1905.00529v1 [cs.LG] 1 May 2019

arxiv

Stabilized SVRG: Simple Variance Reduction for Nonconvex
Optimization

Rong Ge* Zhize Lif Weiyao Wang! Xiang Wang?
May 3, 2019

Abstract

Variance reduction techniques like SVRG (Johnson and Zhang, 2013) provide simple and fast algorithms for
optimizing a convex finite-sum objective. For nonconvex objectives, these techniques can also find a first-order
stationary point (with small gradient). However, in nonconvex optimization it is often crucial to find a second-order
stationary point (with small gradient and almost PSD hessian). In this paper, we show that Stabilized SVRG — a
simple variant of SVRG — can find an e-second-order stationary point using only O (n?/3/€? + n/e'®) stochastic
gradients. To our best knowledge, this is the first second-order guarantee for a simple variant of SVRG. The running
time almost matches the known guarantees for finding e-first-order stationary points.

1 Introduction

Nonconvex optimization is widely used in machine learning. Recently, for problems like matrix sensing (Bhojanapalli
et al., 2016), matrix completion (Ge et al., 2016), and certain objectives for neural networks (Ge et al., 2017b), it was
shown that all local minima are also globally optimal, therefore simple local search algorithms can be used to solve
these problems.

For a convex function f(x), a local and global minimum is achieved whenever the point has zero gradient:
Vf(z) = 0. However, for nonconvex functions, a point with zero gradient can also be a saddle point. To avoid
converging to saddle points, recent results (Ge et al., 2015; Jin et al., 2017a,b) prove stronger results that show local
search algorithms converge to e-approximate second-order stationary points — points with small gradients and almost
positive semi-definite Hessians (see Definition 1).

In theory, Xu et al. (2018) and Allen-Zhu and Li (2017) independently showed that finding a second-order station-
ary point is not much harder than finding a first-order stationary point — they give reduction algorithms Neon/Neon2
that can converge to second-order stationary points when combined with algorithms that find first-order stationary
points. Algorithms obtained by such reductions are complicated, and they require a negative curvature search subrou-
tine: given a point x, find an approximate smallest eigenvector of V2 f(x). In practice, standard algorithms for convex
optimization work in a nonconvex setting without a negative curvature search subroutine.

What algorithms can be directly adapted to the nonconvex setting, and what are the simplest modifications that
allow a theoretical analysis? For gradient descent, Jin et al. (2017a) showed that a simple perturbation step is enough
to find a second-order stationary point, and this was later shown to be necessary (Du et al., 2017). For accelerated
gradient, Jin et al. (2017b) showed a simple modification would allow the algorithm to work in the nonconvex setting,
and escape from saddle points faster than gradient descent. In this paper, we show that there is also a simple modifica-
tion to the Stochastic Variance Reduced Gradient (SVRG) algorithm (Johnson and Zhang, 2013) that is guaranteed to
find a second-order stationary point.

*Duke University. Email: rongge @cs.duke.edu

TTsinghua University. Email: zz-1il4 @mails.tsinghua.edu.cn
fDuke University. Email: weiyao.wang1997 @ gmail.com
$Duke University. Email: xwang@cs.duke.edu

Algorithm Stochastic Gradients | Guarantee | Simple
SVRG (Reddi et al., 2016)

n2/3

(Allen-Zhu and Hazan, 2016) O(*z +n) Ist-Order v
Minibatch-SVRG (Li and Li, 2018) O(™F +n) Ist-Order | v
Neon2+SVRG (Allen-Zhu and Li, 2017) | O(% + 2 + %7) | 2nd-Order | x
Neon2+FastCubic/CDHS o (5%5 n 213%) 2nd-Order «

(Agarwal et al., 2016; Carmon et al., 2016)
SNVRG*+Neon?2 (Zhou et al., 2018a,b) 6(”62 + %5 + %7s) | 2nd-Order

SPIDER-SFO™ (Fang et al., 2018) O("f + —7) 2nd-Order | x
Stabilized SVRG (this paper) O +) 2nd-Order | v

Table 1: Optimization algorithms for non-convex finite-sum objective
SVRG is designed to optimize a finite sum objective f(x) of the following form:

f@) =3 3 S,

where evaluating f would require evaluating every f;. In the original result, Johnson and Zhang (2013) showed that
when f;(x)’s are L-smooth and f(x) is u strongly convex, SVRG finds a point with error € in time O(n log(1/¢)) when
L/p = O(n). The same guarantees were also achieved by algorithms like SAG (Roux et al., 2012), SDCA (Shalev-
Shwartz and Zhang, 2013) and SAGA (Defazio et al., 2014), but SVRG is much cleaner both in terms of implementa-
tion and analysis.

SVRG was analyzed in nonconvex regimes, Reddi et al. (2016) and Allen-Zhu and Hazan (2016) showed that
SVRG can find an e-first-order stationary point using O(”:Z/ ® + n) stochastic gradients. Li and Li (2018) analyzed a
batched-gradient version of SVRG and achieved the same guarantee with much simpler analysis. These results can
then be combined with the reduction (Allen-Zhu and Li, 2017; Xu et al., 2018) to give complicated algorithms for
finding second-order stationary points. Using more complicated optimization techniques, it is possible to design faster
algorithms for finding first-order stationary points, including FastCubic (Agarwal et al., 2016), SNVRG (Zhou et al.,
2018b), SPIDER-SFO (Fang et al., 2018). These algorithms can also combine with procedures like Neon2 to give
second-order guarantees.

In this paper, we give a variant of SVRG called Stabilized SVRG that is able to find e-second-order stationary
points, while maintaining the simplicity of the SVRG algorithm. See Table 1 for a comparison between our algorithm
and existing results. The main term O(n?/3/€?) in the running time of our algorithm matches the analysis with
first-order guarantees. All other algorithms that achieve second-order guarantees require negative curvature search
subroutines like Neon2, and many are more complicated than SVRG even without this subroutine.

2 Preliminaries

2.1 Notations

We use N, R to denote the set of natural numbers and real numbers respectively. We use [n] to denote the set
{1,2,--- ,n}. Let I; be a multi-set of size b whose i-th element (i = 1,2, ...,b) is chosen i.i.d. from [n] uniformly
(Ip is used to denote the samples used in a mini-batch for the algorithm). For vectors we use (u,v) to denote their
inner product, and for matrices we use (4, B) := 3, ; A;; B;; to denote the trace of ABT.Weuse || - || to denote the
Euclidean norm for a vector and spectral norm for a matrix, and Apax(+), Amin (+) to denote the largest and the smallest
eigenvalue of a real symmetric matrix. _

Throughout the paper, we use O(f(n)) and (f(n)) to hide poly log factors on relevant parameters. We did not
try to optimize the poly log factors in the proof.

2.2 Finite-Sum Objective and Stationary Points

Now we define the objective that we try to optimize. A finite-sum objective has the form

1 n
i = - I , 1
min {f(@) n§f(x)} M
where f; maps a d-dimensional vector to a scalar and 7 is finite. In our model, both f;(x) and f(x) can be non-convex.
We make standard smoothness assumptions as follows:

Assumption 1. Each individual function f;(x) has L-Lipschitz Gradient, that is,
Vi, xy € RY, IV fi(z1) — Vfi(x2)|| < Lllxy — 2]

This implies that the average function f(x) also has L-Lipschitz gradient. We assume the average function f(x)
and individual functions have Lipschitz Hessian. That is,

Assumption 2. The average function f(x) has p-Lipschitz Hessian, which means
Var,xp € RY, V2 f(21) = V2 f(2)|| < pllar — a2l
each individual function f;(x) has p'-Lipschitz Hessian, which means
Vay,xa € RY, V2 fi(z1) — V2 fi(wa)|| < p'ller — 22

These two assumptions are standard in the literature for finding second-order stationary points
(Ge et al., 2015; Jin et al., 2017a,b; Allen-Zhu and Li, 2017). The goal of non-convex optimization algorithms is to
converge to an approximate-second-order stationary point.

Definition 1. For a differentiable function f, x is a first-order stationary point if ||V f(z)|| = 0; x is an e-first-order
stationary point if |V f (x)|| < e
For twice-differentiable function f, x is a second-order stationary point if

IVf(2)| = 0and Apin(V2f(z)) > 0.
If f is p-Hessian Lipschitz, x is an e-second-order stationary point if

IVI@)| < & and Auin(V*f(2)) > /7.

This definition of e-second-order stationary point is standard in previous literature (Ge et al., 2015; Jin et al.,
2017a,b). Note that the definition of second-order stationary point uses the Hessian Lipschitzness parameter p of the
average function f(x) (instead of p’ of individual function). It is easy to check that p < p’. In Appendix F we show
there are natural applications where p’ = O(d)p, so in general algorithms that do not depend heavily on p’/p are
preferred.

2.3 SVRG Algorithm

In this section we give a brief overview of the SVRG algorithm. In particular we follow the minibatch version in Li
and Li (2018) which is used for our analysis for simplicity.

SVRG algorithm has an outer loop. We call each iteration of the outer loop an epoch. At the beginning of each
epoch, define the snapshot vector Z to be the current iterate and compute its full gradient V f(Z). Each epoch of SVRG
consists of m iterations. In each iteration, the SVRG algorithm picks b random samples (with replacement) from [n]
and form a multi-set I3, and then estimate the gradient as:

wim 3 S (VAo - V@) + V@)

i€l
After estimating the gradient, the SVRG algorithm performs an update z;,1 < x; — nvy, where 7 is the step size.
The choice of gradient estimate gives an unbiased estimate of the true gradient, and often has much smaller variance
compared to stochastic gradient descent. The pseudo-code for minibatch-SVRG is given in Algorithm 1.

Algorithm 1 SVRG(zg, m, b, n, S)
Input: initial point ¢, epoch length m, minibatch size b, step size 7, number of epochs S.
Output: point zg,.
1: fors=0,1,---,5—1do
2. Compute V f(Tsm)-
3 fort=1,2,...,mdo
4 Sample b i.i.d. numbers uniformly from [n] and form a multi-set I.
5 Vsm4t—1 € % Zz’er (vfi(xsm—i-t—l) - vfz(xsm) + vf(xsm)))
6:
7

xstrt — xsm+t71 - nvsm+t71~
end for
8: end for
9: return xg,,.

3 Our Algorithms: Perturbed SVRG and Stabilized SVRG

In this paper we give two simple modifications to the original SVRG algorithm. First, similar to perturbed gradient
descent (Jin et al., 2017a), we add perturbations to SVRG algorithm to make it escape from saddle points efficiently.
We will show that this algorithm finds an e-second-order stationary point in 5(("2/;LAf + n{f?‘f)1+ (nlp/lg p)2))
time, where Af := f(xg) — f* is the difference between initial function value and the optimal function value.
This algorithm is efficient as long as p’ < pn'/3, but can be slower if p’ is much larger (see Appendix F for an
example where p’ = O(d)p'. To achieve stronger guarantees, we introduce Stabilized SVRG, which is another simple
modification on top of Perturbed SVRG that improves the dependency on p’.

3.1 Perturbed SVRG

Algorithm 2 Perturbed SVRG(xg, m, b,n,0,9)

Input: initial point z(, epoch length m, minibatch size b, step size 7, perturbation radius d, threshold gradient ¢
1: fors=0,1,2,--- do

2: Compute V f(xsm).

3: if not currently in a super epoch and ||V f (2.,)| < ¢ then

4 Zsm < Tsm + &, where £ uniformly ~ Bg(6), start a super epoch
5. endif

6: fort=1,2,--- , mdo

7 Sample b i.i.d. numbers uniformly from [n] and form a multi-set I;,.
8 Vsm4t—1 < % Eielb (Vfi(-rs’m—i-t—l) - vfi(xsm) + Vf(xsm)))-
9: Tsm+t < Tsm+t—1 — NMVUsm+t—1-
10: if Stopping condition is met then Stop super epoch
11: end for
12: end for

Similar to gradient descent, if one starts SVRG exactly at a saddle point, it is easy to check that the algorithm
will not move. To avoid this problem, we propose Perturbed SVRG. A high level description is in Algorithm 2.
Intuitively, since at the beginning of each epoch in SVRG the gradient of the function is computed, we can add a small
perturbation to the current point if the gradient turns out to be small (which means we are either near a saddle point or
already at a second-order stationary point). Similar to perturbed gradient descent in Jin et al. (2017a), we also make
sure that the algorithm does not add a perturbation very often - the next perturbation can only happen either after many
iterations (Tyax) or if the point travels enough distance (.%). The full algorithm is a bit more technical and is given
in Algorithm 4 in appendix.

!Existing algorithms like Neon2+SVRG try to estimate the Hessian at a single point, so they do not depend heavily on p’ (in particular, they do
not depend on p’ given access to a Hessian-vector product oracle, and only depends logarithmically on p’ with a gradient oracle). However for our
algorithm the iterates keep moving so it is more difficult to get the correct dependency on p’.

Later, we will call the steps between the beginning of perturbation and end of perturbation a super epoch. When
the algorithm is not in a super epoch, for technical reasons we also use a version of SVRG that stops at a random
iteration (not reflected in Algorithm 2 but is in Algorithm 4).

For perturbed SVRG, we have the following guarantee:

Theorem 1. Assume the function f(x) is p-Hessian Lipschitz, and each individual function f;(x) is L-smooth and
p'-Hessian-Lipschitz. Let Af := f(xzg) — f*, where g is the initial point and f* is the optimal value of f.
There exist mini-batch size b = O(n*/?), epoch length m = n/b, step size n = O(1/L), perturbation radius

~ . 1.5\/€ 0.7560.75 L . ~
0= O(mm(max(z2 TP o p'/m)\/f))’ super epoch length Tr,,x = O(ﬁ)’ threshold gradient 4 = O(e),

threshold distance & = 5(%), such that Perturbed SVRG (Algorithm 4) will at least once get to an e-

second-order stationary point with high probability using

~ s n2/3 n /
O((LAf+ \/ﬁAf)<1+(pp)2))

€2 el.5

stochastic gradients.

3.2 Stabilized SVRG

Algorithm 3 Stabilized SVRG(xg, m, b,n,,%)
Input: initial point z(, epoch length m, minibatch size b, step size 7, perturbation radius d, threshold gradient ¢
1: fors=0,1,2,--- do

2: Compute V f(Zsm).

3: if not currently in a super epoch and ||V f (25,)| < ¢ then

4: Ushift < vf(xsm)

5: Tsm < Tsm + &, where £ uniformly ~ By (6), start a super epoch
6: endif

7. fort=1,2,--- ,mdo

8: Sample b i.i.d. numbers uniformly from [n] and form a multi-set I;,.
9: Vsm4t—1 < % Eier (Vfi(-rs’m—i-t—l) - vfi(xsm) + Vf(xsm))) — Ushift-
10: Tsm+t < Tsm+t—1 — NMVUsm+t—1-

11: if Stopping condition is met then Stop super epoch and vgp;fs < 0.
12 end for

13: end for

In order to relax the dependency on p’, we further introduce stabilization in the algorithm. Basically, if we en-
counter a saddle point Z, we will run SVRG iterations on a shifted function f(z) := f(z) — (Vf(Z),z — Z), whose
gradient at ¥ is exactly zero. Another minor (but important) modification is to perturb the point in a ball with much
smaller radius compared to Algorithm 2. We will give more intuitions to show why these modifications are necessary
in Section 4.3.

The high level ideas of Stabilized SVRG is given in Algorithm 3. In the pseudo-code, the key observation is
that gradient on the shifted function is equal to the gradient of original function plus a stabilizing term. Detailed
implementation of Stabilized SVRG is deferred to Algorithm 5. For Stabilized SVRG, the time complexity in the
following theorem only has a poly-logarithmic dependency on p’, which is hidden in O(-) notation.

Theorem 2. Assume the function f(x) is p-Hessian Lipschitz, and each individual function f;(x) is L-smooth and
p'-Hessian Lipschitz. Let Af = f(xo) — f*, where xq is the initial point and [* is the optimal value of f.

There exists mini-batch size b = O(n?/3), epoch length m = n/b, step size n = O(1/L), perturbation radius

§ = 6(min(%, mf)), super epoch length Tr,.x = O(\/Lp?), threshold gradient 4 = O(¢), threshold distance

Z = 5(%), such that Stabilized SVRG (Algorithm 5) will at least once get to an e-second-order stationary point
with high probability using

~ n?3LAf n\fA f

O(2 15)

€

stochastic gradients.

In previous work (Allen-Zhu and Li, 2017), it has been shown that Neon2+SVRG has similar time complexity
n?/3LAF | npAf | n®/4p2VIAS
62 + 61.5 + 61.75)

for finding second-order stationary point, 6(
convergence rate using a much simpler variant of SVRG.

. Our result achieves a slightly better

4 Overview of Proof Techniques

In this section, we illustrate the main ideas in the proof of Theorems 1 and 2. Similar to many existing proofs for
escaping saddle points, we will show that Algorithms 2 and 3 can decrease the function value efficiently either when
the current point z, has a large gradient (||V f(z;)|| > €) or has a large negative curvature (Amin (V2 f (1)) < —/pé).
Since the function value cannot decrease below the global optimal f*, the algorithms will be able to find a second-order
stationary point within the desired number of iterations.

In the proof, we use similar notations as in previous paper (Jin et al., 2017a). We use ¢ to denote the threshold
of the gradient norm, and show that the function value decreases if the average norm of the gradients is at least ¢.
Starting from a saddle point, the super-epoch ends if the number of steps exceeds the threshold 71y, or the dlstance
to the saddle point exceeds the threshold distance .Z. In both algorithms, we choose ¢4 = O(), Tmax = O(-). For

the distance threshold, we choose .Z = O(L) for Perturbed SVRG and . = O() for Stabilized SVRG

max(p,p’/m)
Throughout the analysis, we use s(t) to denote the index of the snapshot point of 1terate x¢. More precisely,

s(t) = mlt/m].

4.1 Exploiting Large Gradients

There have already been several proofs that show SVRG can converge to a first-order stationary point, and our proof
here is very similar. First, we show that the gradient estimate is accurate as long as the current point is close to the
snapshot point.

Lemma 1. For any point x4, let the gradient estimate be vy := % Yier, Vfi(ze) = Vfi(zsw)) + VI(2s(r))) where
Ts(r) is the snapshot point of the current epoch. Then, with probability at least 1 — ¢, we have

o= 91l < O G o — ol

This lemma is standard and the version for expected square error was proved in Li and Li (2018). Here we only
applied simple concentration inequalities to get a high probability bound.

Next, we show that the function value decrease is lower bounded by the summation of gradient norm squares. The
proof of the following lemma is adopted from Li and Li (2018) with minor modifications.

Lemma 2. For any epoch suppose the initial point is xo, which is also the snapshot point for this epoch. Assume
Sor any 0<t<m — Vf(z)| < ClL||xt — x|, where C; = O(1) comes from Lemma 1. Then, given

n <

30, L,b > m?, we have

f(o) = fla) 2 Y- IV (@)
7=0

forany 1 <t <m.

Using this fact, we can now state the guarantee for exploiting large gradients.

Lemma 3. For any epoch, suppose the initial point is x. Let x; be a point uniformly sampled from {x,}™ . Then,
givenn = O(1/L),b > m?, for any value of 4 we have two cases:

1. if at least half of points in {x,}", have gradient no larger than 4, we know ||V f(x)|| < ¢ holds with
probability at least 1/2;

2. otherwise, we know f(xo) — f(x) > gmfz holds with probability at least 1/5.

Further, no matter which case happens we always have f(x:) < f(xo) with high probability.

As this lemma suggests, our algorithm will stop at a random iterate when it is not in a super epoch (this is reflected
in the detailed Algorithms 4 and 5). In the first case, since there are at least half points with small gradients, by uniform
sampling, we know the sampled point must have small gradient with at least half probability. In the second case, the
function value decreases significantly. Proofs for lemmas in this section are deferred to Appendix B.

4.2 Exploiting Negative Curvature - Perturbed SVRG

Section 4.1 already showed that if the algorithm is not in a super epoch, with constant probability every epoch of SVRG
will either decrease the function value significantly, or end at a point with small gradient. In the latter case, if the point
with small gradient also has almost positive semi-definite Hessian, then we have found an approximate-second-order
stationary point. Otherwise, the algorithm will enter a super epoch, and we will show that with a reasonable probability
Algorithm 2 can decrease the function value significantly within the super epoch.

For simplicity, we will reset the indices for the iterates in the super epoch. Let the initial point be z, the point after
the perturbation be x, and the iterates in this super epoch be =1, ..., x;.

The proof for Perturbed SVRG is very similar to the proof of perturbed gradient descent in Jin et al. (2017a). In
particular, we perform a two point analysis. That is, we consider two coupled samples of the perturbed point xg, z},.
Let e be the smallest eigendirection of Hessian H := V2 f(Z). The two perturbed points xq and z{, only differ in the
ey direction. We couple the two trajectories from z and x{, by choosing the same mini-batches for both of them. The
iterates of the two sequences are denoted by g, ..., x; and xj, ..., z; respectively. Our goal is to show that with good
probability one of these two points can escape the saddle point.

To do that, we will keep track of the difference between the two sequences w; = x; — x;. The key lemma in
this section uses Hessian Lipschitz condition to show that the variance of w; (introduced by the random choice of
mini-batch) can actually be much smaller than the variance we observe in Lemma 1. More precisely,

Lemma 4. Let {x;} and {z,} be two SVRG sequences running on f that use the same choice of mini-batches. Let
(1) be the snapshot point for iterate t. Let wy := xy—xy and Py = max(||xs@) — |, |2}, = 2|, [l = 2|, ||, —2])).
Then, with probability at least 1 — (, we have

/ log(d . ,
6t = € < (B i (Ll — waiol + Pelaed + o . EQnl] + o).

This variance is often much smaller than before as in the extreme case, if p’ = 0 (individual functions are quadrat-
ics), the variance is proportional to O(L/v/b)||w; — wWs(¢)||. In the proof we will show that w; cannot change very
quickly within a single epoch so [|w; — wy(y)|| is much smaller than [|wy || or [[wg()||. Using this new variance bound
we can prove:

Lemma 5 (informal). Let {z;} and {x}} be two SVRG sequences running on f that use the same choice of mini-
batches. Assume wy = xg — x(, aligns with ey direction and |{e1,wo)| > 4%/&. Setting the parameters appropriately

we know with high probability max(||zp — Z||, ||z — Z||) > &, for some T < O(1/(ny)).

Intuitively, this lemma is true because at every iterate we expect w; to be multiplied by a factor of (1 + 7y) if
the iterate follows exact gradient, and the variance bound from Lemma 4 is tight enough. The precise statement of
the lemma is given in Lemma 16 in Appendix C. The lemma shows that one of the points can escape from a local
neighborhood, which by the following lemma is enough to guarantee function value decrease:

X5 X6
X4
X3
X2
X .
P VA%) =0
X1 e V(%) X4X3 €1
X perturbation x5 X T perturbation
0 Tx ball 2% } ball

Figure 1: SVRG trajectories on the original function f and the stabilized function f . The size of the blue circle at each
point indicates the magnitude of the variance.
Lemma 6. Let xq be the initial point, which is also the snapshot point of the current epoch. Let {x.} be the iterates

of SVRG running on f starting from xq. Fix any t > 1, suppose for every 0 < 17 < t — 1, ||&|| < Cl\/EL lzr — 25,

. 1 2
where Cy comes from Lemma 1. Given n < 3C I b > m=, we have

4t
lze — wol* <

= m(f(xo) = f(z1)).

This lemma can be proved using the same technique as Lemma 2. All proofs in this section are deferred to
Appendix C.

4.3 Exploiting Negative Curvature - Stabilized SVRG

The main problem in the previous analysis is that when p’ is large, the variance estimate in Lemma 4 is no longer very
strong. To solve this problem, note that the additional term p’ P;(||w¢|| + [|ws(||) is proportional to P; (the maximum
distance of the iterates to the initial point). If we can make sure that the iterates stay very close to the initial point for
long enough we will still be able to use Lemma 4 to get a good variance estimate.

However, in Perturbed SVRG, the iterates are not going to stay close to the starting point Z, as the initial point =
can have a non-negligible gradient that will make the iterates travel a significant distance (see Figure 1 (a)). To fix
this problem, we make a simple change to the function to set the gradient at = equal to 0. More precisely, define the
stabilized function f(z) := f(z) — (Vf(Z),z — Z). After this stabilization, at least the first few iterates will not travel
very far (see Figure 1 (b)). Our algorithm will apply SVRG on this stabilized function.

For the stabilized function f(z), we have V f(Z) = 0, so & is an exact first-order stationary point. In this case,
suppose the initial radius of perturbation ¢ is small, we will show that the behavior of the algorithm has two phases.
In Phase 1, the iterates will remain in a ball around T whose radius is O(9), which allows us to have very tight bounds
on the variance and the potential changes in the Hessian. By the end of Phase 1, we show that the projection in the
negative eigendirections of H = V?2f(Z) is already at least £2(5). This means that Phase 1 has basically done a
negative curvature search without a separate subroutine! Using the last point of Phase 1 as a good initialization, in
Phase 2 we show that the point will eventually escape. See Figure 2 for the two phases.

The rest of the subsection will describe the two phases in more details in order to prove the following main lemma:

Lemma 7 (informal). Let T be the initial point with gradient |V f(Z)|| < ¢ and Amin(H) = —y < 0. Let {x,} be the

iterates of SVRG running on f starting from xo, which is the perturbed point of T. Let T be the length of the current
3

super epoch. Setting the parameters appropriately we know with probability at least 1/8, f(x7) — f(Z) < —052—2;

and with high probability, f(zr) — f(T) < %’Z—;, where T = 6(%), Cs = é(l)

€1

@

Xo)?

perturbation
ball

Figure 2: Two phases of a super epoch in Stabilized SVRG
Basically, this lemma shows that starting from a saddle point, with constant probability the function value decreases
by SNI(Z—Z) after a super epoch; with high probability, the function value does not increase by more than 5(2—2) The
precise statement of this lemma is given in Lemma 24 in Appendix D. Proofs for lemmas in this section are deferred
to Appendix D.

4.3.1 Analysis of Phase 1

Let S be the subspace spanned by all the eigenvectors of H with eigenvalues at most fm. Our goal is to show that

by the end of Phase 1, the projection of z; — Z on subspace .S becomes large while the total movement ||z; — Z|| is
still bounded. To prove this, we use the following conditions to define Phase 1:

Stopping Condition: An iterate x; is in Phase 1if (1) ¢ < 1/ny or (2) ||Projg(z; — Z)|| < 1‘5—0.

If both conditions break, Phase 1 has ended. Intuitively, the second condition guarantees that the projection of
x¢ — @ on subspace S is large at the end of Phase 1. The first condition makes sure that Phase 1 is long enough such
that the projection of x; — z;_; along positive eigendirections of H has shrunk significantly, which will be crucial in
the analysis of Phase 2.

With the above two conditions, the length of Phase 1 can be defined as

' 1 . ~)
T} =sup {t|Vt <t-1, (t’ < 77’Y> \Y (||Pr0_]s(:17t/ -7 < 10) } . (2)

The main lemma for Phase 1 gives the following guarantee:

Lemma 8 (informal). By choosingn = O(1/L), b = O(n*/®) and § = 5(min(%, =F)), with constant probability,
the length of the first phase T} is é(l/nfy) and

~ 1
lozy — || < O(8) and ||Projs (27, —)|l = 156

We will first show that the iterates in Phase 1 cannot go very far from the initial point:

Lemma 9 (informal). Let Ty be the length of Phase 1. Setting parameters appropriately we know with high probability
e — w—1]] < O(3)3 for every 1 < t < min(Ty, 25L),

The formal version of the above lemma is in Lemma 20. Taking the sum over all ¢ and note that ZZ;I 1/t =
O(log T), this implies that the iterates are constrained in a ball whose radius is not much larger than ¢. If we choose
0 to be small enough, within this ball Lemma 4 will give very sharp bounds on the variance of the gradient estimates.

This allows us to repeat the two-point analysis in Section 4.2 and prove that at least one sequence must have a large
projection on .S subspace within los(d) steps. Recall that in the two point analysis, we consider two coupled samples
of the perturbed points g, x(,. The two perturbed points z and x{, only differ in the e; direction. These two sequences
{x+} and {z}} share the same choice of mini-batches at each step. Basically, we prove after Of}f/) steps, the difference
between two sequences along e; direction becomes large, which implies that at least one sequence must have large
distance to z on S subspace. The formal version of the following lemma is in Lemma 21.

Lemma 10 (informal). Let {xt} and {x}} be two SVRG sequences running on f that use the same choice of mini-
batches. Assume wy = xo — x{, aligns with ey direction and |{e1, wo)| > f Let Ty, T} be the length of Phase 1 for

{x+} and {x}} respectively. Setting parameters appropriately with high probability we have min(Ty,Ty) < %.

log(d . ~
W.lLo.g., suppose Ty < Og() and we further have |z, — || < O(1)S, |Projg(zr, —)| > 6
Remark: We note that the guarantee of Lemma 10 for Phase 1 is very similar to the guarantee of a negative curvature
search subroutine: we find a direction xp, — that has a large projection in subspace .S, which contains only the very
negative eigenvectors of H.

4.3.2 Analysis of Phase 2

By the guarantee of Phase 1, we know if it is successful x, — ¥ has a large projection in subspace .S of very negative
eigenvalues. Starting from such a point, in Phase 2 we will show that the projection of z; —x in S grows exponentially
and exceeds the threshold distance within O() steps. In order to prove this, we use the following expansion,

v == (I —nH)(vi—1 —T) = A1 (211 — T) — &1,

where Ay = fol (V2f(Z+0(xy_1 —T)) — H)d6. Intuitively, if we only have the first term, it’s clear that ||Projg (2 —
)| = (14 155475 IProj g (x1—1 — Z)||. The norm in subspace S increases exponentially and will become very far from
Z in a small number of iterations. Our proof bounds the Hessian changing term nA;_;(x;—1 — Z) and variance term

né;—1 separately to show that they do not influence the exponential increase. The main lemma that we will prove for
Phase 2 is:

Lemma 11 (informal). Assume Phase 1 is successful in the sense that Ty < loi(d and ||z, — || < O()9,
|Projg(zr, — Z)|| > {50. Setting parameters appropriately with high probability we know there exists T = 6(%)
such that ||zr — Z| > Q(F).

The precise version of the above lemma is in Lemma 23 in Appendix D. Similar to Lemma 5, the lemma above
shows that the iterates will escape from a local neighborhood if Phase 1 was successful (which happens with at least
constant probability). We can then use Lemma 6 to bound the function value decrease.

4.4 Proof of Main Theorems

Finally we are ready to sketch the proof for Theorem 2. For each epoch, if the gradients are large, by Lemma 3 we
know with constant probability the function value decreases by at least Q(n'/3¢?/L). For each super epoch, if the
starting point has significant negative curvature, by Lemma 7, we know with constant probability the function value
decreases by at least Q(e'*/,/p). We also know that the number of stochastic gradient for each epoch is O(n) and

that for each super epoch is O(n + n?/3L/,/pé). Thus, we know after

~ /

nl/3¢2 el.5 \//TE

stochastic gradients, the function value will decrease below the global optimal f* with high probability unless we have
already met an e-second-order stationary point. Thus, we will at least once get to an e-second-order stationary point

10

within 5("2/;LAf + n\e/lﬁ,?f) stochastic gradients. The formal proof of Theorem 2 is deferred to Appendix E. The
proof for Theorem 1 is almost the same except that it uses Lemma 5 instead of Lemma 7 for the guarantee of the super

epoch.

5 Conclusion

This paper gives a new algorithm Stabilized SVRG that is able to find an e-second-order stationary point using

5("2/12LAf + n‘f?'f) stochastic gradients. To our best knowledge this is the first algorithm that does not rely on
a separate negative curvature search subroutine, and it is much simpler than all existing algorithms with similar guar-
antees. In our proof, we developed the new technique of stabilization (Section 4.3), where we showed if the initial
point has exactly 0 gradient and the initial perturbation is small, then the first phase of the algorithm can achieve the
guarantee of a negative curvature search subroutine. We believe the stabilization technique can be useful for analyzing
other optimization algorithms in nonconvex settings without using an explicit negative curvature search. We hope
techniques like this will allow us to develop nonconvex optimization algorithms that are as simple as their convex
counterparts.

Acknowledgement

This work was supported by NSF CCF-1704656.

11

References

Naman Agarwal, Zeyuan Allen-Zhu, Brian Bullins, Elad Hazan, and Tengyu Ma. Finding approximate local minima
for nonconvex optimization in linear time. arXiv preprint arXiv:1611.01146, 2016.

Zeyuan Allen-Zhu. Natasha 2: Faster non-convex optimization than sgd. arXiv preprint arXiv:1708.08694, 2017.

Zeyuan Allen-Zhu and Elad Hazan. Variance reduction for faster non-convex optimization. In International Confer-
ence on Machine Learning, pages 699-707, 2016.

Zeyuan Allen-Zhu and Yuanzhi Li. Neon2: Finding local minima via first-order oracles. arXiv preprint
arXiv:1711.06673, 2017.

Zhi-Dong Bai and Yong-Qua Yin. Necessary and sufficient conditions for almost sure convergence of the largest
eigenvalue of a wigner matrix. The Annals of Probability, pages 1729-1741, 1988.

Srinadh Bhojanapalli, Behnam Neyshabur, and Nati Srebro. Global optimality of local search for low rank matrix
recovery. In Advances in Neural Information Processing Systems, pages 3873-3881, 2016.

Emmanuel J Candes and Yaniv Plan. Tight oracle inequalities for low-rank matrix recovery from a minimal number
of noisy random measurements. IEEE Transactions on Information Theory, 57(4):2342-2359, 2011.

Yair Carmon, John C Duchi, Oliver Hinder, and Aaron Sidford. Accelerated methods for non-convex optimization.
arXiv preprint arXiv:1611.00756, 2016.

Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. Saga: A fast incremental gradient method with support for
non-strongly convex composite objectives. In Advances in neural information processing systems, pages 1646—
1654, 2014.

Simon S Du, Chi Jin, Jason D Lee, Michael I Jordan, Aarti Singh, and Barnabas Poczos. Gradient descent can take
exponential time to escape saddle points. In Advances in Neural Information Processing Systems, pages 1067-1077,
2017.

Cong Fang, Chris Junchi Li, Zhouchen Lin, and Tong Zhang. Spider: Near-optimal non-convex optimization via
stochastic path-integrated differential estimator. In Advances in Neural Information Processing Systems, pages
687-697, 2018.

Rong Ge, Furong Huang, Chi Jin, and Yang Yuan. Escaping from saddle pointsonline stochastic gradient for tensor
decomposition. In Conference on Learning Theory, pages 797-842, 2015.

Rong Ge, Jason D Lee, and Tengyu Ma. Matrix completion has no spurious local minimum. In Advances in Neural
Information Processing Systems, pages 2973-2981, 2016.

Rong Ge, Chi Jin, and Yi Zheng. No spurious local minima in nonconvex low rank problems: A unified geometric
analysis. arXiv preprint arXiv:1704.00708, 2017a.

Rong Ge, Jason D Lee, and Tengyu Ma. Learning one-hidden-layer neural networks with landscape design. arXiv
preprint arXiv:1711.00501, 2017b.

Chi Jin, Rong Ge, Praneeth Netrapalli, Sham M Kakade, and Michael I Jordan. How to escape saddle points efficiently.
arXiv preprint arXiv:1703.00887, 2017a.

Chi Jin, Praneeth Netrapalli, and Michael I Jordan. Accelerated gradient descent escapes saddle points faster than
gradient descent. arXiv preprint arXiv:1711.10456, 2017b.

Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance reduction. In Ad-
vances in neural information processing systems, pages 315-323, 2013.

12

Lihua Lei, Cheng Ju, Jianbo Chen, and Michael I Jordan. Non-convex finite-sum optimization via scsg methods. In
Advances in Neural Information Processing Systems, pages 2345-2355, 2017.

Zhize Li and Jian Li. A simple proximal stochastic gradient method for nonsmooth nonconvex optimization. arXiv
preprint arXiv:1802.04477, 2018.

Benjamin Recht, Maryam Fazel, and Pablo A Parrilo. Guaranteed minimum-rank solutions of linear matrix equations
via nuclear norm minimization. SIAM review, 52(3):471-501, 2010.

Sashank J Reddi, Ahmed Hefny, Suvrit Sra, Barnabas Poczos, and Alex Smola. Stochastic variance reduction for
nonconvex optimization. In International conference on machine learning, pages 314-323, 2016.

Nicolas L Roux, Mark Schmidt, and Francis R Bach. A stochastic gradient method with an exponential convergence
_rate for finite training sets. In Advances in neural information processing systems, pages 2663-2671, 2012.

Shai Shalev-Shwartz and Tong Zhang. Stochastic dual coordinate ascent methods for regularized loss minimization.
Journal of Machine Learning Research, 14(Feb):567-599, 2013.

Terence Tao. Topics in random matrix theory, volume 132. American Mathematical Soc., 2012.

Nilesh Tripuraneni, Mitchell Stern, Chi Jin, Jeffrey Regier, and Michael I Jordan. Stochastic cubic regularization for
fast nonconvex optimization. In Advances in Neural Information Processing Systems, pages 2904-2913, 2018.

Joel A Tropp. User-friendly tail bounds for sums of random matrices. Foundations of computational mathematics, 12
(4):389-434, 2012.

Yi Xu, Jing Rong, and Tianbao Yang. First-order stochastic algorithms for escaping from saddle points in almost
linear time. In Advances in Neural Information Processing Systems, pages 5535-5545, 2018.

Dongruo Zhou, Pan Xu, and Quanquan Gu. Finding local minima via stochastic nested variance reduction. arXiv
preprint arXiv:1806.08782, 2018a.

Dongruo Zhou, Pan Xu, and Quanquan Gu. Stochastic nested variance reduction for nonconvex optimization. arXiv
preprint arXiv:1806.07811, 2018b.

A Detailed Descriptions of Our Algorithm

In this section, we give the complete descriptions of the Perturbed SVRG and Stabilized SVRG algorithms.

Perturbed SVRG Perturbed SVRG is given in Algorithm 4. The only difference of this algorithm with the high
level description in Algorithm 2 is that we have now stated the stopping condition explicitly, and when the algorithm is
not running a super epoch, we choose a random iterate as the starting point of the next epoch (this is necessary because
of the guarantee in Lemma 2).

In the algorithm, the break probability in Step 16 is used to implement the random stopping. Breaking the loop
with this probability is exactly equivalent to finishing the loop and sampling g, +¢ for ¢ = 1,2, ..., m uniformly at
random.

Stabilized SVRG Stabilized SVRG is given in Algorithm 5. The only differences between Stabilized SVRG
and Perturbed SVRG is that Stabilized SVRG adds an additional shift of —V f(Z) when it is in a super epoch
(stabilizing = 1 in the algorithm).

13

Algorithm 4 Perturbed SVRG(zg, m, b, 7,9, Tinax, ¥, L)

Input: initial point xo, epoch length m, minibatch size b, step size 7, perturbation radius J, super-epoch length 71,x,
threshold gradient ¢, threshold length .Z

1: super_epoch < 0.

2: fors=0,1,2,--- do

3: Compute V f(xsm).

4: if super_epoch =0 A ||V f(xsm)] < ¥ then

5: super_epoch < 1.

6 T 4 ZTgm, tinit < SM.

7 Tgm Tsm + &, where € uniformly ~ Bg(4).

8 end if

9 fort =1,2,--- ,mdo
10: Sample b i.i.d. numbers uniformly from [r] and form a multi-set I.
11: Vsm4t—1 £ % Zielb (vfi(‘rsqutfl) - vfz(lsm) + vf(l'sm)))
12: Tsm+t < Tsm4t—1 — NMVsm4t—1-
13: if super_epoch =1 A (Hl‘strt —Z|| > LV sm+t—tinit > Tmax) then
14: super_epoch < 0; Break.
15: else if super_epoch = 0 then
16: Break with probability ﬁ
17: end if

18: end for

19: x(s—l—l)m — Tsmt-
20: end for

Algorithm 5 Stabilized SVRG(xg, m, b, 1,0, Tinax, Y, L)
Input: initial point x, epoch length m, minibatch size b, step size), perturbation radius J, super-epoch length Ty,
threshold gradient ¢, threshold length .Z

1: stabilizing < 0.

2: fors =0,1,2,--- do

3: Compute V f(Zsm).

4: if stabiling =0 A ||V f(zsm)| < ¥ then

5: stabilizing < 1.

6 T < Tsm, Linit < SM.

7 Tsm — Tsm + &, where £ uniformly ~ B (4).

8: endif

9. fort=1,2,--- ,mdo
10: Sample b i.i.d. numbers uniformly from [n] and form a multi-set Ip.
11: Vsm+t—1 < % Zier (vfi(xser+t—1) - vfi(-rsm) + vf(xsm))) - StabiliZing X Vf(f)
12: Tsm+t < Tsm+t—1 — NMVUsm+t—1-
13: if stabilizing =1 A (Hxsm+t —Z|>Z V sm+t—tipi > Tmax) then
14: stabilizing < 0; Break.
15: else if stabilizing = 0 then
16: Break with probability #t_l).
17: end if

18: end for

19: T(s+1)m < Tsm+t-
20: end for

14

B Proofs of Exploiting Large Gradients

In this section, we adapt the proof from Li and Li (2018) to show that SVRG can reduce the function value when the
gradient is large. First, we give guarantees on the gradient estimate (Lemma 1). Note that previously such bounds
were known in the expectation sense, here we convert the bounds to a high probability bound by applying a vector
Bernstein’s inequality (Lemma 27).

Lemma 12. For any point x4, let the gradient estimate be v, := % Yier, (Vfi(we) = Vfi(zsw)) + Vf(xss))) where
Ts(p) is the snapshot point of the current epoch. Then, with probability at least 1 — ¢, we have

Jor = 5ol < O(E T oy — .

Proof of Lemma 1. In order to apply Bernstein inequality, we first show for each 4, the norm of (V f;(x;) —
Vfi(zswy) + Vf(2sw)) — Vf(xt)) is bounded.
IVfi(ze) = Vi(xs@) + VI (@s@) = Vi)l
=[IVf (@) = VI(@s) = (Vi(me) = Vizsw))ll
<[IVf(@e) = VI (@s@)ll + [1(Vfi(@e) = Vi(@s@)l
<2L|zy — zyn

where the last inequality is due to the smoothness of f and f;.
Then, we bound the summation of variance of each term as follows.

o® =Y ElIVF(xe) = Vi(zyn) = (Vile) = VSilzgo)I]

i€l

<Y EIVilz) = Vfilzsw)I?]
i€l

<YLl -z 1P
icly

= bLQ”‘Tt - xs(t)Hza

where the first inequality is due to E[|| X — E[X]||?] < E[X?] and the second inequality holds because the gradient of
fi is L-Lipschtiz.
Then, according to the vector version Bernstein inequality (Lemma 27), we have
—r2/2
bL2||$t — Tg(t) ||2 +

Prflbvy — bV ()] = 7] < (d+ 1) exp ()
3

Thus, with probability at least 1 — (, we have

o = V1ol < O(ELOE oy — 0,

where O(-) hides constants. U

Using this upperbound on the error of gradient estimates, we can then show that the function value decreases as
long as the norms of gradients are large along the path. Note that this part of the proof is also why we require b > m?,
which results in the n2/3 term in the running time.

Lemma 13. For any epoch, suppose the initial point is xo, which is also the snapshot point for this epoch. Assume
forany0 <t <m—1, |joy — Vf(xy)| < C’:}If”xt — x9l||, where C1 = O(1) comes from Lemma 1. Then, given

n < ﬁ,b > m?, we have

Flao) ~ fw) = 3 DIV ()
T7=0

forany 1 <t <m.

15

Proof of Lemma 2. First, we obtain the relation between f(z;) and f(z;_1) as follows. Forany 1 <t <m

flxe) <flxi—1) + (Vf(xi=1), 20 — z421)

L
+ §||$t - xt—lHQ
L
=f(xi—1) + (Vf(@i—1) —vem1, @0 — 1) + (Vp—1, 00 — Ty—1) + §||1't - l't71||2

= Fr2) 4 (9 1) = v, =) = (5 = 5) o =

=f(we—1) + 0l Vf (@e-1) — vea |

=V f(xi-1) —vi—1, V(21-1))
1 L

- (5 - §)||3«“t —xpa?
5 1 _ _ 1 L 9
=f(ze—1) + 0|V f(@e-1) —vea[|” — E<xt = Ty, Tpo1 — Ty) — (77 §)||5Ut =z
1L ,
f(ZEt 1)+77||Vf($t 1 — Ut— 1|| (§)||(Et—fﬂt,1||

1
- %(th = Ze|? + lwe—1 — Tell® — [l — $t71||2)

1 L
:f(ﬂﬁt—l) + g”vf(l’t—l) - Ut—1||2 - g||vf($t—1)||2 - (% - E)th - It—1||2,

3)

“4)

(&)

(6)

where (3) holds due to smoothness condition, and (4) and (5) follow from these two definitions, i.e., Ty 1= Ty—1—Nvi—1

and T, := a1 — nV f(as—_1).

According to the assumption, we have ||V f(z;_1) — vs_1]|?

L202 1 L
f(fUt) < f(fftq) + 2% ! ||$t 1 $0||2 - *||Vf(ift 1)||2 (% - 5)”% - %571“2
C’
< flwo1) + = p lze-1 = wol* — fHVf(mt DII? = LC[|lzy — 2o |?

L L L
< flwe-1) + (@ + ﬁ)Clnxt,l — ao|* - §||Vf($t71)||2 = 5, C1llwe — ol|?,

where the last inequality uses Young’s inequality ||x; — x¢|? <

|41 — @o[|*. Choosing 1) < 5, we have

< (14 2)llze—1 — zol* + (1 + a)llzy — x4 ||* by
choosing o = 2t — 1.

Now, adding the above inequalities for all iterations 1 < ¢ < ¢/, where t’ < m,

) <o) =35IV (i) Z%cluxt—xon

L L
= C = 2
+t:1(6b+2t—1) Hze—1 = o
t’ t'—1
N e (Lo L L _
=f0) =3 gIVH 0l = D (5 = g~ gy p) e — ool
L
- 27,01||$t' — xo]|
t’ n
<flxo) = p_ 5 IVF(ze)l? — Z Gl — o ?

’
P 2t

where (7) holds because % — é — 2t+1 > 0forany 1 <t < m aslong as b > m?

16

Thus, for any 1 < ¢ < m, we have

t'—1
n 2
xo) — flae) > |V f(z)|*.
f(@o) = f(av) ;0 S IV f(z-)l
(]
A limitation of Lemma 2 is that it only guarantees function value decrease when the sum of squared gradients is
large. However, in order to connect the guarantees between first and second order steps, we want to identify a single
iterate that has a small gradient. We achieve this by stopping the SVRG iterations at a uniformly random location.

Lemma 14. For any epoch, suppose the initial point is xq. Let x; be a point uniformly sampled from {x.}"_,. Then,
givenn = O(1/L),b > m?, for any value of 4, we have two cases:

1. if at least half of points in {x,}7, have gradient no larger than 4, we know ||V f(x)|| < ¢ holds with
probability at least 1/2;

2. Otherwise, we know f(xo) — f(xt) > nggQ holds with probability at least 1/5.

Further, no matter which case happens we always have f(x;) < f(xo) with high probability.

Proof of Lemma 3. Let {x, }", be the iterates of SVRG starting from xz¢. Then, there are two cases:

e If at least half of points of {x,}7-; have gradient norm at most ¢, then it’s clear that a uniformly sampled point
x4 has gradient norm ||V f (z;)|| < ¢ with probability at least 1/2.

e Otherwise, we know at least half of points from {x,}"™ ; has gradient norm larger than . Then, as long as the
sampled point falls into the last quarter of {z,}" ;, we know Zi_:lo IV f(x)]? > mT@z. Thus, for a uniformly
sampled point z;, with probability at least 1/4, we have Zt;:lo IV£(z)]? > mTW.

According to Lemma 1 and the union bound, we know there exists C; = O(1) such that with high probability,

lve — V(x| < C}EL ||z¢ — o] holds for every 0 < ¢ < m — 1. Combining with Lemma 2, we know given

n < ﬁ,b > m?2, we have f(zg) — f(x;) > Zt;:lo 2|V f(x-)||? for any 1 < ¢ < m. By another union

. e m 2
bound, we know with probability at least 1/5, f(xo) — f(z:) > ng.

Again by Lemma 1 and Lemma 2, we know f(z;) < f(z¢) holds with high probability. O

C Proofs of Exploiting Negative Curvature - Perturbed SVRG

In this section, we show that starting from a point with negative curvature, Perturbed SVRG can decrease the function
value significantly after a super epoch.

As discussed in Section 4.2, we use two point analysis to show that with good probability one of these two points
can escape the saddle point. Let = be the initial point of the super epoch. We consider two coupled samples of the
perturbed point xg, z,. The two perturbed points o and z{, only differ in the e; direction, where e; is the smallest
eigendirection of Hessian # := V2 f(Z). Let the SVRG iterates running on f starting from z and =, be {x;} and
{z}} respectively. We will keep track of the difference between the two sequences w; = x; — 2}, and show that w;
increases exponentially and becomes large after one super epoch, which means at least one sequence must escape the
initial point .

In the following proof, we first show that the variance of w; can be well bounded. This is the place where we use
the assumption that each individual function is p’-Hessian Lipschitz.

Lemma 15. Let {x:} and {x}} be two SVRG sequences running on f that use the same choice of mini-batches. Let
(1) be the snapshot point for iterate t. Let wy := xy—xy and Py = max(||zsq) —Z|, |2}, = 2|, [z — 2|, |21 —Z]).
Then, with probability at least 1 — (, we have

log(d/¢)

1€ = &Il < O ——7—==) min (Lljwy — wy [l + o' Pe(llwell + wsio D, Llwell + [lwse 1))-
Vb

17

Ws(t)

x;(t)

Figure 3: Comparison between ||w; — w(y)|| and [Jwy || + [[wsy) ||
In the extreme case, if each individual function f; is exactly a quadratic function, then we know p’ = 0 and the
variance is proportional to O(L/v/b)|lw; — w(¢)||. As illustrated in Figure 3, w; cannot change very quickly within a
single epoch s0 [[w; — wg ()| is much smaller than [Jw; || or [[wg |-
Proof of Lemma 4. Similar as the proof in Lemma 1, here we use Bernstein inequality to prove that the difference
between the variances of two coupled sequences is also upper bounded.
Recall that,

§ = & =(ve = V() = (v = Vf(a})
=2 3 ((Vfilen) = Vfileai) + Vi (aio) - V()

i€l

- (Vfi(ng) - Vfi(wls(t)) + Vf(l";(t)) - Vf(ﬂfg))),

where I, is a uniformly sampled multi-set of [n] with size b.
Let the Hessian of f at 7 be H and let the Hessian of f; at = be H,; for each i. Let §; ; — &; ; be the i-th term in the
above sum. In order to apply Bernstein inequality, we first show for each ¢,

lée: — €.l
< || (Vfitae) = Vi) = (Viasn) = VHilal)|
+ (V@) = V1) = (T o) = V)|

|

1 1
[i+ 0=yt —)~ [9 i+ 0y — 0L x;m)H

1 1
/0 V2 f (2] + 6y — }))d(ar — 1) — / V2 (&) + 0(a(0) — oy))A0(@a(e) — o))

= H%wt + Ajwy — (Hiwggr) + Ai(t)ws(t))H + || Hwe + Agwy — (Hwyey + Ay ws)) ||
< Hillllwe = waeey | + AL we |l + 1A% Hwsee |

+ IHllwe = wse | + 1 Aell[we]l + [Asl[ws |
<2Ljws — wyeo) | + 20" Pe([Jwell + lwsce)

where A! = fol(V2f¢(asQ +0(xy — })) — H;)dO(zy — 2}) and Ay = fol(sz(xg +0(xy —) — H)dO(z, —).
The last inequality holds since each individual function is L-smooth and p’ Hessian Lipschitz. Specifically, due to the

18

L-smoothness, we have || H;||, ||| < L. Because of the Hessian Lipschitz condition and the definition of P, we have
AL A 1 AL [Aso | < p' P

s(t
Then, we bound the summation of variance of each term as follows.

2

g
=>"E|l& - &,

i€l
< Z E [H(Vfi(xt) = V/fi(x}) = (Vfi(zs) — vfi(‘r;(t)))H2:|
i€l

2
< (Lllwe = woll + o Pellwel + wsn)

el
2
=b (Lljwr — wywll + ¢ Pe([Jwe]| + lwswl) ™,

where the first inequality is due to E[|| X — E[X]||?] < E[X?].
Then, according to the vector version Bernstein inequality (Lemma 27), with probability at least 1 — (, we have

log(d
et - 1 < (2L) (Ll = wagol + /Pl + o).

where O(-) hides constants.
In order to prove the other bound for the variance difference, we can use smoothness condition to bound each term
as follows.

1€ei — &Ll
<[IVfi(we) = VIila) | + IV fi(zs@y) — Vilahw)ll
+I(Vf () = V) + IV (zsw) = V(@0
S2L([[well + llwseey)-
The summation of variance of each term can be bounded as
0% < L2(|lwel + llwseo 1)

Again, using Bernstein inequality, we know with probability at least 1 — ¢

le - 1 < O(ELD) Ll +

By union bound, we know with probability at least 1 — 2,

log(d/Q)y .
— & <o =~ - / .
e =€l < O(=2 72) min (Llfwr = wagoll + o' Pellwell + gy), Elwel| + oo 1)
O
Suppose the initial point 2 of the super epoch has a large negative curvature (Amin (%) = —y < 0). Also assume

initially the two sequences has a reasonable distance along e; direction, which is the most negative eigendirection of
‘H. Then, using the above bound for the variance of w;, we are able to prove that the distance between two sequences
increases exponentially, and becomes large after O(%) steps, which means at least one sequence must escape the
initial point .

Lemma 16. Let {x.} and {x}} be two SVRG sequences running on f that use the same choice of mini-batches. Assume

. ;g . . . § . . L ~
wo = xo — Xy, aligns with ey direction and | (e, wo)| > T3 Let the threshold distance L= Grmanto Ty - Assume

19

2log(4)
forevery 0 < t < =252 1, ||& — || < Sk min (Ll|wy — wyen| + o' Palllwe] + w1, L(lwe]| + lws)

where C comes from Lemma 4 Then there extsts large enough constant c such that as long as

< ;, C3 > i~
clog()C1- L nL
we have
max(|lzr — 2|, |27 - Z[)) > Z,
d
for some T < 2loa(53)
ny

The proof of this lemma is similar to the analysis in Jin et al. (2017a). However, we make crucial use of Lemma 4.
Throughout the proof, the intuition is that at every iteration, wy is close to a multiple of e;. Therefore, the next w1
is close to (I — nH)w; = (1 4 ny)w;. The difference between w;1 and w is therefore only 1yw; whose norm is
much smaller than either w; or wy41. As a result, Lemma 4 gives a much tighter bound on the variance, and allows
the proof to go through.

dy
Proof of Lemma 16. For the sake of contradiction, assume for any ¢t < 210%}2"5), max(||z: — Z||, ||z} — Z||) < Z.

Basically, we will show that the distance between two sequences grows exponentially and will become larger than 2.

after 21%(7%) steps, which by triangle inequality implies that at least one sequence escapes after 21%2’%) steps.
Forany 0 <t < ——=22~ 2! g(5) , we will inductively prove that
Lo gL+) woll < Jlwell < §(1+n7) {lwoll;
2. 1€ = &l < - myCLL(L + my)![lwoll, where i = O(1).
The base case trivially holds because 2w < [|wo|| < ¢||wo| and & = &) = 0. Fix any ¢ < QIOg(%), assume

for every 7 <t — 1, the two induction hypotheses hold, we prove they still hold for ¢.

Proving Hypothesis 1. Let’s first prove 3 (1+77)"|lwol| < [w| < (14 nv)*|Jwo|. We can expand w, as follows,

Wy = Wr—1 — 77(%&—1 - U£_1)
=T —nH)wi—1 — n(Ap_qwi—1 + &1 — & 1)

t—1
= (L= nH)'wo =0y (I = nH) ™77 (Arwr + & — &)
7=0
where A, j;)l V2f(al + 0(z, — 2L)) — H)do. It’s clear that the first term aligns with e direction and has norm

(1 4 177)*||lwol|. Thus, we only need to show || SL_4 (I — nH) " H(Avw, + & — €L)]] < L(1 4+ ny)*{|wol|.
We first look at the Hessian changing term. According to the assumptions, we know |z — xH ||z — Z|| < Z for

20

2log(ps)

any 7 < . Thus

t—1

n Z(I —nH) T A,

7=0

t—1

<0 (+m) A [|
7=0
t—1

<0 pmax(||z, — |, |« *xH) (14 77)" lwol
7=0

6 Y t
< —p— (1
S0 e Grmanto gy () ol
1 Y
= Zlog(=H) (1
S5 los(op) g (1)l

1
< 10(1 + 1y) " lwoll,

. . . 2log(Q . .
where the second last inequality uses the assumption that ¢ < Oi(f‘;) and the last inequality holds as long as
d
Cs > 24log(p—g).
For the variance term, we have

t—1
<Y (L+m) g - &
7=0
t—1
<Y (L4 7)) umyCLE(L + 77y) 7 [Jwo |
7=0
210g(% , .
< n————unyC1L(L + ny)"|Jwo |
Y
1

E(+ 77)"[woll,

. . 1
where the last inequality holds as long as < 01oa(TAC; L

Overall, we have [3= 4 (1 ="~ = (A -+, ~ €| < 4(1477)" o, which implies (117 [| <
lJwell < 2L+ n7)*fJwoll

ST —) T s €
7=0

Proving Hypothesis 2. Next, we show the second hypothesis also holds, [|§; — &[] < - nyCyL(1+ 1) |Jwo|. We
separately consider two cases when 1 <m and oy > M.

If L < m, we have
Y

1§ = il <=2 (L(llwell + lwscoy)

i
NG
L6

\71 = (L m)" lwol|

L
<u \}5 (L m7)"[Jwol]

< myCLL(1 +)" [Jwoll,
where the third inequality holds as long as z > 3 and the last inequality holds because - < % <ny.

b
If % > m, we need to bound ||w; — w(y)|| more carefully. We can write w; — wg () as follows,

t—1
Wy — W) = ((I —nH) 0 — f) wy =0 Y (=) T (Ayw, + & — &),

T=s(t)

21

For the first term, we have

(=m0 = 1) wy| <IN =) O = Tl oo |

m 6
S(@4+m)™ =11+)" {Jwo|
<3may - (L4 97)"|lwol,

where the last inequality holds since (1 + 77y)™ < 1 + 2mny if mny < 1.
For the hessian changing term, we have

t—1 t—1
. v
In > (=) A <y Y 2 (L) o]
T=s(t) T=s(t)

Y
<nm- 25(1 + 179)"[|wo|
3

< mapy(1 4)" |woll,

assuming C5 > 2.
For the variance term, we have

t—1 t—1
In > T=nH)" " H& =)l <n D L+ &G =&l
T=5(t) T=5(t)
t—1

<n Y (@A) Ty CLL(L +) [fwo |
T=5(t)

<pCinL - muy(1 +ny)"{lwo|
<mny(1 + ny)Jwol],

where the second inequality uses induction hypothesis and the last inequality assumes n <

M CluL-
Overall, we have [Jw; — wy(y|| < 5mny(1 + ny)*||wol|. Thus, when % > m, we can bound [[&; — &,)|| as
follows,
!/ C{ /
1€ — & =7 (Lllwe = wny | + o' Pe(llwe]l + lwsioy D)
C1 (/ 124 >
<— L -5mny+ 1+ ny)|w
< (e sman 0 s) (L)l
<G (L smn+ 21 (14 77" o
— . m _— . m
=/ ny 5 nmy nv) 1l1wo
<p-myCIL(+)" Jwoll,

where the second last inequality assumes C3 > n% and the last inequality holds as long as ;4 > 8. Here, we use the
fact that Py < max([|lzs) — |, |2 — 2|, [lze — 2, [} — 7)) < Z.
Overall, we know there exists large enough constant ¢ such that the induction holds as long as

<
clog(
1
>
Cs > L

33~

1)L

22

og(L1
Thus, we know [|w|| > (1 + 1) |lwo | for any ¢ < 21572’“5)

2 log(i—g)

. we have

. Specifically, when t =

4
lwell = 2 (14 m) ol

4 20850 §
> —(ltngy) ™ —=
5(nvy) Wi
y

>7a
_5p

which implies max(||z; — |, [|z; — Z||) > 13- Assuming C's > 10, this contradicts the assumption that max(||z; —

210g(‘2—})

2log(d—g) .
777”. Thus, we know there exists T' < — such that,

Il M=t = Z) < Gmantermy = £ forany t <
max(||lzr — ||, |27 — Z||) = Z.

]

In the next lemma, we show that the function value decrease can be lower bounded by the distance to the snapshot

point. Combined with the above lemma, this shows that the function value decreases significantly in the super epoch.
The proof of this lemma is almost the same as the proof of Lemma 2.

Lemma 17. Ler xq be the initial point, which is also the snapshot point of the current epoch. Let {x;} be the iterates
of SVRG running on f starting from xq. Fix any t > 1, suppose for every 0 < 7 <t — 1, &,]| < %er — Ty(r)lls

where Cy comes from Lemma 1. Given n < ﬁ, b > m?, we have

4t
lz — @ol* <

< oz V@) = fla)).

Proof of Lemma 6. From Equation (7) in the proof of Lemma 2, we know for any ¢’ < ¢,

o =zl < 2) — s,

where x4,/ is the snapshot point of z;.
If t < m, we know there is only one epoch from z(to =, and
2t
[y — @] < @(f(%) — f(zt)).

If t > m, we need to divide z; — x(into multiple epochs and bound them separately. We have

|z — SUO||2 = |[Tm — 0 + T2m — T + Tt — fcs(t)Hz
" [t/m]
< [EW Z |Z7m — x(rfl)mH2 + [l — xs(t)HQ
T=1
2t 2m
m @(f(mo) — f(@))
41

Combining two cases, we have

O
Next, we show that starting from a randomly perturbed point, with constant probability the function value decreases
a lot within a super epoch.

23

Lemma 18. Ler X be the initial point with gradient |V f(Z)|| < 4 and Amin(H) = —y < 0. Let {x+} be the iterates
of SVRG running on [starting from xo, which is a uniformly perturbed point from T. There existn = O(1/L),b =

~ 2 3 _ ~ . 1.5 o ~ 2 o ~ o ~ 1
O(r21%),5 = Omin by it) = 05,2 = Ol T = (L) such

that with probability at least 1/8,

,YS

max(p?, (o /m)?)

flar) = f(7) < =Cs -

)

and with high probability,

~ _ Cs ~? .
flzr) — f(7) < 20 max(p2, (o /m)?)

where Cs = ©(1) and T is the length of the current super epoch and T < Tpax.

This lemma is basically a combination of Lemma 16 and Lemma 18. Lemma 16 shows that with reasonable
probability, one of two random starting points is going to travel a large distance, while Lemma 18 shows such a point
would decrease the function value. The only additional thing is to prove is that the function value does not increase by
too much when the point does not escape. Intuitively this is true because with high probability the function value can
only increase during the initial perturbation.

Proof of Lemma 18. With the help of Lemma 16, we first prove that {z;} escapes the saddle point with a constant
probability. Let {x;} and {z}} be two SVRG sequences starting from z and x(, respectively, where x(and x{, are two
perturbed points satisfying ||z — Z||, ||z — Z|| < . According to Lemma 16, we know at least one sequence escapes
the saddle point if xg — x(, aligns with e; direction and has norm as least 45%.

We first show that, for two coupled random points xy and x(), their distance is at least 4%5/3 with a reasonable
probability. Marginally, xo and z{, are both uniformly sampled from the ball centered at T with radius §. They are
coupled in the sense that they have the same projections onto the orthogonal subspace of e;. Then, similar as the
analysis in Jin et al. (2017a),

x Vol (BY 1 (6))

5
5 175 1 1 T(d/2+1) _1
Pr |||zo — 25| < <= == < -
T Uad] T2 vouslP(s)) 2\/md(d/2+1/2) ~ 2
Thus, we know with at least half probability, we have |(z¢ — z(, e1)| > 45%. In order to apply Lemma 16, we still

(4
need to make sure || — &;|| is well bounded for every 0 < ¢ < 2loa() _ 1, which happens with high probability

due to Lemma 4. Thus, by the union bound and Lemma 16, we know with probability no less than 1/3, at least one
sequence between {x;} and {x} } must escape the saddle point. Marginally, we know from a randomly perturbed point
xo, sequence {x;} escapes the saddle point within a super epoch with probability at least 1/6. Precisely, there exists

L T < €z such that
ny

— _1 — ol
n= Cs-L> — Csmax(p,p’'/m)’

ler — 2| = 2

holds with probability at least 1/6. Here, we have C5, Cg, C7 = O(1).
Combing Lemma 1 and Lemma 6, we also know with high probability

ez — zoll? < %(f(l“o))

where Cy = O(1).

24

By a union bound, we know with probability at least 1/8, we have

Flao) — Flor) > 2y — ol

CyL i\ 2
> 22 (o — 7 - ll20 - 7)

C 2
> 7 —4
T \Csmax(p,p'/m)
_Calipy 7’
~ Cr ACTmax(p?, (p'/m)?)
Oy 7’
40705Cs max(p?, (p/ /m)?)’

where the last inequality holds as long asd < m

Let the threshold gradient ¢ := . Since f is L-smooth, we have

~ ~ ~, Lo~
fzo) — f(Z) SIIVf(x)H o =2 + S 7~ o|?

6+ 62
_080

Thus, with probability at least 1/8, we know
flar) = f(@) =f(zr) — f(z0) + f(20) — f(T)

C4 ,YB 2
< _
~ 40703Cs max(p?, (p'/m)?) Cg

— 5+ 52

If Lemma 16 fails, the function value is not guaranteed to decrease. On the other hand, we know that with high
probability the function value does not increase, f(x1) — f(x¢) < 0. Thus, with high probability, we know

flor) — f@) < ggp(w 52

. . C.,.C C 1.5 . J
Assuming § < min(TG8C-CICs max(pQ”’a),/m)Q), Yezreme:ton max(p?p,/m)ﬁ), we know with probability at least
1/8,
20 04 ’73

fer) = 1) < =57 16,030, max(22, (7 Jm)?)

and with high probability,

_ 1 Cy ’73
flxr) — f(z) < 21 40703%06 max(p?, (p'/m)?) .

20 Gy O

We finish the proof by choosing C5 := 57 G030, -
3

D Proofs of Exploiting Negative Curvature - Stabilized SVRG

In this section, we analyze the behavior of Stabilized SVRG when the initial gradient is small. The proofs will depend
on Lemma 1, Lemma 4 and Lemma 6, which were proved for f but clearly also holds for shifted function f .

Let the initial point of the super epoch be Z, whose hessian is denoted by H. Assume the initial point has large
negative curvature, Amin (%) = —7y < 0. Let z(be the perturbed point and let {x;} be the SVRG iterates running on
f starting from Z. As we discussed in Section 4.3, there are two phases in the analysis. In the first phase, the distance

25

between the current iterate x; and the starting point = remains small (comparable to the random perturbation), while at
the end the direction of x; — T aligns with the negative eigendirections. In the second phase, the distance to the initial
point Z blows up exponentially and the algorithm escapes from saddle points.

To analyze the two phases of the algorithm, we make use of the following expansion for the one-step movement
of the algorithm:

Lemma 19. Let T be the initial point with Hessian H, and xq be its perturbed point. Let {x} be the iterates of SVRG
running on f starting from xq. For any t > 1, we have the following expansion,

t—2
xp — i1 = —n(I — M) IV f(z0) + P H Z(I —nH) e,
7=0
t—2
-n Z(I —H) T AL (@ g1 — @) — 141,
=0

where variance term &, = v, — Vf(xT) and hessian changing term A\, = fol (sz(xT +0(xr11 —xr)) — H)dO.

Intuitively, the first term —n(1 — nH)"~ 1V f(z¢) corresponds to what happens to the algorithm if the function is
quadratic (with Hessian equal to H at). The second and the fourth term measures the difference introduced by the
error in the gradient updates. The third term measures the difference introduced by the fact that the Hessian is not a
constant. Our analysis will bound the last three terms to show that the behavior of the algorithm is very similar to what
happens if we only have the first term.

Proof of Lemma 19. According to the algorithm, we know

Ty — Tp—1 = —NV—1

= —n(VF(zio1) + &—1),

where {1 = v4_1 — Vf(xt,l). We can further expand Vf(xt) as follows.

Vf(x) = Vf(zi_1)+ /01 (sz(ﬂct,l +0(xy — xt,l)))dO(xt — 24 1)

= Vf(zt—l) +H(xy —xi—1) + Dp1 (2 — 24-1)
= Vf(zi—1) = TH(VF(@o-1) + E—1) + Dy (2 — 24-1)
= (I - WH)V]?(%A) —nHE 1+ Aq (T — w—1)

t—1 t—1

= (I =nH)'V f(wo) —nH Y (T —mH)' " 7 + > (T —nH) " 7 A (2r41 — 27),

=0 7=0

where A, = fOI(VQf(a:T +0(x, 41 —) — H)dO. Thus, we know

2y — 241 = — (V f(2e-1) + E—1)

t—2
=—n(I —qH) 'V f(zo) + *H Y (I —nH)' 277,
7=0
t—2
- Z(I - nH)t_2_TAT($T+1 —rr) = N1
7=0

26

D.1 Proofs of Phase 1

In Phase 1, the goal of the algorithm is to stay close to the original point z, while making x; — x aligned with the
negative eigendirections of H (Hessian at).
Recall the definition of the length of Phase 1 as follows,

1 1)
Ty =sup vt <t —1,(t' < —)V [|Projg(ay —2)| < —) ¢ -
v=sup o <o-1 (v < L) v (Iprog(or -)1 < 55)}

We will first show that #; — 2,1 is bounded by O(1/t)§ for every 1 < ¢ < min(T}, %). This lemma is very
technical, and the main idea is to use the expansion in Lemma 19 and bound the terms by considering their projections
in different subspaces. Intuitively, the behavior can be separated into several cases based on the eigenvalues of H in
the corresponding subspace:

1. eigenvalue smaller than —v/log d. These directions will grow exponentially, and we will stop the first phase
when the projection in this subspace is large.

2. eigenvalue between —v/logd and 0. These directions will also grow, but they do not grow by more than a
constant factor.

3. small positive eigenvalue (smaller than +-y). These directions don’t move much throughout the iterates.

4. large positive eigenvalue (much larger than). These directions move very fast at the beginning, but converges
very quickly and will not move much later on.

In the proof we will consider the behavior of these separate subspaces (where cases 3 and 4 will be combined).
The detailed proof is deferred to Section D.2.

Lemma 20. Let Ty be the length of Phase 1. Assume for any 0 <t < min (T3, = log(d)) —1, & < &L ||xt el
where Cy comes from Lemma 1. Then, there exists large enough constant c such that as long as

1 log(d
< > clog(@log?(EY) 5< 1
cCy log(nd) log(n 055 M. L my pH
we have for every 1 < t < min(T7, %),

e — e < Zo.

Now we want to prove that Phase 1 is successful with a reasonable probability. That is, at the end of Phase 1,
with reasonable probability the distance x7, — Z is order O(9), while Projg(zp, —) is at least §/10, where ¢ is the
perturbation radius. By the above lemma, actually we only need to show that the length of Phase 1 is bounded by

loifyd) In the following proof, we show that between a pair of coupled sequences, at least one of them must end the

Phase 1 within % steps. Similar as in Lemma 16, we use two point analysis to show the difference between two

sequences along e direction increases exponentially and will become very large after log(d)

at least one sequence must have a large projection on .S subspace.

steps, which implies that

Lemma 21. Let {zt} and {x}} be two SVRG sequences running on f that use the same choice of mini-batches.
Assume wy = xo — x(, aligns with ey direction and |{e1,wo)| > f Let T, Ty be the length of Phase 1 for {z;}

and {x}} respectively. Assume for every 1 < t < min(T7, 1Og(d)) xr — 21| < €26 and for every 1 < t <

min(77, lorg](vd)) |z} — x}_y|| < €26, where Cy comes from Lemma 20. Assume for every 0 < t < % -1,

& —¢ < < 7 min (LlJwe — wyy | + o' Pe(llwell + lwsny 1), Llwe |l + lwseey|l)) , where C; comes from Lemma 4.
Then there exlsts large enough constant c such that as long as

’

¥ mmn Ly 1

§ < min Tox(d y T , <
clog(d) log(055/ NCop P clog(d) log(

)i ey L

27

log(d)
ny

we have min(Ty,T7) < loifyd) . W.lo.g., suppose Ty < and we further have

log(d
W<t Ty, fio -] < 31os(E D)o

|Projis(arr, —)| > 56

Proof of Lemma 21. For the sake of contradiction, assume the length of Phase 1 for both sequences are larger than

%. Basically, we will show that the distance between two sequences along e; direction grows exponentially and

log(d)
ny

will become very large after steps, which implies that at least one sequence has a large projection along e

(

direction after steps.

For any 0 < t § loigd), we will inductively prove that
L [|Proje, well = 5 (1 + 1) lwoll and [we|| < (1 + 1) |woll;

2. 1€ — &1l < - myCLL(L + my)!flwoll, where i = O(1).

The base case trivially holds. Fix any ¢t < Og() , assume for every 7 < t — 1, the two induction hypotheses hold,
we prove they still hold for ¢.

Proving Hypothesis 1. Let’s first prove |[Proj, w| > (1 4 n7y)!|lwo| and [Jw.]| < E(1 + ny)*{lwol|. We can
expand wy as follows,

wy = w1 — (V-1 — vy_y)
= (I —nH)wi—1 = n(Asqwi—1 + &1 — &)
t—1
= (I =nH)'wo —n Y (T —nH)" " (Arw, + & — &)
7=0
where A, = fol(sz(x’T + 0(x; — 27)) — H)dO. It’s clear that the first term aligns with e direction and has norm

(14 177)" o Thus, we only need to show [l S22 (7 — 7R} (A, + & — €1 < (1 + 1)yl
We ﬁrst look at the Hessian changing term. According to the assumptions, we know HmT —Z|, |zt — Z|| <
3log(10g)Ca6 for any 7 < log(d) . Thus,

t—1

<> (L4 AL |
7=0

t—1

n Z(I —nH)"TT A,

7=0

t—1

~ 6
<0 pmax(||z, — |, |« = &)z (14 7)ol
7=0

t—1
<ny Bl g(n())02/)5(1 +17)" [lwol|

1 log(d) t

— -4log(d) log(———=)Capd(1 + w
5 g(d) log(.)C2p6(1 + ny)"||wol|
1

IN
—

(1 + 17) " lwoll,

where the last inequality holds as long as § < 0105(d) 1og(T

By the analysis in Lemma 16, we can bound the variance term as follows,

(1 + 177)*|woll,

o"‘

t—1
Ny (I—qH) & - &) <
7=0

28

: 1
assuming 7 < T0Tog(@)uC] L

Overall, we have [|n 30" (1 — 7H)" "1 (Ayw, + & — €2)|| < L1+ 59)*[|lwo||, which implies ||Proj, w|| >
5 (1 +m7)"|[woll and [Jwe|| < %() [[woll.

Proving Hypothesis 2. Next, we show the second hypothesis also holds, [|&; — &/|| < - nyCy L(1 4+ ny)t|wo]|. We
separately consider two cases when % < m and % >m. If % < m, the analysis is same as in Lemma 16. We have
1€ = &Il < g - nyCLL(L + 17)*|[wol|, as long as p > 3.

If % > m, we need to bound ||w; — w(y)|| more carefully. We can write w; — wg () as follows,

t—1

we—wyy = (=)™ =) wy—n Y (=) (Arw, +& —€)).
T=s(t)

The analysis for the first term and the variance term is again same as in Lemma 16. We have

t—1
| (=m0 =0 = D) | + |l 32 T =m0 & =€) < dmary - (10" ol
T=s(t)
assuming 1 < # roA R
For the Hessian changing term, we have
t—1 1 o(d)
n > (I=gH) " A, | < Z)Capd S 1+ 1)l
- ny
T=s(t) T=s(t)
log(d
< nm - 41og(n(v 1)Capb (1 + 1)l

< mapy(1+ny)*|lwoll,
.
assuming § < ——- (D) 5y

Overall, we have ||w; — wy || < 5mny(1 4 17)"||wo||. Thus, when % > m, we can bound ||§; — &;|| as follows,

/
1€ — &2l 71(L||7~Ut—ws(t)ll+p’Pt(||Wt||+st(t>||))

log()

!

35 <L 5mrry + 8log(

G < og(d) > ¢
L-5mny+ L-8lo Cam 1+ w,
\/B ny g(e)Cammy | (n7)"[Jwol|

<p - yCLL(L +) Jwo

)@p’a) (1 4+ 7)ol

where the second last inequality assumes § < mZLv and the last inequality holds as long as p > 5 4 8log (=2~ log(d))Cs.

Here, we also use the fact that P, < max(||zsw) — |, |2y — 2|, |z — 2], [lz; — Z[]) < 3log(1°7g7(7d))0 5.
Overall, we know there exists large enough constant ¢ such that the induction holds given

) o mn Ly
0 < min < 1 log(d) ’ / >
clog(d)log(=>=)Cap P

1
<
~ clog(d) log(105,(;1

NCICy - L

log()

Thus, we know ||Proj, w¢|| > 2(1 + ny)!|lwo|| for any ¢ < . Specifically, when ¢ = 2 we have

7y
. 4
[Proj,,wal 2 5 (1 +)l
4 log(d) §
> —(1+ ny
g(L+m) 7
S0
5 9
which implies max(||Proj,, x; — ||, [[Proj,, x; — Z||) > % This contradicts the assumption that neither sequence
stops within 10%# steps. Thus, we know min(T,77]) < lo (). Without loss of generality, suppose 77 < ’7’()’), we
have
~ log(d
V0 <t< Ty, |z — 3 < 310g(2D 0,5
m
. ~ 1
[Proj (e, ~ D) > 156
O

D.2 Proof of Lemma 20

In this section, we show that in Phase 1 the total movement is bounded by 5(5) within loi—f) steps. We recall
Lemma 20 as follows.

Lemma 22. Let T} be the length of Phase 1. Assume for any 0 < t < min(71, M) -1,)1&| < &L

Y Vb ||$t - xs(t)”v
where Cy comes from Lemma 1. Then, there exists large enough constant c such that as long as
1 2, log(d) Y
n < , p = clog(d)log , 05—,
cCy log(nd) log(n log;(d)) L) (m) pH?

we have for every 1 < t < min(T7, %),

e — e < Zo.

Proof of Lemma 20.

We prove for every 1 < ¢ < min(77y, 105’(;1)) lz¢ — w—1]| < %0 by induction. For the base case, we have

T1— To = anf(xo). Since the gradient at z is zero, we have
IV f (o)l = IV f(z0) = V(@)

< Lz —]
< Ls,

where the first inequality holds since f (f) is L-smooth. As long as > 1L, we have ||z — x| < 6.

Fix any ¢ < min(77, lorg]gd)), suppose for any t' <t — 1, ||z — zp_1|| < 50, we will prove ||z, — z,_1]| < £4.

In order to prove |[z; — x4_1]| < %6, we will separately bound its projections onto three orthogonal subspaces.
Specifically, we consider the following three subspaces:

e S: subspace spanned by the eigenvectors of H with eigenvalues within [—~, *ﬁ]-

e S subspace spanned by the eigenvectors of H with eigenvalues within (— 0].

v
log(d)’

e S i: subspace spanned by the eigenvectors of H with eigenvalues within (0, L].

30

Regarding the projections onto S+ and Si, we will use the following expansion of x; — x;_1,

Ty — Tg—1
. t—2
= — (I = M) "'V flwo) + PR Y (I —nH) 2 7E,
=0
t—2
=Y (I =nH)" T A (e 41 — 22) — 0 ®)
7=0

. . 1 2
and bound its four terms one by one. In the expansion, we denote A, := [(V?f(x; + 0(zr11 — 7)) — H)d6.
For the projection in subspace S, after % steps, we cannot bound it using the above expansion since the exponential

factor can be very large. Instead, we bound the projection in subspace .S by the stopping condition ||Proj¢(z;—1—72)|| <

Fy . . .
10 usIng an alternative €Xpansion,

vy — w1 =—n(V (1) + &)
= —nH(zi—1 —T) = A (21 — T) = 911,
where A} _; = fol (V2f(Z + 01 — T)) — H)do.
We will first bound the projections of z; —x;_1 on Si and S by considering the four terms in Eqn. 8. For the first

term, the projection in subspace S+ can increase but will not increase by more than a constant factor; the projection
inS i‘ might start large but will decrease as the number of iterations increases.

Bounding |[Projg.n(I — nH)'" "'V f(xo)|| - For this term we will show that its projection on S~ is small to begin

with and cannot be amplified by more than a constant. Recall that V f(zo) = H(zo — &) + A(zo — %), where
A= fol (V2f(Z+0(xo—T)) —H)dh. Due to the Hessian lipschitzness of f, we have ||A|| < pd. Then, we can bound
nl[Projg. (I — nH)! =1V f ()| as follows.

lIProjs (1 =)"~V f(wo)l| = |[Projs. (1 =)"~ (H(wo — 7) + Ao — D)
<nllProjs. (1 = 7H)!~ H(wo —)]
+ nlProjs. (I — H)" ™ Awo — 7|

n’y) IDEE{d) "Y 5
log(d) log(d)

176 + enpé’

ny log(d) 52

<n(1 ny
<n(1+ 1Og(d)) p

+n(l+
_°
log(d)
<2end,

<

where the last inequality holds as long as § < %. Since t < %, we have

2elog(d)
t

nl[Projg. (I —yH) 'V f(ao)|| < J

Bounding HPl'Ojsi n(I — gH)""'Vf(x0)| : The key observation here is that V f(20) can only be large along

an eigendirection if the corresponding eigenvalue A is large; however in this case the (I — nH) term will also be
significantly smaller than 1 in such a direction so the contribution from this direction decreases quickly. More precisely,

31

we have
nlProjgs (1 — H)' =V f(wo)|| =nl[Projs. (I — H)!~* (H(xo — &) + Ao -)]
<nl[Proj. (I — M) H(xo — 3)]
T llProjs (I — nH)' ™ Aleo —)|
<|IProjg. (I — nH) ™ nH||d + nps*
1
Sgé + 77[)(52,
where the last inequality holds since (1 — A\)*"!A < 1/t for 0 < A < 1. Assuming § < %, we can further show

log(d)
t

npd? < nyd < 4.

Thus, we have

2log(d)
t
Next we will bound the norm of the variance term. The main observation here is that based on induction hypothesis,

we can have a good upperbound on ||&,||. Now, for subspaces S i and S+, we will show that the additional matrices

in front of &, will not amplify its norm by too much.

J.

nl[Projs (I = M)~V f(z0)]| <

Bounding ||Projsi n*H Zi;%([—nH)t7277¢, || ¢ Foreach 7 <t — 2, we bound variance term ||£,|| as follows,
€21l = [lor =V f ()]l
>~ W”x'r - xS(T) ||

< LII |
7-1‘7'_1:57'
- m ()

1L
< — Z [
T/=s(T)+1

T/=s(T)+1

where the second inequality assumes b > m? and the last inequality is due to the induction hypothesis. If t < 2m, we
bound ||Projg. 1m*H 302 (I — H)! =27 7€, || as follows.
+ =

t—2 t—2
PijsﬂIzH E_O(I —H) e < E_O |[Proj s (I — nH) 2Tl
t—2 T
1 OlL 12
< - | == =
DDl el DR
7=0 T'=s(T)+1

t—2

1 2C4 log(2m)L
<)
- 777;0 t—1-—71 (m K

4 2
< C1 log=(2m) Lid
m
8C| log®(2m)

Lo
; nLpo,

32

where the third inequality holds since qus(f 4177 <log(7) +1 <log(2m) + 1 < 2log(2m).
If t > 2m, we bound ||Pr0]5m727-12 (I nH) 7277, || as follows.

t—2 t—2
Projg:n*H Y (I — M) "> 77E|| <0 Y |IProjs. (I — nH) T €|
=0 =0

m—1 1 t—2 1
<n (Z m”frn +7 Z m”’fr”) :
7=0 T=m

We bound these two terms in slightly different ways. For the first term, we have,

m—1 m—1
1 2C1 log(m)L
13 el < TZHT(LS
2 (201 L
Z < (Cl Og) Mé‘)
t
< 7401 I:g()nLu&

where the second inequality holds since t — m > t/2. For the second term, we bound it as follows.

L ¢
- \\ﬁTII_nZt e =D ST

T=m T/=s(T)+1
t—2 1 u
< C1L 1
_n;nt—l—7< ! S(T)+1)
t—2
1 1
SCmL'u(Sz:t—l—T'T—m-ﬁ-l

T=m

=C L(5§ 1 + 1 !
= Vs t—1—7 1T—m+1/t—m

8C log log()
RCTTE I

where the third inequality holds because 7 — s(7) < m. Thus, if ¢ > 2m, we have

t—2 801 log(log(d))
Projg. 1 H Z(I —H)' T < ——— T —nLyé.
7=0

Thus, combining two cases when ¢ < 2m and ¢ > 2m, we know

t—2
log(d 1
ProjsingH E (I —nH)"277¢, || < max (801 log?(2m), 8C4 log(mof;(v))> gnL,ué.
7=0

33

Bounding ||Projg. n*H S (I nH)!=277¢. || Let’s now consider the projection on the S+ subspace.

t—2
<i® Y [|Projs. H[l||Projss (I — M) > |[1¢

7=0

< 2 Y 1 10g(d)

ey 2C4 log
< log(d) <Z 5+ch 7m+1 6)

7=0

t—2
Projsfnz’H Z(I —nH)TETE,

7=0

<2 1og(mM)eClnLu5L
my

log(d)
log(d) log(d)
<2log(m——=)eC1inLu 6
<2 log(ny Je log(d)
2¢C log(m12e@
_ 1 g(p)ULH5-

Next we bound the Hessian changing term. This is easy because this term is actually of order 52 where § is the
radius of the initial perturbation. Therefore we can bound it as long as we make § small.

Bounding ||Pr0jsimsf77 23;20(] —nH) 2 TA (w41 —)|+ First, we bound ||A, || foreach 7 < ¢ — 2.

1A <pmax(fe, 1 — &, 2, -)
T+1

<p(Y_ Nlwr =@l + [l2o — 7))
T7/=1

T+1 1
<p(>2 Sud+9)
T/=1
1
SSlog(M)pué,
ny

34

where the third inequality uses the induction hypothesis. Then, for the Hessian changing term, we have

t—2

ProjSiﬂSfﬁ Z(I - nH)tiziTAT(IT-&-l - Ir)
T7=0

t—2
<0y IProjg s (1 = 1) > T ALl (@71 — 27)l|

7=0

t—2

Ny | les@ log(d) 1

< 1+ - 3log(—>2) pud ——— pud
_n;(og(@) " 3loa(=F)ond —

t—2

log(d) 1

<Y e 3log(——=-)pud——pd

7=0 my T+1

1
<6elog®(Og(d))npu252
Yy
<6elog? (28D)5
Y
log(d 1

<telog?(E D) og(a) L5

where the second last inequality holds as long as § < %5,
Next, we bound the norm of the error in the last gradient estimate. This follows immediately from induction
hypothesis.

Bounding ||n&;—1]|: For the last term n&;_1. If t < 2m, we have

2C log(2m)L

Im&e—1ll <n
m

16
1
<4C; log(Zm)EnLu&
If t > 2m, we have

C1L
I <n—
[n€e—1l| Syl

Overall, we have
1
[n&e—1]l < 4Ch log(Qm)anu&
Until now, we have already bounded the projection of z; — x;_; in subspace Si and S+. Finally, we bound the

projection of z; — z;_1 on the S subspace. If t — 1 < %, we bound it using the expansion in Eqn. 8 similar as above.
Ift—1> %, we use the stopping condition to bound the projection on S.

35

Bounding ||Projg(x; — x¢—1)|| Ift—1< %, the exponential factor (1 + 7y)*~! is still a constant. Similar as the
analysis for the projection on subspace S+, we have the following bound,

Projgn(l — 1)V f(ao) | < 22D

=2 2eC log(m 229 1og(d)
Projgn™H Y (I —nH)" > 7| < — nLud,
7=0
t—2

Projgn » (I —nH)' > " Ar(wr41 — a7)
=0

0,

< 6Ge logZ(M) log(d)%é.
Y

Ui

Ift—1> %, according to the stopping condition of Phase 1, we know [[Projg(z;—1 — Z)|| < £5. In order to
better exploit this property, we express x; — x+—1 in the following way,

Ty — Xp—1 = — W(Vf(xtfl) +&-1)
=—nH(zi—1 —T) — nAi_1(Te—1 — T) — n€i—1,

where A; 1 = fol(VQf(f + 0(x¢—1 — X)) — H)dO. For the first term, we have

[ProjgnH (zi—1 — 2)|| < nyl[Projg(ze—1 — T)|| < ny-5 <
For the hessian changing term, we have

[ProjgnAi—1(zi—1 —)| < [InAi-1(zt—1 —)|
< npllzi—1 — |7

< np<3log<k’§f)>u6>2

1
< 910g2(“ B)05
ny
log(d) 1
< 9log?(—==)log(d)-4
(5D tog(a)

where the second last inequality assumes 0 < ;7.
Combining the bound for the projections onto all three subspaces, we know there exists absolute constant ¢, such

that
log(d)

c 1 c
lze — x| < 3 log(d) logQ(T)gé + 501 log(nd) log(n

)=nLud,

log(d), 1
nmy ot

assuming § < min(%, p”?) Now, we know ||z — 21| < %ué, as long as

1
n<
cCy log(nd) log(nloigd)) L

u> clog(d)log? (-2

m
§< L
pl

)

36

D.3 Proofs of Phase 2

We have shown that at the end of Phase 1, xp, — T becomes aligned with the negative directions. Based on this
property, we show the projection of z; — x on S subspace grows exponentially and exceeds the threshold distance
within O(%) steps. We use the following expansion,

v =2 =T —nH)(xi—1 —T) = nAi—1(4—1 — T) — N1,

where Ay = fl (V2f(Z+0(xy_1 —T)) — H)d6. Intuitively, if we only have the first term, it’s clear that ||Proj g (z; —
>0+ log() |Projg(z:—1 — T)||. We show that the Hessian changing term and the variance term are negligible
in the sense that |[nA;_1 (x—1 — %) — n&i—1]] < 210g 77 [IProjg (z¢—1 — Z)||. The Hessian changing term can be easily

bounded because the threshold distance £ = O(1) We will bound the variance by showing that ||z; — 21| <

O(1/t)||m¢—1 — T||. We also need z;_; — % to be roughly aligned with the negative directions in order to bound
211 — 2| by O(1)|[Projg (x1—1 — Z)|-

There are several key differences between Phase 1 and Phase 2 . First, we use Lemma 4 to bound the variance (this
is effective because the point does not move far in Phase 1), but we use Lemma 1 to bound variance in Phase 2 (this
is effective because in Phase 2 the projection in the most negative eigenvalue is already large). Second, in Phase 1 we
need to analyze the difference between two points, and the direction ey is dominating. In Phase 2 we can analyze the
dynamics of a single point, and focus on the entire subspace with eigenvalues less than —v/ log d instead of a single
ey direction.

Lemma 23. Let the threshold distance £ = %ﬁ. Let T be the length of the super epoch, which means T :=

inf{t| ||zy — Z|| > ZL}. Assume forany 0 <t <T — 1, ||&] < %th —x
Assume Phase 1 is successful in the sense that

1 log(d C
Lop <l en e —ma < S,
ny ny 3

~ o ~ 0
Proj — > — <t<T; — <C—
|Projs(er, =)l 2 75, VOt fu -7 <O,

where Co comes from Lemma 20 and C' comes from Lemma 21. There exists large enough absolute constant c such
that as long as

1
L+ cCCy (log? (n) + log(n™ 22502))

nvy
log(d) log(%)

n<

Cs>c (Cz + C'log() log(d) 10%(%)) ,

log(d) log(2 23
b>n? <C’ log(d)log(pé) (Cg + ClOg(W) log(d) log(l;yé)>>)

we have 10
41og(d) log(—g) log(d) + 4log(d) log(p—g)
my my '

T<T +

o og (1% ~
Proof of Lemma 23. Let T, = 1} + M If there exists ¢ < Tinax — 1, ||z¢ — T|| > &, we are done.

Otherwise, we show ||z; — || increases exponentially and will become larger than .Z after Ty, steps.
Formally, we show the following four hypotheses hold for any 77 < t < T, by induction,

1.
ny)t—Tl

2log(d)

[Projg(z: —)| = (1 + [Projg(zz, —)|;

37

IProjss (e =)| _ (g m____ e
|Projg(z¢ —)| 4log(d) log(<,5")

where S+ denotes the orthogonal subspace of S;

3. Forany 0 <7 <t — 1, we have

e = 3| > [Projg(ae =)| > |l — 7
4. Forany 1 < 7 <t, we have
SO
lar = 2eall < & max(ller— -), 15).

where 1 = O(1).

Hypothesis 1 is our goal, which is showing the distance to the initial point increases exponentially in Phase 2. We
use hypothesis 4 to bound the variance term. We also need Hypothesis 2 and 3 for some technical reason, which will
only be clear in the later proof. Basically, hypothesis 2 guarantees that x; — Z roughly aligns with the .S subspace.
Hypothesis 3 guarantees that the distance to the initial point cannot shrink by too much.

Let’s first check the initial case first. If ¢ = 77, the first hypothesis clearly holds. For the second hypothesis, we
have

[Projg. (z, —)| lzry —2
[Projg(z, = Z)I| ~ [[Projg(ar, —T)| —
The third hypothesis holds because ||z, — Z|| > ||Projg(zr, — Z)|| > §/10 and ||z, — Z|| < C§/10 for any t < T3.
Since ||xy — x| < %5 for any 1 < t < T7, the fourth hypothesis holds as long as p > 10C5.
Now, fix T} < t < Tihax, assume all four hypotheses hold for every 71 < ¢ <t — 1, we prove they still hold for ¢.

Proving Hypothesis 4: In order to prove Hypothesis 4, we only need to show ||z; — ;1| < & max(||z;—1 —
7||,8/10). Let ST be the subspace spanned by all the eigenvectors of H with positive eigenvalues. Let S~ be the
subspace spanned by all the eigenvectors of H with non-positive eigenvalues. We project x; — x;_; into these two
subspaces and bound them separately.

Bounding ||Proj¢— (z; — z;:—1)||: Consider the following expansion of z; — x¢_1 :

v — w1 == (Vi (z1) + &)
=—nH(z—1 — T) = nA1(Te—1 — T) — &1,
where Ay = fol(VQf(i + 6(z4—1 — T)) — H)d6. We bound Projg_ (z; — z4—1) by separately considering these

three terms.

The first term can be bounded because within subspace S, the largest singular value of # is just 7. Precisely, we
have

[Projg—nH(zi—1 — Z)|| <myllei—1 — 7|

(108(d) + 410g(d) log(1%))
< t

e =2,

(log(d) +4los(d) log(\35))

where the second inequality holds because ¢t < Tiax < -

38

Since f is Hessian lipschitz and the total distance is upper bounded by C%p, the second term can also be well
bounded. We have, ’
[Projg-nA—1(xi-1 — T)|| <A1 (w1 — T
<npllze— — 2|21 — 7]
<?7p=2”||$t 1|
<N th 1=z
5 log(d> +4log(d) log(132)
- Cst

@11 — |,
where the second inequality holds due to the Hessian-lipshcitzness of f.
We can bound the variance term using Hypothesis 3 and 4. Precisely, we have

t—1

mC'1

&1l <n—r—— Z lzr — zr—1]|
\% m T=s(t—1)+1
m CL A 1 5
Ci1L ~
oSS (e - 3, 15)
\/5 m T=s(t—1)+1 T 10
t—1
m ClL 1% ~
AL S e 1) a — 7
\/E m T=s(t—1)+1 T
where the last inequality holds requires ||z:—1 — Z|| > eCl+1 max(||lz,—1 — Z||,) for any 7 < t — 1. According
to induction hypothesis 3, we have ||x;—1 — Z|| > eC+1 ||[xr—1 — Z|| for any 7 < t — 1 By induction hypothesis 1,
we have ||y — Z|| > ||Projg(zi—1 — Z)|| > (1 4+ B)" 1" ||Projg(zr, — T)|| > {5. Using the same analysis in

Lemma 20, we further have

m 1 -
In€e-1l < T-A(eC + 1)Cy log(2m) s Lz — 7.

Vb
Bounding ||Projg (z; — z¢—1)|| : For the projection onto ST, we use the following expansion:
t—2
v — w1 =— (I = M)V o) + P H Y (T —nH) 7,

7=0

t—2

- Z(I — M) T A (g1 — @) = M,
7=0

Similar as the analysis in Lemma 20, we can bound the first term as follows,

2log(d)§ < 20log(d)

IProjg+ (I —) ™'V f ()| < 0 < = lw =3,

where the second inequality holds because ||z;—1 — Z|| > §/10.
Using a similar analysis as in Lemma 20, we have the following bound for the second term,

1 ~
(eC + 1) max(8C log?(2m), 8Cy log(meax))EnLuth_l -z

39

For the hessian changing term, we have

t—2

Projg:n (I —nH)' > A (r41 — a)
t—2 -

<y |Acllllersr — |
s

Sn; O+)Ly — 7|

<210g(Timax)77 (eC + 1>Cﬂ3||xt_1 -7

n log(d) + 4log(d) log(lpo—g)
Cs t
log(d) + 41og(d) log(%)

<2(eC + 1) log(Tmax) ; lxt—1 — T,

<2(eC + 1) log(Tmax)

where the last inequality holds as long as C5 > p.
Overall, we can upper bound ||z; — x;—1 || as follows,

2t — @1l
1 10y .\ 1 ~
< (20 log(d) + (5 + 1+ 2(eC + 1) log(Tmax)) (log(d) + 41og(d) log(ﬁ)» Zllzes =7
3

1 ~
+ (4(eC + 1)Cy log(2m) + (eC + 1) max(8C} log®(2m), 8C) log(mTmax))) EnL/Lth,l |

< (20108(d) + (2 +2(6C + 1) 108(Thnn) (l08(a) + 41og(a) g(~)) 11 = 7

1 ~
+ (4(eC +1)C1 log(2n) + (eC + 1) max(8C, log?(2n), 8C, log(nTimax))) EnLuth,l -z,

assuming C3 > 1. As long as

1
"= 2L - (4(eC 4 1)C log(2n) + (eC + 1) max(8C4 log*(2n), 8C1 log(nTmax)))
and
w>2 (20 log(d) + (24 2(eC + 1) log(Tiax)) (log(d) + 4log(d) log(gy))>)

we have ||z — x| < &|zi—1 — 7|

Proving Hypothesis 2: In order to prove condition 2 holds for time ¢, we only need to show

Projo. (wy — @

||P J'SL(: ~)H < 1‘*‘%)3,1,

[|Projg(x; —)| 4log(d) IOg(ﬁ)
where Pi = C(1 4 ity) 1T

We can express z; — T as follows,
2 —T = —nH) (-1 —T) = A1 (-1 — T) — n&—1.
Assuming [[nA; 1 (ze—1 —)| + [n€-1[| < Cryllzs—1 — 7], C = O(1), we have

[Projg. (¢ — Z)|| < (1 +)[Projs. (ze-1 = &) + Crylla—1 - 7|

o
log(d)

40

and

[[Projg (x: —)| = (1 +)I[Projs (-1 =)| = Cryllai—1 — F-

m
log(d)
Then, we have

[Projs . (w = D) _Pirr(L+ i) + (Pioy +~1)5m
[[Projg(z: —)| 1+ ol — (Pt + 1)Cy
p (1 + jomty T (1 + B 1)Cm>
1+ o5y — (P + 1)Cpy
p (1 1+ 52)Cny + (Pa +i)5m>
1+ iy — (P—1 + 1)Cy

<P,y <1 +(1+ +Pq+ 1)5777)

P
<P (1 + 3+ eC)énw) ,

where the second last inequality holds as long as (P,_; 4+ 1)C < (eC +1)C < 1/log(d) and the last inequality holds

1
because 1 < P;_; < eC. Now, as long as C' < BT eC)iToa(@ 105(1%) we have
Proj -z
| s (24 Nl‘)H <1+ Uil)P
[[Projg(z¢ — 2)|| 4log(d) log(~5)
<c(1 ”7)T

+ -
a 4log(d) log(*33)

For the hessian changing term, we have [[nA;—1(2:—1 —7)|| < & L ny||z¢—1 — Z||. For the variance term, according
to the previous analysis and the choosing of 77, we have

m 1 - m -
Sl < —=p=|lzier — Z|| < —= -
Intenrll < Sz llres = 3 < e

where the second inequality holds because t > T; > % As long as C3 > % and b > (%)2/ 3n2/3, we have
mA:—1(zi—1 —)| + In&e—1ll < Cnylli—1 — 2.

Proving Hypothesis 1. In order to prove hypothesis 1, we show [|Projg(z: —Z)|| = (1+ 5305)[IProjs (21 — 2)|-
We know,

[[Projg(z: — 2)[| =(1 + ﬁ)”PI‘O_]S(xt 1 =)| = Cryllwe—r — 7
>(1+ m)HProjs(fﬂt 1 —)| = (eC + 1)Crpy||Projg (1 — T)|
>(1+ =) ||Projg(ae_1 — 7)),

2log(d)

where the last inequality holds as long as C< W

Proving Hypothesis 3. For 7 <t — 2, we have
[— Z|| Z[[Projg(z¢ — 7|
2||Projg (-1 — T)|

> e -7
T+ — X
“eC+1"7 ’

41

where the second inequality holds because ||Projg(z; — Z)|| > (1 + #g(d)) ||Projg(z:—1 — Z)|| and the last inequality
holds due to the induction hypothesis 3.
Since |[Projg (21 — T)|| > sz lei—1 — Z|, we also have

[— || =|[Projg (z: —)|
>||Projg (z1—1 — T)]|

> : || 1 — 1
T x||.
eC +1 -1

Thus, there exists large enough absolute constant ¢ such that the induction holds as long as

~
pc?))

1
S ERIEN
L cCC; (log*(n) + log(n“2 2=)

nvy
log(d) log(25)

C3>c (Cg + C'log() log(d) log(

log(d) log(2 2
b> cn?/? (C’ log(d) log(%) (Cz + ClOg(g()n,Yg(pé)) log(d) 10g(;;)>> .

Finally, we have

€T, = Z[| Z[|Projg (27, — 7|

ny T. T . ~
>(1 max—T1||p _
>(1 4 o) e Pros o, —)
41og(d) log(o)
>(14 = O
2log(d) 10

Y Y
>1>s 1T _ @
“p Csp

D.4 Proof of Lemma 24

Finally, we combine the analysis for Phase 1 and Phase 2 to show that starting from a randomly perturbed point, with
at least constant probability the function value decreases significantly after a super epoch.

Lemma 24. Let T be the initial point with gradient ||V f (Z)|| < ¥ and Apin(H) = —v < 0. Define stabilized function
fsuchthat f(x) := f(z) —(Vf(T),x —). Let {x+} be the iterates of SVRG running on f starting from xo, which is
the perturbed point of T. Let T be the length of the current super epoch. There exists) = O(1/L),b = O(n*/3),m =

n/b,6 = O(min(, 771)),¥ = O(l:),.,i” = 5(%),Tmax = O(%) such that with probability at least 1/8,

o’

3
flar) - f(@) < ~Cs- L

p
and with high probability,
far) 1@ < & 1

where Cs = ©(1) and T < Trax.

42

Proof of Lemma 24. Combining Lemma 21 and the coupling probabilistic argument in Lemma 18, we know from a
randomly perturbed point xg, sequence {z;} succeeds in Phase 1 with probability at least 1/6. By Lemma 1, we know

with high probability, there exists C; = O(1), such that ||&]] < C:}BL lzs — x40l forany 0 <t < T — 1, where T'

is the super epoch length. Then, combing with Lemma 23 and Lemma 6, with probability at least 1/8 we know there

exists) = ﬁ, b=0(n?3),6 = 6(min(%, TINs T < Tinax = % such that,

= - o 2e LRy F
lzr — || > £ = Cap’ lzr — 20| SC4L(f($o) f(zr))

where C3, Cy, Cg, C7 = O(1).
Since ||z — zo[|* < g (f(x0) — f(2r)), we have

A CyuL
f(xo) — f(aT) Z%”xT — xol|?
>C4L

> (e = || = |lzo - 7))*

__G 7
_40703%06 p2’

where the last inequality holds as long as < %3/3'

Since f is L-smooth and V f (%) = 0, we have

flwo) = (@) < g”f—onIQ < 552,

2
Let the threshold gradient ¢ := ng. For the function value difference between two sequence, we have

fr) = flzr) <[VI@)] - [ler — 2|

Since T is the length of the current super epoch, we know ||xr_1 — Z|| < -£. According to the analysis in Lemma 23,
we also know ||z — Z|| < 3||lzr—1 — Z|| < 3.Z. Thus, we have

fer) = f(ar) <9 -3
2
<3
Csp Csp
37
- CsC3 p?’

Thus, with probability at least 1/8, we know

=f(zr) — f(z0) + f(z0) — f(@) + f(ar) — flar)

If Phase 1 is not successful, the function value may not decrease. On the other hand, we know f (zp) — f (x9) <0
with high probability. Thus, with high probability, we know

~ L 3 43
— < =62 —.
fan) = 1@ < 57+ 5o
Assuming 6 < WZ—; and Cs > %7 we know with probability at least 1/8,
3

20 C4 ’73

flar) = f(Z) S_ﬁ.ME;

and with high probability,
~ 1 Cy P
_ < — .- 7
Har) = 1@ < 51 - jeccecy 2
20 C4]

We finish the proof by choosing C5 := 57 1.0,
3

E Proof of Theorem 2

In the previous analysis, we already showed that Algorithm 5 can decrease the function value either when the current
point has a large gradient or has a large negative curvature. In this section, we combine these two cases to show

Stabilized SVRG will at least once get to an e-second-order stationary point within O("Z/zZLAf + n‘e/lﬁ?f) time. We
omit the proof for Theorem 1 since it’s almost the same as the proof for Theorem 2 except for using different guarantees
for negative curvature exploitation super-epoch.

Recall Theorem 2 as follows.

Theorem 2. Assume the function f(x) is p-Hessian Lipschitz, and each individual function f;(x) is L-smooth and
p'-Hessian Lipschitz. Let Af := f(xo) — f*, where xq is the initial point and f* is the optimal value of f.
There exists mini-batch size b = O(n2/3), epoch length m = n/b, step size n = O(1/L), perturbation radius
0 = 6(min(%, mf)), super epoch length Ty, = 5(\}?), threshold gradient 4 = O(e), threshold distance
£ = 6(%), such that Stabilized SVRG (Algorithm 5) will at least once get to an e-second-order stationary point
with high probability using

~ n?BLAf npAf
L R

stochastic gradients.

Proof of Theorem 2. Recall that we call the steps between the beginning of perturbation and the end of perturbation a
super epoch. Outside of the super epoch, we use random stopping, which is equivalent to finish the epoch first and then
uniformly sample a point from this epoch. In light of Lemma 3, we divide epochs ? into two types: if at least half of
points from {:L"T}';J;TH have gradient norm at least &, we call it a useful epoch; otherwise, we call it a wasted epoch.
For simplicity of analysis, we further define extended epoch, which constitutes of a useful epoch or a super epoch and
all its preceding wasted epochs. With this definition, we can view the iterates of Algorithm 5 as a concatenation of
extended epochs.

First, we show that within each extended epoch, the number of wasted epochs before a useful epoch or a super
epoch is well bounded with high probability. Suppose {:rT}iJ;TH is a wasted epoch, we know at least half of points
from {z, }.7", | have gradient norm at most & Thus, uniformly sampled from {z, }."/", |, point 2, has gradient norm
IV f(xe)|| < ¢ with probability at least half. Note for different wasted epochs, returned points are independently
sampled. Thus, with high probability, the number of wasted epochs in an extended epoch is 5(1) As long as the
number of “extended” epochs is polynomially many through the algorithm, by union bound the number of “wasted”
epochs for every “extended” epoch is O(1) with high probability.

We divide the extended epochs into the following three types.

2Here, we only mean the epochs outside of super epochs.

44

e Type-1: the extended epoch ends with a useful epoch.

e Type-2: the extended epoch ends with a super epoch whose starting point has Hessian with minimum eigenvalue
less that —, /pe.

e Type-3: the extended epoch ends with a super epoch whose starting point is an e-second-order stationary point.

For the type-1 extended epoch, according to Lemma 3, we know with probability at least 1/5, the function value
decrease by at least ﬁ(nl/ 3€2/L); and with high probability, the function value does not increase. By standard
concentration bound, we know after logarithmic number of type-1 extended epochs, with high probability, at least 1/6
fraction of them decrease the function value by O(n'/3¢2/L).

For the type-2 extended epoch, according to Lemma 24, we know with probability at least 1/8, the function
value decreases by at least Csel-5/ /p; and with high probability, the function value cannot increase by more than
%61'5 /+/P» where C5 = C:)(l) Again, by standard concentration bound, we know after logarithmic number of type-
2 extended epochs, with high probability, at least 1/10 fraction of them decreases the function value by at least
Cs€'°/,/p. Let the total number of type-2 extended epochs be Na, we know with high probability the overall function
value decrease within these type-2 extended epochs is at least Ng—oc"’elb /\/P-

Thus, after O (%) number of type-1 extended epochs or 6(\/jﬁf) number of type-2 extended epochs, with
high probability the function value decrease will be more than Af. We also know that the time consumed within a
type-1 extended epoch is O(n) with high probability; and that for a type-2 extended epoch is O(n + n*3L/,/pe).

Therefore, after
~ (LAf VA n2/3L
o (n1/3e2 TS (n+ Ve)

stochastic gradients, we will at least once get to an e-second-order stationary point with high probability. (|

F Hessian Lipschitz Parameters for Matrix Sensing

In this section we consider a simple example for non-convex optimization and show that in natural conditions the
Hessian Lipschitz parameter for the average function f can be much smaller than the Hessian Lipschitz parameter for
the individual functions.

The problem we consider is the symmetric matrix sensing problem. In this problem, there is an unknown low rank
matrix M* € R4 = U*(U*)T where U* € R4*". In order to find M*, one can make observations b; = (A;, M*),
where A;’s are random matrices with i.i.d. standard Gaussian entries. A typical non-convex formulation of this

problem is as follows:

D ((Ai, M) = b)?, ©)
i=1
where M := UU ", U € R?*". It was shown in (Bhojanapalli et al., 2016; Ge et al., 2017a) that all local minima of
this objective satisfies UU T = M* when n = Cd for a large enough constant C'. We can easily view this objective as
a finite sum objective by defining f;(U) = 1 ((A;, M) — b;)*.

Without loss of generality, we will assume |[U*|| = 1 (otherwise everything just scales with |[U*|[). A slight
complication for the objective (9) is that the function is not Hessian Lipschitz in the entire R?<". However, it is
easy to check that if the initial Uy satisfies ||[Up|| < 4 then all the iterates U; for gradient descent (and SVRG)

will satisfy ||Uy]] < 4 (with high probability for SVRG). So we will constrain our interest in the set of matrices
B={U e R |U| <4}.

1
. 1
Ugﬁg&f() 57

Theorem -3. Assume sensing matrices A;’s are random matrices with i.i.d. standard Gaussian entries.. When n >
Cdr for some large enough universal constant C, for any U,V in B = {U € R¥" . ||U|| < 4}, for objective f in
Equation (9), with high probability

IV2f(U) = V2F (V) < OMU = V] F.

45

On the other hand, for the individual function f;(U) = +({A;, M) — b;)* with high probability, there exists U,V in B
such that
IV2£:(U) = V2£:(V)]| = Qd)|IU = V|

Before we prove the theorem, let us first see what this implies. In a natural case when 7 is a constant, n = Crd
for large enough C, for the matrix sensing we have p = O(1), but p’ = Q(d) = Q(n). Therefore, the guarantee for
Perturbed SVRG (Theorem 1) is going to be much worse compared to the guarantee of Stabilized SVRG (Theorem 2).

Let us first adapt the notation from Ge et al. (2017a) and write out the Hessian of the objective.

Definition 2. For matrices B,B', let B: H : B' = L 3™ (A; B)(A;, B').
Lemma 25 (Ge et al. (2017a)). The Hessian of the objective f(U) in direction Z € R¥*" can be computed as
V2fUNZ,2)=UZ" +2U0"):H:(UZ" +ZU")+2UU" —M*):H:ZZ".
Similarly, the Hessian of an individual function f;(U) satisfies
V2f(UNZ,Z)=(UZT, A+ AT+ 1/2(UU T = M* Ai + Al Y (ZZ7, A + A]).
Another key property we will need is the Restrict Isometry Property (RIP) (Recht et al., 2010).

Definition 3 (Matrix RIP). The set of sensing matrix is (r,0)-RIP if for any matrix B of rank at most r we always

have
(1-0)|IBlF <B:H:B<(140)|B|%-

Candes and Plan (2011) showed that random Gaussian sensing matrices satisfy RIP with high probability as long
as n is sufficiently large

Theorem -2 (Candes and Plan (2011)). Suppose n > Cdr /&%, then random Gaussian sensing matrices satisfy the
(r,6)-RIP with high probability.

Now we are ready to prove Theorem -3.
Proof of Theorem -3. We will first prove the upperbound for the average function.
For the upperbound, assume that the sensing matrices are (2r, §)-RIP for § = 1/10. By Theorem -2 we know this
happens with high probability when n > 200Crd where C' was the constant in Theorem -2.
For any ||U]|,||V]| < 4 and Z € R%*", we use Lemma 25 to compute the Hessian and take the difference in the
direction of Z
V2 1(U)(2.2) -V [(V)(2.2)|
=WUZ"+20"):H - UZ"+2U0"Y-(VZT +2VT):H - (VZT +2VT)
+2UUT —M*):H:ZZT —20VVT —M*):H:VVT
=UZ"+2U"):H: (U-V)ZT+2(U-V)T)
+((U-MZT+Z2U-V)"):H:(VZ" +2VT)
+2UU" —VVT):H: 27T
S@+)NUZT + ZUT||p|(U=V)ZT +Z(U = V) |F
+A+)U=WVZT+ZU=V) |plVZT + 2V ||k
+20+9)|UUT = VVTp|ZZ | F
<201+ 0)|Z|ENU = Ve +16(1+ 86U - Ve[Z|%
=48(1+9)|U ~ Vx| Z|%,

46

where the first inequality uses the definition of RIP and Cauchy-Schwartz inequality, and the second inequality uses
U, V]| < 4 and the fact that || AB||r < ||Al|||B||F. Thus, for any U,V € B, and any direction Z, we have

V2f(U)(Z.2) = V*f(V)(Z, 2)|
12117

<48(1+ O)||U — V| .

This implies that p < 48(1 + §) = 234,
Next we prove the lowerbound for individual functions. We will consider V' = U + €A and let € go to 0. This
allows us to ignore some higher order terms in €. Following Lemma 25, let A = A; + AiT, we have

V2£(VNZ,2) = V2 f;(U)NZ,Z) =2(AZT AU Z T, A) + (AU ", ANZZ T, A) + O(€2).
It is easy to check that the matrix A/v/2 has the same distribution as the Gaussian Orthogonal Ensemble. By
standard results in random matrix theory (Bai and Yin, 1988; Tao, 2012) we know with high probability A, (A) >

Vd. Let A = Anas (A) and v be a corresponding eigenvector. We will take U = A = Z = ve;r where e is the first
basis vector. In this case, we have

Vi(VNZ,2) = V2 fi(UNZ,Z) = 2e(AZ T, ANUZT A) + (AU T, ANZZ T, A) + O(€?)
=2e(vv’, A)2 +e(ov ", A)? + O(€?)
=3eA? + O(e?)
=3N|U = V|r+o(|U=V]|p).

Note that Z satisfies || Z|| r = 1, so the calculation above implies p’ > 3\? > 3d.

G Tools

Matrix concentration bounds tell us that with enough number of independent samples, the empirical mean of a random
matrix can converge to the mean of this matrix.

Lemma 26 (Matrix Bernstein; Theorem 1.6 in Tropp (2012)). Consider a finite sequence {Z} of independent, ran-
dom matrices with dimension dy X ds. Assume that each random matrix satisfies

E[Zk] = 0 and || Z|| < R almost surely.

> EZ: 2|}
;

Define

)

o2 = max{” ZE[Z;CZZ]
k
Then, forallt > 0,

Pr{||§k:zk|| > 1} < (dr +dy)exp ((ﬂ‘fg/g)

As a corollary, we have:

Lemma 27 (Bernstein Inequality: Vector Case). Consider a finite sequence {vy,} of independent, random vectors with
dimension d. Assume that each random vector satisfies

ok — Efv]|| £ R almost surely.
Define
ol = ZE[HW — E[vk.]”z].
k
Then, forallt > 0,

— 2/2
Pr{|| ;(’U}g — Efvg])|| > t} <(d+1)-exp (#Rt/iﬂ)

47

	1 Introduction
	2 Preliminaries
	2.1 Notations
	2.2 Finite-Sum Objective and Stationary Points
	2.3 SVRG Algorithm

	3 Our Algorithms: Perturbed SVRG and Stabilized SVRG
	3.1 Perturbed SVRG
	3.2 Stabilized SVRG

	4 Overview of Proof Techniques
	4.1 Exploiting Large Gradients
	4.2 Exploiting Negative Curvature - Perturbed SVRG
	4.3 Exploiting Negative Curvature - Stabilized SVRG
	4.3.1 Analysis of Phase 1
	4.3.2 Analysis of Phase 2

	4.4 Proof of Main Theorems

	5 Conclusion
	A Detailed Descriptions of Our Algorithm
	B Proofs of Exploiting Large Gradients
	C Proofs of Exploiting Negative Curvature - Perturbed SVRG
	D Proofs of Exploiting Negative Curvature - Stabilized SVRG
	D.1 Proofs of Phase 1
	D.2 Proof of Lemma 20
	D.3 Proofs of Phase 2
	D.4 Proof of Lemma 24

	E Proof of Theorem 2
	F Hessian Lipschitz Parameters for Matrix Sensing
	G Tools

