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Abstract
We classify irreducible finite-dimensional representations of a non-trivial central
extension of the Lie superalgebra p(3), and compute their characters.
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1 Introduction

Finite-dimensional simple Lie superalgebras over C have been classified in [8]. Some
of these superalgebras have non-trivial central extensions: s[(rn|n) is a central extension
of psl(n|n), sq(n) is a central extension of psq(n), the Poisson Lie superalgebra SP (n)
is a central extension of the special Hamiltonian superalgebra SH (n), and finally the
Lie superalgebra (3) is the unique (up to isomorphism) non-trivial central extension
of the Lie superalgebra p(3).

It is natural to study finite-dimensional representations of these central extensions
as well as representations of the corresponding simple superalgebras. For sl(n|n)
and sq(n) it is convenient to study representations of their respective Lie algebras of
derivations gl(n|n) and q(n). Finite-dimensional representations of these superalge-
bras are studied in detail in [2—4,10,11]. For the Lie superalgebra psl(2|2) there is a
three-dimensional space of central extensions, irreducible finite-dimensional represen-
tations over those central extensions are studied in [7]. Irreducible finite-dimensional
representations of the Poisson superalgebra are described in [12].
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As far as we know, the representations of p(3) with nonzero central charge have
not been previously studied. In the present paper we try to fill this gap: we compute
characters of irreducible finite-dimensional irreducible representations of p(3) with
nonzero central charge. The case of zero central charge follows from more general
results for the Lie superalgebra p(n) for arbitrary n in [1], see also [5,6].

We plan to use the results of the present paper to compute the Cartan matrix of the
category of finite-dimensional representations of p(3) and classify the blocks of this
category.

2 The Lie superalgebra p(3)
2.1 Central extension of p(3)

Consider the superspace V = C™!" equipped with a non-degenerate odd symmetric
form B : V x V — C. By p(m — 1) we denote the subalgebra of all endomorphisms
X € Endc (V) such that

BXE, ) + (—1)XEB(E, X)) =0, forall £, € V.

This Lie superalgebra has a codimension-1 ideal p(m — 1) consisting of matrices with
zero supertrace. For m > 3 the Lie superalgebra p(m — 1) is simple and p(m — 1)
coincides with the Lie superalgebra of all derivations of p(m), see [8].

The case m = 4 is exceptional since p(3) has a nontrivial central extension which
we will denote by g = p(3). To describe this extension, note that in matrix form

C _i, where A is a traceless 4 x 4 matrix, B is
symmetric and C is skew-symmetric. In particular, the even part of p(3) is the Lie
algebra s[(4) ~ s0(6), and the odd part is the sum A>W* @ S>W where W denotes

the natural four dimensional s[(4)-module. It is clear that p(3) has a Z-grading

p(3) is given by block matrices <A

pP3) =pB)_1 & PR ®pB3)1, P31 = AZW*, pB3)o =5l4), pB3) = S’W.

Note that p(3)_1 = AW is isomorphic to the standard so(6)-module E with the
scalar product (-, -). Define the cocycle ¢ : Az(p(3)) — C as follows: for any x €
p(3)i, x € p(3);, set

. y) x,y) if i=j=-1
X, y) = ) .
Py 0 otherwise

We denote by p(3) the central extension of p(3) defined by this cocycle.

2.2 The category of finite-dimensional representations

The goal of this paper is to understand finite-dimensional representation theory of
g in the case of nonzero central charge. We denote by Rep, the category of finite-
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dimensional g-modules semisimple over g5, and by Reptg the full subcategory of
modules with central charge ¢, and concentrate on the case ¢t # 0. We assume that
all our categories are enriched over superspaces and we allow odd morphisms. In
particular, we assume that M =~ IIM, where I is the change of parity functor.
Working this way we obtain, generally speaking, a non-abelian category. However, if
the morphism ¢ between two objects is graded (even or odd) then Kerg and Coker ¢
are well defined.

Note that g has a grading g = g2 D g—1 @ go D g1 with g_» = Cz, where z is the
central element. Moreover, h = g_» @ g—1 @ go is isomorphic to the superextension
of s0(6) which we study in the next section. We will show that the category of finite-
dimensional h-modules with nonzero central charge is semisimple. It is useful to
consider the restriction functor Res : Reptg — Rep’h.

Proposition 1 The category Repy decomposes into direct sum b, Repg. Ifts # 0,
then Repy and Repy are equivalent.

Proof The first assertion is obvious. Let us prove the second assertion. For any u € C*

denote by 7, the automorphism which acts by # ™" on the graded component g;. The

equivalence Rep’g — Repf3 is given by the twist with 7,: M — M™ for u such that
2 -1

u-=ts . O

2.3 The standard representation

Let V = C**, and define a representation p; : g — Endc (V) by

A B\ _(AB+1C* et
Pt C_At o C _At , pZ) =1,

where c;‘j = (—1)% ¢y for the permutation o = {1, 2, 3,4} — {i, j, k, [}. We denote
the corresponding g-module by V;. It is clear that V; is a simple object of Rep’g. When
t = 0 this module coincides with the standard p(3)-module V.

2.4 Root decomposition

The Cartan subalgebra of t C g is the direct sum of Cz and the Cartan subalgebra in
50(6). The Lie superalgebra g has a roots decomposition with even roots

Ajg={(F£( £egj) |1 <i < j <3},
and odd roots
A7 = {£e1, k&2, £e3, 81+ 62+ 3,61 — &2 — €3, —61 — &2 + 63, —&1 + &2 — &3}

Note that the odd roots +¢; have multiplicity 2 and the roots €1 + €3 + €3, &1 — &2 —
&3, —&1 — &) + &3, —€1 + & — &3 are not invertible.
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Let us choose simple roots of go = s[(3) = s0(6) by setting
o] =& — €3, Q=€ —&, O3 =2~& +&3.

We denote by e;, fi, hi, i = 1,2,3 the Chevalley generators of go. For a weight
A € t* we use the notation A = (a, b, ¢) if (A, a1) = a, (A, a2) = b and (A, @3) = c.
We denote by L(a, b, c) the simple go-module with highest weight A = (a, b, ¢).

Example 1 With this labeling, L (0, 1, 0) is the natural 6-dimensional representation of
50(6), while L(1,0,0) and L(0, 0, 1) are spinor 4-dimensional representations dual
to each other.

3 Finite dimensional representations of the superextension of s0(2n)
3.1 Lie superalgebra h)(n)

Consider the Lie superalgebra h(n) such that h(n)g = s0(2n) ® Cz, h(n); = E is
the standard so(2n)-module with trivial action of z and the bracket S’E — h(n)g is
defined by

[v, w] := (v, w)z

where v, w € E and (-, -) denotes a symmetric form on E invariant under the so(2n)-
action. Note that h(n) has a Z-grading

h(n) = hn)—2 & h(n)—1 & h(n)o.

where h_» = Cz, h(n)—; = E and h(n)g = so(2n). For every s € C* we define the
automorphism t; of h(n) by the formula

7,(x) = s'x, forall x € h(n);.

Recall that one can identify so(2n) with A2E as follows. Define Ty, € Endc(E)
by
Tyopw (@) = (v, w)w — (w, u)v (H

forv, w,u € E. Then Ty, € s0(2n) and the span of Ty, for all v, w € E coincides
with so(2n).

Let Repy,y denote the category of finite-dimensional h(n)-modules semisimple
over h(n)g, and by Rep%(n) we denote the full subcategory of modules on which z
acts by the scalar z € C. As in Proposition 1, Repy,,,y decomposes into direct sum of

Rep% o and if 71, 1> # 0, then Rep’;)l () and Repi)z( ) are equivalent.
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3.2 Spinor representation

Let us define the spinor representation V; of h(n). Fix the decomposition E = ETGE™
for two maximal isotropic subspaces E + c Eandset V, := A(E"). Assume that
t=s2 # 0. Define the h(n)-module structure on V; (denoted by -) by setting for any
EeVi,veETandw € E™

v-E=svAx, w-1=0, w-WAx)=s,w)x —vAW:-X,

Tonw -6 =v-(w-§), z-&=t§E.

It is easy to see that V; is obtained from V| by twisting with the automorphism 7.
The following statement is straightforward.

Proposition 2 [ft #~ O, then V; is a simple h(n)-module. Forn = 3, V; is the restriction
to h(3) of the standard g-module.

Lemma 1 Let C; denote the one-dimensional b (n)g-module with central charget # 0.
Then

Indg () C; = V.

Proof Let Cliff(2n) denote the Clifford algebra with 2n generators. Consider the Lie
superalgebra map ¥, : h(n) — Cliff (2n) such that ¥, (z) = ¢, and the corresponding
surjective homomorphism ¢; : U(h(n)) — Cliff (2n) of associative superalgebras.

Then V; is the pull back of the unique simple Cliff,,-module and Indh( )(C, is the

pullback of the free Cliff (2n)-module of rank 1. From the structure theory of Clifford
algebras we have

Cliff 2n) ~ v, 9%".
This implies the lemma. O
. . . t
3.3 Simple objects in Repb(n)

For every simple so(2n)-module L, we set L; == L ® V, where we assume that the
action of h(n)—_1 @ h(n)_» on L is trivial.

Theorem 1 Lett # 0.

(a) The module L, is simple and every simple module in Rep'h(n) is isomorphic to L
for some, unique up to isomorphism, simple so(2n)-module L.
(b) The category Rep’h(n) is semisimple.

Proof First, let us prove that L;is simple. Indeed, the restriction of L; to h(n)—1 &
h(n)_ is isomorphic to the direct sum of dimL copies of V;. If M is a non-trivial
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submodule of L; then M’ :== M N (L ® 1) # 0, and hence by h(n)p-invariance of M
we obtain M’ = M ® 1. Therefore M = L,.

Every simple h(n)5-module with central charge ¢ is isomorphic to L X C, for some
simple so(2n)-module L. By Lemma 1 we have

bh(n) ~ h(n) ~ T P2"
Indh(n)()(L XC)~L® Indb(n)()(Ct ~ L7

Every simple object of Rep’h ) is a quotient of Ind?J EZ;O (LK), hence it is isomorphic

to L, for some L. Hence (a).

Since Indgﬁz;()(L X C,) is projective in Repth ) and L, is a direct summand, we

obtain that every simple object in Rep’h(n) is projective. This implies (b). O

4 Kac modules in the category Repg

We turn now to the representation theory of g = p(3).

4.1 Kac modules

Letp =g_2® g0 ® g1, A = (a, b, c) be a dominant gp-weight, and L;(A) denote the
irreducible p-module with central charge 7, go highest weight A, and trivial action of
g1. We define a Kac module K;(}) by

K;(2) == U(9) Qu(p) Li().

Proposition 3 Every simple module in Repi} is a quotient of some Kac module K;(}.).

Proof Let S be a simple g-module. Since g; is an abelian odd Lie superalgebra, we
have S9! £ 0. Then S9! contains a gg-submodule isomorphic to L, (1) and we have a
nonzero homomorphism K; (1) — S by Frobenius reciprocity. O

Remark 1 1If t # 0, the cosocle of K;(X) may be not simple and a simple module S
may appear in a cosocle of several Kac modules.

In what follows we use the following fact about Lie superalgebra.
Lemma 2 Let g be a finite-dimensional Lie superalgebra and p be a subalgebra which
contains gy and such that g = p @ m as a p-module. Then for every p-module M there
is an isomorphism between induced and coinduced modules

Homy 5) (U (g), M) = U(g) ®u(p) (M ® AP (m")).
Proof Use the isomorphism of p-modules

Homy ) (U(g), M) ~ M ® A(m")
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to construct an injective homomorphism
M @ A"P(m*) — Homy ) (U(g), M)

of p-modules. By Frobenius reciprocity, the latter homomorphism induces an isomor-
phism

U(g) ®u(p) (M ® A" (m™)) — Homy (U (g), M).

O
Lemma3 K;(a,b,c)* >~ K_;(c, b, a).
Proof Indeed, we have
Ki(a, b, ¢)* ~Homy ) (U (@), L (a, b, )*) = U(g) @up) (Lt(a, b, c)* @ AP (g* ).
Hence the statement follows from the following isomorphisms of gg-modules
Atop(g*—l) = (Cv Ll(aﬂb’ C)* =~ L*I(ca b’ a)'
(]

Lemma4 Ift # 0, then the modules A?V, 2 and S2V, 2 are simple, and the structure
of K;(0) can be described by the non-splitting exact sequence

0— S2V[/2 — K;(0) —» A2Vt/2 — 0.
Proof The simplicity of A2V, 2 and Sy, /2 Tollows from the isomorphisms
ResA?V; 2 =~ L,(0,0,1), ResS*V;p =~ L,(1,0,0).

Note that the modules V;, considered as gy @ g;-modules, are isomorphic for all ¢.
In particular, A%V, /2 is isomorphic to A%V and hence

Homy, (L (0), A%V, 2) = Homgygg, (C, A?V) = C.
Using duality A? Vf[/z ~ §? Vi2 we get
Homy, (S%(V;), L;(0)) = Homg,gg, (S*V,C) = C.

That gives us morphisms K;(0) — A2V, 2 and S2v, 2 — K;(0). Hence we have the
required exact sequence. The sequence does not split since

Homg (K, (0), S?V;/2) = Homy (L, (0), S*V;2) = Homgyeg, (C, S*V) = 0.

O
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Corollary 1 Ift # O then
ResK;(0) >V, ® L(0,0,1) ® V; ® L(1,0,0).
Proof Follows from Lemma 4 since

ResK,(0) = ResA”V, » @ ResS>V, .

4.2 The restriction functor

Recall that Res : Reptg — Rep’, denotes the restriction functor. For every g-module
M we denote by d(M) the length of ResM.

Lemma5 Lett # O then

ResK,(a,b,¢) = Li(a+1,b,0)®Li(a—1,b+1,¢)® Li(a,b—1,c+1)
®L(a,b,c—1)
&L a—1,b,0)®Li(a+1,b—1,0)®Li(a,b+1,c—1)
®L(a,b,c+1),

where we assume L,(a’, b, ¢') = 0 whenever a’, b’ or ¢’ is negative.

Proof Use the isomorphisms
ResK,(a, b, c) ~ K,(0) ® L(a, b, ¢), Resk;(0)~V,®L(0,0,1)®V,® L(,0,0).

The statement follows by application of the Pieri rule for computing L(0,0, 1) ®
L(a,b,c)and L(1,0,0)® L(a,b,c). O

Corollary 2 Letm(a, b, c) denote the number of zeros in (a, b, ¢). Then d(K,(a, b, c))
=8 —2m(a, b, c).

For ag-module M in Reptg , we introduce the generating function G(M) € Z[x, vy, z]
by setting

G(M) = " mapex*y’z",
where m, . equals the multiplicity of I:,(a, b, ¢) in ResM. In particular,
G(Ki(a,b,0) =[x +yx +oy  + 27 +x w0+ v + 1,

where [-]* denotes the polynomial part of a Laurent polynomial.
Corollary 3 Ift # O, then Endg(K;())) is a semisimple commutative algebra.

Proof ResK, (1) is multiplicity free semisimple h-module and Endg(K; (1)) is a sub-
algebra of Endy (K, (1)). O
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4.3 The case of zero central charge

Assume now that + = 0. Here we combine the results about the structure of Kac
modules from [1,9]. Note that the superalgebra g is an ideal of codimension 1 in its
algebra of derivations g and in the case + = 0, one can define Kac modules over g.
This leads to an additional parameter in the definition of the Kac modules: Ko (a, b, c)
is isomorphic to the small Kac module V (w) in [1], the corresponding weight diagram
w has four black nodes and a, b, ¢ stand for the number of white nodes between the
first and the second, the second and the third and the third and the fourth black nodes
respectively (counting from right left to right). Two diagrams obtained from each other
by a shift encode the same weight (a, b, ¢).

Theorem 2 [9]

1. Ko(X) is an indecomposable g-module with unique simple quotient Vo(A).
2. Ko(X) is simple if and only if abc # 0.

Using Theorem 6.3.3 of [1] we can compute the Jordan—Hoelder multiplicities of
simple modules in Kac modules. (Note that since we consider induced modules instead
of coinduced as in [1], our arrows go from left to right.) The following identities are
in the Grothendieck group of Rep’g:

1. [Ko(a, b, ¢)] = [Vo(a, b, ¢)] iff abe # 0;

2. If b > 2,a > 1, then [Ky(a, b,0)] = [Vy(a, b,0)] + [Vo(a,b — 1,0)] and
[K0(0, b, a)] = [Vo(0, b, a)] + [Vo(0, b + 1, a)];

3. [Ko(a, 1,0)] = [Vo(a, 1,0)] + [Vo(a, 0,0)] + [Vo(a — 1,0, D] ifa > 2;

4. [Ko(0,1,0)] = [W(0, 1, a)] + [Vo(0,0,a + 2)] + [Vo(0, 2, a)] if a > 2;

5. [Ko(1,1,0)] = [Vo(L, 1, 0)] + [Vo(1, 0, 0)] + [Vo(0, 0, )] + [Vo(O, 1, D)];

6. [Ko(0,1, D] = [Vo(0, 1, 1)] + [Vo(0, 0, D] + [Vo (0, 2, 1)] + [V (0, 0, 3)];

7. If c > 2,a > 2, then [Ky(a,0,c)] = [Vo(a,0,c)] + [Vola—1,0,c+ 1D];

8. Ifa > 2,then[Ky(a, 0, )] = [Vo(a, 0, D]+[Vo(a—1,0,2)]+[Vo(a—1,0,0)];
9. Ifa > 2,then [Ky(1, 0, a)] = [Vo(1,0,a)]+[Vo(0, 1,a+1)]+[Vy(0,0,a+ 1)];
10. [Ko(1,0, D] = [Vo(1,0, D] + 2[V5(0, 0, 0)] + [Vo(0, 1,0)] + [V (0, 0, 2)] +

[Vo(0, 1,2)];
. Ifa > 3,then [Ko(a, 0, 0)] = [Vo(a, 0, 0)]+[Vo(a—2,0,0)]+[Vo(a—1,0, 1)]
and [K¢(0, 0, a)] = [Vo(0, 0, a)] + [V(0,0,a +2)] + [V (0, 1,a)];
12. [Ko(2,0,0)] = [Vo(2,0,0)]1 4 [Vo(0,0,0)] + [Vo(1, 0, D] + [Vo(0, 1, 0)];
13. [K0(0,0,2)] = [Vo(0,0,2)] 4 [Vo(0, 0,0)] + [Vo(0, 0, H)] + [Vo(0, 1, 2)];
14. [Ko(1,0,0)] = [Vo(1,0,0)] + [V5(0, 0, 1)] + [Vp(0, 1, D];
15. [Ko(0,0, D] =[Vp(0,0, )] + [V (0, 1, 1)] + [V(0, 0, 3)];
16. If b > 3 then [K((0, b, 0)] = 2[Vp(0, b, 0)]+[Vo(0, b+1, 0)]+[Vo(0,b—1, 0)];
17. [Ko(0,2,0)] = 2[Vo(0,2,0)] + [Vo(0, 1, 0)] + [V (0, 3, 0)] + [V (0, 0, 2)];
18. [Ko(0, 1,0)] = 2[Vo(0, 1, 0)] + [V (0, 2, 0)] + [V (0, 0, 0)] + 2[V5(0, 0, 2)];
19. [Ko(0,0,0)] =2[Vp(0,0,0)] + [Vo (0, 1, 0)] + [V0(0, 0, 2)].

—_—
—_—

The following trivial statement will be used later.

Lemma 6 dimHomg(Ko(u), Ko(v)) < [Ko(w) : Vo(p)]-
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4.4 Deformation

We consider K, () as a polynomial one-parameter deformation of Ko(X).

Lemma?7
dimHomg(K;(2), K;(n)) < dimHomg(Ko(A), Ko(1)). 2)

Proof For any ¢, s # 0, A and pu, we have
Homg (K; (1), K; (1)) ~ Homg (K (1), Ks(11)). 3)
On the other hand,
Homg (K, (1), K;(11)) = Homp (L, (), K; () = [H (g1, Ki () : L] (4)

We fix an isomorphism K;(u) >~ Ko(u) of go-modules. Then the isomorphisms (3)
and (4) yield

[H%(g1, K, (1)) : LO)] = [H(g1, K5 (1)) : LV,

for all s, ¢ # 0. Finally, the semicontinuity of invariants implies

[H%(g1, K, (1)) : L)1 < [H (g1, Ko(w)) : LOV].

Proposition4 Lert # 0. Then

1. The module K;(a, b, ¢) is simple whenever abc # 0;
2. The module K;(a, b, ¢) is indecomposable unless a = ¢ = 0 and b # 0.

Proof For (1) note that, if Homg(K;(u), K;(a, b, ¢)) = 0 for all u # (a, b, c), then
K;(a, b, c) is simple. By Theorem 2 (2) we have Homy (Ko (), Ko(a, b, ¢)) = 0 for
all u # (a, b, c). Hence (1) follows from Lemma 7.

Letus prove (2). We see from formulas (1)-(19) and Lemma 6 that End 4 (K¢ (a, b, ¢))
= C unless a = ¢ = 0. Hence the statement follows from Lemma 7. m|

4.5 Complexes

Proposition 5 For every t € C we have the following nonzero morphisms:

l. Opa: K:(0,b,a) = K;(0,b—1,a), forallb>1,a >0;
2. &p:Ki(a,b,0) > Ki(a,b+1,0), forallb > 0,a > 0;
3. Nae:Ki(a,0,¢c) > Ki(a+1,0,c—1), foralla >0, c > 1.

Proof Let us choose nonzero vectors
Yiegg,, Ng—1, i=1,2,3,
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such that [e1, Y3] = Y2, [e2, Y2] = Yi. To construct 6 4, we have to show that
K:(0,b — 1, a) contains a g;-invariant vector of weight (0, b, a), invariant under the
action of the maximal nilpotent subalgebra [bg, bg] of go. Let v € K;(0,b — 1, a) be
the highest weight vector of weight (0, b — 1, a). Let u = Yjv. Note that [¢;, Y1] =0
fori =1,2,3.Hencee;u = 0.Let Z € gg;—¢,—¢,. Then Z isa bp-lowest weight vector
in g;. Hence it suffices to check that Zu = 0. Indeed, Zu = [Z, Y1]v = fiv =0 as
hiv=0.

Using Lemma 3, we define &, , = 9;“’(1.

Finally, let us construct 7, .. Similarly to above we have to show that K;(a +
1,0, ¢ — 1) contains a g;-invariant vector u of weight (a, 0, ¢), invariant under the
action of [bg, bo]. Let v € K;(a + 1, 0, ¢ — 1) be a highest weight vector. Set

1
u=Yv+ —— N f1 + Y1 f2f1)v.
a—+1

First, let us check that ¢;u = 0 fori = 1, 2, 3. Note that e3 commutes with Y; and
f1, f2. Therefore e3u = 0. Furthermore, we have

1
eiu = You+ ——(=Yze; fiv+ Yie1 o f)v =0
a+1

since fov = 0and ey fiv = (a + 1)v. We also get
1
eou = —— (=Y fiv+Yiea fo fiv) =0
a+1
since e> f> fiv = ha fiv = fiv.

Now let us check that Zu = 0. We use the following relations: [Z, Y3] = 0,
[Z,Y2] =1f2, filand [Z, Y1] = fi. Therefore

1
Zu = ——(=Lf2, ili + 2 fifOv,
a+1

again using f>v = 0 we get

1 1
Zu = m(—[fz, ALA+ fAilf, fibv= m[fl, [f2, fillv=0.

Lemma 8 We have

Hb—l,aeb,a = é:a,bga—l,b = Na+1,c=1Na,c = 0.

Proof The identity 6p_1 4,65, = O follows from the identity Y. 12 = 0. The identity
&4.084.p—1 = 0O follows by duality.

Letus show that ny+1,c—174.c = 0. Assume the contrary. Then K, (a+2, 0, c—2) has
a bp-semi-invariant vector of weight (a, 0, b). But [K;(a+2,0,c—2) : L(a,0,¢)] =
0, hence a contradiction. O
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The above lemma implies that we have the following complexes:

... —> K;0,b,a) > K;,(0,b—1,a) — --- — K;(0,0,a) — 0,
0— K;(a,0,0) > K;(a,1,0) > --- — K;(a,b—1,0) - K;(a,b,0) — ...,

and
0— K;(0,0,a) > K,(1,0,a—1) —> -+ — K;(a—1,0,1) - K;(a,0,0) — 0.

We denote these complexes by C; 4, D; , and 5, , respectively. Note that D_; , ~ C,f a

and B_; , = Bf .

Lemma9 Leta > 2. Then

Hi(Ci.qy) =0 fori >0

and

H (D; ) =0 fori>0.
Ifa > 1, then

Hi(Ci.q) =0 fori>1
and

H (D y) =0 fori>1.

Proof Note that if ts # 0, then H;(C; 4) = H;(C; 4). By semicontinuity of homology
it suffices to check that H;(Cp ,) = 0 for i > 0. Note that K¢ (a, i, 0) has length 2 for
i > 2. Since both Ker6; , and Im#é; ;1 , are proper nonzero submodules of Ko(0, i, a)
and Im6; 1, C Kerb; 5, we have Im6;1, = Ker6;_1 4. Hence H;(Cp,) = O for
i > 1, (formula (2)). In the case i = 1 we still have that Im6, , is a simple g-module.
Using formula (4) we have the following nonsplit exact sequence

0— V(0,0,a+2) — Cokerbr, — Vp(0,1,a) — 0.

We claim that the socle of K (0, 0, @) is isomorphic to Vy(0, 0, a + 2). This follows
from

soc K(0, 0, a) >~ (cosoc Kg(a, 0,0))* >~ Vy(a, 0,0)* =~ V4(0,0,a + 2),
where the last equality is a consequence of Proposition 5.3.1 in [1]. Therefore Imé6; ,

contains V(0, 0, @ + 2) and Imé; , >~ Coker 6, ,, which implies H;(C; 4) = 0.
The statement about D; , follows by duality. O
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Lemma10 Let a > 1. The kernel of 6; 4 : K;(0,i,a) — K;(0,i — 1,a) fori > 1
and the kernel of &,.; : K:(a,i,0) — K;(a,i+1,0) fori > 2 are simple g-modules.
Moreover, if a > 2 then Ho(C; ) and HO(D,,a) are also simple g-modules.

Proof We prove both statements for C; 4, the statements for D; , follow by dual-
ity. Assume that M = Ker6; , is not simple. Then Ho(gl, M) has at least
two go-irreducible components. Therefore there are @i, uo # (a,i,0) such that
Homg (K; (1), K;(0, i, a)) # 0. However, this is false for = 0, hence it is false for
t # 0 by Lemma 7.

By direct computation we have

ResK;(0,1,a) = L(0,1,a+ 1) ®LO,1,a—1)®L(,1,a)®LO,0,a+1)
®L0,2,a—1)® L(1,0,a),
ResImf; , = L(0,0,a+ 1) @ BLO, 1,a — 1)@ L(1,0, a).

and
ResK;(0,0,a) = L(0,0,a+ 1) ® L0,0,a—1)® LO,1,a —1) & L(1,0, a).

This implies ResHo(C; 4) = L(0,0,a — 1). Therefore ResHy(C; ) is simple. O

Lemma 11 Leta > 2. Then
H (Bia)=0 forO<i<a+1.

Furthermore, if a > 4, then Kern; 4—; is simple for2 < i < a — 1 and HO(BM),
HY(B,.,) are simple g-modules.

Proof As in Lemma 9 we will prove the statement for By ,. First assume a > 3. For
1 < i < a the proof goes exactly as the proof of Lemma 9 with use of formula (7)
and we leave it to the reader. To check that H! (Bo.q) = 0 one can show that the socle
of K¢(0, 0, a) is Vp(0, 0, a + 2), and the socle of Ko(1,0,a — 1) is Vy(0, 1, a). Then
formulas (9) and (11) imply Im#no , = Kerny ,—1. The identity H*(Bp ,) = 0 follows
via duality.

Now consider the case a = 2. We have to show that the complex

0— K0(0,0,2) - Ko(1,0,1) — Ko(2,0,0) = O

is exactin the middle. The socle of Ko(1, 0, 1)is V(0, 1, 2) and the socle of Ko (2, 0, 0)
is Vp(0, 1, 0). Formula (10) ensures the exactness.
The last assertion can be proven as in Lemma 10. O
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4.6 The structure of some degenerate Kac modules

Note that the complexes C; o and D, o have the same terms. Therefore we have the
following diagram

0= K(0,0,00) 5K,0,1,00) 5 --- S K(0,0,0) S K,(0,6+1,0) S - - -

It is easy to see that 6p41,080.» # 0 and &y p—16p.0 # O.
Lemma 12 Letb > 1. Then

K:(0,b,0) = Imbp11,060,5 ® Im&p p—16p,0.

For b > 2 the image of 011,080, and the image of &y ,—16p.0 are simple g-modules.

Proof By Corollary 3 0p41.080p and &op—10p,0 are orthogonal idempotents in
Endy(K;(0, b, 0)). Furthermore, by a straightforward computation we have

Res(ImBp11,080,5) = L((1,b,0) & L (0, b, 1)
and
Res(Im&) p—16p.0) = L (1,6 — 1,0) ® L, (0, b — 1, 1).

Assume that Im6p41,0&p, is not simple. Then Im6y41,0&p, » has simple socle M, and
hence there exists a Kac module K;(u) and a morphism K,(n) — K;(0, b, 0)
with image equal to M. However, if » > 3, by formula (16) and Lemma 7,
Op+1,0 and &p p—1,0 exhaust the list of such morphisms. Moreover, the same is true
for b = 2, since an additional morphism may only exist for © = (0,0, 2). But
Homg (K(0, 0, 2), K¢(0,2,0) = 0 as the socle V(0, 2, 0) of Ko(0, 2,0) does not
appear among simple constituents of K(0, 0, 2). Hence we obtain a contradiction. O

5 Simple modules with nonzero central charge
5.1 Classification
Using the results of the previous section we will obtain the classification of simple
objects in Reptg for t # 0. By Proposition 4(a), every K;(a, b, ¢) with abc # 0 is
simple, d(K;(a, b, c)) = 8 and
G(Ki(a,b,0) =x"yzc+yx oy Tz T oy 4y 42

We will call such simple modules typical and all others atypical.

By Proposition 3 every atypical simple module is isomorphic to a quotient of

K:(a, b, c) with abc = 0, hence is isomorphic to a quotient of some term of one
of complexes C; 4, D; 4, By . Therefore we obtain the following.
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Corollary 4 If S is an atypical simple g-module. Then d(S) is 1, 2 or 3.

Next we use Lemmas 9, 10 and 11 to finish the classification. The first step is to
find all S with d(S) = 3.

Proposition 6 Assume d(S) = 3. Then S isomorphic to one of the following:

1. Vi(0, b, a) :=Iméby 4, whereOp 4 : K;(0,b,a) - K;(0,b—1,a)withb > 2,a >
1;

2. Vi(0,b,a) := Ker&, p, where &, p—1 : Ki(a,b —1,0) — K;(a,b + 1,0) with
b>2,a>1;

3. Vi(a,0,c) := Cokerng c+1, where ng.c+1 : Ki(a,0,c+1) - K,(a+1,0,¢)
witha,c > 1.

Moreover,
G(V;(0,b,a)) = xy" 1z +yP7 1 3P4 Hin (1);

G(Vi(a,b,0)) = x?y"~ 1z 4 x@H1y0=1 4 xa=1yb in (2);
G(Vi(a,0,c)) = x%yz¢ + x4 x%2¢ in (3).

Proof Apply the functor Res to the complexes C; 4, D; 4, B 4. For example, if S
appears in the complex C; 4, then ResIm6y, , = ResKer6,_; , consists of all com-
ponents common for K,(0, b, a) and K,(0,b — 1, a). The other cases are similar.

m}

Consider the sequence

10,a

01,4
K0, 1,a) =% K;(0,0,a) =% K(1,0,a),

and set V;(0,0,a — 1) := Coker6; , and V;(0,0,a + 1) := Kerng 4. Similarly, for
the sequence

Ki(@,0,1) ™ K,(a,0,0) &% K(a,1,0).

set Vi(a+1,0,0) := Ker, o and V;(a — 1, 0, 0) := Cokerng,1.
Lemma 13 Res V;(a, 0,0) =~ L,(a, 0, 0) and Res V,(0, 0, a) ~ L,(0, 0, a).

Proof Straightforward by computing the functor Res for the corresponding sequences.
(]

Proposition 7 Assume d(S) = 1. Then ResS ~ L,(a, 0, 0) or ResS ~ L,(0,0, a),
and therefore S is isomorphic to Vi(a, 0, 0) or V;(0, 0, a).

Proof Assume ResS = Z,(a, b, c). First, we will prove that b = 0. We use the root
decomposition of g. Fix the set of positive roots

AT i={eitej |1 <i<j<3YUlel, e,63,61+6r+63,6 —e — &3},
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and let

b=t @ Jo-

aeAt

Then S has a unique, up to proportionality, highest weight vector v with respect to the
Borel subalgebra b. It is clear that the weight of v equals (a, b, ¢) + %(8 1+er+e3) =
(a, b, c+1).Itis easy to see that dimg4., = 2, and one can choose yjE € gey3 NP+1
and x* € ge; N g4y so that

Ty 1=z, Ty =0, (T I=0T,y = ho.
We claim that if b > 0 then u := yTy~v # 0. Indeed,
xTxTytyTv=—xTytxTy v =—xTyThov = —hyv = —b%v.

On the other hand, it is easy to check that e;u = 0 fori = 1, 2, 3. Thus, we obtain that
S must have a simple go-component isomorphic to L(a +2, b, c — 1). But L.(a,b,c)
does not have such a component.

Now we assume that b = 0. Then S appears as a subquotient in one of the following
Kac modules:

Kl(a =+ 1705 C)9 Kl(a - 15 17C)7 K[(Cl, la ¢ — 1)’ Kt(a’ 0’ cx 1)

If a, ¢ > 1, then all these Kac modules have two simple constituents with d = 3 by
Proposition 6. Hence a = 1 or ¢ = 1. Assume for example that ¢ = 1. Then S is a
subquotient of K, (0, 0, ¢). Since

ResK;(0,0,¢) ~ L;(0,0,c — D) ® L,;(0,0,c+ 1) ® L,(1,0,¢) ® L; (0,1, ¢ — 1),

by Proposition 13 we have that K, (0, 0, ~c) has length 4 and, in particular, there is a
simple constituent S’ such that ResS” >~ L, (0, 1, ¢ — 1). However, this contradicts the
assertion we just proved above. The other cases are similar. O

The remaining case d(S) = 2 is now easy to deal with.

Proposition 8 Assume that d(S) = 2. Then S is isomorphic to one of the following:

1. V,(0,1,a) :=Imby ,/Kerno.q and G(V;(0, 1, a)) = yz°~' + xz¢, where a > 1;

2. Vi(a,1,0) = Imny—1.1/Ker&, o and G(V;(0,1,a)) = x4y + x9, where
a>1;

3. V;(0,b,0) := 1m0y 1.0 = Kergy p and G(V;(0, b, 0)) = xy? + y’z, where b > 1.

Proof We just list all simple subquotients appearing in the complexes C; 4, D; 4, B4
which do not appear in Propositions 13 and 6. O
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5.2 Characters
It is easy now to find the characters of simple g-modules with nonzero central charge.
It suffices to use the following.

Proposition 9 Let M € Repg with t # 0. Then

>wew (=D wkxyzG(M))

hM =R
¢ 3 e (—DPw(xyz)

where W is the Weyl group of go and

R=x+x'4z4+z +xy T 4xly+yz7 4371

Proof The claim follows immediately from the formula

Zwew(_l)ww(xa+lyb+lzc+l)
ZweW(_l)ww(xyZ)

chi,(a, b,c)=R

6 Some remarks on projective modules
Lemma 14 Lett # 0, then U(g) Qu ) Z,(a, b, c) is projective in Replg.

Proof The induction functor Rep’b — Repg is left adjoint to Res. Hence it maps

projective objects to projective objects. By Theorem 1(b), Li(a,b,c)is projective in
Rep’h. Therefore U (g) ®u ) L:(a, b, ¢) is projective in Rep’g. O

Proposition 10 The category Reptg has enough projective objects, and every inde-

composable projective object is a direct summand in U (g) ®u () Li(a, b, ¢) for some
(a, b, ¢). If we denote by P(S) a projective cover of a simple module S, then

[U(9) ®uy) Li(a, b, c): P(S)] = [ResS : L;].

In particular, [U(g) ®y ) Li(a,b,c) : P(S)] < 1.

Remark 2 Since Rep’g is a Frobenius category, a similar statement holds for indecom-
posable injective modules in Reptg.

Proof Everything follows from the Frobenius reciprocity isomorphism
Homg (U (@) ®u(y) Li(a. b, ¢). §) = Homy (Li(a, b, ©), S),

and from the fact that ResS is multiplicity free (see Lemma 5). O
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