel of ξa,i : Kt (a, i, 0) → Kt (a, i + 1, 0) for i > 2 are simple g-modules.
Moreover, if a ≥ 2 then H0(Ct,a) and H0(Dt,a) are also simple g-modules.

Proof We prove both statements for Ct,a , the statements for Dt,a follow by dual-
ity. Assume that M = Kerθi,a is not simple. Then H0(g1, M) has at least
two g0-irreducible components. Therefore there are μ1, μ2 �= (a, i, 0) such that
Homg(Kt (μ j ), Kt (0, i, a)) �= 0. However, this is false for t = 0, hence it is false for
t �= 0 by Lemma 7.

By direct computation we have

ResKt (0, 1, a) = L̃(0, 1, a + 1) ⊕ L̃(0, 1, a − 1) ⊕ L̃(1, 1, a) ⊕ L̃(0, 0, a + 1)

⊕L̃(0, 2, a − 1) ⊕ L̃(1, 0, a),

ResImθ1,a = L̃(0, 0, a + 1) ⊕ ⊕L̃(0, 1, a − 1) ⊕ L̃(1, 0, a).

and

ResKt (0, 0, a) = L̃(0, 0, a + 1) ⊕ L̃(0, 0, a − 1) ⊕ L̃(0, 1, a − 1) ⊕ L̃(1, 0, a).

This implies ResH0(Ct,a) = L̃(0, 0, a − 1). Therefore ResH0(Ct,a) is simple. 
�

Lemma 11 Let a ≥ 2. Then

Hi (Bt,a) = 0 for 0 < i < a + 1.

Furthermore, if a ≥ 4, then Kerηi,a−i is simple for 2 ≤ i ≤ a − 1 and H0(Bt,a),
Ha+1(Bt,a) are simple g-modules.

Proof As in Lemma 9 we will prove the statement for B0,a . First assume a ≥ 3. For
1 < i < a the proof goes exactly as the proof of Lemma 9 with use of formula (7)
and we leave it to the reader. To check that H1(B0,a) = 0 one can show that the socle
of K0(0, 0, a) is V0(0, 0, a + 2), and the socle of K0(1, 0, a − 1) is V0(0, 1, a). Then
formulas (9) and (11) imply Imη0,a = Kerη1,a−1. The identity Ha(B0,a) = 0 follows
via duality.

Now consider the case a = 2. We have to show that the complex

0 → K0(0, 0, 2) → K0(1, 0, 1) → K0(2, 0, 0) → 0

is exact in themiddle. The socle of K0(1, 0, 1) isV0(0, 1, 2) and the socle of K0(2, 0, 0)
is V0(0, 1, 0). Formula (10) ensures the exactness.

The last assertion can be proven as in Lemma 10. 
�
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4.6 The structure of some degenerate Kacmodules

Note that the complexes Ct,0 and Dt,0 have the same terms. Therefore we have the
following diagram

0 � Kt (0, 0, 0) � Kt (0, 1, 0) � · · · � Kt (0, b, 0) � Kt (0, b + 1, 0) � · · ·

It is easy to see that θb+1,0ξ0,b �= 0 and ξ0,b−1θb,0 �= 0.

Lemma 12 Let b ≥ 1. Then

Kt (0, b, 0) = Imθb+1,0ξ0,b ⊕ Imξ0,b−1θb,0.

For b ≥ 2 the image of θb+1,0ξ0,b and the image of ξ0,b−1θb,0 are simple g-modules.

Proof By Corollary 3 θb+1,0ξ0,b and ξ0,b−1θb,0 are orthogonal idempotents in
Endg(Kt (0, b, 0)). Furthermore, by a straightforward computation we have

Res(Imθb+1,0ξ0,b) = L̃ t (1, b, 0) ⊕ L̃ t (0, b, 1)

and

Res(Imξ0,b−1θb,0) = L̃ t (1, b − 1, 0) ⊕ L̃ t (0, b − 1, 1).

Assume that Imθb+1,0ξ0,b is not simple. Then Imθb+1,0ξ0,b has simple socle M , and
hence there exists a Kac module Kt (μ) and a morphism Kt (μ) → Kt (0, b, 0)
with image equal to M . However, if b ≥ 3, by formula (16) and Lemma 7,
θb+1,0 and ξ0,b−1,0 exhaust the list of such morphisms. Moreover, the same is true
for b = 2, since an additional morphism may only exist for μ = (0, 0, 2). But
Homg(K0(0, 0, 2), K0(0, 2, 0) = 0 as the socle V0(0, 2, 0) of K0(0, 2, 0) does not
appear among simple constituents of K0(0, 0, 2). Hence we obtain a contradiction. 
�

5 Simplemodules with nonzero central charge

5.1 Classification

Using the results of the previous section we will obtain the classification of simple
objects in Reptg for t �= 0. By Proposition 4(a), every Kt (a, b, c) with abc �= 0 is
simple, d(Kt (a, b, c)) = 8 and

G(Kt (a, b, c)) = xa ybzc(x + yx−1 + zy−1 + z−1 + x−1 + xy−1 + yz−1 + z).

We will call such simple modules typical and all others atypical.
By Proposition 3 every atypical simple module is isomorphic to a quotient of

Kt (a, b, c) with abc = 0, hence is isomorphic to a quotient of some term of one
of complexes Ct,a,Dt,a,Bt,a . Therefore we obtain the following.
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Corollary 4 If S is an atypical simple g-module. Then d(S) is 1, 2 or 3.

Next we use Lemmas 9, 10 and 11 to finish the classification. The first step is to
find all S with d(S) = 3.

Proposition 6 Assume d(S) = 3. Then S isomorphic to one of the following:

1. Vt (0, b, a) := Imθb,a, where θb,a : Kt (0, b, a) → Kt (0, b−1, a)with b ≥ 2, a ≥
1;

2. Vt (0, b, a) := Kerξa,b, where ξa,b−1 : Kt (a, b − 1, 0) → Kt (a, b + 1, 0) with
b ≥ 2, a ≥ 1;

3. Vt (a, 0, c) := Cokerηa,c+1, where ηa,c+1 : Kt (a, 0, c + 1) → Kt (a + 1, 0, c)
with a, c ≥ 1.

Moreover,

G(Vt (0, b, a)) = xyb−1za + yb−1za+1 + ybza−1 in (1);
G(Vt (a, b, 0)) = xa yb−1z + xa+1yb−1 + xa−1yb in (2);
G(Vt (a, 0, c)) = xa yzc + xa+1zc+1 + xazc in (3).

Proof Apply the functor Res to the complexes Ct,a,Dt,a,Bt,a . For example, if S
appears in the complex Ct,a , then ResImθb,a = ResKerθb−1,a consists of all com-
ponents common for Kt (0, b, a) and Kt (0, b − 1, a). The other cases are similar.


�
Consider the sequence

Kt (0, 1, a)
θ1,a−−→ Kt (0, 0, a)

η0,a−−→ K (1, 0, a),

and set Vt (0, 0, a − 1) := Cokerθ1,a and Vt (0, 0, a + 1) := Kerη0,a . Similarly, for
the sequence

Kt (a, 0, 1)
ηa,1−−→ Kt (a, 0, 0)

ξa,0−−→ K (a, 1, 0),

set Vt (a + 1, 0, 0) := Kerξa,0 and Vt (a − 1, 0, 0) := Cokerηa,1.

Lemma 13 Res Vt (a, 0, 0) � L̃ t (a, 0, 0) and Res Vt (0, 0, a) � L̃ t (0, 0, a).

Proof Straightforward by computing the functor Res for the corresponding sequences.

�

Proposition 7 Assume d(S) = 1. Then ResS � L̃ t (a, 0, 0) or ResS � L̃ t (0, 0, a),
and therefore S is isomorphic to Vt (a, 0, 0) or Vt (0, 0, a).

Proof Assume ResS = L̃ t (a, b, c). First, we will prove that b = 0. We use the root
decomposition of g. Fix the set of positive roots

Δ+ := {εi ± ε j | 1 ≤ i < j ≤ 3} ∪ {ε1, ε2, ε3, ε1 + ε2 + ε3, ε1 − ε2 − ε3},
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and let

b := t ⊕
⊕

α∈Δ+
gα.

Then S has a unique, up to proportionality, highest weight vector v with respect to the
Borel subalgebra b. It is clear that the weight of v equals (a, b, c)+ 1

2 (ε1 +ε2 +ε3) =
(a, b, c+ 1). It is easy to see that dimg±ε3 = 2, and one can choose y± ∈ g−ε3 ∩ g±1
and x± ∈ gε3 ∩ g±1 so that

[x−, y−] = z, [x+, y+] = 0, , [x+, y−] = [x−, y+] = h2.

We claim that if b > 0 then u := y+y−v �= 0. Indeed,

x−x+y+y−v = −x−y+x+y−v = −x−y+h2v = −h2v = −b2v.

On the other hand, it is easy to check that eiu = 0 for i = 1, 2, 3. Thus, we obtain that
S must have a simple g0-component isomorphic to L(a + 2, b, c− 1). But L̃ t (a, b, c)
does not have such a component.

Nowwe assume that b = 0. Then S appears as a subquotient in one of the following
Kac modules:

Kt (a ± 1, 0, c), Kt (a − 1, 1, c), Kt (a, 1, c − 1), Kt (a, 0, c ± 1.)

If a, c > 1, then all these Kac modules have two simple constituents with d = 3 by
Proposition 6. Hence a = 1 or c = 1. Assume for example that a = 1. Then S is a
subquotient of Kt (0, 0, c). Since

ResKt (0, 0, c) � L̃ t (0, 0, c − 1) ⊕ L̃ t (0, 0, c + 1) ⊕ L̃ t (1, 0, c) ⊕ L̃ t (0, 1, c − 1),

by Proposition 13 we have that Kt (0, 0, c) has length 4 and, in particular, there is a
simple constituent S′ such that ResS′ � L̃ t (0, 1, c− 1). However, this contradicts the
assertion we just proved above. The other cases are similar. 
�

The remaining case d(S) = 2 is now easy to deal with.

Proposition 8 Assume that d(S) = 2. Then S is isomorphic to one of the following:

1. Vt (0, 1, a) := Imθ1,a/Kerη0,a and G(Vt (0, 1, a)) = yza−1 + xza, where a ≥ 1;
2. Vt (a, 1, 0) := Imηa−1,1/Kerξa,0 and G(Vt (0, 1, a)) = xa−1y + xaz, where

a ≥ 1;
3. Vt (0, b, 0) := Imθb+1,0 = Kerξ0,b and G(Vt (0, b, 0)) = xyb+ ybz, where b ≥ 1.

Proof We just list all simple subquotients appearing in the complexes Ct,a,Dt,a,Bt,a

which do not appear in Propositions 13 and 6. 
�
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5.2 Characters

It is easy now to find the characters of simple g-modules with nonzero central charge.
It suffices to use the following.

Proposition 9 Let M ∈ Reptg with t �= 0. Then

chM = R

∑
w∈W (−1)ww(xyzG(M))∑

w∈W (−1)ww(xyz)
,

where W is the Weyl group of g0 and

R = x + x−1 + z + z−1 + xy−1 + x−1y + yz−1 + y−1z.

Proof The claim follows immediately from the formula

ch L̃ t (a, b, c) = R

∑
w∈W (−1)ww(xa+1yb+1zc+1)∑

w∈W (−1)ww(xyz)
.


�

6 Some remarks on projective modules

Lemma 14 Let t �= 0, then U (g) ⊗U (h) L̃ t (a, b, c) is projective in Reptg.

Proof The induction functor Repth → Reptg is left adjoint to Res. Hence it maps

projective objects to projective objects. By Theorem 1(b), L̃ t (a, b, c) is projective in
Repth. Therefore U (g) ⊗U (h) L̃ t (a, b, c) is projective in Reptg. 
�
Proposition 10 The category Reptg has enough projective objects, and every inde-

composable projective object is a direct summand in U (g)⊗U (h) L̃ t (a, b, c) for some
(a, b, c). If we denote by P(S) a projective cover of a simple module S, then

[U (g) ⊗U (h) L̃ t (a, b, c) : P(S)] = [ResS : L̃ t ].

In particular, [U (g) ⊗U (h) L̃ t (a, b, c) : P(S)] ≤ 1.

Remark 2 Since Reptg is a Frobenius category, a similar statement holds for indecom-
posable injective modules in Reptg.

Proof Everything follows from the Frobenius reciprocity isomorphism

Homg(U (g) ⊗U (h) L̃ t (a, b, c), S) = Homh(L̃ t (a, b, c), S),

and from the fact that ResS is multiplicity free (see Lemma 5). 
�
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