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Abstract

Estimating the normalizing constant of an unnormalized probability distribution has impor-
tant applications in computer science, statistical physics, machine learning, and statistics. In
this work, we consider the problem of estimating the normalizing constant Z = fRd e~ @) dzx to
within a multiplication factor of 1 4 ¢ for a p-strongly convex and L-smooth function f, given
query access to f(x) and V f(z). We give both algorithms and lowerbounds for this problem.

Using an annealing algorithm combined with a multilevel Monte Carlo method based on under-
d4/3n+d7/6n7/6
52

damped Langevin dynamics, we show that o ( ) queries to V f are sufficient, where

k = L/ is the condition number. Moreover, we provide an information theoretic lowerbound,
. 1-0(1) . . . ..
showing that at least Z?*W queries are necessary. This provides a first nontrivial lowerbound

for the problem.
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1 Introduction

Given a distribution p on a space Q with base measure dz, defined by p(dz) o« e=f @) 4z, its
normalizing constant is the integral Z := fQ e~7(*) dz. Estimating the normalizing constant is
a fundamental problem in theoretical computer science, statistical physics (where it is called the
partition function [Bal07, SR*10]), and Bayesian statistics [GM98]. In high dimensional settings,
even when the function f(x) is convex (and the distribution p is log-concave), computing the exact
normalizing constant is #P-hard [DF88]. Hence the goal is to approximate the normalizing constant
up to a 14 ¢ multiplicative accuracy. Approximating the normalizing constant is closely related to
the problem of sampling from the distribution p [JVV86,SJ89, DFK91].

Many polynomial time algorithms, starting from the seminal work of [DFK91], were known
for estimating normalizing constants in various settings when f(x) is convex. In this paper, we
consider the special case where Q = R? and f(z) is a L-smooth and p-strongly convex function (see
equation (2)). Given query access to f(x) and/or V f(z), our goal is to estimate the normalizing

constant
Z:/ e 1@ dg (1)
R4

within a multiplicative factor of 1 4+ ¢ with probability more than 3/4'.

This is a classical setting with applications to Bayesian statistics and machine learning. It is
simpler than some of the settings considered before (such as volume estimation) because of strong
convexity. Indeed, many faster sampling algorithms are known when f is strongly convex. How-
ever, there are very few results for estimating the normalizing constant and they give suboptimal
dependencies. On the lowerbound side, although lowerbounds were considered in different settings
(e.g., [RV08]), there are no non-trivial lowerbounds when f is strongly convex. In this paper, we
d%%g%ﬁ%

L ) queries to Vf(x), as well as a lowerbound

give a new algorithm that only requires (5(

that shows shows no algorithm can succeed with % queries.

In high dimensions, most existing works rely on combining sampling algorithms for log-concave
distributions and an annealing procedure. Our algorithm follows a similar recipe. We can use several
sampling algorithms including Metropolis-Adjusted Langevin Algorithm (MALA), Underdamped
Langevin Diffusion (ULD) and randomized midpoint method for ULD (ULD-RMM). However,
a naive combination of ULD and ULD-RMM with standard annealing procedure results in high
query complexity. We use an approach called multilevel Monte Carlo [Gil08, GNST16] to improve
the query complexity and running time of the algorithm.

Theorem 1.1 (Upper bound). Suppose f : R? — R is p-strongly convex and L-smooth, and let
K= % Consider the problem of estimating fRd e~ @) dx within 1+ & with success probability 3/4,

1. Algorithm 2 (annealing with MALA ), solves the problem with O (% max{l, \/m/d}> queries
(Theorem B.3).

2. Algorithm 6 (annealing with multilevel Monte Carlo) run using Algorithm 4 (ULD), solves
~ 3
the problem with O(d§“2) queries (Theorem C.12).

2

3. Algorithm 6 (annealing with multilevel Monte Carlo) run using Algorithm 5 (ULD-RMM),
4 T 7
solves the problem with O(W) queries (Theorem C.13).

'For an algorithm, the probability can be easily amplified to 1 — ¢ by repeating the algorithm O(log(1/¢)) times
and finding the median.



Note that these algorithms are also computationally efficient: for all of these algorithms, the
runtime (in terms of number of vector operations in R?) is comparable to the number of queries.
On the way to proving this theorem, we establish improved rates for estimating an expected value
of a function using multilevel ULD. This result may be of independent interest.

Theorem 1.2 (Multilevel ULD). Let p(dz) oc e=/@) dz, where f : R — R is p-strongly convex

and L-smooth. Let g : R — R be Lgy-Lipschitz. Suppose 0 < e < % Consider the problem of

outputting R such that |R — E,lg(2)]| < e. With probability at least 3, Algorithm 3 (Multilevel
Monte Carlo) has the following guarantees:

— 7205 2
1. When run using Algorithm 4 (ULD), it succeeds using O(ngjf > queries (Theorem C.4).
[ L2(d3 k+db s6)
2. Using Algorithm 5 (ULD-RMM), it succeeds using O(”T) queries (Theorem C.6).

Intuitively, the multi-level Monte Carlo method is a way to reduce the variance of the final
sample by coupling several different Markov chains at different step sizes, which reduces the number
of queries when the running time of the sampling algorithm depends polynomially on the desired
accuracy (see Section 4 for more details).

We also give the first lowerbound for the complexity of estimating the normalizing constant:

Theorem 1.3 (Lower bound). Even for an L-smooth and p-strongly convex function f(x) with

k = L/u being a constant, any algorithm that uses g;:—jﬁ; queries cannot estimate the normalizing
constant of f(x) with accuracy (1 & €) with probability more than 3/4.

Our lowerbound matches the dependency on ¢ in high dimensions (note that this is impossible
in low dimensions due to deterministic quadrature methods; see Appendix E). The lowerbound also
shows that there is an inherent dependency on dimension d even when the condition number is a
constant, which makes the problem of estimating the normalizing constant different from optimiza-
tion. The lowerbound is information theoretic. We construct a function with many independent
cells with two types. The final normalizing constant depends on the relative fraction of the cells of
type 2. Making one query to function f can reveal the type of at most one cell; therefore a standard
argument shows estimating the frequencies of cell-types requires a large number of queries.

1.1 Notation and assumptions

For any function f, we let O(f) and Q(f) denote the class of functions that are < C'f and > C'f,
respectively, for some constant C' > 0. Let O(f) denote the class O(f)-1og®® (f), and Q(f) denote
the class Q(f) - log=®W(f). Let O(f) denote the class of functions that are both O(f) and Q(f),
and O(f) denote the class of functions that are both O(f) and Q(f).

For a vector v € R?, let ||v|| denote its Euclidean norm; and for a matrix A € R%*?, ||A|| denotes
its spectral norm. For z,y € R, let 2 Ay = min{z, y} and =z V y = max{z, y}.

The pth Wasserstein distance between two probability measures p and v is defined as

P

w, = inf E[||X - Y|
) = (o infELIX - VI

where C(u,v) denotes the set of couplings between p and v. The TV-distance is defined as
dry(u,v) =supy |u(A) — v(A)|, where the sup is over all measurable subsets.



Throughout this work, we consider a log-concave distribution p(dz) = %e‘f @) dz. We assume
that the negative log-density function f(x) is twice continuously differentiable, u-strongly convex
and L-smooth: For all z,y € RY,

P e P < £0) ~ (@) = V5@) (0 - 2) < & o~y 2)

As we are concerned about the relative error for estimating the normalizing constant Z, it does
not matter if f is shifted by a constant, and hence for simplicity of the presentation, we will assume
that f achieves its global minimum at z* with f(z*) = 0 and only consider the (most challenging)
regime that y < 1 < L. In fact, to further simplify the presentation, we will also assume z* = 0,
i.e., f achieves the minimum at the origin. In practice, we do not know x* a priori, however, using
a first-order optimization method like gradient descent, we can obtain an approximate of x* within
error 7 using klog(1/n) gradient evaluations. Such cost is negligible compared with other parts of
the algorithm.

1.2 Roadmap

First in Section 2 we review existing works on sampling and estimating normalizing constant; in
particular we recall guarantees for the sampling algorithms that we use in this paper. In Section 3
we describe the annealing strategy that we use, which is similar to but has different parameters
with existing work. We describe the main idea of our algorithm (especially the idea of using the
multilevel Monte Carlo method) in Section 4. Then we give the main ideas for the lowerbound in
Section 5. Detailed algorithms and proofs are deferred to the appendices.

2 Related works

Many methods have been developed over the years for estimating the normalizing constant (also
known as the partition function), see e.g., [GM98, SR*10] and references therein. However, not
many works have given non-asymptotic rates for algorithms to estimate the normalizing constant
of a strongly log-concave distribution. The closest work to ours is the recent work [BDM18], which
gives a 6(K3d3€_4) upperbound. An upperbound with a rather high power dependence on d is also
established in [ARW16] for a different algorithm. Our algorithm and analysis yield much better
bounds in comparison.

The estimation of the normalizing constant for a log-concave distribution is closely related to
volume computation of a convex set K [DFK91,1.S93,LV06] (which can be thought of as the special
case where f(x) = 0 on K and f(x) = oo outside of K). This can be done in (5(?—3) time [CV18]
using an annealing algorithm combined with the Metropolis ball walk. While our setup is quite
different, the overall annealing algorithm follows the same spirit, albeit with different parameter
choices.

To the best of our knowledge, no lowerbound is known for the problem under consideration.
For volume computation of convex set, the best known query lowerbound is fNZ(dz) given by [RV0S§]
when ¢ = O(1). The results are not comparable as the volume of convex body corresponds to a
function f that is not strongly convex, and the query is of membership rather than gradient type.

Non-asymptotic error analysis for Monte Carlo sampling algorithms has received a lot of research
focus in recent years. One popular type of sampling algorithm is based on the Langevin dynamics,



either the underdamped Langevin dynamics

dﬂl‘t = V¢ dt,
dv, = —Vf(.%’t) dt — YUt dt + / 2y d By,

where v > 0 is a friction parameter and each component of B; € R? is independent standard
Brownian motion, or the overdamped version (which can be obtained by taking v — oo of the
underdamped Langevin while rescaling time t — ¢/7):

d.Z't = —Vf(xt) dt + \/idBt

After discretization of the SDE by a numerical integration scheme, the overdamped Langevin
dynamics leads to the unadjusted Langevin algorithms, whose explicit non-asymptotic error bounds
have been established by recent works [Dall7, DM*17, DK17, DMM19, VW19], with complexity
(9(%) to achieve Wasserstein-2 error ¢ [DMM19]. The dependence on d and ¢ can be improved
by sampling algorithms based on discretizing the underdamped Langevin dynamics, which has
been recently pursued by [CCBJ17, DRD18, MCC*19, MFWB19, SL19]. In particular, the very

recent work [SL19] gives an upperbound of query complexity (5(max{ uf%zf/?), fl//ijj;f }) for the
ULD-RMM algorithm, upon which we will base our algorithm for the normalizing constant.

Metropolis-Hastings acceptance/rejection can be applied on top of the unadjusted Langevin
algorithm. The resulting algorithm is known as Metropolis-Adjusted Langevin algorithm (MALA)
[RT96], which was in fact first developed in the chemistry literature known as the smart Monte
Carlo algorithm [RDF78]. The non-asymptotic error bound for MALA for log-concave probability
distribution was recently studied by [DCWY18,CDWY19]. The result indicates that O(kdlog(1/e))
queries to f and V f are needed to achieve error ¢ measured in total variation (TV) distance. Thus
using Metropolis-Hastings acceptance/rejection improves the sampling efficiency exponentially in
terms of the error &, but suffers a worse dependence on d.

Besides the Langevin dynamics, sampling algorithms based on the deterministic Hamiltonian
dynamics have been also quite popular, known as the Hamiltonian Monte Carlo (HMC) algorithms
or hybrid Monte Carlo algorithms originally proposed in [DKPR&7]; see also the review [BRSS18].
The non-asymptotic error analysis has been considered recently in [MS17,LSV18,LV18,CV19] for
log-concave case and in [BREZ18] for more general cases using coupling arguments.

3 Annealing for Estimating the Normalizing Constant

For estimating the normalizing constant Z, we consider an annealing algorithm similar to previous
algorithms for normalization constant estimation (see e.g., [LV06,CV18, BDM18]), but with a choice
of annealing sequence different from that in the literature. Similar annealing strategies are widely
used in calculation of normalizing constants, such as the annealed importance sampling [Nea0O1l] in
the statistic literature and thermodynamic integration [Jar97] in the statistical physics literature.
We define a sequence of auxiliary distributions, given by adding a quadratic function to f, for
i=1,2,.... M
_ L=l
2 o?

2

fi(x) + f(2), 3)

where 01 < 09 < --- < g3 for convenience of notation, we also define o741 = 0o so that fyrr1 = f.
Correspondingly, we consider the sequence of distributions

pi(de) = Z; e i) da, (4)



where Z; is the normalizing constant

Z; = / e~ i@ dg. (5)
Rd
The estimation of Z is based on the identity
Mz
o o i+1
Z—ZM+1—Z1H Z (6)
=1
In (6), we will approximate Z; by the normalizing factor of the Gaussian distribution with variance
o?. The ratio 221 for i = 1,..., M can estimated using sampling algorithms for the distribution
pi, since
Zit1 / 1 ( 1 1 > 9
_ (= 3 (dx) =E, (g; 7
7 exp B Ui2 Ui2+1 2] | pi(dz) pi(9i) (7)
where

1 1 1 9
. i . 8
9i €xXp <2 (O_ZQ O-Z‘2+1> ‘|$|| > ( )

Thus, if Xi(l), o X ) are iid sample points generated according to the distribution p; (or its

(3
approximation), we can estimate

Z 1 K (k)
i1 L '
x>, )
k=1
For the sequence of 0’22, we choose the following annealing strategy: We start with o7 = 5oL

and increase as
2 2 1

until J%/[ is large enough, as specified below. We remark that a slower annealing procedure of
0?1 = 02(1+ 1/d) was previously considered in [CV18], which gives a smaller relative variance of
gi for each stage (on the order of d~'). We take a faster annealing procedure to take advantage of
variance reduction by the multilevel Monte Carlo method, cf. Section 4.

In the above sketch of the algorithm, the approximation of Z; is guaranteed by the following
lemma. Proofs of this and other lemmas in this section are postponed to Appendix A.

Lemma 3.1 (Starting distribution). Letting o3 = we have

_€_
2dL’

2 2
\ Il |l

_1]=| _1
<1—5)/e“¥ dxgzlg/e“% da. (11)
2 Rd Rd

Next we consider the ratio Z%;l in (6). We have

ZM+1 / [EdR
=M b1 dz) = E 12

). To control the accuracy of Monte Carlo estimation of E,,, (gar), we bound

||~’ffg2
20,

the relative variance in the following lemma. The idea of the proof (deferred to Appendix A) comes
from [CV18, Section 7.1], in particular the proof of [CV18, Lemma 7.6].

with gy = exp(



Lemma 3.2. For any 02, > 2, we have
M w’

Bl s () L14) (2

Epar (g90) 2 U?\/[ 20y /" MU%/[
Let us now consider the estimate for let = E,,(gi) in (6). To bound the variance of g; =

exp(2(0; %~ aifl)Ha:H2) under the distribution p;, let 0% = 02, ; and 07 = 0?/(1+ ), and calculate

I+a [|lz||? 1—o Jlz[?
B, () Eoop(-150LF ) By e (- 50 12F)
L |

pi(9)? <IE:,, exp<—%“frg2>>2

The next lemma gives an upper bound for the right hand side as exp(4a?d). This suggests the
choice a = id used in our annealing strategy to give an O(1) relative variance. The proof follows

(13)

along similar lines as the previous lemma.

1

5, we have

Lemma 3.3. Let p be a logconcave distribution, for a <

2 2
E, exp(—H’Ta 2] ) E, exp(—l_Ta 2]

o2 o2

<Ep exp (—% ”f,!Q > ) 2

With these lemmas, it remains to choose a suitable sampling scheme to estimate E,, g; for each i.
One possible approach is to use the Metropolis-Adjusted Langevin Algorithm (MALA) to generate
independent samples with respect to p;. Using the theoretical guarantees of MALA for strongly log-
concave distributions recently established in [DCWY18, CDWY19], and the choice of 03, = @(%),

we arrive at an algorithm with total query complexity (5(65—2“ max{l, VE/ d}) This follows from
the fact that MALA needs O (dlﬁ: max{l, VE/ d}) queries to achieve ¢ error in TV distance, and

we need g samples at each annealing stage to achieve relative variance O <f/—23), which leads to

relative variance O(g?) for the product, and thus O(e) relative error. See Appendix B for details.
The dimension dependence can however be improved by exploiting the multilevel Monte Carlo
algorithm, as we discuss in the following section.

) < exp(4a’d) (14)

4 Estimating the Normalizing Constant using Multilevel ULD

Without making additional smoothness assumptions, for guarantees in KL or TV error, the best

dependence on d known is the O(d) dependence given by MALA. However, for guarantees in

Wasserstein (W3) error, algorithms based on underdamped Langevin diffusion are known to give

better dependence: [CCBJ17] show that to achieve Wy error €, underdamped Langevin dynamics
~ (1 _

(ULD) has query complexity O <d§1“2>, and [DRD18] improves the dependence on & to K3 [SL19]

p2e
propose the Randomized Midpoint Method (RMM) to estimate the integral in ULD, and obtain

/1 17
query complexity O | 42 4 d9£T )
5§u§ Mﬁag

Focusing on the dependence on d and ¢, one may hope that a method which obtains W5 error

. . .. . 1+
using O (—dZ) queries can be used to compute the normalizing constant in time O (—d2 +Z > However,
15 &

8



we show below that a naive substitution of the algorithm in the annealing procedure described in
Section 3 fails. The key ingredient we need to obtain this d'*7 dependence is multilevel Monte

~ /3
Carlo, which additionally achieves 6% dependence in €. This allows us to obtain the O(dig”“Q) and

—~ 4 7
(’)(%M) rates in Theorem 1.1.

For simplicity, in the proof sketch below we assume the condition number and strong convexity
are order 1 (k = O(1), p = O(1)), and focus on just the dependence on d and . In our main
theorem we do work out the dependence on x. We describe the guarantees that we would obtain
by using ULD, but the same story holds for ULD-RMM with improved rates. For details, see
Appendix C.

4.1 Insufficiency of ULD

Underdamped Langevin dynamics has the following error guarantee: to estimate the distribution

up to Was-error €, we can take step size n = O (%) and number of steps % =0 (@)

Suppose we use (5(\/3) temperatures, differing by factors of 1 + %. We chose the fewest
number of temperatures such that the variance of g;(x) over p; is O(1). (Using more temperatures,
we need improved accuracy for estimating R; := E;~,,9i(x) for each temperature, which results
in the same running time per temperature.) Then to estimate the normalizing constant within
1+ O(e), we need to estimate the ratio R; at each step with relative accuracy %. We can check

2
that g;(z) = exp (ﬂ) is O (%)—Lipschitz around where p; is concentrated, that is, for z

o2(1+Vd)
such that ||z|| = O(c;v/d). To estimate the product with e relative accuracy, we need to estimate
each R; with O (%) accuracy, so we need to sample from p; with Wa(p;, pi) < O (%) This

requires us to choose a step size of n = O (8%3 > =0 (%), so each sample takes @) (g) queries to

. . 2
obtain. In order to reduce the variance to <~

Va’
of O (\/E d. g) =0 (g—;) steps.

€

we need g samples at each temperature, for a total

4.2 Multilevel ULD

Multilevel Monte Carlo [Gil08] is a generic way to improve rates for estimating EY for a random
variable Y, when there are biased estimators Y such that (1) as n — 0, EY"7 — EY and the cost
to evaluate Y increases, and (2) there is a way to couple Y and Y when 1’ < 7 that significantly
reduces the variance, Var(Y"” — Y"') < Var(Y™").

This is the case when we wish to estimate E,.,g(x), when p can be (approximately) obtained
from simulating a stochastic differential equation (SDE) for some time 7'. In this setting, Y" =
g(X") and X" = z7., where x7 ~ p" is the point obtained by simulating the SDE with some
discretization algorithm A for time 7 and step size n. Using the same Brownian motion for
simulating z} and x?/ naturally defines a coupling. If ¢ is L,-Lipschitz, Var(g(X") — g(X m)) <
LZE[|| X" — X"'|[2]. The average distance E[||X" — X" ||2] will be comparable to the Wasserstein
error Wa(p", p). This is much smaller than the variance of X", which is comparable to the variance
of X ~ p.

The idea of Multilevel Monte Carlo (Algorithm 3) is to choose decreasing step sizes 7o, ..., Nk



e.g. with n; = %), and write g(X "
j =

k
g(X™) = g(X™) +Z (X)) — g(XMi-1)] (15)
J=1

We estimate each of these terms by taking Ny samples at the highest level X, and N; coupled
samples (X", X?jfﬁ), to obtain the estimate

N() k N]
~ 1 1
R:= —0§ g(X[°) + § > [g(X77) — g(XP ). (16)
! i=1 j=1 N; i=1

Suppose we would like to give an estimate with bias e, and variance £2. The expected value of R
is simply E xnx ~,m g(X™), so to ensure bias < ey, it suffices to choose 7, small enough. Supposing

the variance of g(X;” ) — g(XZm*lJr) is F'(n;), the total variance is %ﬁmo)) + Zle %Z’) For

smaller step size, because the variance F'(7;) is smaller, it suffices to choose a smaller number of
samples IV;, which offsets the increased number of steps 2 Optimally choosing N; to balance this

with the total time necessary, Zf 1 Tn , gives the followmg

Lemma (Lemma C.2 with L, = /i, F(n) = Cn®). Suppose that p(dz) oc e /@) f is ,u -strongly
convex and g : R* — R is V/#-Lipschitz. Suppose algorithm A with step size n takes 7 gradient

queries to generate the random variable X". Let X° denote the corresponding continuous process.
Suppose there is a coupling between X" and X° such that E[|| X" — X°|)] < F(n) := Cn® (for
some 3 > 1), and T(-) is a function such that Wa(p",p)? < F(n) A €2 whenever T > T(g). Let

2
no be such that F(ng) = % and F(ng) < %” ForT >T (ﬁ) and appropriate number of samples

N;, multilevel Monte Carlo (Algom'thm 3) run using A returns an estimate R of E,g satisfying
[ER — E,g| < ey and Var(R) < 2 using O (T (

+ l)) gradient queries.

52 10 Mk

Note the scaling above is so that the variance of g over p is at most 1. Without multilevel
Monte Carlo, the number of gradient queries would be significantly worse: O (% Tz > because we

need to take a step size of 7y, and the number of samples to reduce the variance from 1 to €2 is aiz

Using multilevel MC, we only need to pay O (%2) samples at the highest level kK = 0, and we only

need to take 7 small enough so that F'(ny) = % (which makes Var(g(X™)) < 1).
We use this result to give a non-asymptotic analysis of the rate for multilevel ULD (Theo-
rem C.4) and ULD-RMM (Theorem C.6). The results of [CCBJ17, DRD18] show that for un-

derdamped Langevin dynamics, the hypotheses of the lemma hold with F(n) = O (d 2), which

suggests we take the largest step size to be ng = O(d_%). For ULD with the randomized midpoint
method, [SL19] show that the hypotheses hold with F(n) = O <g773), which suggests we take

m=0(d"#)
For the problem of estimating the normalizing constant, for each temperature i we apply
Lemma C.2 with g < g—ii, which has Lipschitz constant O (%) = O(y/ii) around where it is

concentrated, where p; is the strong convexity constant of f;. Then, to obtain bias ¢, = O (%)

and variance ¢2 = O (\E/—QE), we need n, = O (%) and so O (T (% + @)) =0 (5%) queries.

10



Since there are (5(\/3) temperatures, the total number of queries over all temperatures is O (f#)

2/3

1 1
Similarly for ULD-RMM, we need n, = O <5£T> and so O (T <d35—3/3 + %)) queries per
£

temperature, and O (f#) queries in total.

Note that it is important to keep track of ¢, and &, separately when computing the rates for
multilevel MC. In our application, we can tolerate a larger ¢, than ¢, at each temperature. This
is because when there are M temperatures, when adding up the contributions from the different
temperatures, the standard deviation will only be multiplied by v/M, while the bias will be multi-

plied by M. This allowed us to take ¢, = © (ﬁ) > e, =0 (%) If we lowered e, to make it

equal to &5, then we need a factor of v/d more samples for each temperature.

4.3 Technical issues

We glossed over several technical issues in the above proof sketch. First, we wish to estimate
Ez~p,9i(x) where p; is the distribution at the ith temperature and g; is the ratio, but g;(z) =

2
exp <%) is not Lipschitz. Instead, we truncate it for large x, and using concentration of
||z|| on the log-concave distribution p;y1 to show that the bias introduced is small (Section C.4,

+2
Lemmas C.7 and C.8). More precisely, let h;(z) = g;(x) A exp (ﬁ) We show that for

some choice of & = O <\/8+g(1)>’ i =B, 2l +© <0'i (14 a)log (é)), we have (1) g is

p; 9i

O (U%)—Lipschitz, and (2) the bias introduced is small, [E,, (h — g)| <e.

We need to know at what radius 7" to truncate g;; we can do this by estimating Ey,,,, [|z||
using samples and then adding a suitable multiple of o; (Lemma C.11). Finally, we put all the
bounds together to prove the main Theorem C.12 for ULD and Theorem C.13 for ULD-RMM.

5 Lowerbound on Number of Queries

In this section, we give a lowerbound on the number of queries required to estimate the normalizing
constant f e~ f@ dx. More precisely, we prove the following theorem:

Theorem 5.1. For any fixed constant v > 0, for large enough d, given query access to gradient or
function value of a function f :R* — R that is 1.5-smooth and 0.5-strongly convez, any algorithm
that makes o(dl_'ys_(z_“/)) queries cannot estimate the normalizing constant Z = fRd e Ty
within a multiplicative factor of 1 + & with probability more than 3/4.

In fact, even if the algorithm is allowed to query any local information (such as the Hessian of
f at x), our lowerbound still holds. Our construction also satisfies the Hessian Lipschitz property,
which was used in some of the sampling results, see e.g., [DRD18, BDM18, MV18, LWME19]. Note
that the bound hides constants that depend on «, and d needs to be at least as large as Q(1/7).
One might hope that de~2 can be a lowerbound for every dimension d. However, this is impossible
as when d < 3 quadrature methods give better dependency in terms of € (see Appendix E).

To prove Theorem 5.1, we first construct a k- dimensional function (where k = ©(1/7)), and
show that any algorithm that estimates its normalizing constant requires at least (2 (5_(2_7))
queries. Then we construct the function f : R — R in Theorem 5.1 by partitioning the d di-
mensions into d/k groups of size k, and use a product distribution whose marginal on each group
corresponds to the function that we construct for the low-dimensional regime.
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Lowerbound for low dimensions In low dimensions, our goal is to give a lowerbound that
depends on the accuracy e:

Theorem 5.2. For any fived integer k > 0, given query access to gradient or function value of
a function f : R¥ — R that is 1.5-smooth and 0.5-strongly convex, any algorithm that makes

2
o(e TF4/F) queries cannot estimate the normalizing constant Z = ka e~ T@dg within a multiplica-
tive factor of 1+ € with probability more than 3/4.

Note that if we would like to get guarantee in terms of € similar to Theorem 5.1 we only need
to choose k such that —ﬁ = —(2 — ). It suffices to choose k = ©(1/7).

The main idea of proving this theorem is that we will construct a large number of independent
“cells” in the space R¥, where each cell can be one of two types. The final normalizing constant
will depend on how many cells are of type 1. We will then pick a value 0 (closely related to the
accuracy ¢€) and consider two distributions of functions: in the first distribution, each cell is of
type 1 with probability 1/2 + ¢; in the second distribution, each cell is of type 1 with probability
1/2 — 6. When the number of cells is large enough (much more than 1/§2), the functions from
these two distributions will have different normalizing constants (with large constant probability).
However, making one query to the function at best gives information about a single cell. By a
standard argument (see Claim D.1) we know in order to distinguish between two Bernoulli random
variables with bias § with better than 1/2 probability, one needs at least Q(1/6%) queries. Any
algorithm that uses fewer queries will not be able to distinguish the two distributions, and thus
cannot estimate the normalizing constant accurately.

To construct these two distributions, we will start from a basic function fo(z) = ”2”2. The
normalizing constant for this function is well-known:

/ e=10®) 4 — (27)4/2,
Rk

To construct n cells, let [ = 1/(v/kn'/*) (wlog we assume n'/¥ is an integer), and partition
[—1/v'k,1/V/k] into n'/* intervals each of length 2I. Let I;(i = 1,2,...,n'/*) be the i-th interval.
Each cell 7 will be indicated by a k-tuple (i1, s, ..., i) € {1,2,...,n*/*}* and the cell 7 corresponds
to I;; x Iy x --- x I;, in R¥.

Next we will discuss how to modify the function within the cells. For cell 7, We will modify
the function to be fo(z) + cq(}(x — v,)) for z in the cell, where v, is the center of cell 7. Note
that here the input %(x —wv,) of ¢ ranges in [~1, 1]¥. There are two major constraints for designing
the function ¢: (1) it is possible to modify adjacent cells independently without violating the
smoothness and strongly convex constraints; (2) it is possible to choose a large enough ¢ such that
Jyer exp(—(fo(x) + cq(%(az —v;))))dz is significantly smaller. The exact property of the ¢ function
and the construction is deferred to Lemma D.1 in Section D.

Now, we modify the functions within each cell by adding in a scaled version of ¢, as in the

following lemma;:
Lemma 5.3. For any n where nt/* is an integer, and | = 1/n1/k. For each cell T = (i, ...,1ix), let
vy be its center. Construct the function f(z) as

_ fo(x), cell T is of type 1
flw) = { folx) + crq (%(x — ’UT)) ., cell T is of type 2.

Here q is the function constructed in Lemma D.1. There exists a way to choose c¢;’s such that no
matter what types each cell has, the family of functions satisfies the following properties:

12



1. f(x) is 1.5-smooth and 0.5-strongly conver.

2. The normalizing constant Zy =[5 e~ T@dr = (2m)k/2 — C=2, where na is the number of
type-2 cells, and C' is at least §2 (12).

With this lemma, one can construct two distributions of functions as follows: choose § such that
e =O(8'%*) n~1/6%, and let each cell be of type 1 with probability 1/2 4§ for the two classes.
Claim D.1 shows that any algorithm that makes fewer than o(1/6%) queries cannot distinguish the
two distributions, while Lemma 5.3 shows that the normalizing constant for two distributions differ
by at least 1 + Q(I126) factor where [ = ©(n'/*) = ©(6~2/F). This gives the desired trade-off in
Theorem 5.2. A more detailed proof is given in Appendix D.

Lowerbound for high dimensions To generalize Theorem 5.2, as we mentioned earlier, we
partition the d dimensions into d/k groups of size k, and use a product distribution. If we use S; to

denote the set of coordinates for the i-th group, we can write f(z) = Zfi Ii fi(zs,). In particular,
for the two distributions of functions that the algorithm is trying to distinguish, the f;(zg,) are
sampled from the two distributions of functions we defined for Theorem 5.2. Since the normalizing
constant of f(x) is equal to the product of normalizing constants for f;’s, the gap between the two
distributions is amplified by a power of d/k = (d). Therefore, in order to achieve accuracy 1+ ¢
for function f, one would need to achieve an accuracy of 1 & ek/d for functions f;. On the other
hand, one query in f can simultaneously give information on d/k of the functions f;’s. Intuitively,
if the lowerbound for the k£ dimensional case is L(¢), the new lowerbound should be L(ek/d)/(d/k).
Together with Theorem 5.2 and the choice k = ©(1/7), this gives the guarantee in Theorem 5.1.
The detailed proof is given in Appendix D.

6 Conclusion and Future Work

In this paper, using multilevel Monte Carlo method we give a better algorithm for estimating the

N dA/34-d7/6,7/6
O n+€2 K

normalizing constant that only uses ) queries to the gradient. We also give the

first lowerbound that no algorithm can estimate the normalizing constant up to 1+ ¢ accuracy with
% queries. For well-conditioned functions, the two bounds differ by O(dl/ 3+°(1)€_°(1)). Closing
the gap is an immediate open problem, however we are not sure which side (if any) is tight. Any
better rate for Langevin dynamics or related methods can give a better running time when combined
with the multilevel Monte Carlo framework. On the other hand, improving our lowerbound might
involve giving a lowerbound for sampling problems that depends on the dimension d.

There are many other settings where the idea of multilevel Monte Carlo may help improving
the upperbound. This includes when only stochastic gradient queries are available (or when f is
a sum of simpler functions). We note that multilevel methods can work with stochastic gradients
as well [GNST16], and variance reduction techniques are available [CFM™18]. It is an interesting
question whether multilevel Langevin dynamics or multilevel hybrid Monte Carlo can improve
running times for volume estimation of convex sets (like polytopes) [LV17,LV18], or smooth log-
concave distributions restricted to convex sets.
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A Proofs for Annealing Strategy

We provide proofs here for Lemmas in Section 3.

Proof of Lemma 8.1. Without loss of generality, we assume z* = 0 (as it amounts to a change
of variable x — x — z* which does not affect the normalizing constant). The upper bound is
obvious since f(z) > 0 by our assumption (recall that we only concern about the relative error for
normalizing constant, so that shifting f by a constant has no impact). For the lower bound of 7,
note that f(z) < $L|z?, we have

=3 (Lo llel® g — oy -1)42
>/Rde 2( 1 ) dl‘—<27T(L+O'1 ) >

Thus,

Z1 2\ ~Y? —do?L/2

which is larger than 1 — § for 0% = 5. O

Proof of Lemma 3.2. Define
h(t) == Epe—tllxll2Epetllxll2‘

We have
=12 —tllal2
iy Eo(llelZel=) B (flal2et1)
Wt) . ElP | Ee P
t
:/ v'(s)ds,
—t
where
2
E (lalf?el1")
v(s) = Eeclel”
Thus

2
E, (|lzl|eleI? ) E,esliel? - <Ep(||x”2esuxn2>>
2
<Epes||w||2>

. Since p is strongly log-concave with convexity param-

V'(s) =

= Vary, (||«),

dps sl

where p; is a distribution with — o e

eter 11, p, satisfies the Poincaré inequality with constant 1/(p — 2s) < 2/p for s < £, thus
8 16
Vary, ([l]?) < ;Eps(Htz) S (19)

where the last inequality follows from the concentration property of log-concave distribution.
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Therefore,
1 1/(20%)) W (t)
Inh(—)=1Inh
nh(zz) = (0)+/ 0

M 0
1/(202,) ot

g/ . / Var,, (|l2]) ds dt
0 —t

1/(203) 1t 164
[ [,
0 -t M

4d

dt

= ot
where in the last inequality we have used (19) that s < 1/(20%,) < 4 by our assumption on o3%;.
Thus we arrive at ]2 ]2
1= 1= 4d
E exp(———)E exp(——) < exp(—). O
p 2 O'%/[ r 2 0'%/[ ,uajl\/[
Proof of Lemma 3.3. Define

1+ alz|? 1—alz|?
h(a) := IE,,exp(——H | >Epexp<——u>.

2 o? 2 2
It follows then
we) 1 (Eo(lalPexp(-52lE)) B, (o) exp (- 152 12F))
h(e) 202 wap(_uTauiy) Epexp(—l—Ta”jQz)

where v(t) is defined as

Explicit calculation gives

| Bl exp (-

202

ol
SIER
[
[ V)
~—
~——
=
A
0]
]
go]
|
DO+
SIER
[
[ V)
~—
|
7N
=
<
[
8
S
©)
]
o]
/|\
DO+
SR
=
(V)
N———
N———
~
no

V() = —

1
= — 53 Varp([l[*).

Here p; is the distribution given by

% X eXP<—E—Hw”2>
dp 2 02 )

By the Poincare inequality and concentration property of strongly log-concave measure
40'2 0'4
2 2
Var,, ([lz[]%) < TEpt”xH < 8t—2d.
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Therefore, we arrive at the inequality

h’(a) 1 14a N
o) = 17 ), Veradlal?)d

1+a 1
<2d / ot
1 t

—

:2d(1i0z_1—|1—0z>

< &do.

This gives

Ini(a) — Inh(0) = /0 “IQ) 4 < dde,

Thus, we arrive that

which is the desired inequality by the definition of h. O

B Estimating the Normalizing Constant using M ALA and An-
nealing
Let us first recall the Metropolis adjusted Langevin algorithm (MALA) [RT96], Algorithm 1, which

is a Metropolis-Hasting algorithm with the proposal step given by discretized overdamped Langevin
diffusion.

Algorithm 1 Metropolis adjusted Langevin algorithm (MALA)
Input: Step size h and a sample x( from a starting distribution pyg
Output: Sequence z1,z9,...
1: fori=0,1,... do
2. Draw zj41 ~ N(z; — hV f(x;),2hI)
exp(—f(zit1) — @i — zip1 + AV f(zi41)[3/(4h))
exp(—f(xi) = zis1 — @i + hV f(2:)[5/(4h))
4:  With probability a;y1 accept the proposal x;11 < z;11
5:  With probability 1 — a;41 reject the proposal x;41 + z;
6: end for

3:  Compute q;41 < ming 1,

Following the recent theoretical analysis for MALA [DCWY18, CDWY19], we consider the %-
lazy version of MALA, namely, for each step, for probability % one stays at the previous iterate
and for probability % one takes a MALA step. The laziness guarantees that the Markov chain is
aperiodic and hence has a unique invariant measure, given by the target distribution thanks to

the Metropolis acceptance-rejection step. The convergence of the empirical measure to the target
measure has been established in [DCWY18, CDWY19], which we recall here:

Theorem B.1 ([CDWY19, Theorem 2|). Assume the target distribution p is strongly log-concave
with L-smooth and p-strongly conver negative log-density. Then given the mztzal dzstrzbutwn po =
N (z*, 1[) the g—lazy version of MALA with step size h = ¢(Ldmax{1, \/r }) achieves

drv(pn,p) <6
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for steps
d
n > Cdklog 5 max{l, \//{/d},
where ¢ and C' above are universal constants.

The above Theorem assumes z*, the minimum of f(x). In practice, we do not know z* a priori,
however, using a first-order method like gradient descent, we can obtain an n—approximate mode T
using  log(1/n) gradient evaluations. If we instead take the initial distribution py = N(Z, 5+ ), the
warmness parameter with respect to the target distribution becomes exp(g log(2k) + Ln ) instead
of k42 for pg = N (z*, %I) As discussed in [DCWY18, Section 3.2], with a slightly modified step
size, the MALA sampling then requires

2
nsznlog%lmax{l,\/H/d}(2+ 2Ln )

dlogk

steps to achieve TV error less than §. Thus with a negligible amount of increased cost for finding
T that is 1/v/L accurate: |Z — 2*|| < 1/v/L, we have the number of steps of MALA for achieving
d error in TV norm remains O(d/{ log %l max{l, \//{/d}).

Come back to the problem of estimating the normalizing constant. We will estimate the normal-
izing constant based on the annealing algorithm. The Lemma 3.2 suggests the choice of a%/[ to be

larger than 2\/_ so that it satisfies the assumption of the Lemma the last stage has the same O(1)
relative Varlance as the previous steps, guaranteed by Lemma 3.3. This implies that the number of
stages

M < Cﬂ(log %d + 1) = O(Vd). (20)

Given the annealing sequence, we approximate Z1 by the normalizing constant of Gaussian with
variance 01 Lemma 3.1 guarantees that this would only introduce at most £/2 relative error. Thus
the task remains to estimate the ratio Z;41/Z; for i = 1,..., M, or equivalently to estimate the

expectation of
1/1 1
9 = o0 (5 (= = =) lall?) (21)
9 Oin1
under the distribution p;, proportional to exp( 1 ”mHQ —f (x)) dx. Suppose we generate K iid

samples Xi( ), e ,X(K) according to p;, we estimate the ratio Z;+1/Z; by

(2

K
1 (k)
gi = 7 kz_lgi(Xi ). (22)

Denote the short hand g; = E,, g;, we use the relative variance bounds shown in Lemma 3.3 and
Lemma 3.2 to upper bound

E(5?) = 1 (Y E(o (X)) + K (K - 1)g?)
k=1
< KL( 'K+ K(K -1))g? 23)

60
< (14 )
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Lemma B.2. LetY;, i =1,..., M be independent variables and let Y; = EY;. Assume there exists
n > 0 such that nM < % and )
EY? < (1+n)Y7,

then for any € > 0

p(MiYu—YioYal e\ _5uM
Yi--- Yy -2 g2

Proof. The proof follows the Chebyshev’s inequality:

Y- Yy — 9] — g2 5?12...5?1\2/[

s(mpen )

- 2 2 2
e YIYM

P<|y1...yM_y1...yM| >§> <iVar(Y1---YM)

IN

4

S(@+nM -1
4

S - 1)

snM
o2

IN

<

)

where the last inequality follows from e"™ —1 < %nM for nM < % O

Applying Lemma B.2 by taking Y; = ¢g; and n = %, we obtain

p( 09 =51 gul , ) 3001 (24)
ggn 2) 7 2K

This suggests us to take the number of samples K = 122—(2]M, so that the right hand side of above is
bounded by %. Since we have M stages in total, the total number of samples we need in the whole
algorithm is

M? ~.d
Ntot :MK:O(E—Q) 20(5_2) (25)
To generate the iid samples Xi(l), . ,XZ-(K), i =1,...,M, we will use the %—lazy version of

MALA algorithm, and choose parameter § = iﬁ, so that for probability at least %, every sample
in our algorithm is guaranteed to follow the desired distribution, since we have in total Nyo; samples.
Note that we have a uniform bound over the condition number of p;,i =1,...,M by k = L/
thanks to the strongly log-concave assumption on p. Thus, for each sample, the number of steps it
takes is bounded by O(d/{ log(dNiot) max{l, \//{/d}) by Theorem B.1.
We summarize the procedure of estimating the normalizing constant based on the MALA sam-
pling below.
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Algorithm 2 Annealing algorithm for normalizing constant based on MALA
Input: p-strongly convex and L-smooth function f, error threshold e
Output: An estimate Z for the normalizing constant Z = [ e~/ () dz within relative error O(e)

L2

2 M« {1 g(22%) /log 1+ ) |
3 K « 1200M
’ e?
4 7+ (2m0?) 4/2
5: fori=1,2,...,M do
6: if © < M then
T: UZ-ZH <—02-2(1+%
8: else
9: H—l — 00
10:  end if
11:  Use %—lazy MALA to generate random variables Xi(l), . ,XZ-(K) iid wrt p; with TV error

guarantee § = ﬁ.

~ 1 K 1(1
120 Gi ¢ 3¢ Dopet exp(§ <¥ -
132 Z<+ 72y
14: end for
15: return Z

A )1xP12)

Putting together all the above estimates, we arrive at the following guarantee for the Algo-
rithm 2.

Theorem B.3. Let f:RY = R be a p-strongly convex and L-smooth function. With probability
of success at least Algorzthm 2 gives an estimate A of the normalizing constant Z = [ e~ dg
with relative error E with query complexity

O(MK?—E log(dM K )k max {1, \//i—/d}> = 6(?—25111&}({1, \//i—/d}>

C Estimating the Normalizing Constant using Multilevel Langevin

In Section C.1 we introduce multilevel Monte Carlo, a generic way to obtain a faster rate for
estimating an expected value. Multilevel Monte Carlo reduces the variance in the estimate by
simulating a SDE with multiple step sizes in a coupled fashion. We give guarantees for multilevel
Monte Carlo for a general setting, assuming properties of the SDE and the coupling. In Section C.2
and C.3 we apply the multilevel Monte Carlo to ULD and ULD with RMM, respectively. These two
sections prove the two parts of Theorem 1.2. In Section C.4, we introduce a truncation procedure
to solve the technical issues mentioned in Section 4.3, namely that the function we are estimating
is not Lipschitz. Finally in Section C.5 we apply multilevel ULD and ULD-RMM to normalizing
constant estimation.

C.1 The multilevel estimate

We consider multilevel Monte Carlo for the following setting: We wish to estimate Ex.,g(X),
where p cannot be sampled from exactly, but can be (approximately) sampled from by simulating
a SDE for some time 7. Suppose we have a discretization algorithm A that given time T and
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step size 7, simulates the SDE with step size n, making O(T'/n) queries (i.e., a constant number of
queries per iteration), and returns a sample X" = :Eg« ~ p'l. Smaller n naturally gives more accurate
samples, but it also requires more queries and takes longer time. Naively, we would just run A at
a step size 1 small enough so that [Ex~mg(X") —Ex~,g9(X)| < 5, and take enough samples. If we
need to take n = €77, then this gives a rate of O (62%)

Multilevel Monte Carlo method takes advantage of coupling of A at two step sizes to reduce the
variance. Assume that we can run A coupled between two step sizes, to generate (X7, X n/ 2) such
that Var(g(X"7) — g(X 1/2)) <« Var(g(X")) decays sufficiently fast, multilevel Monte Carlo leads to
a faster rate (9( ) for estimating Ex~,g9(X). The dependence on other parameters will also be
improved.

To achieve this, multilevel Monte Carlo uses the estimator

J

No k j

-~ 1 1 27 2i—1_

Rim i 008+ 3 3l — g ) 20)
i=1 7j=1 i=1

J

Xino/ 2j+, Xino/ 2]) are coupled samples

where X are samples at the highest level (step size), and (
at level j. For larger j, the variance Var(g(XinO/ 2j+) - g(XZ-nO/ 2]71_)) is smaller, so fewer samples
are needed, offsetting the increased query complexity. We note that ER = E[g(X™/2")], so the
bias is determined by the smallest step size. On the other hand, minimizing the variance requires
optimizing the sample sizes N;.

We work out non-asymptotic rates for multilevel Monte Carlo, given the guarantees on A (the
rate of decay of the variance and bias of individual estimates in the step size n). The result is
similar to [Gil08, Theorem 3.1], which works out the asymptotic rates when the variance and bias
follow a power law in 7. However, we will need to work out the rates when the desired bias €, and
variance €2 are different, because for our application of estimating normalizing constant, we can
tolerate a larger €, than €, at each temperature.

Note also the complication that in our setting, the bias depends not just on the step size, but
also the time T'. We simulate a SDE where p is the stationary distribution, so running the algorithm
for a finite time 7" introduces some bias ¢, even as the step size n — 0. Hence, we assume that the
bias is bounded by G(n) V e, whenever T' > T'(¢), and need to set T large enough. In our setting,

the Markov processes will converge exponentially, so this only introduces a log ( ) factor.

Lemma C.1. Let A be an algorithm that given a parameter T (e.g. time) and n > 0 (e.g.,
discretizations with step size ), returns X". Let p" be the distribution of X". Suppose also that
X ~ p (the distribution we are trying to approximate) and there are couplings between any two of
the random wvariables. Suppose the following hold for any 1 < Nmax:

1. If X" and X" are coupled, the variance satisfies Var[g(X™)—g(X")] < F(n) whenevern < 1

2
a
where F' is a non-decreasing, non-negative function satisfying Z;‘io F;%?])) <Cp (F 77))

for some universal constant Cr and any a € {3,1}.

2. The bias satisfies |Eg(X") — Eg(X)| < G(n) V g, for non-decreasing function G, whenever
T >T(e).
3. The variance satisfies Var[g(X)] < c.
4. Algorithm A takes % queries (e.g., to Vlog(p)) to compute a sample X".
_m

Suppose n; = 53 and no, Nk, Nj, and T" are chosen so that the following hold:
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Algorithm 3 Multilevel Monte Carlo
Input: Initial point zg, time T, largest step size 19, number of levels k, number of samples
Ny, ..., Ny, function f: R — R, function g : R — R.
Input: Sampling algorithm A(zg, f,7,T) which can give coupled samples (7, "/?) (or individual
samples z).
Output: Estimate of E,.,g(z) where p(dz) oc e=f(®) da
1: for 1 <7< Ny do
2:  Run A with initial point x¢, function f, step size ng, and time 7" to obtain X;
3: end for
4: for 1 <j<kdo
5
6

770

for 1 <i< N; do
Run coupled A with initial point zg, function f, step size n = 79/2/~!, and time T, to
obtain (X?_,X?/%).

end for

8: end for

27— 2i—1
o return 5 33 g(X[") + Xy 7 Siile(X]") - o)

=

e F(ny) =c and ny < Nmax-
o G(nk) < ep.

onZé W

o1 > T(Eb).

Then the estimate (26) satisfies |ER — E,g| < e and Var(R) < €2. Taking Nj to be the minimum
possible, the number of queries needed is

2
e-r (G ) o))
2o 2 M

Note for example that the decay condition on F is satisfied when F(n) = Cn? for some 3 > 1.
This is the most favorable case in [Gil08, Theorem 3.1]; reduced speedups are still available in the
regime 5 < 1.

Proof. Let T = T'(ep). The number of queries needed is Z i1 Téyj .

We claim that the total variance is Var(R) < 4Zj:1 F]g,zf), and the bias is [ER — Eyg| <

G(nk) V €.
To see the expression for the variance, write

N 1 No 1 No k 1 N /2]+ Joim1_
R:ﬁzg(Xi)JrﬁZ[ 9(X{") — +Zﬁz g(x" — (X" )]
0 =1 0i=1 i R

so that the total variance is (the first two terms are not independent, but the others are)

k k
Var(R) < % L 2F(m) +ZF(TU) <1y E(n;)



since x~ < ( ) by assumption on 7).
For the blas, note that |[ER — E,g| = [Eg(X"™) —E,g| < G(nx) V € by assumption.
To justify our choice of IV, note that by Cauchy-Schwarz,

2
k

" TN, F(n;) b
SN[ ey
J J j=0

j=0 7=0

(number of time steps) (upper bound on variance)

If the bound on variance is kept constant, because the RHS does not depend on Nj, then the
the number of steps is minimized when equality happens above. Equality happens when N; =
K\/n;F(n;) for some constant K. When N; > K/n;F(n;) the variance is bounded by

Var(R _42 = ZKF 4ZK/ 77J F(no)

4Cp [ F(1o)
63 no ’

by assumption on the decay of F. By choosing K =

Then the requirement on N; is N; > 4CF M

It remains to compute the number of time Steps With the minimum choice of N;, the number
of time steps is

z’“: TN; _ 2’“31 <4C2F Fno)niF'(n;) 1)
=0 M =o'\ %o 7
_ 3470k [FwFw) | - T
il Mo7; =o'
()4TCF F(no) L2
60 Mo Mk

4C2¢c 2
<T < 4 —> .
€z"o Nk
where (i) uses the assumption on decay of F' and the fact that nlk is a decaying geometric series

with largest term ﬁlk O

We put the lemma in a more convenient form for our applications.

Lemma C.2. Suppose g : R* — R is Lgy-Lipschitz. Let A be an algorithm that given a parameter
T and n > 0, returns X". Let p" be the distribution of X". Suppose also that X° ~ p° (e.g., the
continuous process with the same initial distribution) and X ~ p (the distribution we are trying
to approzimate) and there are couplings between any two of the random variables. Suppose the
following hold for any 1 < Nmax:

1. If X" and X° are coupled, then E| HX” — XOH < F(n), where F is a non-decreasing, non-
negative function satisfying ijo < 577}/2§J > (F () > for some universal constant Cg

and any a € {3,1}.
2. If T > T(e), then Wa(p", p)? < F(n) V&2,

24



3. p satisfies a Poincaré inequality with constant c. (In particular, this is satisfied for ¢ = é if

p(dz) o e /@) dz and f is p-strongly convew.)
4. Algorithm A takes % queries (e.g., to V1og(p)) to compute a sample X".

Suppose 1n; = ’27—? and no, Nk, Nj, and T are chosen so that the following hold:

c

i F(WO) 10 Mo < Mmax-

2

o F(ny) < f—bg-

ALy [F(no)n; F(n;)
. 9 NP NI
° Nj = €2 70 ’

» 727 (%)

Then the estimate (26) satisfies |ER — E,g| < e and Var(R) < €2. Taking Nj to be the minimum
possible, the number of queries needed is

L2 1
o-olr (i)
"o Mk

Moreover, we have Wa(p'k, p) < z—l;

Proof. We check that the conditions of Lemma C.1 are satisfied with F(n) < 4L§F (n), G(n) +
2 i . . .
2Lg\/F(n), c <= cLly, and T(e) <= T <Lg>. Substituting then gives the parameters.

1. Using the fact that g is L, Lipschitz, Cauchy-Schwarz, and the Minkowski inequality,
|

1 1\ 2
<L (IE (X7 = X°)* +E [HXO - Xn’m 2) < 4L2F(p).

Var[g(X") — g(X")] < L°E [HX” _x

2. Using the fact that g is L, Lipschitz, for T' > T (Lig),
|Eg(X") —Eg(X)| < LgWa(X", X) <\/ \/—> Lg\/F(n) Ve.

3. Since ||Vg(z)|| < Ly, the Poincaré inequality implies that Var,(g) < %fRd IVg(x)|]* dz <
ch. When p(dz) o« e=f @) and f is p-strongly convex, it satisfies a Poincaré inequality by
Bakry—Emery, Theorem F.3.

4. This follows directly.

Finally, note that by choice of nx, Wa(p, p) < F(ng) A = = O
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C.2 Multilevel ULD

Underdamped Langevin diffusion with parameters v, u is given by the following SDE:

dvy = —yupdt — uV f(zy) dt + /2yu d By
da:t = Ut dt

where z¢, vs € R? and By is standard Brownian motion. Under mild conditions, the SDE is ergodic
with stationary distribution proportional to e (F@+35lI%) Compared to overdamped Langevin
dynamics on log-concave distributions, it is known to enjoy an improved rate of convergence in Wy
distance. Here, v; is thought of as velocity, and —vywv; is a drag term. ULD is closely related to
Hamiltonian Monte Carlo.

The discrete dynamics with step size n can be described by

dv) = —yv) dt — uV f(z] Ty )dt + /2yudB;
dz} = v} dt.

We will take v = 2 and u = % By integration, we can derive the explicit discrete-time update
rule [CCBJ17, Lemma 10]:

1
U?Jm = e My} + Z/ —2n=s) Vf(x!)ds+ —/ dBHS (27)
0
=e 2} + (1 — eIV f(x]) + / 257 dAB, (28)
2L \/—
::Wﬁt
1 [ [
xlm =z + 2(1 — e Myl 4 — 5T <1 - 6_2(’7_5)) Vf(x])ds + T/ (1- 62(8_’7)) dBi1s (29)
1 1 1
=] + (1 —e 2] + — 77——(1—6_2’7) Vf(z] dS—I——/ 257 dB,, , (30)
2 2L 2
2,t
where all the instances of Brownian motion are the same. Let G} = [e** dB;, and H]' =

Jo} dBiys. As calculated in [SL19, Lemma 5],

G} (e —1) 5(e* 1)

(i) = (o (B =3y 7)o
Wﬂt = e 1G]
Wy, = H' — e 1G]

Define S"n gy 1O be the map sending (z/,v/) to (z{,,v/,,) as defined above. As shorthand,

because the 1 can be inferred, we write this as S(G "),
We define a coupling between the continuous and discrete dynamics, or between discrete dy-
namics with different step sizes, by having the processes share the same Brownian motion. We refer
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to this as synchronous coupling. When coupling the dynamics with step sizes n and 7/2, we have

n n/2 n
Gl = / e* dB; s = / e* dB; s + / e* dB,,,
0 0 n/2

/2

n/2 n
= / ¢** dByys + € / e dByynys = Gil* + enG:J/jz/z
0 0

g - [ ap,.. - " dB " dB — g"? 4 g?
0= ) ABes= | t+s T A thn/2+s = Hy' o L .

This leads to the update in Algorithm 4.

Algorithm 4 Coupled Underdamped Langevin Dynamics (ULD)

Input: Initial point zo € RY, function f: R? — R (with gradient access).
Input: Time T and step size n OR bound on strong convexity u, condition number x, and desired
accuracy €.
Output: Coupled samples (X7, X7/?1).
1: if € is given then

2. Letn= ﬁ\/g.
32 Let T = 5 log (%).
4: end if
5. Let t = 0. 0 n
6: Let (zf,v) = (z¢,v¢) = (20,0).
7. while t < T do 2
G*\ (G] 1 —1) 3(e"—1)
8 Draw t | T2y o N (O, <4 2 > ® 1, )
<HZ7/2 1l -1 02 '
9: Let
_ /2 n/2
G? - Gt + enGt+n/2
_ /2 /2
HZ? - th + HZZ+77/2'
2 2 2 2 2 /2
10:  Let (m?j_n,vﬂn) = ?é,H)tJrn/? OS?C/J,H),S("E?/ 7,01157/ ).
11:  Let (xg_,_n, ’UZZ_H?) = S?G,H)t(xgv vf)-

12: Sett<+t+n.
13: end while
14: Output (27, 2)/?).

The main result on underdamped Langevin we will use is the following.

Theorem C.3 (Convergence of ULD, [CCBJ17, Theorem 1]). Suppose f is twice continuously
differentiable, u-strongly convex, and L-smooth, and let k = ﬁ Let p(dz) e 1) dg.

Let p" be the distribution of discretized underdamped Langevin with step size n after time T,
under the initial distribution 6, .)—(zy,0)- Let the initial distance to optimum z* = argmin f satisfy
o — 27|l < D.

1. Let 2", 20 be synchronously coupled trajectories from the discrete and continuous processes.
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K 24 3+D2 . . . n 1 ..
Let T > 5log | —~——|, and p" be the distribution of xy. Then for n = O (E) dividing

€

into T,

E[l[a — 202 < 0<

"‘;I&’:I&

WQ(pnvp)2 o <

24,/4+4D2
2. For step size n < mﬁ”d/ Tz and T > < ), we have Wa(p",p) < e. The

algorithm makes % queries to V f.

Ml;ﬁ

Proof. The second part is [CCBJ17, Theorem 1].2 Their proof essentially establishes the first
part of the theorem: In their notation, Wy(p", p) is Wa(p(™,p*) where n = % They show that

. _ 32:26(2+D?)
Wa(p™, p*) < Ty + Ty, where T} < 5 with the choice of T', and Ty < 4kn\/ ———=
establishes the bound on Wa(p", p).

For the bound on E[||z7, — %.||?], note that their bounds on Wasserstein distance come from syn-
chronously coupling the continuous and discrete processes. In their notation, ¢\ is the distribution
of (z,v") at the nth step, p(™ is the distribution of z at the nth step, (T)n is one step of the discrete
process, and @, is the exact underdamped Langevin process for the same amount of time. The

same induction in (9)-(10) of [CCBJ17] shows that Ws(®;, oL/ q© @Z/"q(o)) < eln/znn 8‘€K and

. This

Ws (p("), p'(")) <Th:= 1_@,17] 735 n%y/ 32?{ , where p/(™) is the distribution of the continuous process

after n steps. The bound on Wasserstein distance is attained by synchronous coupling of the two
_ 32:26(4+D?) _ 0o

processes. Their bound T, < 4kn\/ ——%——= then establishes the bound on E[||z]. — 27|[?]. O

The number of steps % has a %2 dependence on k and . We note that [DRD18] has a better

p2e?
ever, as ULD-RMM has faster running time (Theorem C.5), we will work with the simpler bound
in [CCBJ17]. The next Theorem gives the first part of Theorem 1.2.

1
dependence, K <I{% A 42 >, and can be used to give better bounds in Theorem C.12. How-

Theorem C.4 (Rate of Multilevel ULD). Let p(dz) o< e~ /@) dz, where f : R* — R is p-strongly
convex and L-smooth. Let g : R* — R be Lg-Lipschitz. Suppose that xq satisfies ||zg — 2*|| < D =

(@) (\/g) Then Algorithm 3 run using Algorithm 4 (ULD) started at xo with parameters

24L,./% + D2
1 g
o () R A

d%/{ €b
. 3
L2dikin?
ey [p g Mj
— = = N, >Q| ———
=0 <Lg"i d) T 1es

2Note that they actually show the theorem with the 1/% + D2 inside the log, although this is not reflected in

their theorem statement.
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~ ~ ~ 2
outputs R such that [ ER—E,g| < &, and Var(R) < e2. This takes O (/{2\/810g <§—f . \/%> (LLL&—% + \/Lﬁggb»
gradient evaluations. Mm“eover, letting p" be the distribution of 3:1}, we have Wa(p, p'™) < z—l;
In particular, for e < f’ taking ey = e, = 5, P <|§ —E,g| > 6) <1 7, and the algorithm uses

HZ
O <Lu—€2—\/_l (i—j : ﬂ)) gradient evaluations.

Proof. We check that the conditions of Lemma C.2 hold with F(n) = Cd'fj"Q (for some C), ¢ = %,

/d+D2
and T'(¢) = §log | —-—— |. Conditions 1, 2, and 4 follow from Theorem C.3(1), and condition

3 follows since f is ,u-strongly convex.

We choose 7 so that Cd” Cdn®ng _ = F(n) = i , leading to ng = © (d%) Note that we do have
2K

70 < Nmax = © (E) We choose 7, so that % < z’;, leading to n, = O (;—L”g \/g) We choose
Nj; so that

3
273 .3 3
Lgd4li277j
2
peg

ALG | f(no)n, f(ny)

=0
€2 1o

We choose T'> T (z—’;) Finally, the number of queries is
L2 1 Lg\/d L2 L
Q=0|T ng—i-— =0 | klog | =2 /u o/l + B d
€sN0 Mk b 2 <+> ep \ 1
L L L
b )\ Hes  /HED

The last part follows since

- 9 1
]P’(\R—Epg]>s>§IP’<\R—ER\>§>gz. 0

C.3 Multilevel ULD-RMM

In the integral formulation of the dynamics (27) and (29), the difference between the continuous
and discrete dynamics is that in the continuous dynamics, we have the current gradient V f(z¢4 )
instead of the gradient at the last time step V f(z}). The idea of the randomized midpoint method
(RMM) [SL19] is to estimate the integrals by their value at s = an for a uniformly random « € [0, 1],
instead of at s = 0. This reduces the bias caused by the one-step numerical quadrature with the
price of increasing the standard deviation, which accumulates much slower than the bias in the
numerical integration. This is in fact similar to our choice of ¢, < &, later for using the multilevel
Monte Carlo method combined with annealing. The estimate of ;4 ,, which we denote by v/, is
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obtained using the discretization with step size an. The update is given by

1 o9, 1 1 9% 1
yf:az?—ki(l—e 2 ”)vg—§u<an—§(1—e 2 ”)) Vf(a:?)—i-ﬁWﬂt
1 _ n —9(l—a 1
1y =] + 5 (L= e = - (L= eIV F(y]) + ﬁwgt
2
Vi = vfe_% — un€_2(l_a)nvf(y?) + W??,t

VI
where

Wln,t =H; — e_20”7G1 W2n7t = (H1 + H») — 6_277(G1 + Ga) W??,t = 6—217(G1 +Ga)

and
/- s n o o_
Gl = [ e dbu. = [ B,
0 0
n T o n K
_ S _
G2,t = / € dBH_s H2,t = dBt+s.
om on

Writing G; = G}, and H; = H};, define R . 4, @, g, to be the map sending (27, v{) to (i}, v/i,)
as defined above.

To define the coupled dynamics, note that once we have selected o and «o for step size /2 for
time steps ¢ and t + /2 respectlvely, one way to define a uniformly random « € [0, 1] is to take
or 1+O‘2 each with probability 5. This coupling has the advantage that we have t+an =t + a2 or
t + + 042 , so we can calculate the Wth in terms of quantities already computed. (This coupling
is out of convenience only; it is the fact that we use the same Brownian motion that reduces the
variance, not the fact that a is coupled to «; and «aj.) A straightforward calculation gives the
updates for coupled ULD-RMM, Algorithm 5. For ease of notation we drop the subscripts and
superscripts for G and H.

This gives the following improved rates.

Theorem C.5 (Convergence of ULD-RMM, [SL19, Theorem 3]). Suppose f is twice continuously
differentiable, u-strongly convex, and L-smooth, and let k = ﬁ Let p(dz) o e 1) dg.

Let p" be the distribution of the Randomized Midpoint Method for ULD with step size n after
time T', under the initial distribution 0(y y)=(2+,0)-

1. Let 2", 2V be synchronously coupled points from the discrete and continuous processes. Let
T > 2k log <£(Edﬁ>, and p" be the distribution of 7. For n smaller than some constant,

P 6 3
Efl} — orlf? < O ((‘%7 +9) og <@>>

Wa(p, p)* < O <<dﬁT776 + d%g> log (@)) Ve

2. Let c > 0 be a small enough constant. For step sizen < c¢min

&.lt
O>|>—‘

1
e3 e
( d/u) ’1og31§( Z/#)

and time T > 2k log (M) Wy (p", p) < e. The algorithm makes 2L queries to V f.
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Algorithm 5 Coupled Underdamped Langevin Dynamics with Randomized Midpoint Method
(ULD-RMM)
Input: Initial point zo € RY, function f: R? — R (with gradient access).
Input: Time T and step size n OR bound on strong convexity u, condition number x, and desired
accuracy €.
Output: Coupled samples (X7, X7/?1).
1: if € is given then

1
2:  Let n = cmax 2—3% (%)% log_% (%) ,E% (%)% log_% (%) }, where ¢ is a small enough universal
constant.
Let T = 2k log (%)
end if
Let t =0.

Let (af, o) = (28, v¢) = (20,0).
while ¢t <T do

Let a1, ay be random numbers in [0, 1]: a1, oo ~ U([0, 1]).

Gl < (l(e2w7 —1) L(eom - 1)) ) .
9:  Draw Lyl ~N{(o, (4, 2 ®1Ig) fori=1,2.
(H{”) 3 —1)  an/2 !
G < <1(6277 —e2amy L(en — e“")) > .
10:  Draw 2] ~N(O, 4 o 2 ®1Iy) fori=1,2.
(o)~ (o (=) 7 0a) o

11:  if random coin flip = heads then

12: Set o = %
Gy =G H =Y
Gy = G + (G + GP) Hy =8+ 8 + B
13:  else
14: Set a = H’% and
G =GV +a +engl? H =H + 5 + HY
Gy = "GP Hy=HY,
15:  end if PR P P P
16: Let (245, vi},) = RZQ,G?),HEZ),G?),H?) ° Rzl,Gi”,Hi”,GS),Hél)(:U? )

17: - Let (zf,,v/),,) = RZ’GLHLG%HQ (z],v)).
18:  Sett<+t+mn.

19: end while

20: Output (x?,xg/z).

Proof. The second part is exactly [SL19, Theorem 3].

In their notation, (x,,v,) is the nth iterate of their algorithm, and (y,,w,) is the nth step of
the exact ULD, started from a random point from the stationary distribution. Examining their
proof, they show that

Elllzn — yn|® + [|(zn + vn) — (yn + wn)|?]
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Se—Q—H’E[HxO_yOH?JFH(a:oJrvo)—(yo+’w0)H2]+O<<%: +%> log <g>>

< 5d
= u

+O0(sn" + 0" )E[[|lzn — yn|* + ||(zn + vn) — (yv + wn)|[?]
2]

For n = O(/{_%), we have that the last term is < 3E[||zy —yn||* +||(zn +vn) — (yn +wn)]]?], so

_nn 5d kdn®  dn? d
Bl — P + o + o) — G+ um)P] < 3 20 (B84 ) oy (1)),

By choice of T' (or N), this term is < 5. This establishes the bound on Wa(p", p).
Finally, note that we can replace (y,,w,) by the exact ULD started with the same initial

condition. Then the same derivation holds, except that the first term is 0. This shows the bound

on E[||z — ar||?]. O

Combining Theorem C.5 with Lemma C.2, we can prove the second part of Theorem 1.2.

Theorem C.6 (Rate of Multilevel ULD-RMM). Let p(dz) oc e~ 7@ dz, where f : R? — R is
u-strongly convez and L-smooth. Let g : R — R be Lgy-Lipschitz. Then Algorithm 3 run using
Algorithm 5 (ULD) started at x* with parameters

1 1 Ly d
N =0© : A - T TzO(nlog(E—g';>>
11 L 5 1 L 3
demelog<?:-g)"‘ d310g<gg-5>3 b
% % % % L2
e = © €y 1 A € M : N >0l S (no)n; f (nj)
3 L2 4\© 1.2 L2 4\3 €2 "o
diniLilog (24 4)"  dinglog (-4
outputs R such that |ER — E,g| < e, and Var(R) < 2. This takes

7 4

L2 d 6 L2 d 3 L2

O | rodolog | =2-Z) +rdslog | =L .
L

TAbLE L2 g ; diLi L2 g 5
K 0 K 0
P ()" S (5. 4))

gradient evaluations. Moreover, letting p" be the distribution of z7h, we have Wa(p, p) < i—‘;

In particular, for e < %, taking e, = €, = %, P (\ﬁ — Epg] > 5) < %, and the algorithm uses
2 z 2 4

L2k6db 1og(§bg-g)6+nd% 1og(§bg-%)3

pe?

gradient evaluations.

(@

s . drn® | di? Ly 4
Proof. We check that the conditions of Lemma C.2 hold with F'(n) = C <T" + %) log (6—2" : ﬁ)
b
(for some C), ¢ = %, and T'(e) = 2klog (%). Conditions 1, 2, and 4 follow from Theo-
rem C.5(1), and condition 3 follows since f is p-strongly convex.
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We choose 19 so that

drkm  dnd L? ¢ 1
C<ﬂ+ﬂ>log R
Jz p g M

and 7 so that

et drn®  dn} L? d
Eo s o Bk log | 2. %) =F
e C< L) le 2% ()
6 L2 d 2
= nklog(ﬁ—g'—>§(’)<%>
b g
dn} L2 ¢ g2
d—*tlg| 2. - Z]<0(3),
an . og(sl% < <L§

leading to the given bounds on 19 and n;. We choose T so that T' > T (i—‘;) We do have that

2
N0 < Mmax = O(1). Substituting the bounds on 79 and 7, into Q = O (T (Lg/“ + l)) gives the

e2no | Mk
bound on the number of queries.

C.4 Truncation error and bias

There is a technical point that the ratio g is not Lipschitz, as it grows exponentially for large ||z||;
however, because large z’s are very unlikely under p, the expected value of g changes very little if
we replace it by a “clamped” version of g (Lemma C.7).

Lemma C.7 (Truncation error). Suppose that f : R® — R is a p-strongly convex function, p is

_ o (3

a probability measure on R? with p(dx) Ze ) dz, and g(z) = exp <$ﬂi,l)> for

a € (0,00]. Let p’ be the probability distribution with Z—’; x g(x), and T = Eyp ||z||. For anyr >T7,

L Y ]

Eepg(2) 2\ ta

2

||
202

Note that we allow o = oo, in which case a™! = 0, g(z) = exp( >, and the bound is

oxp (~Hr52),

Proof. Note that 0—12 — 02(1ia,1) = 02(;+1), so p is <m + ,u) -strongly convex. Then for any r,

f||x||2r g(z)p(dz)
Jra 9(x)p(dz)

By Theorem F.3 and F.4 on the 1-Lipschitz function ||z||, we have the concentration bound

Ponpr(fle]l > 1) < exp <—§ <ﬁ w) - _mz) |

= Borp(fla] > 7).
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Lemma C.8 (Bias calculation). Suppose that f : R? — RY is a convex function, p is a probability

. (1 Hrll +f(x)) o
measure on R with p(dz) = e dz, and g(x) = g, (||z]|), where g,(r) := e2e?(+a=1),
Let 7 be as in Lemma C.7. Suppose one of the following hold.

1. Suppose r+ =7 4+ co for ¢ > 0. Let L), = %exp (4a2d+ (1+a o) + 2(151,1)) and
2
g1 = eXp <—m) .

2. Suppose f is p-strongly convex, o > %, a = o0, and rt =T+ ﬁ for ¢ > 0. Let L, =
T+—=
&

2
—2—6 p<_4—+_rf+_02ﬁ> (l’lld€1 :exp<—%>.

Define h(y) = g(y) A gr(rt). Then h is Ly, - E,g-Lipschitz and

|Esih(z) — Bynpg(a)]
Em~p9($)

< e+ LyWa(p,p).

Proof. By the triangle inequality,
‘E%ﬁh(az) —E:c~p9(33)| < |Em~p[ (z) —g(x _|_ ‘E%p T) — E:wph(x)‘.
Eznpg(z) - Eznpg(2) Eenpg(z)

In either case, the first expression is bounded by Lemma C.7:

[Eznplh(z) — g(2)]| <

Eprg(x) o

To bound the second expression, we note that h is Lipschitz with constant max g <,+ [|[Vg(z)]|.
Thus by Kantorovich-Rubinstein duality,

E:{:NNh —Ezph Wi(p, z||<r \Y z||[<r \
|Exnph(@) ph(2)] < 1(p, p) maxjg) <+ [[Vg(2) | < Wa(p, ) Klali=r Vg (@)l
EwNpg(x) E$~P9($) EwNPg(x)

€1

maxllz“gr+||Vg(x)||

Eeo(@) < Lj. We consider the two cases separately.

It remains to show the bound

Case 1. First, we compare the numerator to g,(T). Let p’ be the probability density with ‘fi—’;l =
E 2
g(z). Then E;yg(x) = —I”E(pgg), SO

E,g (Epg)°
E,g = Epg (p )E Ep?g2)Ep/g > exp(—4a2d)Ep/g

using (13) and Lemma 3.3. Now, by definition of 7 in Lemma C.7 because g, is convex, E,.g(x) =
Eonp gr([2]]) = gr(Banpr [l2]) = g (7). Hence

rt
maxsj <+ V9@ _ or(@lomrs _ 2ran ()
Eznpg(z) Eenpg(x) — exp(—4a2d)g,(T)
7‘+ 7,—1—2 _ 72
N 402d + ———
o?(1+a1) P < aat 202(1+a_1)>
r+co 9 T c?
P +a ) P < T a2 a—1>> "
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Case 2. Similar to the first case,

E,g 2 Ad 4d _
P M M

E,g =

2

using Lemma 3.2, noting that the condition on ¢“ is satisfied. We now have

+
max| || <r+ ||Vg(:1:)|| _ %gr(xﬂx:r* 2_29T(T+)
Exwpg(x) E:chg(x) - exp (—;—0‘2) gT(F)

rt 4d N rt2 72

= —ex
o2 P pot 202
T+c/\/i 4d Te c?

= 0_2\/_ exp (,u04 + 0_2\//7 + %070 = L. ]

Corollary C.9. Keep the setup of Lemma C.8. Then

L Ifa< Ml“% and 17 € T+ 0 /(1 + a)log (1)[v2,2], then in Lemma C.8(1), Ly, < 2.

B

Vv, /log(1
2. Ifo? >4 <Tog(5)> <1 Vv ﬁ), rt e F—I—ﬁ log (é)[\/ﬁ, 2], ande < %, then in Lemma C.8(2),
Ly < 262\/ﬁ.
In either case, mﬁ&ij”gl <ey+ LpWa(p, p).

2

Proof. To show (1), write 7+ = 7 + co. Then ¢ > \/2(1 + a) log (é), so we have e 20T®) < e1.
By Lemma F.2,

7 < ov1+ a(Vd+2y/2log2) < 50Vd.

Noting that ¢ < 24/(1 4 a)log (1),

T+ co - 5v/d 2a V log (%)

a21+a ) — o(l+al) * o

TC 1
- <1 1 -
c(l+a™t) — Oa\/d % <€>

< ontog (2
21 +a7t) — “oe\z )
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Substituting into the definition of Ly in Lemma C.8(1),

T+ co 9 Tc
T 4 d
21 +a- )eXp i a 1+a )

i 2« log i
® €1 1 1
< 5\/8_ + eXp 4a2d + 10y /dlog | — | + 2alog | —
o(l4+a™t) 5 £
1 1 2

— <§+2oq/log< > exp | 1+ 10y /dlog | - > (—)

o\ 2 €

(i) 7 112
< L exp(1+5log2)2 = —,
20 o

Ly =

. . . 1 . log 2
where (i) follows from substitution, (ii) follows from a < \[, and (iii) follows from o < Valog(D)"

p(rt—m)?

To show (2), write 7+ = 7 + ﬁ Then ¢ > ,/2log so we have exp (— 5 > =
exp (—%) < e. By Lemma F.2,

\/_—I— 2y/2log 2)

T <

%

Noting that ¢ < 24/log (%)7

— e 1
7‘+T 5v/d+ 2 log(—)(1<)z
o? o2/l — 4
44 @1
pot — 4
Tc 54/dlog (%) (12) 5
o2\/i o2 ~ 4
2 1Y (iv
c 2log( ) (<) g
202 o2u T 4
log(*
where in (i) we use o2 > 4% and o2 > 4 e() in (i) we use o2 > 4%, in (iii) we use

log( £ 1 log (L
o2 >4. % . f/gﬁ(s), and in (iv) we use 02 > 4 f/gﬁ(S) . (:i_ES). Substituting into the definition
of Lj, in Lemma C.8(2),
T+ 4d T 2
Ly = g
h 2 P (,ua4 o2\/i + 202\//7)
< Texp (L4242) <o
lexp(=+24+2
-4 4 4 4
In either case, by Lemma C.8, ‘Eﬁ‘%;f‘” 9l < €1+ €9 O



C.5 Estimating the normalizing constant

Before stating the main algorithm, let us first understand how errors in individual annealing steps
can be composed to give the final error for estimating the normalizing constant.
Lemma C.10. Suppose the following hold.

1. (Estimate of partition function at highest temperature) € [e7eL, et

_1
7
2. (Bias of ratio) For 1 <i < M, letting R; = ER;, |R; — R;| < R .

~ ~ 22
3. (Variance of ratio) For 1 <i < M, R; is independent with Var(R;) < Z%}j}.
1T 1Ez —(e1+ea+tes) e1teate 1
Then]P’(ZHZ " ¢ [em\ErFeates) esiteates] ) L o)
Proof. From (2) we get that % €l— ;T\Q/[’ L+ 5% Cle” M ei?]
From (3) and Lemma B.2, P (sz\i1 % ¢ [6_53 653]> < 450663%]\]([/[ :.
Factoring langl = % . HZ 1 R Hl 1 F Bi the result now follows. O
Zi 11, R, :

We are now ready to introduce the main algorithm for estimating the normalizing constant.
Algorithm 6 first estimates the thresholds 7‘ to cut off g; in Lemma C.8 so that the resulting
estimate has bias O(eg). Then it calls the Multllevel Monte Carlo algorithm at each temperature
with the truncated functions h;. We can choose which Monte Carlo algorithm to use; we will
consider both the ULD and ULD-RMM algorithms. Note that an alternative to estimating ?:r =
Ex~pi.1 [|[X]| separately is to use the samples obtained from the multilevel procedure; we only
estimate it separately to make the proof simpler.

To prove the correctness of Algorithm 6, we rely on guarantees proved in Theorem C.4 and The-
orem C.6, as well as the truncation in Section C.4. The final ingredient is to show that Algorithm 6
estimates r;r and rj\r/[ correctly for the truncation in Section C.4 to work.

Lemma C.11. Suppose o § and O'M . In Algorithm 6, with probability > t g both the following
hold:

1. For1<i< M, rf €7+ 04,/(1+a)log (1)[v2,2].

2. T‘MET’M—I-\[ log (2)[v2,2].

Proof. Let p; be the strong convexity constant of f;. Let p;11 be the distribution of the output of
A (2o, fiy1,6 = %) By guarantee of algorithm A and the fact that ||-|| is 1-Lipschitz, [E,~z,,, ||| —
Eenpita 2]l < R

Now

Vary g, (121) < Bangiyy | (121 = Eympiss 1))
1 112
it [Ew) [l = 91?1 +Eympiss [ (19 = By )] }

(@,y)€C(Pi+1,pi+1

- 1\2
= (Walpisr, pisn) + Varp,,, () )
@ fo; 5\ /11 \?
< <§Z + ZW) < <§O'i> < 207

37

INZ



Algorithm 6 Multilevel Monte Carlo for normalizing constant estimation

Input: Initial point zo, function f : R? — R, initial temperature oy, final temperature omax,
multiplier «, desired accuracy ¢.
Input: Algorithm A(zg, f) which: (1) given (n,T), returns coupled samples (X", X 1/2), (2) given
e, returns samples X ~ p such that Wy(p,p) < e, where p(dz) o< e~/ dz.
Input: Algorithm B (L, u, Lp,ep,€5) to set parameters (T,mg,k, No,...,Ni) for the multilevel
Monte Carlo.
Output: Estimate of Z = [, e~ @) dg.
1: Let Z = 21 = (2%0%)d.
: Let the number of levels be M = {logHa ( ’i"a"ﬂ + 1.
1

2

3: For each 1 <i < M let Let 0; = o1 (1 + a)~1/2,
4: forlgigM—ldo
5

Let fisi(@) = 3= + /(@).
6:  Run algorithm .A (wo, fit1,€ = %) to obtain S = 2'9M samples z;, and let 7; = ¢ Z sl

Let 77 =7; + ai\/2(1 +a)log (&) +
8: end for
9: Run algorithm A <:L'0, f,e=

ST

7) to obtain S = 219M samples z;, and let 7y = % Zle [l
10: Let 7“;{/[ =7y + ﬁ 2log (g) —I—%
11: for 1 < i< M do
122 Ifi=Mset a< oo
+2
14: Let hZ(ZE) == gz( ) VAN exXp <m>
15:  Run Algorithm 3 (Multilevel Monte Carlo) on functions f;, h; with sampling algorithm A
and with parameters set by B <L + 2,# + Q,th, ToT 128\/—) to obtain estimate ﬁl of

Ep:hi().
16:  Set Z « ZR
17: end for

18: return 2

1
— Mit1

o?(1+a)? < (%)202-2. Then since

where in (i) we use Minkowski’s inequality and in (11) we use the fact that Var,,,.  (||z[]) <

by Theorem F.3, and for a < %, Vary,,,, (||z[|) <
S =210,

<
- NHrl - 02+1

S
202 B o?

VarIjNﬁiH S Z H:L'JH < 210]2\4 =9
=1

Thus by the triangle inequality and the bound on the bias,

. o . Oy o2/(29M) 1
P <|T2 — Eonpis 2| 2 z) <P <|7‘z —Er| > g) < T2 < RM

The analogous statement for ¢ = M follows similarly with fy;r1 = f and py41 = p by not-

ing Varg.,(||z]]) < % < o3, using the assumption on ¢%,. By the union bound, letting s; =
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i <M
{ 1 we have P (Vi € [1, M], |7i — Egp,,, 2]l < %) > L. Under this event, for
) W

r €T+ o <\/2(1+a)log <E—11> + [O%D gn+m\/(1+a)log< >[\f 2],

and for i = M,

T‘]T/[GTM—F#( 21og<é>+[0,%ng+# log< >[f2] O

Finally we are ready to state and prove the main theorems.

Theorem C.12 (Multilevel ULD for estimating the normalizing constant). Let f(x) be p-strongly
conver and L-smooth. Let Z = fRd e @ Az, Let a = 2\/215% A %, o1 = 8%; and Omax =

Vd log( 8
4 (%g(s)) (1 Vv ﬁ) Algorithm 6 with Algorithm 4 as the sampling algorithm A, with pa-

rameters set by Theorem C.J computes 7 such that with probability %, % €[1—¢e1+¢]. The
number of queries to V f(z) is @) <d2“ >

Proof. Let u;, L;, x; be the Strong convexity constant, smoothness constant, and condition number

L+
of f;. Note that k; = % < o ’t < K, so we can always bound the dependence on x; by x; we will
i —5

use this fact implicitly. Let p; be the distribution of :Eg«k, where 7, T are the smallest step size and

time for the ith temperature. Let R; be the estimate at the ith temperature, R; :=ER; = Kz, hi,
and R; = [E,,g;. For ease of computation, let £; and g2 < % be such that o1 = j—i (our assumption

Vv log(%)

_ € _
has &1 = §) and opax = 4 o

1 — log 2 1 .
(1 \Y \/ﬁ) and «o 72\/31%(%) A 7 (our assumption has
€9 = %)

By assumption on « and opmay, by Lemma C.11, with probability > 8, Corollary C.9(1) is
satisfied for (r™,7) = (rjf,7;) for 1 <i < M — 1 and (2) is satisfied for (r™,7) = (r};,7ar). Then
L,, =0 (%) and Ly, = O (\/ﬁ) In either case, Ly, = O(\/p;) and h;/R; is Ly, -Lipschitz.
For the rest of the proof, we will condition on the event that the hypothesis of Corollary C.9 are
satisfied. B

‘Ri—Ri‘ ~ 5 e2R? 2 P2
By Corollary C.9, === < &2 4+ L,W2(p, pi). In order to make Var(R;) < 52y =: €517 and

|§Z — R < 522]\}}' =: g, R;, by Theorem C.4, the number of queries required is

_ Ly, |d\ (L3 | L Vam\ (MM
0-o(stvams 2 1) (2 5 )) o (van (5 (3 )

where we substitute €, and €, and use Ly, = O(/11;).
Also by Theorem C.4, Wa(p;, p;) < Le—::_, so BBl < e+ Ly, Wal(pi, pi) < €2 + 537 < %, where

R;
. ~ 5 2Rz 2R
in the last step we use g9 < i. Hence R; > %Ri and Var(R;) < 2656](/[ < 564]\}[.
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By choice of o1, by Lemma 3.1, 1 < % < 1_151 < €21, We also have |R; — Ry| < 2 and
~ 2 2 =3
Var(R;) < 56311;}['. By Lemma C.10, P <% ¢ [e_(251+252),e(2€1+252)) < %. Taking €1 = &2 = § as in
our assumptions, and recalling that we conditioned on an event of probability > %, we have that
% € [1 —e,1 + €] with probability > %.

The total number of levels is M = log; ., (‘;—%f) = (5(\/3) The total query complexity is
1
~ ~ 3
QM =0 (nQ\/EM2> =0 (*@W). 0

2

Theorem C.13 (Multilevel ULD-RMM for estimating the normalizing constant). Let f(x) be -
strongly convex and L-smooth. Let Z = fRd e~ 7@ dz. Define a, o;, and omax as in Theorem C.12,
and let xo = z* = 0. Algorithm 6 with Algorithm 5 as the sampling algorithm A, with parameters

set by Theorem C.6 computes 7 such that with probability %, % € [l —e,1+¢€]. The number of
~ 4 707
queries to V f(x) is O <W>_

Note that we assume xg = z* as Theorem C.5 makes that assumption; however, we note that
we can use gradient descent to approximately find z*, and that the analysis of [SL19] can tolerate
a warm start.

Proof. The proof is the same as Theorem C.12. The only difference is that the number of queries
at a level is given by Theorem C.6 instead:

7 4
Q=0((rtdilog [ =2.Z) +xdilog|—2-Z] |-
8b ’u 8b Iu /1,60_
7

H,%d
=0 (H

1
6
T
3
~ ~ 4 7 7
The total query complexity is QM = O((d%/{ + d%/{%)M2) =0 <w>. O

(IR}

€
(M M3 (M MF
ds —2+ T + kd3 —2+—2
62

D Proof of Lowerbound

In this section we provide the missing details for the lowerbound in Section 5.

Result on biased coin

Claim D.1. Given independent samples of a random variable X, where X is drawn from Bernoulli
distribution with either p=1/2+ 3§ or p=1/2 —§, any algorithm that looks at o(1/5%) samples of
X cannot decide which distribution X is drawn from without probability better than 1/2+ ¢ for any
constant ¢ > 0.

This is very standard and we give a proof here just for completeness.

40



Proof. Let Y and Z be two Bernoulli random variables with py = 1/2+§ and pz = 1/2—¢ of being
1 respectively. Then the KL-divergence between these two distributions is KL(Y||Z) < O(62).
Let Y™ and Z™ be n independent samples of Y and Z, by propert of KL divergence we know
KL(Y"|Z") = nKL(Y||Z) < O(né?). When n = 0(1/6%), KL(Y"||Z") = o(1). Finally by
Pinsker’s inequality we know the TV-distance between Y™ and Z" is at most /K L(Y"||Z")/2 =
o(1). Therefore it is impossible to distinguish between Y™ and Z™ with any probability 1/2 + ¢ for
constant ¢ > 0. O

Construction of function ¢ First, the lowerbound construction needs a function ¢ which we
use to modify the initial function fy. We construct such a ¢ function in the following lemma:

Lemma D.1. There exists a function q: [—1,1]* — R that satisfies

1. For any x € [~1,1]* with at least one coordinate x; = +1, q(x) = 0, Vq(xr) = 0 and
V2q(z) = 0.

2. For any x € [-1,1]F, 0 < g(x) < 1, |V2q(z)| < 36k.

3. For any x € [-1/2,1/2]%, q(z) > 37F.
Proof. We construct ¢ as a product of individual coordinates. Let p : [—1,1] — R be the function
p(z) = (1+2)3(1—x)3. Tt is easy to verify that p(—1) = p/(—1) = p"(=1) = p(1) = p'(1) = p"(1) =
0,0<p(z) <1andp(z)>1/3 when z € [-1/2,1/2].

Now we define ¢(z) = p(x1)p(x2) - - - p(xg). If any coordinate z;(i = 1,2, ..., k) is 1 or —1, we have
q(x) = 0 because p(x;) = 0. The gradients %Z_ = p'(z))p(x1)p(z2) - - p(wic1)p(xit1) - - pxg) = 0;
for any j # 1, aaqu has a factor of p(z;) so it is also 0. Similarly, all the second order partial

derivatives will have a factor of p(x;),p'(x;) or p”(x;), so the Hessian is also 0. Therefore we have
verified Property 1.

For Property 2, we observe that for ¢ # j, 6528‘1:0 (x) = p'(z ) "(5) [ 10 P(2e). 1t is easy to
verify that |p/(z;)| < 6 for any value of z; € [—1,1], therefore |2 e 89: (z)| < 36. Similarly, we also

know for any 4, |(aw 5 (7)| < 36. Therefore, the Hessian matrix V2q(z) is a k x k matrix with

entries no larger than 36, so we have ||V2q(z)|| < ||V2q(2)|r < 36k.
Property 3 follows immediately from p(z) > 1/3 when x € [-1/2,1/2]. O

Proof of Lemma 5.3 Using the construction of ¢, one can select a type for each of the cell and
construct a corresponding function as in Lemma 5.3. We give the proof of the lemma here:

Proof. First, by Lemma D.1, the ¢ function has 0 value, gradient and Hessian at the boundary.
Therefore the function value, gradient and Hessian of f(x) agrees with fo(z) on the boundary. As
a result, the function we construct is still twice differentiable on every point.

For any cell 7, by Lemma D.1 the function ¢ ( (a: — ?)7-)) for z € 7 has Hessian bounded by 5 30k

We will make sure that every ¢, is bounded by = 7%, so the function ch( (x — T)) has a He551an
with spectral norm at most 1/2. Since V2f(z) = V2 fy(2) + ¢, V3q (+(z — UT)), by standard matrix
perturbation bounds, the Hessian of f always satisfies 0.5] < V2f < 1.5, which implies f(z) is
1.5-smooth and 0.5-strongly convex.

For the second property, note that f(z) > fo(z) as both ¢; and ¢ are positive. Therefore
i e~ 7@ dy is always smaller than J e~ @) dy. For each cell 7, let

Co= [ [ttt - (~o) + e (Fo =) )
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Therefore C'; is the amount of decrease in normalizing constant if we choose ¢, = % (the maximum
allowed value). We first show a lowerbound on C;:

o= [ e saton exo (<foto) + 570 o (Fe—))] @
= [ e (o ( )]
/|:c vrlloo<1/2 e [1 _exp< 71% <l (@ _UT)>>] &

2
l ))dx

Y

Y

e @) (1 — exp(

/ —vrlleo<l/2 - T2k3F

l2
1— d
llz— UT||O<><l/2 el 72k3k)) ’

_ 2ty = Q<l )

Let 7* be the cell with the smallest Cr«, set ¢+ = % Set all the c¢;’s carefully in |0, 712—2k]
so that the decrease in every cell is equal to Cr« (this is always possible because the amount of
decrease is continuous and monotonically increasing with respect to ¢;), and we have the second

property. O

v

Proof of Theorem 5.2 Now we are ready to prove the lowerbound Theorem 5.2 for a constant
number of dimensions.

Proof. Fix an desired accuracy ¢ small enough, choose n > 100/6% and make sure nlt/k

(when § < 1 we still have n = O(1/62)).

Consider two distributions of functions F; and F». In Fi, each cell is of type 1 with probability
1/2 4+ § independently, in Fj, each cell is of type 1 with probability 1/2 — ¢ independently. After
the types of cells are decided, function f is constructed according to Lemma 5.3.

Clearly, querying any point of f(z) (whether the query is on function value or gradient) can
give information about at most one cell. Therefore by Claim D.1, any algorithm that makes o(1/§2)
queries will not be able to distinguish whether the function comes from F; or F» with probability
better than 0.6.

On the other hand, by standard concentration bounds and the fact that n > 100/62, we know
with at least 0.99 probability functions in F; has at most n(1 — J)/2 type 2 cells, and functions in
F5 has at least n(1+0)/2 type 2 cells. By Lemma 5.3, we know with probability at least 0.99, the
normalizing constant Z > (21)*/2 —C(1-6)/2 =: 6, for f ~ Fy,and Z < (2m)*/2—C(1+6)/2 =: 64
for f ~ Fs. Therefore, if an algorithm can estimate the normalizing constant with accuracy better
than /61 /62 —1 with probability 3/4, it is going to be able to distinguish F; and F, with probability
better than 0.6, which is impossible.

Now, by Lemma 5.3, we know C = (I?), therefore 01 /0y = 1+ Q(C6) = 1 + Q(125). Using
the fact that [ = 1/(vkn'/F) and n = ©(1/62), we know /61 /65 — 1 = Q(5"+%/*). The Theorem
follows by choosing ¢ such that e = ©(§1+4/k). O

is an integer

Proof of Theorem 5.1 Finally we extend Theorem 5.2 to Theorem 5.1.
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Proof of Theorem 5.1. The proof is very similar to Theorem 5.2. Fix a constant k depending only
on v that we will determine later. We will break the d coordinates of input x into d' = [d/k]
groups of size k each (ignoring the remainder). Let zg, be the input x restrict to the i-th group of
coordinates. The function we construct will be a sum of functions f(z) = Z?;l fi(zs,).

Fix an desired accuracy ¢ small enough, choose n > 100/6? and make sure n'/* is a constant
(when § is small enough we still have n = O(1/52)).

Consider two distributions of functions F; and 5 same as in the proof of Theorem 5.2. When
f ~ JFi, construct fi, fa,..., f# independently using Lemma 5.3, where each cell is of type 1 with
probability 1/2 + d; when f ~ Fa, construct fi, fa,..., fo independently using Lemma 5.3, where
each cell is of type 1 with probability 1/2 — §

It is easy to see that the normalizing constant for f is the product of normalizing constant
of fi, fo,..., fe- By construction in Lemma 5.3 and calculations in Theorem 5.2, there exists a
constant Z such that the normalizing constant for f; is Z(1 + Q(6'+*/*)) with probability at least
0.99 when f ~ Fi, and Z(1 — Q(6'+%/*)) with probability at least 0.99 when f ~ F,. When
oiHa/kg <1 /5, by Lemma B.2 we know with probability at least 0.99, the normalizing constant for
f ~ Fp is at least Z¢ (1 + Q(6'4/*d)) =: 6;, and the normalizing constant for f ~ Fy is at most
Z% (1 — (6% d)) =: 63. When the number of queries is 0(1/dd?), no algorithm can distinguish
between these two distributions, which means no algorithm can estimate the normalizing constant
with accuracy better than /61 /6 — 1 = ©(5't%*d).

1-4/k
If we set ¢ = O(0't%*d), then any algorithm that uses o (d 1+4/ke 1+4/k> queries cannot

estimate the normalizing constant with multiplicative error 1 + ¢ with probability better than
3/4. Finally, we choose k = [8/7], so 1+2W >2— v and i J?i > 1 — v, which gives the guarantee

in the theorem. O

E Quadrature Method for Estimating the Normalizing Constant

Alternative to the Monte Carlo strategy as discussed, for lower dimensions, a deterministic quadra-
ture scheme for Z = [ e~7*) dz might be computationally less expensive.

First, we recall that for X € R? a random variable distributed according to a logconcave
distribution with E(||X|?) < R2. Restricted the support of X to a ball with radius 2R log(1/¢)
captures at least 1 — /2 fraction of the mass. Thus it suffices to integrate e~ @) inside a square
Qr, centered at the origin of radius Ry = 2+/d/ulog(1/e).

Inside the square QQr,, we use a trapezoidal quadrature rule with grid spacing h to integrate
e~ /@) Denote the estimate from quadrature as Sy, the error is bounded from above by

(/Q ) do = Sy < Cvol(Qr, WP g [V (exp(— (@) (31)

Ro

The Hessian of e=/®) can be bounded from above by

max [|V?(exp(—f(2)))] = X (V2 f @)l + 1V f (@)]?) exp(—f ()

meQRO
< L+ L?||z|? B2
_xlélgx( + L*||=|| )GXP( QHxH )
2L

<L+>-=—
e

< CL(1+ k).
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Thus, to make the right hand side of (31) error €, we need
h<Cd'L7Y2(1 4 k)2 vol(Qp,) /212
The number of quadrature points is given by
N = O(vol(Qry) " T2 L2 (1 + k) ¥/2e%/?)

_ 6<<%>d/2+d2/4dde/2(1 I I{)d/2€d/2>‘

While this complexity has a better dependence in ¢ for low dimension (d < 3), the dependence in
dimension is much worse than that of the Monte Carlo method.

F Tools and Auxiliary Lemmas

We note some concentration results and functional inequalities for log-concave distributions.

Lemma F.1 (Concentration around mode for log-concave distributions). Suppose f : R? — R is
a convex U%-strongly conves function with minimum at 0, and let p be a probability measure on R?

with p(dz) o< e 7@ dz. Then for any r, Py,(||lz]| > 7) < Poon(,02) (2]l = 7).
Proof. Without loss of generality, f(0) = 0. Using spherical coordinates, we have

de 1f d 1 —f(sv) deSd 1( )

Ly P P (R R TI)

Let
o0 o 32
A(v) :/ s e v 45 dS? 1 (v) C’:/ s e 207 ds dST 1 (v) (33)
T T 52
B(v) :/ s f(sv) ds dSTH(v) D :/ s le7 207 ds dST 1 (v). (34)
0 0
Av
We will show that Bgvg %. Then A(v)—f—%(v) < CfD, SO
deil froo gd—1—f(s0) dstd_l(U) B de . Sd 1( ) (35)
Jors 5 s e T ds dST1(v)  Joums Al BT
Av C
< sup 20 O p (el 2 ). (36)

vesi-1 A(w) + B(v) = C+ D

It suffices to show g%zg < Q. For this, we first prove the following claim: If a,c are positive

functi Oy, and b.d tive functi Q. then 1299 _ Ja, c@)d
unctions on €, and b, d are nonnegative functions on o, then Tob@d < Ty dw) e

To see the claim, note that
Jo,cl@)dz Jo, al@) - S5 da . Jo, alw)dz-info, £ [o a(z)ds
Jo, Al Jo, (@) - 55 da — Jo, b@)dw-infa, § o, ba)dx

Now we show that the claim implies ggvg < %. We have

N

—~
N

@‘
~—~|—

H

inf e 202+f()< sup e 202+f()

s€lr,00) s€(0,r]

because f(s) — 5>z is an increasing function. Thus the claim implies that AEU

—

c
<g O

v
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Lemma F.2. Let f : R — R be a m-strongly convex function and let p(dx) o e 7@ dz. Let
x* = argmin,, f(z) be the mode. Then

1
E:{:Np ”LL’ - JJ*” < \/—m(\/E—F 2\/ 210g 2)
Proof. By Lemma F.1 and the x? tail bound from [LMO0],
1
P <H:c — 2P > = (d+ 2(y/dlog 2 +log2)>>
<P _ ~x(0.221,) <||:L"—x 12> — <d+2 Vdlog2 +log?2) )> <

N =

so]P’(Ha:—x | > = (\/7+\/2log >) < i
By Theorem F.3 and Theorem F.4,

P(le—al <Elo-a’ - =) <ewp <—§> | (37)

Taking ¢ = v/2log 2, we get this is < %
Hence the sets {a; |z —a*|]| < —= (\/_+ V21og )} and {a: Nz — 2*|| > Ellz — 2| — \/3/1_2%2}

must interesect, so

Bl o] - Y2E2 < (Vi+ y2Tog2).

as needed. O

Theorem F.3 (Bakry-Emery [BE85, BGL13]). Suppose f is p-strongly convez. Then p(dx) o
e~ /@) dz satisfies a Poincaré inequality with constant % (é Jga IVg(x)|? dz > Var,(g) for all g

where the integral is defined) and a log-Sobolev inequality with constant %

Theorem F.4 (Log-Sobolev inequality implies Gaussian measure concentration, [BGL13, (5.4.2)]).
Suppose p(dzx) is a distribution on R? that satisfies a log-Sobolev inequality with constant C. Let
g:RY = R be L-Lipschitz. Then

2
P(lg —E,g| >r) <2exp <_W> .
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