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1 Introduction

Tensor decompositions have been widely applied in data analysis and machine
learning. In this paper we focus on Tucker decomposition [16,29]. Tucker de-
composition has been applied to TensorFaces [30], data compression [31], hand-
written digits [25] and more recently to word embeddings [10].

Unlike CP/PARAFAC [5,15] decomposition, Tucker decomposition can be
computed efficiently if the original tensor has low rank. For example, this can
be done by high-order SVD [7]. Many other algorithms have also been proposed
for tensor Tucker decomposition, see for example [8,9,23].

In modern applications, the dimension of the tensor and the amount of
data available are often quite large. In practice, simple local search algorithms
such as stochastic gradient descent are often used. Even for matrix problems
where exact solutions can be computed, local search algorithms are often ap-
plied directly to a nonconvex objective [18,24]. Recently, a line of work [11,3,
27,13,28,2] showed that although these problems have nonconvex objectives,
they can still be solved by local search algorithms, because they have a simple
optimization landscape. In particular, for matrix problems such as matrix sens-
ing [3,22] and matrix completion [13,12], it was shown that all local minima
are globally optimal. Similar results were also known for special cases of tensor
CP decomposition [11].

In this paper, we prove similar results for Tucker decomposition. Given a
tensor T~ € R¥*4X4 with multilinear rank (r,r,7), the Tucker decomposition
of the tensor T" has the form

T = S*(A", B*,C),

where 8* € R"™*"*" is a core tensor, A*, B*,C* € R"*¢ are three components
(factor matrices). The notation 8*(A*, B*, C*) is a multilinear form defined
in Section 2.1.

To find a Tucker decomposition by local search, the most straight-forward
idea is to directly optimize the following nonconvex objective:

Clearly, (8%, A*, B*,C*) is a global minimizer. However, since the opti-
mization problem is nonconvex, it is unclear whether any local search algo-
rithm can efficiently find a globally optimal solution. Our first result (Theo-
rem 1) shows that with an appropriate regularizer (designed in Section 2.2),
all local minima of Tucker decomposition are globally optimal.

The main difficulty of analyzing the optimization landscape of Tucker de-
composition comes from the existence of high order saddle points. For example,
when 8§, A, B, C are all equal to 0, any local movement of norm e will only
change the objective by at most O(e*). Characterizing the possible locations
of such high order saddle points, and showing that they cannot become local
minima is one of the major technical contributions of this paper.

In general, even if all local minima are globally optimal, a local search al-
gorithm may still fail to find a global optimal solution due to high order saddle
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points. In the worst case it is known that 3rd order saddle points can be han-
dled efficiently, while 4th order saddle point are hard to escape from [1]. The
objective L has 4th order saddle points. However, our next result (Theorem 2)
shows that there is a specifically designed local search algorithm that can find
an approximate global optimal solution in polynomial time.

2 Preliminaries
2.1 Tensor Notation and Basic Facts

We use bold lower-case letters like u to denote vectors, bold upper-case letters
like A to denote matrices, and bold caligraphic upper-case letters like T to
denote tensors. We reserve the symbol I to denote the identity matrix; its
particular dimension will be clear from context. Given a third order tensor
S € R™*™2%73 and matrices A € R ¥4 B € R™2*% C € R™*%  we define
S(A,B,C) € Rhixdz2xds Ly

[S(Av Ba C)]zyk - Z STyZA’I‘ZBy]Czk
Yz

In the special case where one or more of r1, 12,73 equals 1, we view S(A, B, C)
appropriately as a matrix, column vector, or scalar. We equip R4 *92%ds with

the Frobenius inner product (-,-) and associated norm || - |z given by
dy,dz,ds
(X)) = > XiipDigk 1X]lr = V(X &)
iy k=1
We also define the operator 2-norm || - |2 (i.e. the spectral norm) by

X2 = sup {X (u, v, w) : [lulls = [[v]ls = [w]ls = 1}
These two norms are related as follows [32]:
max(dl, dQ, dg)
didads

In the special case of di = dy = d3 = d, we have || X||r < d||X||2. Another
important fact is that for o = || X||2, there exist unit vectors u € R%, v € R,
and w € R% such that the following hold [20]:

1/2
) 1] r < X2 < | X[

X(u,v,w)=0 X(I,v,w)=ocu X(u,I,w)=0cv X(u,v,I)=ocw

Let X(; € R4 x1Ti#id5 denote the factor-i flattening of X (for i = 1,2,3).
We say X' has multilinear rank (r1,79,73) if the matrix &'(;) has rank r;; in
this case, there exists a tensor 8 € R™*™2%"s and matrices A € R"*% B ¢
R™2%492 and C € R"3*% such that X = S(A, B, C). The tuple (S, A, B,C)
gives a Tucker decomposition of X. Note that X(A, B,C)) = ATX(l)(B ®
C) where ® denotes the Kronecker product of matrices.
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The space of parameters for our objective function is R"X72X7s x R71 X1 x
Rr2*d2 » R73Xds We write a point in this space as (S, A, B, C), and equip
it with inner product ((S,A,B,C),(S' A", B',C")) = (8,8') + (A, A’) +
(B,B’) + (C,C") and associated norm

I(S,A,B,C)|r = \/HSII% +lAlE + 1BlE + ICIE-

2.2 Optimization Problem

For simplicity, in this paper we assume 71 = ro =13 =71, and dy = dy = d3 =
d. It is easy to generalize the result to the case with different r;’s and d;’s. Let
T € Réxd%d he a fixed third order tensor with multilinear rank (r,7,7) for
r < d. A simple objective for tensor decomposition can be defined as:

Suppose T = 8*(A*, B*,C*), then Equation (1) has a global minimum
at (8", A*, B*,C*) with the minimum possible L value 0. In fact, due to
symmetry, we know there are many more global minimizers of L: for any
invertible matrices Qa,Qp,Qc € R"™*" let S = 8*(Qa,QB,Qc), and A =
QXA*, B = Q;B* and C = Qg,lc*, then we also have T = S(A, B, C).
Therefore, the loss L has infinitely many global optimal solutions.

The existence of many equivalent global optimal solutions causes problems
for local search algorithms, especially simpler ones like gradient descent. The
reason is that if we scale A, B, C with a large constant ¢, and scale & with
1/c3, the tensor S(A, B, C) does not change. However, after this scaling the
partial gradient of S is multiplied by ¢3, while the partial gradients of A, B, C
are multiplied by 1/c. When c is large one has to choose a very small step size
for gradient descent, and this results in very slow convergence.

We address the problem of scaling by introducing a regularizer [(S, A, B, C)
given by

|IAAT = S)8ll7 + IBBT = 8587 + ICCT =S58l (2)

Intuitively, the three terms in the regularizer ensure that A and S (simi-
larly, B, C and &) have similar norms. Similar regularizers were used for an-
alyzing the optimization landscape of asymmetric matrix problems[22], where
the same scaling problem exists. However, to the best of our knowledge we
have not seen this regularizer used for Tucker decomposition.

For technical reasons that will become clear in Section 3 (especially in
Lemma 4), we actually use R(S, A, B,C) = (S, A, B,C)? as the regularizer
with weight A\ > 0, so the final optimization problem we consider is:

min L(S,A,B,C)+ \AR(S, A, B,C). (3)
S,A.B.C
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Note that even for Equation (3), there are still infinitely many global mini-
mizers. In particular, one can rotate A and 8 (similarly, B, C and 8) simulta-
neously to get equivalent solutions. A priori it is unclear whether there always
exists a global minimizer that achieves 0 loss for Equation (3). Our proof in
Section 3 implicitly shows that such a solution must exist.

3 Characterization of Optimization Landscape

In this section, we analyze the optimization landscape for the objective (3) for
Tucker decomposition. In particular, we establish the following result.

Theorem 1. For any fixed A > 0, all local minima of the objective function
f =L+ AR as in Equation (3) have loss 0.

Note that the theorem would not hold for A = 0 (when there is no regu-
larizer). A counter-example is when T = a* ® b* ® ¢* for some unit vectors
a*,b*,c*,and S=0,A=a',B=>b",C = c' where a,b, c are unit vectors
that are orthogonal to a*, b*, ¢* respectively. A local change will have no effect
if the new S is still 0, and will make the objective function larger if the new
S is nonzero.

In order to prove this theorem, we demonstrate a direction of improvement
for all points (S, A, B, C) that don’t achieve the global optimum. A direction
of improvement is a tuple (AS, AA, AB, AC') such that

f(S8+eAS, A+ eAA B+ eAB,C+e¢AC) < f(S,A,B,C)

for all sufficiently small € > 0. Clearly, if a point (S, A, B, C) has a direction
of improvement, then it cannot be a local minimum.

Throughout the section, let Py (P, P3) be the projection onto the column
span of T 1y (T (2), T (3))- Let A1 = AP, and Ay = A(I — Py) (similarly for
B, C). The proof works in the following 4 steps:

Bounding the regularizer First we show that when V f = 0, the regularizer
R must be equal to 0 (Lemm 1 in Section 3.1). At a high level, this is because
the gradient of regularizer R is always orthogonal to the gradient of main term
L. Therefore if the gradient of the entire objective is 0, the gradient of R must
also be 0. We complete the proof by showing that VR = 0 implies R = 0.

Removing extraneous directions Next, we show that when Vf = 0, the
projection in the wrong subspaces A, By, Cs are all equal to 0. This is because
the direction of directly removing the projection in the wrong subspace As is
a direction of improvement (see Lemma 5).

Adding missing directions After the previous steps, we know that the rows
of A are in the column span of 7 (;). However, the row span of A might be
smaller. In this case, there exist directions a,b, ¢ such that T (a,b,c) > 0,
and Aa = 0. We will show that in this case we can always add the missing
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directions into A and &. This is the most technical part of our proof, and high
order stationary points may appear when Bb or C'c are also 0. See Sections 3.3.

Fixing S Finally, we know that the components A, B, C must span the cor-
rect subspaces. Our final step shows that in this case, if L > 0 then it is easy
to find a direction of improvement, see Section 3.4.

3.1 Direction of Improvement for Points with Nonzero Regularizer

We show any point with nonzero regularizer must also have a nonzero gradient,
therefore the (negative) gradient itself is a direction of improvement.

Lemma 1. For any S,A,B,C, if R(S,A,B,C) > 0 then |V f] > 0.

To prove this, we first show the gradient of the regularizer is always or-
thogonal to the gradient of the main term (i.e. the tensor loss L).

Lemma 2. For any S,A,B,C, (VL(S,A,B,C),VR(S,A,B,C)) =0.

Proof. We start by calculating the partial gradients for L and r. We have
VaL=281(B®C)(S(A,B,C)-T)) Val=4AAT -81,8),)A
VL =2803(A®C)(S8(A,B,C)~T)} Vel=4BB' -818})B
Vol =283(A® B)(S8(A,B,C)-T) Vel =4CCT - 83;8(3))C
VsL =2(S(A,B,C)-T)(A",B",C")
Vsl =48(81)8(1y— AAT I,1)+48(1,88(,) — BB',I)

+48(I1,1,838; —CCT)
We now compute the following:
(VAL,Val)=8(81)(B®C)(S(A,B,C) -~ T) (), (AAT - 81)8(,))A)
=8((S(A,B,C)—T)(AT,BT,C"),S(AAT - 8§)8,).1.1))

From here it is easy to see that (VsL,Vgl) = —(VaL,Val)— (VpL,Vpgl)—
(Ve L, Vel), therefore (VL, VI) = 0. Since VR = 2[VI, the result follows. O

We next show that if the regularizer is nonzero, then its gradient is nonzero.
Lemma 3. The function | satisfies
41(8,A,B,C) =(Val,A) +(Vl,B) + (Vcl,C) + (Vsl,S)
Proof. Note the following calculations:
(Val, A) = (4(AAT —81)8(1))A. A)
=4(AAT - 81)8(;), AAT)
(AS(S1y8(y) — AAT I.1),8) = —4({AAT - 81)8 (). 81)S 1))

The left-hand side above is one of the terms in Vgl. Doing the same calculation
for the other modes and then adding everything together yields the result. [



Optimization Landscape of Tucker Decomposition 7

Now we are ready to prove Lemma 1:

Proof. By Lemma 2, we know ||V f||% = || VL||%+|VR]||%. On the other hand,
by Lemma 3 and an application of the Cauchy-Schwarz inequality, we see that

IVIIl(S, A, B,C)|r = 4(S, A, B, C),

which means that ||VI||r > 0 whenever R = [? > 0. But VR = 2IVI, so we
have that |VR||r > 0, whence Vf # 0. O

To facilitate later proofs, we will also show a fact that if one perturbs a
solution with O regularizer, then the regularizer remains very small.

Lemma 4. If R =0, and |[AA||r +||AB| r+||AC||r+ || AS|F < O(1), then
R(S +€AS, A+ €AA,B +eAB,C + ¢AC) = O(e*) for sufficiently small e.

Proof. Tt suffices to check that the term |[(A + eAA)(A + eAA)T — (S +
€AS) (1) (S + eAS)E'—l) |l = O(e), as other terms are symmetric, and the final R

is degree 4 over these terms. This is clear as we know ||[AAT — 8(1)82—1) lF =0
because R = 0, and all the remaining terms are bounded by O(e).

3.2 Removing Extraneous Directions

In this section, we show that if A (respectively B, C) has a direction in
its row-space that is perpendicular to the column-space of 7T (1) (respectively
T 2); T (3)), then we have a direction of improvement. In particular, our goal
is to show Ay = 0 for all local minima (symmetric arguments will then show
By = Cy = 0). We first show that S(A., B,C) = 0.

Lemma 5. Assume that R(S,A,B,C)=0. I[f S(A3,B,C) # 0, then AA =
—As is a direction of improvement.

Proof. Set AA = —Ajy. Then for e > 0

L(S,A+¢AA,B,C) = |S(A,B,C) — T +¢S(AA, B,C)||%
= L(8,A,B,C) — 2¢[|8(As, B, C)| % + O(¢?),

since (S(A,B,C) —T,8(A3,B,C)) = (8(A3,B,C),S8(A,, B,C)). Hence,
for all sufficiently small ¢, L(S, A+eAA, B,C) < L(S, A, B,C). By Lemma 4
we know R(S,A + €AA, B,C) = O(e*). Hence, for sufficiently small ¢, the
decrease in L will exceed any increase in R. This shows that AA is a direction
of improvement. O

We next establish that R(S, A, B,C) =0 and S(Az, B,C) = 0 together
imply that As = 0.

Lemma 6. If R(S,A,B,C) =0 and S(Ay,B,C) =0, then A; = 0.
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Proof. Since R(S,A,B,C) = 0, we have BBT = S(Q)S(TQ) and CCT =
S(S)S(T?)). This means the column span of S,y (S(s)) is the same as column
span of B (C). Let BT and CT denote the pseudoinverses of B and C. Note
that the orthogonal projections onto the column-space of B and C' are given
by Pg := BB™ and Pc := CC™, respectively. Using these facts along with
S(As, B,C) =0, we have

0=S8(A2,B,C)(I, B+,C+) =8(As, Pg,Pc) =S8(As,1,1).
Using the fact that 8(1)82—1) =AAT = A A] + Ay A, we have
14245 [|F < (4245, 818 () = [8(A2, I, I)|[7 =0,

which, in particular, means that A; = 0. O

3.3 Adding Missing Directions

We now consider the case where the row-spans of A, B, and C are not equal
to the column-spans of 7 (1),7T (2), and T (3, respectively. Again by symmetry,
we focus on the case when row-span of A is not equal to column-span of 7 (y).

Lemma 7. If the row-span of A is a strict subset of the column-span of T (1
and R =0, then there is a direction of improvement.

Proof. If the row-span of A is a strict subset of column-span of 7 (1), we must
have a vector a that is in the column-span of 7T (1), but Aa = 0. For this
vector we know T (a,I,I) # 0, therefore there must exist vectors b, c such
that T (a,b,c) > 0. Notice that if we let b; be the projection of b onto the
row-span of B and ¢; be the projection of ¢ onto the row-span of C, and set
by = b—by and ¢z = c—cy, then we have T(a,b,¢) =}, ;e 0y T (@, bi, ¢;).
Hence, T (a, b;, c;) > 0 for some choice of ¢, j € {1,2}. Therefore, without loss
of generality, we can restrict b to be either in the row-span of B or to satisfy
Bb = 0 (and similarly for ¢), while retaining the property that 7 (a, b, c) > 0.
We proceed by considering the following cases.

One missing direction In this case b and ¢ are in row span of B, C respec-
tively. Choose unit vectors w,v,w € R” such that ATu = 0, B'v = a1b,
and CTw = asc, where a; and ay are positive real numbers. Consider the
directions AA =ua', AS = u®v®w. Observe that AS(A, B,C) = ATu®
BTveCTw = 0and S(AA, B, C) = 0 since the column-space of S(1) is equal
to the column-space of A. Moreover, AS(AA,B,C) =a® B v CTw =
ajaza ® b ® c. Hence, for € > 0, we have

L(S+€eAS,A+e¢AA,B,C) = |S(A,B,C) - T + AS(AA,B,C)|%
= L(S,A,B,C) — 2%a105T (a, b, c) + O(e*).
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On the other hand, by Lemma 4 R(S + €AS, A + €¢AA, B,C) = O(e?) since
R(S, A, B,C) = 0. Hence, for small enough ¢, the improvement in the tensor
loss dominates all other perturbations, so we have a direction of improvement.

Two missing directions Now assume that Aa = Bb = 0, and c is in the
row span of C. Choose unit vectors u, v, w € R” such that ATu =BTv =0
and CTw = ac where a > 0. Consider the directions AA =ua', AB = vb',
AS = u ® v ® w. Through a very similar calculation as in the previous case,

L(8+€eAS,A+c¢AA B +¢AB,C) = L(S,A,B,C)—28aT (a,b,c) +%a?.

As before, by Lemma 4 R(S + €AS, A+ ¢AA, B +eAB,C) = O(¢*). Hence,
the decrease in the tensor loss dominates all other perturbations for sufficiently
small €, and so this is a direction of improvement. Note that in this case the
amount of improvement is @(e3), so the point is a 3rd order saddle point.

The case where Cc = 0 and b is in the row-span of B is similar, and
likewise yields a direction of improvement.

Three missing directions Now assume that Aa = Bb = Cc = 0, and
choose unit vectors u, v, w € R” such that ATa = B'v = CTw = 0. Con-
sider the directions AA = ua', AB =vb', AC = wc', and AS = uQuew.
Once again, most perturbations in the tensor loss vanish, and we have

L(8+4+€AS, A+eAA, B+eAB,C+eAC) = L(S, A, B,C)—2¢*T (a, b, c)+¢°.

In this case, the regularizer doesn’t change at all, since AS(i)SE;) = 0 for
i=1,2,3, AAAT = ABB"T = ACC" =0, and AAAAT — AS(UASZ—D =
uu' —uu' =0 (and the two other analogous terms likewise vanish). Hence,
for sufficiently small €, the objective function decreases, so this is a direction

of improvement. This point is a 4th order saddle point.
O

3.4 Improving the core tensor

We finally consider the case where the matrices A, B,C have the correct
row-spaces but S(A, B,C) # T. In this situation, we can make progress by
changing only S.

Lemma 8. If R = 0, row spans of A, B,C are equal to column span of
T ), T (2), T (3) respectively, but L > 0, then there exists a direction of im-
provement.

Proof. Since the spans of A, B, C are already correct, let AT be the pseudoin-
verse of A, then if we let &' = T (AT, BT, C7), we have S'(A,B,C) = T.
Consider the direction AS =8’ — S.
L(S+¢eAS,A,B,C) = ||(1-€S(A,B,C) — (1 -¢T|%
=(1-¢?L(S,A,B,0C).
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For the regularizer R, again by Lemma 4 we have R(S +¢eAS, A, B,C) =
O(e*). Hence, this is a direction of improvement. O

3.5 Proof of Main Theorem

Now with all the lemmas we are ready to prove the main theorem:

Proof of Theorem 1. The Theorem follows immediately from the sequence of
lemmas.

First, by Lemma 1, we know any local minima must satisfy R = 0. Next,
by Lemma 6 and Lemma 5, we know the row spans of A, B, C must be
subsets of column spans of T (1), T (2), T (3) respectively. In the third step, by
Lemma 7, we further show that the row spans of A, B, C must be exactly
equal to column spans of T (1), T (2), T (3) respectively. Finally, by Lemma 8
we know the loss function must be equal to 0. O

4 Escaping from High Order Saddle Points for Tucker
Decomposition

As we discussed before, since our objective f = L+ AR as in (3) may have high
order saddle points, standard local search algorithms may not be able to find
a local minimum. However, in this section we show that the high order saddle
points of f are benign: there is a polynomial time local search algorithm that
can find an approximate local and global minimum of f.

We will first review the guarantees of standard local search algorithms, and
then describe how to escape from high order saddle points.

4.1 Local search algorithms for second order stationary points

For a general function f(x) whose first two derivatives exist, we say a point x
is a (11, T2)-second order stationary point if

V@) <71, Amin(V2f () > =7
If the function f(x) satisfies the gradient and Hessian Lipschitz conditions

va,y  [IV(x) = Vi) < pillz = ylle,
ve,y |[Vf(x) = V()] < pollz —yl2,

there are many local search algorithms that can find (71, 72)-second order
stationary points in polynomial time. This includes traditional second order
algorithms such as cubic regularization[21], and more recently first order al-
gorithms such as perturbed gradient descent[17].

Of course, these guarantees are not enough for our objective f, as it has
higher order saddle points. The main theorem in this section shows that there
is an efficient local search algorithm that can optimize f.
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Symbol  Definition = Note

A T6.T weight for regularizer

K O0*(1) universal bound for norms of S, A, B,C, T

T <1 bound on R(S, A, B,C)

~ @*(71/48) bound on the norm of As, B3, C3, introduced in Lemma 14
o N4l singular value threshold for Ay, By, C1

Ko (7 max error in 7 1,1,1, introduced in Lemma 17

K1 2K o3/4 max error in 7T 21,1, introduced in Lemma 18

K2 2Kol/8 max error in 7 22,1, introduced in Lemma 20

K3 2Kol/2 max error in 7T 2,2 2, introduced in Lemma 21

Table 1 Notation and definitions used in Section 4

Theorem 2. Let A = 1/16r*, assume wlog. that | T||r = 1 and the initial
point satisfies f = L+ AR = O(1)*. Then there is a local search algorithm that
in poly(d,r,1/€) time finds a point (S, A, B,C) such that f(S,A,B,C) <e.

The algorithm that we will design is just a proof of concept: although its
running time is polynomial, it is far from practical. We have not attempted to
improve the dependencies on d, r, 1 /€. Local search algorithms seem to perform
much better for Tucker decomposition in practice, and understanding that is
an interesting open problem.

To prove Theorem 2, we will first show that sublevel sets of f are all
bounded (Section 4.2). This allows us to bound the gradient and Hessian
Lipschitz constants p; and ps, so we can use any of the previous local search
algorithm to find a (71, 72)-second order stationary point.

Next, we follow the steps of Theorem 1, but we do it much more carefully
to show that as long as the objective is larger than €, then either the point
has a large gradient or a negative eigenvalue in Hessian, or there is a way to
construct a direction of improvement. This is captured in our main Lemma 12.

Finally we give a sketch of the algorithm and show that these local im-
provements are enough to guarantee the convergence in Section 4.8.

Throughout the section, we use O*(-), £2*(-) and ©*(-) to hide polyno-
mial factors of r and d. We will introduce several numerical quantities in the
remainder of this section; we list the most important ones in Table 1.

4.2 Bounded Sublevel Sets

We first establish the boundedness of sublevel sets of the objective function.
Our local search algorithm will guarantee the function value decreases in every
iteration, so the trajectory of the algorithm will remain in a sublevel set. As
a result, we know that the parameters remain bounded in norm at each step
by some constant, say K.

Lemma 9. For all I" > 0, the set of points (S, A, B,C) with f(S,A,B,C) <
I satisfy that |S||r, ||A|lr, | Bl|r, |C|lr < K where K = O*((I' +1)/%).

1 This can be achieved by initializing at 0, or any point with norm O(1).
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To prove this lemma, we will first state some tools that we need.

Lemma 10. For any parameter tuple (S, A, B,C), we have
IS(A,B,C)|lr < |[S]|rlAll2|Bll2[[C||2-

Proof. This follows from the fact that || - || is invariant to matricization, and
the fact that |PQ|r < ||P||2]|Q||#- Observe that

IS(A,B,C)|r = |ATS(I,B,C)lr < |Al:2S(I, B,C)||r,
and then repeat the argument for the other modes. O

Lemma 11. For any 8 € R"™*"*" it holds that
1
15(80): S, S@)lr = ZISIx

Proof. Let u,v,w € R" be unit vectors such that S(u,v,w) = ||S||2. Then
Siyvec(u @ v) = S(u,v,I) = [|S|2w,
Syvec(u @ w) = S(u, I, w) = ||S|2v,
Syvec(v @ w) = S(I,v,w) = ||S||2u.
Then
IS(S1), S2), S3)ll2 = S(IS|l2w, [ S]20, [|Sll2w) = [|S]38 (u, v, w) = ||S]|;
The result then follows from the norm inequality ||S||r < r||S||2- O
Now we are ready to prove Lemma 9:
Proof of Lemma 9. Assume that I" > f(S, A, B,C). From L, we have
VT >|8(A,B,C) - T|r
> |8(A,B,C)llr — T,
so that |S(A, B,C)||r < VT +|T| r. Next, define the following for i = 1,2, 3:
di(X,8) = XXT —8;S/;y. Note that dy (A, S),dy(B,8S),ds(C, S) are each
()2 (4)
bounded above in norm by I''/4. We have
IS(A, B, C)lli- = (S(A, B,C), (A, B, C))
=(S(AAT,BB",CC"),S)
= (8(81)8(1):S2)8(2): 858 S) +9(S, A, B,C)
= ||S(S(1)7 8(2)7 8(3)) ||i" + g(Sa Aa Ba C)7

where ¢(S, A, B,C) is a sum of the seven remainder terms of the form

<S(d1(Aa5),d2(3a5)75(3)5g))’8> (5)

<S(d1(A’S)adZ(BvS)7d3(CvS))78> (6)
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There are three terms of type (4), and each can be bounded below using
Cauchy-Schwarz and Lemma 10 as follows:

(S(d1(A,8), 828,858 (5):S) = —IS|I%ld1 (A, S)l|r > =4 S|
Similarly, we have
(S(di(A,S),d2(B,S), 838, S) > —I''?| S|4,
(8(di(A,S),d2(B,S),d5(C,S)),S) > —I'**|S| 3.

Putting this together and applying Lemma 11, we have that

1
ISl =3 4S5 = 3028 |f = T¥S[15 < (VT + | Tle)?,

which means that ||S||» must be bounded by O*((I"+1)'/#). From R, we have

7\ /4
(%) #1813 2 1447 - S0, 8Ty e + 180Tl 2 1447,

s0 ||A||r is bounded by O*((I" 4+ 1)'/8). We bound B and C similarly. O

4.3 Main step: making local improvements

In order to prove Theorem 2, we rely on the following main lemma:

Lemma 12. In the same setting as Theorem 2, there exist positive constants
q1,q2,71 = O*(e?'), 79 = O*(e22), such that for any point S, A, B,C where
e< f(S,A,B,C) < O(1), one of the following is true:

1. va(S7A7B7C)|| > 71,

2. )\’mzn(v2f(sv Aa B7 C)) < -T2,

8. With constant probability, Algorithm 1 constructs a direction of improve-
ment that improves the function value by poly(e).

Algorithm 1 uses notation that we specify in the paragraphs below. The

Algorithm 1 Sampling algorithm for adding missing directions

Require: matrices A, B, C, threshold o, subspace indicator (3,7, k) € {1,2}3
Compute the subspaces Uy ;, Uz j,Us 1, V1,i, V2,5, Va i
Sample unit vectors a, b, ¢ uniformly from Uy ;, Uz j,Us i
ifi = 1 then v’ = (A] )ta; else Randomly sample nonzero u’ € V; 2
if j = 1 then v’ = (B} )"b; else Randomly sample nonzero v’ € Va2
if k =1 then w’ = (ClT)+c; else Randomly sample nonzero w’ € V3 2
Return a, b, c,u'/||u'||2, v’ /||v'||2, w'/||Jw']||2

proof of this lemma has similar steps to the proof of Theorem 1. However, it
is more complicated because we are not looking at exact local minima. We
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give the details of these steps in the following subsections. A key parameter
that we will use is a bound 7 on the regularizer. We will consider different
cases when R(S,A,B,C) > 7 and when R(S, A, B,C) < 7. All of our other
parameters (including 71, 72, €) will be polynomials in 7.

For the analysis, it is useful to consider S(A, B, C) and T projected onto
various subspaces of interest. To this end, we introduce the following nota-
tion. Let ¢ > 0 be a threshold that we will specify later. For matrix A, we
let V41 and Uy 1 denote the spaces spanned by the left/right singular vectors
of A with singular value greater than o, and let V; 5 = Vlf-l, U2 = Ul{-l.
We can then write A = A1 + As, where A = ProjVLlA contains the larger
singular vectors and As = ProijA contains the smaller singular vectors.
Let P; be the orthogonal projection onto the column-space of 7 (1) and de-
fine A3 = A(I — Py), the projection of A onto directions that are unrelated
to the true tensor. Similarly, we define Uz 1,Usz 2, V21, V2,2, P2, B1, Bo, B3 for
matrix B and Us 1, Us 2, V3.1, V3.2, P3, C1, C2, Cs for matrix C'. Define S; j , =
S(Projy, ,, Projy, ,, Projy, ) and T, = T (Projy, ,, Projy, ,, Projy, ). We
can decompose the tensor loss as

IS(A,B,C) =TIt = > 18i;x(Ai,B;,Cr) = Tijl3-
i,5,k€{1,2}
Our analysis shows how to decrease the objective function if the regularizer or
any one of the terms in the right-hand sum is sufficiently large. In particular,
after finding a second-order stationary point, the only terms in this sum that

may be large are when at least two of ,j,k are equal to 2. In this case,
Algorithm 1 can be used to make further progress toward a local minimum.

4.4 Decreasing the Regularizer

We first show if the regularizer is large, then the gradient is large. This is very
similar to Lemma 1.

Lemma 13. If R(S,A,B,C) > 1, then |Vf(S,A,B,C)||r > 4\7/K.
Proof. By assumption, (S, A, B,C) > 7'/2 and we have||VR| r = |21V r >
271/2||VI|| . By Lemma 3 and the Cauchy-Schwarz inequality, we have that
20

%
Then |VR||r > 47/K. Since |Vf||% = [|[A\VR||% + |[VL||%, we are done. [

1 1
> > =
[Vilr > S V(8. A B.C)r > 5= (VL (5. 4.B.C)

4.5 Removing Extraneous Directions

We show that if the projection Az in the incorrect subspace is large, the
gradient must be large so the point cannot be a local minimum.

Lemma 14. Let v = O*(7Y/48). If R(S, A, B,C) < 7 and | As||r > v, then
IVF(S, A, B,C)||lr = 27 (r'/%).
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Proof. Set v = C7/*8 where we choose C' to be a constant such that
72 > max (T(T1/24 + 74 (4K S8 ¢ K473/8)) .

This particular definition allows us to simplify inequality (10) below. Con-
sider the direction AA = —A3. When we step in this direction, the first-order
perturbation of L(S, A + eAA, B,C) is —2¢||S(A3, B,C)|% (a simple cal-
culation). For the regularizer, observe that since As = A(I — P3), we have
(A+eAA)(A+eAA)T = AAT — (2¢ — €2) A3 A] . Hence the first-order per-
turbation of R is

8eM(S,A,B,C)(AAT — s(l)s(ﬂ), A3AJ) < 8?4 Az

Intuitively, we will show that the first-order decrease in L is greater than the
first-order increase in R, so that AA is aligned negatively with V4 f.

First, through very similar arguments to those found in the proof of Lem-
mas 9 and 11, we have that

HS(ASv B, C)H%‘ > HS(A3’S(2)’S(3))”%‘ - 271/4[(6 - 71/2K4 (7)
and if we set u to be the top left singular vector of Ag,
1
1S(A3, 8 2), S3)llr = 5 IS (w, I, D[] Asl| v (8)

|S(u,LI)|7 =u" S8 Hu
=u'AATu+u" (S§1)S1) — AAu

Y

1
| Agllf - 71, ©)

Combining inequalities (7), (8), and (9), we have

3
1 1
15042, B Ol > ~c|Aulls (FAal}  711) =27 /KP 712K (10)

Using the assumption ||As||r > v and the choice of v, we can simplify
inequality (10) to ||S(As, B,C)|% > %HA;;H% Now using the fact that
A = 1/16r* and 7'/% > 73/% we have %HA;),H% > 8\7%/4|| A3]|2%. Thus, we
see that the first-order decrease in L is greater than the first-order increase in
R, and the overall first-order decrease in f is £2*(71/8| A3||%/2r*). The Taylor

expansion of f implies that [(AA,Vaf)| > %HA;;H%, so that
IVSlF 2 (AAVAf)I/[AA| = 2*(7V/5y) = (%),

which provides the desired bound on ||V f|| ¢. O
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From this point forward, set ¢ = /4. An important consequence of the
fact that Ag is small is that if 7511 is large enough, then A; must be rank
deficient. This rank deficiency allows us to readily contruct a direction of
improvement when we are near a saddle point corresponding to a single missing
direction. This is also true when we are near saddle points corresponding to
two or three missing directions; see section 4.7.

To prove the rank deficiency, we use subspace perturbation bounds. The
technical tool we use here is Wedin’s Theorem [33,26].

Theorem (Wedin’s Theorem, adapted from [26]). Let A, A E € RY" with
d>r and A=A+ E. Write the singular value decompositions

2\ o , o (2N o1
A:(U1U2)<O>V A:(U1U2)<O>V
Let © and @ denote the matrices of principal angles between the column
spans of Uy, Uy and V, V., respectively. If there exists some 6 > 0 such that
mino(X) > 4, then

: : V2| E|r
VIsin®[ + [ sin @]} < Y2
Lemma 15. Let M € R™9¢ and let M = My + M>, where rank(M) =
rank(My) = r. Let P, P, € R4 be the orthogonal projections onto the row
spans of M and M, respectively. Let o be the smallest nontrivial singular
value of M. Then

2|| M.
1P Py < A%l

Proof. This is a corollary of Wedin’s Theorem. Set A = M, A=MT, and
E = M, . Note that A and A have full row rank, so we have the SVDs

Nor i (B o
A:(U1U2)<O>V A:(Ule)(())V

where VLV are r X r orthogonal matrices, X, Yarerxr, U,U, ared xr,

and Uy, Uy are d x (d — r). Since V' and V' have the same column spans, we

have that sin® = 0. Further, it is a fact that |P — Pi||r = v/2||sin®|/r. By

assumption, min o(X) = o. Then Wedin’s Theorem states that

2| FE
S5m0l + [smalz < YAEL:
ag

and our result follows immediately. O
Lemma 16. Let P be the orthogonal projection onto the row-span of Ay. If

rank(A1) = r and ||As||p <, then ||[T(I-P,I,1)||r < 2K./7. In particular,
if any of the Ty 1 (4, k =1,2) is large, the rank of A1 must be less than r.
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Proof. Recall we set o = /7. Let Py be the orthogonal projection onto the
Column—span of T(l) Write A171 = A1P1, ALQ = Al(I — Pl) Observe that
HALQ”F S ||A3HF S v <o. Note that HAl - Al,lHF = ||A172||F <o, which
means that rank(A; ;) = r, since A; has distance at least o to the closest
lower-rank matrix.

Since Aj; has rank r, its rows form a basis for the column-span of T (1),
and so P is also the orthogonal projection onto the row-span of A; ;. Then

T(I—P,LI)|p=|TP —P,II)|Fr
<|Tlrl|P. - P|r
< i 2l Aszlr

g
< 2K.\/7,

where the penultimate line follows from Lemma 15. O]

4.6 Improving S

Unlike the proof of Theorem 1, we will first focus on the simple case of im-
proving the core tensor 8. Note that here we only try to make sure we get
close to T1,1,1 as the components A, B, C may still be missing directions.

Lemma 17. Set kg = /7. Assume R(S,A,B,C) < 1. Then
[T111 = S(A1L, By, C)|F > ko = [[VF(S,A,B,C)|lr = 2(v*°).

PT'OOf. Define S* — T(Af,Bf,Cf), so that S*(A17B17CI) = Tl,l,l- We
consider the direction AS = 8" — 8y11,1. Observe that AS(A,B,C) =
T111— S(Aq,Bq,C4). We can write

S(A,B,C)-T= >  8(Ai,B;Cy)~Tijx
i,5,k€{1,2}

and this is a sum of mutually orthogonal tensors. Hence, the the first-order
perturbation of L(S 4+ eAS, A, B,C) is

The first-order perturbation in the regularizer (VsR, AS) is bounded by
O(m3/*0=3) = o(0), since ||8*||r = O(c~?). Therefore, the decrease in the
tensor loss dominates all other first-order perturbations, so we have a viable
direction of improvement. In particular, by moving in direction eAS, we de-
crease the objective function by

e 2| T111 — S(Ar, Bs, C1)|[3) = 2(ewp).
The direction of movement has norm bounded by
1T lle AT 2] BT [l2]ICY |l2 < Ko™2.
By Cauchy-Schwarz, the gradient has norm at least 2(x) x 0% = 2(¥%/?). O
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4.7 Adding missing directions

Finally, we try to add missing directions to A, B, C. As before we separate the
cases into missing 1, 2 and 3 directions. This first case (missing one direction)
is easy as it is a normal saddle point with negative Hessian.

Lemma 18. Set vy = 2Ko%/*. Assume R(S,A,B,C) < 7 and || As||F,
| Bs||r, and ||Cs||F are all less than ~. If || T21.1ll2 > &1, then V2f has a
negative eigenvalue of at most —2(c'%/4).

Proof. Since k1 > 2K /7, by Lemma 16, we have rank(A;) < r.

By assumption, there exist unit vectors @ € Uy 2, b € Uz 1, and ¢ € Us;
such that T (a, b, c) > ;. Take unit vectors u, v, w € R” such that A/ u = 0,
Bl/v = aub, Bjv = 0, C{ w = asc, and Cj w = 0, where a; > o for
i = 1,2. In this situation, we are near a second-order saddle point, so we seek
to demonstrate a direction with sufficient negative curvature in the objective
function. To this end, define

AA =oua’ AS=u®vQw.
For a step size € > 0, our source of improvement in the tensor loss comes from
the second-order perturbation of L in this direction. We aim to compare the

second-order decrease in L against the second-order increases in L and R. The
second-order perturbation in the tensor loss V2L applied to (AS, AA, 0,0) is

2(S(A,B,C) - T,AS(AA,B,C)) + |AS(A,B,C) + S(AA, B,C)|?
The magnitude of decrease in this perturbation is given by

(T,A8(AA,B,C)) =0T (a,a1b, azc)
=oara2T (a,b,c)

> oa100K.
To bound the magnitude of the increase, observe that
|IBB"v|r = |y Bib||r < a1K; ||CCTwl|r < apK
Then we have

(8(A,B,C),AS(AA,B,C)) = (8(A,B,C),;a® B'v® C"w)
=08(Aa, BB v,CC w)
< cloqoK? (11)



Optimization Landscape of Tucker Decomposition 19

Additionally,
|AS(A, B.O)|} = A3 u ® a1b ® aself
< o*aias
||S(Tl)'“"|% = UT(5(1)S(T1) —AANYu+u'AATu
<7ty o?

IS(AA, B,C)|% = o®|lau’ Su)(B @ C)||%
< o*|ISyul ZIBIFICIE
< 02K4(T1/4—|—0'2)

Putting this together, we bound ||[AS(A, B,C) + S(AA, B, C)|% above by

2
<0a1a2 + oK%\ 114 4+ 02) (12)

In light of the definition of k1 and inequalities (11) and (12), the second-order
perturbation in L is —2(cajasgky), i.e. L decreases to second-order in this
direction.

Now we turn our attention to the regularizer. We need to show that the
second-order increase in the regularizer doesn’t overwhelm the decrease in L.
Note that the regularizer is degree 4 with respect to ||AAT — S(l)S(Tl) Il (and
same terms for B and C), so the second order derivatives have a quadratic
term in |AAT — 8(1)82—1)”1:, which is O(7/%) = o(oajagk;); higher-order
terms are negligible in comparison.

We’ve shown that the loss function decreases by at least 2(cajaky) - €2,
Since our direction of improvement has constant norm, this implies that V2 f
has an eigenvalue that is smaller than —2(cayagk;) = —2(a%/4). O

Next, we need to deal with the high order saddle points. Here our main
observation is that if we choose directions randomly in the correct subspace,
then the perturbation is going to have a reasonable correlation with the resid-
ual tensor with constant probability. This is captured by the following anti-
concentration property:

Lemma 19. Let X € R4xdxds gnd et a € R,b € R%, ¢ € R% be
independent, uniformly distributed unit vectors. There exist positive numbers
Cl = Q(l/ d1d2d3) = .Q*(l),CQ = Q(l) such that

Pr{|X(a,b,c)| = C1[|X| p] > Ca.

Proof. Although our Algorithm 1 for sampling missing directions only requires
uniform unit vectors (from appropriate subspaces), we construct these vectors
as normalized Gaussian vectors for this lemma in order to apply a Gaussian
polynomial anti-concentration result (Theorem 8 in [4]). As such, let a’, b, ¢/
be independent standard Gaussian random vectors (of appropriate dimension)
and set a = a'/||a’||2, b = b'/||b'||2, and ¢ = ¢'/||¢'||2. Note that there exists
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some constant p > 0 such that ||@’||2 < 2/dy, [|b/]]2 < 24/da, and ||c/|| < 2v/d3
with probability at least p. Next, note that EX(a’,b’,¢’) = 0 and

Var[X(a', b, ¢')] = E(X(a',¥, ¢)?)
_ E(X(a’a'i b/b/T7 C/C/T), X>
- <X(I7IaI)7X>
= |||

Now X(a',b’,c)/||X]|F is a degree three polynomial function with unit vari-
ance, so the anti-concentration inequality implies that for any ¢ > 0,

Pr(|X(a’, b, ¢) /|| X F| < ] < O(1)e'/?.
Simply choosing a constant € and re-arranging terms completes the proof. [

Using this idea, when 722 is large, we show how to get a direction of
improvement.

Lemma 20. Set ky = 2Kc'/8. Assume R(S,A,B,C) < 7 and || As||F,
| B3|, and |Cs||F are all less than ~y. Further assume that | T 2112, [T 12,125
and || T11,2||2 are each less than k1. Let a,b, c,u,v,w be the output of Algo-
rithm 1 given the input A, B,C,0,(2,2,1). Define the directions AA = ua ',
AB =vb", AS = u@vew. If | Tap2.1ll2 > ko, then with constant probability,
a step in these directions decreases the objective function by Q*(015/8),

Proof. First, observe that x; > 2K/, which implies that rank(A;) < r
and rank(B;) < r by Lemma 16. Set a such that ac = C] w, and note
that a > o. Per lemma 19, with constant probability we have |T (a,b, ¢)| is
with some constant factor of |7 2,2,1||2. Therefore, with constant probability,
|T (a,b,c)| > Cky for some positive constant C.

Observe that p(0) := f(S+0AS, A+6AA, B+IAB, C) defines a degree 8
polynomial in 8. Set § = o'/%. For convenience, define the following expressions
related to the perturbations of L:

Lo=S8(A,B,C)~T

Li = AS(A,B,C) + S(AA,B,C) + S(A, AB, C)

Ly = AS(AA,B,C) + AS(A, AB,C) + S(AA, AB, C)
Ly = AS(AA, AB, C)

We can upper bound each of these terms in norm, e.g.

|Li||r =[[ATu® BTo@ CTw+ S(ua',B,C) + S(A,vb",C)|r

< oo+ 2K%\/11/4 4 g2

= O(ac? + o).
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Through similar calculations, we have || La||p = O(ac+0) and || Ls||r = O(«).
The perturbation in the tensor loss is then

63(Lo, L3) + 6(Lo, L1) + 6*(Lo, La) + ||6Ly + 6*Ly + 8°Ls||%.  (13)
Here the first term is responsible for the decrease in tensor loss:
§*(Lo, Ls) = 6°a(S(A,B,C) — T,a®b®c)
< 83a(K?0* — T (a,b,c))
= —6%a0(ky).

For the other terms, we show that they are small enough so they will not
cancel this improvement. Observe that

(Lo, L1) = (Lo, AS(A,B,C)) + (Ly,S(ua',B,C) + S(A,vb",C))
= O(ao?) + O(ky10).
The O(k10) term appears because [|8211(A,B,C) — Ta11llr = O(k1),
H$1,2,1(AyB,C) - Tl,2,1HF = O(fﬂ)-

For the next term, we note that (Lo, L) is a sum of three inner products,
any two of which we can make nonpositive by flipping the sign of AS and
one of AA, AB (doing so doesn’t change the amount by which the tensor
loss decreases). Hence, by design of Algorithm 1, with constant probability we
know that (Lo, L2) < 0. As a result, we know (13) is at most —52af2(ks).

We now consider the perturbations of the regularizer. Define the following
terms:

log=AAT =818y, l2a=BB' —8158(), l3=CCT -838(
hi=AAAT + AAAT — 81)(A8) () — (A8) 18|y
o =BAB' + ABB' — 8(5(AS)], — (A8)(2)8 5
s =8 (AS)G — (A8)3)Sf), oz = —(A8)3)(AS8)
We bound these terms in norm as follows:
Hiallr = |Aau” +ua" AT —uS(I,v,w)" —S(I,v,w)u'|r
< 2| Azl + 28T, v, w)||F
<20 +2y/71/4 + o2
= O(o).
Likewise, ||l12]|r = O(0), ||l1,3llF = O(0), and ||l33]| = O(1). Also note that
llosllr < 71/4 for i = 1,2,3. Using this, we have
o, + 8l < O(TH*) + O(b0)
o2 + 8l12]| r < O(TH*) + O(60)
o3 + 0l1 3 + 6%la 3]l < O(TY*) + O(d0) + O(6?).
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All of these terms are dominated by O(6?), and so the perturbed regularizer
is bounded by O(6%) = O(0?) = o(c'/®). Hence, we see that the decrease in
the tensor loss dominates the increase in the regularizer, as desired. O

We next address the case where 7322 is large, which corresponds to
A1, By, Cy being rank deficient.

Lemma 21. Set k3 = 2Kc'/?. Assume R(S,A,B,C) < 7 and || As||F,
| B3|, and ||Cs||F are all less than ~y. Further assume that | T 2112, || T1.2.1]
and || T1,1.2||2 and each less than k1, while | T22.1||2, | T2,1,2ll2, and || T1,2,2||2
are each less than ks. Let a,b,c,u,v,w be the output of Algorithm 1 with
input A,B,C,0,(2,2,2). Define the directions AA = ua', AB = vb',
AC =we', AS = u@uew. If | T22.2|l2 > ks, then with constant probability,
a step in these directions decreases the objective function by Q*(U3/4).

2,

Proof. First observe that k3 > 2K ,/7, which by Lemma 16 means that rank(A;),
rank(B1), and rank(C} ) are all strictly less than r. Then A4, By, and C are all
missing directions from the relevant subspaces of T, and we are near a fourth-
order saddle point. By lemma 19, with constant probability, |7 (a, b, ¢)| > Cks
for some positive constant C.

Again let p(0) = f(S + IAS, A+ 0AA B+ dAB,C + 0AC), and set
§ = o/8. As in the proof of lemma 20, let for i = 0,...,4, let L; denote the
i-th order perturbation term in

(S8+AS8)(A+AA, B+ AB,C+ AC)—-T.
We can upper bound each of these terms in norm, e.g.

|Li]|Fr =[|[ATu® BTv® C 'w+ S(ua',B,C) + S(A,vb",C)
+S(A,B,we")|r
< 80% + K2(|8(u, I, D)|p + |S(T,v, Dlle + IS, I, w)] ¢)
< 80% + 3K2\/71/1 1 202
= O(o).
Through similar calculations, we have ||Ls|| = O(o) and ||L3|| = O(c). On the

other hand, ||L4|] < 1 and ||Lg|] < 2K. The perturbation in the tensor loss is

then
4

Z (Li, L)+ (14)

4,j=0
The decrease in the tensor loss is due to the following term:
6" (Lo, Ly) = 6*(S(A,B,C) — T,a®b®c)
< 64Ko® —T(a,b,c))
= —(549(#&3)
—02(c%%).
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By a simple Cauchy-Schwarz bound, the other perturbation terms in (14) are
all bounded by O(o 4 6%) = O(0) = o(c/*).

Now we analyze the perturbations of the regularizer. As before, define the
terms

loa=AA" —81)8(yy, lop=BB' —858}), lz=CC" -8y
L= AAAT + AAAT - S (AS)], — (A8)1)S],,
hao=BAB' + ABB' — 80,)(AS);) — (AS)2)S 5
lis = CACT + ACCT — 8(3)(A8) ;) — (A8)5)S s,

We bound these terms in norm as follows:

lliallr = |Aau’ +ua’ AT —uS(I,v,w)" — S(I,v,w)u’|r

< 2[|Az|[r + 2[|S(I, v, w)|

<20 42V 74 4 52

=0O(o).

Likewise, ||l ;|| z = O(o) for i = 2,3, and of course ||lg ;|| r < 7'/* fori = 1,2, 3.
Again,

llo.i + 6l 4]l < O(TY*) + O(60)

and using this, we can bound the perturbed regularizer as O(5*c*) = o(c/%).
Hence, the decrease in the tensor loss dominates all other perturbations, and
we improve the objective function by £2(c3/4). O

4.8 Algorithm Description and Proof of Main Theorem

Before sketching the algorithm we will first prove Lemma 12 and explain some
of the parameter choices. Refer to Table 1 for a list of the numerical quantities
that were introduced.

Proof of Lemma 12. Set T small enough so that kg, dk1 + K30, dre + K202,
drs + Ko® < \/e/4 and T < €/2. We then set 7, = ©*(7) from Lemma 13 and
5 = O(c'%/*) from Lemma 18.

Now assume that conditions (1), (2), and (3) from the statement of the
Lemma fail to hold. We seek to show that f(S,A,B,C) < e¢. By Lemma
13 and our choice of 71, we have that R(S, A, B,C) < 7 < ¢/2. By Lemma
14, we have that ||As||r, ||Bsl|F, ||Cs||r are all less than . By Lemma 17,
we have that ||T111 — S(A,B,C)||r < ko. By Lemma 18, we have that
| Tijxlle < w1 for (i,5,k) € {(2,1,1),(1,2,1),(1,1,2)}. By Lemma 20, we
have that || 77 jkll2 < ke for (i,7,k) € {(2,2,1),(2,1,2),(1,2,2)}. By Lemma
21, we have that || T 2,222 < k3.
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Combining all of these bounds, we have

f(8,A,B,C)=R(S,A,B,C)+ Y |8:;x(Ai, B}, C) = Tijullz
igk
< €/2+ ki +3(K?0 + dr1)? + 3(K?0% + drp)? 4+ (Ko + dk3)?
<e€/24¢€/2,

as desired.
O

We now sketch our algorithm in Algorithm 2. The algorithm basically tries
to follow the main Lemma 12. If the point has large gradient or negative
eigenvalue in Hessian, we can just use any standard local search algorithm.
When the point is a higher order saddle point, we use Algorithm 1 as in
Lemma 20 or Lemma 21 to generate directions of improvements.

Algorithm 2 Local search algorithm for Tucker decomposition

Require: tensor T, error threshold e
Choose thresholds 71,72 according to Lemma 12.

repeat
Run a local search algorithm to find (71, 72)-second order stationary point.
Call Algorithm 1 for 4,5,k = 1,2 to generate improvement directions, repeat for

O(log 1/€) times.
if any of the generated directions improve the function value by at least 2* (0'15/8)
then
Move in the direction.
Break.
end if
until no direction of improvement can be found

Now we are ready to prove Theorem 2

Proof of Theorem 2. By Lemma 12, for any (71, 72)-second order stationary
point, if f > ¢ Lemma 20 and Lemma 21 will be able to generate a direction
of improvement that improves the function value by at least 2*(c'%/%) with
constant probability. Since the initial point has constant loss, if a direction of
improvement is found for more than O*(1/0%/8) iterations, then the function
value must already be smaller than e.

After the repetition, the probability that we find a direction of improvement
is at least 1 — o(0). By union bound, we know that with high probability for
all the iterations we can find a direction of improvement. O]

5 Conclusion

In this paper we showed that the standard nonconvex objective for Tucker de-
composition with appropriate regularization does not have any spurious local
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minima. We further give a local search algorithm that can optimize a regu-
larized version of the objective in polynomial time. Our algorithm includes
additional steps that try to escape from high order saddle points. However, in
practice simple local search algorithms like gradient descent rarely encounter
saddle points. This phenomenon was analyzed in the matrix setting [19,14],
and proving similar things for Tucker decomposition is an open problem. An-
other set of interesting open problems come from applications where the low
rank tensor 7 is not known exactly. We either have significant additive noise
T +E, or observe only a subset of entries of T~ (tensor completion). Local search
algorithms on the nonconvex objective are able to handle similar settings for
matrices [6]. We hope our techniques in this paper can be extended to give
stronger guarantees for noisy Tucker decomposition and tensor completion.
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