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Abstract

This paper explores a pathway for increasing efficiency in numerical 3D limit

analysis through r -h adaptivity, wherein nodal positions (r) and element

lengths (h) are successively refined. The approach uses an iterative, nested

optimization procedure involving three components: (1) determination of ve-

locities for a fixed mesh of rigid, translational elements (blocks) using second-

order cone programming; (2) adaptation of nodal positions using non-linear

optimization (r adaptivity); and (3) subdivision of elements based on the

magnitude of the velocity jumps (h adaptivity). Examples show that the

method can compute reasonably accurate limit loads at relatively low com-

putational cost.
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1. Introduction1

Accurate evaluation of the limit load, or collapse load, causing failure of2

a mass of geomaterial is crucial for the design of geotechnical infrastructure,3

including foundations, slopes, and earth retaining systems. Limit load com-4

putations are also central in the determination of how to induce failure de-5

liberately, as in excavation, mining, and earthmoving (e.g., Hettiaratchi and6

Reece, 1974; Godwin and O’Dogherty, 2007; Hambleton et al., 2014; Ham-7

bleton, 2017). Many models rely on a two-dimensional (2D) idealization of8

the true configuration (e.g., plane strain or axisymmetry), which significantly9

simplifies the calculations. However, in many cases, the three-dimensional10

(3D) nature of the problem cannot be ignored. When 3D conditions pre-11

vail, computations based on the 2D simplification can overestimate or un-12

derestimate the limit load (Soubra and Regenass, 2000; Antão et al., 2011;13

Michalowski, 2001; Griffiths and Marquez, 2007; Michalowski and Drescher,14

2009; Wörden and Achmus, 2013).15

Among various existing methods, the kinematic approach of limit anal-16

ysis is a particularly effective and useful means of evaluating limit loads17

(cf. Chen, 1975). The kinematic theorem states that for any kinematically18

admissible velocity field (i.e., failure or collapse mechanism), the load com-19

puted by equating the work rate of external forces to the internal energy20

dissipation rate is a rigorous bound on the true limit load. It gives an upper21

bound for a load inducing collapse and a lower bound for a load resisting22

collapse (Drescher, 1991). A kinematically admissible velocity field is one23

that satisfies boundary conditions and the plastic flow rule. The kinematic24

theorem requires that material is perfectly plastic and obeys the associative25
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flow rule. The consequences of associativity and possible workarounds in26

instances where it may lead to unrealistic predictions are discussed by vari-27

ous authors (Davis, 1968; Davis and Booker, 1971; Chen, 1975; Drescher and28

Detournay, 1993; Krabbenhoft et al., 2012; Sloan, 2013). For 3D problems29

with simple geometries and loading conditions, a kinematically admissible30

mechanism can be constructed manually, thereby permitting an analytical31

or semi-analytical solution (e.g., Murray and Geddes 1987; Soubra and Re-32

genass 2000; Michalowski 2001). Nevertheless, it is generally difficult to33

construct collapse mechanisms for 3D problems, and numerical methods are34

usually necessary.35

Finite element limit analysis (FELA) is a powerful numerical implemen-36

tation that can evaluate 3D collapse loads without assuming a failure mech-37

anism a priori (Lyamin and Sloan, 2002a,b; Lyamin et al., 2007; Vicente da38

Silva and Antão, 2008; Krabbenhøft et al., 2008; Martin and Makrodimopou-39

los, 2008; Sloan, 2013). As in the conventional finite element method (FEM),40

FELA discretizes the domain into elements and interpolates the velocity field41

based on discrete values at nodes and the assumed shape functions. The opti-42

mal velocity field is computed by solving a large-scale optimization problem.43

The objective function corresponds to the limit load, and the unknown nodal44

velocities are constrained by enforcing kinematically admissibility. In FELA,45

a certain discretization of the domain (i.e., meshing) leads only to a subset46

of all possible velocity fields. Therefore, the limit load computed by FELA47

is often highly sensitive to the finite element mesh, particularly in regions of48

localized deformation. To maximize the solution accuracy using a minimum49

number of elements, adaptive mesh refinement techniques (i.e., h adaptivity)50
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have been proposed to automatically refine regions featuring large gradients51

(Borges et al., 1999, 2001; Lyamin et al., 2005; Martin, 2011) or large gaps be-52

tween upper-bound and lower-bound solutions computed on the same mesh53

(Ciria et al., 2008; Muñoz et al., 2009). The concept of h adaptivity has54

played a key role in improving the accuracy and computational efficiency of55

2D analyses. In contrast, 3D FELA based on adaptive mesh refinement (e.g.,56

Dunne and Martin, 2017) and its performance have not been investigated in57

great detail.58

Another general numerical approach referred to as discontinuity layout59

optimization (DLO) has been developed by Smith and Gilbert (2007) and60

Hawksbee et al. (2013) on the basis of optimizing a velocity field consisting61

only of so-called velocity discontinuities, which represent infinitesimally thin62

zones of shearing. DLO focuses on optimizing the arrangement of these63

discontinuities, with the tacit assumption that the material enclosed by the64

discontinuities is rigid. This method searches for an optimal combination of65

the possible discontinuities interconnecting a fixed grid of nodes. Because the66

grid is fixed, the grid resolution has to be refined to capture intricate features67

or reasonably represent a continuous velocity field, which can dramatically68

increase the number of potential discontinuities at the cost of computational69

expediency (Hawksbee et al., 2013).70

While the above-mentioned numerical approaches represent valuable tools71

to evaluate limit loads for 3D problems, they tend to be computationally in-72

tensive. In many cases, the optimal mechanism is in fact relatively simple,73

and the standard formulations of FELA and DLO can be unnecessarily oner-74

ous. Furthermore, the computational demands of existing techniques impose75
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a significant limitation for the emerging computational approach referred to76

in this paper as the sequential kinematic method (SKM). In SKM, kinematic77

solutions are sequentially computed as a means of simulating a full process of78

deformation, and the optimal velocity field within any particular increment79

is used to update the model geometry and material properties. Given its80

computational efficiency and stability, SKM has become a compelling alter-81

native to conventional techniques such as FEM for simulating problems in82

which capturing the evolution of material boundaries is critical (Hambleton83

and Drescher, 2012; Mary et al., 2013; Hambleton et al., 2014; Kong et al.,84

2017). In particular, SKM shows a remarkable capability in modeling the85

large deformation of cohesionless soils (Hambleton et al., 2014; Kashizadeh86

et al., 2014), which poses a significant challenge for conventional approaches.87

Current SKM formulations, however, are restricted to 2D. Extension to 3D88

has been largely halted by the lack of efficient methods to compute the op-89

timal velocity field within each increment of simulation.90

In this work, we investigate the concept of r adaptivity, in combination91

with h adaptivity, and assess the potential of this approach for increasing92

computational efficiency in 3D limit analysis. Pioneered in the earlier work93

of Johnson (1995) and more recently explored for 2D limit analysis (Mi-94

lani and Lourenço, 2009; Hambleton and Sloan, 2013; Milani, 2015; He and95

Gilbert, 2016; Muñoz et al., 2018), r adaptivity improves the computed limit96

load by explicitly optimizing the nodal positions that control the locations97

of possible velocity discontinuities. Because relatively coarse meshes with98

suitably placed edges (velocity discontinuities) are often sufficient to obtain99

accurate solutions, kinematic FELA and DLO enriched with r adaptivity of-100
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fers a promising pathway for improving efficiency, as previously demonstrated101

for 2D formulations.102

2. Overview of the r-h adaptive approach103

The general concept we explore in this paper is to start with a simple ve-104

locity field, one requiring minimal computational effort, and then refine this105

field to improve the accuracy of the computed limit load and collapse mech-106

anism. We adopt a formulation in which the velocity field is characterized107

by discrete regions (blocks or elements) of translational motion separated by108

velocity discontinuities. These elements are tetrahedral by assumption, such109

that the edges, representing velocities discontinuities, are planar. We restrict110

our attention to material obeying the Mohr-Coulomb yield criterion and as-111

sume that the internal friction angle φ and cohesion c are constant across112

the soil mass. Similarly, the material unit weight, denoted by γ, is assumed113

to be constant. Spatially varied φ, c, and γ can be included into the current114

formulation by constructing mesh according to the soil stratigraphy, in that115

no discontinuity spans across different layers of soils. In the case of inter-116

layer discontinuities, the highest angle of friction and cohesion encountered117

should be used to maintain the upper-bound status of the solution.118

Starting from an initial arrangement (mesh) of elements, the proposed119

r-h adaptive approach proceeds iteratively, and each iteration involves three120

key components. First, as explained in detail in Section 3, the optimal ve-121

locities for a fixed mesh are determined using second-order cone program-122

ming (SOCP). Second, as described in Section 4, the nodal positions are123

regarded as variables determined through non-linear optimization (r adap-124
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tivity). Third, elements are potentially subdivided (h adaptivity). Section125

5 and 6 explain this third step and how each of the three components are126

combined to obtain a complete solution algorithm, respectively. Section 7127

considers several example problems to which the algorithm is applied.128

3. Optimization of the velocity field for a fixed mesh129

Considering an arbitrary mesh of rigid tetrahedral elements (blocks),130

Hambleton and Sloan (2016) proposed a technique that utilizes second-order131

cone programming (SOCP) to search for a kinematically admissible velocity132

field that yields an optimal limit load and collapse mechanism. For com-133

pleteness, its mathematical formulation is summarized here.134

A generic pair of blocks is depicted in Fig. 1(a). The velocity jump135

between these blocks is denoted by ∆vi and is calculated as ∆vi = vIi − vIIi ,136

where vIi and vIIi are the block velocities. The superscripts I and II indicate,137

arbitrarily, the first and second block, and the index i = 1, 2, 3 indicates the138

O

A

B

C

O'

A'

B'
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velocity discontinuity
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Figure 1: Schematics showing (a) 3D rigid blocks separated by a planar velocity disconti-

nuity and (b) the definition of a local coordinate system associated with the discontinuity

plane.
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velocity component. In this work, the component associated with i = 3 is139

always in the vertical direction, and it is assumed to be positive when the140

velocity is upward (i.e., opposite the direction of gravity). Chen (1975) shows141

that for materials obeying the Mohr-Coulomb yield criterion, the energy142

dissipation rate along the planar velocity discontinuities between elements143

(blocks) can be expressed as144

ḋ = cA|∆vt| (1)

The variable A denotes the area, and ∆vt is the tangential velocity jump with145

respect to the plane of the discontinuity. The absolute value is prescribed146

so that the dissipated power is always positive, regardless of the shearing147

direction. To fulfill the associative flow rule corresponding to the Mohr-148

Coulomb yield condition, a kinematically admissible velocity discontinuity149

has to meet the following “jump condition” (Chen, 1975):150

∆vn = |∆vt| tanφ (2)

The variable ∆vn denotes the normal velocity jump. By adopting the local151

coordinate system shown in Fig. 1(b), Eqs. (1) and (2) can be rewritten as152

ḋ = cA
√

(∆viti)2 + (∆visi)2

∆vini = tanφ
√

(∆viti)2 + (∆visi)2
(3)

Following the summation convention, the quantities ∆viti and ∆visi are dot153

products calculated, for example, as ∆viti = ∆v1t1 + ∆v2t2 + ∆v3t3. In154

Eq. (3), ni is a unit vector normal to the plane of the discontinuity, and ti155

and si are two unit vectors parallel to the plane. These three vectors give a156

mutually orthogonal transformed basis for expressing the velocity vectors, as157
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depicted in Fig. 1(b). Note that in accordance with measuring the velocity158

jump from block I to II discussed above, the vector ni points towards block I159

such that a positive normal component of the velocity jump indicates dilation.160

In order to write Eq. (3) in a form amenable to SOCP, the quantity161 √
(∆viti)2 + (∆visi)2 is replaced by a dummy variable µ:162

ḋ = cAµ

∆vini = µ tanφ
(4)

The dummy variable µ is then constrained as follows:163

µ ≥
√

(∆viti)2 + (∆visi)2 (5)

Eq. (5) is in the form of a so-called second-order cone constraint, one of164

the types permitted in SOCP in addition to linear equality and inequality165

constraints (cf. Sturm, 2002).166

We note that the expressions given by Eq. (4) are exact only in the167

particular instance where strict equality is achieved in Eq. (5):168

µ =
√

(∆viti)2 + (∆visi)2 (6)

Equality is achieved by constructing the optimization problem such that the169

dummy variable µ is minimized, and thus µ is driven to equality as in Eq.170

(6). Application to example problems, such as those considered in Section171

7.3, reveals that equality is achieved in most cases. However, in the case of172

cohesionless material (c = 0) for which the dissipation ḋ vanishes, equality173

is not always achieved. Nevertheless, it should be noted that, when the174

equality in Eq. (5) is not satisfied, the solution remains an upper bound of175

the true collapse load because the energy dissipation and the jump condition176
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are effectively computed according to a larger cohesion and friction angle,177

respectively.178

By equating the rate of internal energy dissipation to the work rate of179

external forces for an assembly of elements (blocks), one obtains180

ND∑
j=1

ḋj = −
NB∑
k=1

γVkv3k +

∫
S∗
t∗i vids+

∫
S

tivids (7)

In Eq. (7), ND andNB are the number of discontinuity planes and the number181

of blocks, respectively, and subscripts j and k are used to indicate quantities182

corresponding to the jth discontinuity plane and the kth block. The variable183

Vk denotes the volume of the kth block, a readily computed constant for a184

fixed mesh. The three terms on the right side of Eq. (7) represent the work185

rate of body forces, fixed surface tractions (t∗i ) and tractions along the surface186

where the limit loads is evaluated (ti), respectively.187

Drescher (1991), Sloan (1995), and Michalowski (2001) among others188

show how Eq. (7) can be manipulated to obtain various expressions of the189

limit load. A case encompassing all examples considered in Section 7 is190

that the direction of ti is fixed, or known a priori, and velocities along the191

boundary S are uniform, as could occur for a rigid footing or translational192

retaining wall. In this instance, the unknown traction ti is expressed in193

terms of a fixed traction t∗i as ti = λt∗i , where λ ≥ 0 is an unknown multi-194

plier dictating the magnitude of the limit load. The last term in Eq. (7) is195 ∫
S
tivids = vi

∫
S
λt∗i ds = λviF

∗
i , where F ∗

i =
∫
S
t∗i ds is the resultant force.196

The magnitude of the velocity is arbitrary (cf. Chen, 1975), and thus one197

can write viF
∗
i = α, where α is an arbitrary constant. Equation (7) can then198
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be manipulated to write:199

λ =
1

α

(
ND∑
j=1

ḋj +

NB∑
k=1

γVkv3k −
∫
S∗
t∗i vids

)
(8)

Here we assume α is unity (a value of 1 with appropriate units) for conve-200

nience. Depending on the distribution of the fixed tractions t∗i , the final term201

in parenthesis in Eq. (7) can be integrated to obtain a sum over the unknown202

velocities, viz.203 ∫
S∗
t∗i vids =

NF∑
l=1

βilvil (9)

In Eq. (9), NF is the number of elements with fixed tractions, and βil (i =204

1, 2, 3; l = 1, ..., NF ) are constant coefficients. The notation vil again indicates205

the ith velocity component of the lth element.206

Finally, the optimization of the velocity field for a fixed mesh is written207

in the standard form of SOCP as follows:208

min λ =

ND∑
j=1

ḋj +

NB∑
k=1

γVkv3k −
NF∑
l=1

βilvil

s.t. ∆vijnij = µj tanφ j = 1, ..., ND

ḋj = cAjµj j = 1, ..., ND

µj ≥
√

(∆vijtij)2 + (∆vijsij)2 j = 1, ..., ND

(10)

For a load resisting collapse, where the work rate of the unknown tractions209

on the velocity is negative, the kinematic theorem of limit analysis leads to210

a lower bound on the true collapse load (cf. Drescher, 1991). To compute211

such a lower bound, Eq. (10) is converted to a maximization problem by212

minimizing the negative of the objective function. In this work, the Mosek213

11



toolbox integrated with MATLAB (Mosek, 2015) is employed to solve the214

SOCP problem.215

Upon solving the SOCP problem of Eq. (10), one obtains an optimal216

value for the load multiplier, denoted by λopt. The computed bound on the217

true collapse load is then simply218

Fi = λoptF
∗
i (11)

4. Optimization of nodal positions (r adaptivity)219

The bound on the limit load computed using Eq. (10) depends strongly220

on the positions of the nodes within the mesh that define the locations of221

potential velocity discontinuities. In particular, the optimal velocity field222

and load multiplier λopt depend on the coordinates of the nodes that are not223

constrained by boundary conditions or symmetry, and are therefore free to224

move. The coordinates of these nodes are denoted by xim. Index i again225

gives the component (i = 1, 2, 3), and index m (i = 1, ..., NR) identifies each226

of the free nodes.227

For the purpose of optimizing the nodal positions, a non-linear optimiza-228

tion problem is formulated as follows:229

min λopt(xim)

s.t. Vk(xim) ≥ 0 k = 1, ..., NB

xlim ≤ xim ≤ xuim

(12)

This non-linear optimization is nested with the SOCP described above, in230

that the objective function in Eq. (12) is the load multiplier computed for231

a given set of nodal positions xim (i = 1, 2, 3; m = 1, ..., NR), defined and232
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evaluated in precisely the same way as in Section 3. To prevent the inter-233

penetration of elements and ensure computational stability, the first set of234

constraints in Eq. (12) requires that element volume Vk (k = 1, ..., NB) is235

always positive. It should be noted that we permit the possibility Vk = 0, thus236

allowing elements to collapse to transition layers with zero thickness. The237

variables xlim and xuim appearing in the second set of inequality constraints238

define allowable limits for certain nodal position components. For instance,239

the z-coordinate of the ground surface is an upper bound on the position of240

all nodes along the z-direction.241

Due to boundary conditions and symmetry, some of the position compo-242

nents (x, y, and z) are fixed. Rather than imposing constraints, the total243

number of free variables introduced in the non-linear optimization problem244

of Eq. (12) is condensed from 3NR to DOF , where DOF = 3NR−NFC and245

NFC is the total number of fixed position components.246

As the objective function and constraints are non-linear functions of the247

free (unknown) variables xim, the optimization problem of Eq. (12) falls248

within the general domain of non-linear constrained optimization. A pre-249

liminary study employs two algorithms embedded in the FMINCON solver250

of MATLAB to solve this problem: the interior point method (IPM) and251

sequential quadratic programming (SQP). Both methods represent the state252

of the art in solving general constrained optimization problems. It is found253

that these two methods can achieve similar solutions. However, IPM requires254

more iterations, and during some iteration processes it diverges (i.e., the ob-255

jective function increases rather than decreases). Accordingly, SQP is used256

throughout this work. It should be noted that the theoretical reason why257
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SQP outperforms IPM remains unclear. This is due in part to the lack of an258

explicit expression for the objective function in the constrained optimization259

problem (i.e., the objective function itself is the SOCP problem defined in260

Eq. (10)).261

To determine when to stop the iterations for solving the optimization262

problem of Eq. (12), we adopt two criteria, and the satisfaction of either263

one is assumed to signal the convergence to a solution. Specifically, the264

optimization ends once (1) the quantity referred to as “first-order optimality”265

is lower than a tolerance, opttol, or (2) the norm of the vector containing the266

changes of nodal positions during an iteration is lower than a tolerance,267

∆xtol. First-order optimality, described in greater detail by Nocedal and268

Wright (2006), is a well-known and widely used measure of how close the269

current solution is to optimal. We use the second criterion to cease iterations270

when r adaptivity produces only minor perturbations that lead to marginal271

improvement the computed limit load. The following tolerance values are272

employed in this work: opttol = 1E−2 and ∆xtol = 1E−2. The usage of273

lower tolerances increases the number of iterations but does not noticeably274

improve the solution. For detailed descriptions of the above stopping criteria275

and their implementation in MATLAB, the reader is referred to Nocedal and276

Wright (2006) and The MathWorks, Inc (2018).277

5. Element subdivision (h adaptivity)278

Once r adaptivity is applied to optimize the limit load and velocity field279

for a particular mesh topology (element number and connectivity), further280

improvement of the solution requires either uniformly or selectively refining281
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the mesh. This section proposes a strategy to refine the mesh by selectively282

dividing elements, such that refinement will only be performed as needed and283

at locations that potentially improve the solution.284

Any subdivision strategy must decide where to refine the mesh based285

on certain a posteriori indicators (i.e., information derived from the current286

computation). For a rigid block system, a simple indicator is the magni-287

tude of the velocity jump, which is proportional to the integral of strain rate288

over the infinitesimally thin layers between adjacent elements (Chen, 1975)289

represented as velocity discontinuities. The magnitude of the velocity jump290

therefore identifies regions characterized by high strain rate, and mesh re-291

finement in these regions typically has the highest potential for improving292

the solution. This concept is similar to the adaptive mesh refinement pro-293

posed by Martin (2011) for FELA, which attempts to evenly distribute the294

integral of the maximum shear strain rate over all elements, such that the295

concentration of elements reflects the intensity of the shearing rate (change296

of velocity). The specific subdivision criterion postulated in this work is to297

subdivide elements sharing an edge for which the magnitude of the velocity298

jump is greater than a tolerance ∆vtol, i.e.,
√

∆vi∆vi ≥ ∆vtol.299

The flow chart within the dashed box of Fig. 2 presents the basic algo-300

rithm iterated over all elements to perform the subdivision. This algorithm301

first filters out elements with nearly zero velocity or small volume through302

prescribed tolerances vtol and Vtol, respectively. The former filtering prevents303

unnecessary refinement in stationary regions, and the latter contributes to304

forming the best overall shape of the mechanism, excluding the partition of305

small elements that tend only to result in small and localized improvement306
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YES
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Figure 2: Computation flow chart of the proposed r -h adaptive approach.

of the collapse mechanism. Each element that passes this first screening and307

has edges with
√

∆vi∆vi ≥ ∆vtol will be subdivided according to either Fig. 3308

or Fig. 4, depending on whether this velocity jump is between two moving309

elements (i.e., both have velocity greater than vtol), or between a moving310

element and a stationary region.311

As depicted in Fig. 3, when the targeted velocity jump is between two312

moving elements, we propose two different approaches to subdivide the el-313

ement corresponding to the subfigures (a) and (b). The adoption of one314
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Figure 3: Schematic showing the subdivision of a pair of blocks based on the flow direction

of the local velocity field.

of these two alternatives depends on the flow direction of the local velocity315

field. Fig. 3 shows the two possibilities: a flow tending to “rotate” about the316

point O, as shown in subfigure (a), or rotate about the axis AB, as shown in317

subfigure (b). Identifying this flow direction is important because regional318

velocity jumps can be reduced (smoothed) when more elements are added319

aligning with this direction.320

For the scenario shown in Fig. 3(a), the blocks OABC and OADB are321

divided so that the newly added discontinuities radiate from the point O322

and bisect the edges AC, BC, AD and BD. Note that for illustration pur-323

poses, we have assumed the surface OAB possesses the maximum velocity324

jump for both blocks; otherwise, only one block is subdivided. Fig. 3(a) also325

shows that the subdivision of the targeted element OADB adds a new node326

E to the edge BD, which is shared by an adjacent element ODBH. These327

neighboring elements will automatically be partitioned by new discontinuities328
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passing through the new nodes (e.g., the new discontinuity OEH is created329

to pass through the node E in Fig. 3(a)). Without such partition of neigh-330

boring elements, subsequently changing the positions of the new nodes (e.g.,331

the node E) can lead to interpenetration or gaps between the newly formed332

elements (e.g., the blocks OFEB and OFDE) and those that already ex-333

isted (e.g., the block ODBH). Moreover, subdividing these adjacent blocks334

ensures that the newly formed discontinuities are connected (e.g., the dis-335

continuities OFE and OEH), thus enabling immediate benefits from the r336

adaptivity. Due to the fact that only tetrahedral elements are considered,337

some secondary discontinuities (e.g., the discontinuities OAG and OFB in338

Fig. 3(a)) are added during the subdivision process. Extending the proposed339

approach to other element shapes would eliminate this requirement.340

When the local velocity field features the characteristics shown in Fig. 3(b),341

the newly added discontinuities radiate from the axis AB and bisect the edges342

OC and OD, and there are many possible ways to distinguish the above two343

different flow directions. The one employed in this work is given by344 rotate about AB if ∆viri < 0

rotate about O if ∆viri ≥ 0

(13)

where ∆vi = vIi−vIIi , with vIi and vIIi denoting the element velocities pointing345

toward and away from the shared surface OAB shown in Fig. 3, respectively.346

The variable ri in Eq. (13) represents a unit vector pointing from O to M . It347

is used as a reference direction for distinguishing the direction of the velocity348

jump. When a pair of elements have velocities that both point toward or349

away from the interface (OAB in Fig. 3), they will not be divided in the350

current iteration, due to the ambiguity of the flow direction.351
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Figure 3 shows only one of three possible permutations, namely the flow352

direction of the local velocity field can also rotate about the other two pairs:353

(1) the point A paired with the axis BO and (2) the point B paired with354

the axis AO. These three possibilities are distinguished by projecting the355

velocity jump to the three edges of the triangle OAB. The edge with the356

least projection is the one to which the velocity jump has the greatest per-357

pendicular component, and thereby the one about which the local velocity358

flow tends to rotate. Mathematically, this criterion can be expressed as359 
rotate about O/AB if |∆vioi| ≤ min(|∆vipi|, |∆viqi|)

rotate about A/BO if |∆vipi| ≤ min(|∆vioi|, |∆viqi|)

rotate about B/AO if |∆viqi| ≤ min(|∆vioi|, |∆vipi|)

(14)

where oi, pi and qi denote vectors along edges AB, BO and AO, respectively.360

Elements adjacent to stationary regions are subdivided as illustrated in361

Fig. 4. Specifically, the element is divided by creating a new discontinuity362

that radiates from the point O and bisects the edges AC and BC. The363

subdivision

A
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Figure 4: Schematic showing subdivision of a moving block adjacent to stationary region.

19



decision as to which edges to bisect are determined in a manner similar to364

Eq. (14). In the rightmost figures, we show the new nodes in their optimized365

positions (off of plane ABC) to illustrate that this type of subdivision enables366

an accurate resolution of the boundary between moving material and the367

stationary region, which is typically a discontinuity whose shape is not known368

beforehand.369

6. Algorithm summary370

The complete algorithm for the proposed r -h adaptive method is summa-371

rized in the main flow chart of Fig. 2. The computations start by optimizing372

the nodal positions of the initial mesh. Then, the algorithm repeats the cycle373

of subdividing elements and adjusting nodal positions, until satisfying either374

of the following two criteria: (1) the relative improvement of the limit load375

between two consecutive subdivisions is less than a prescribed tolerance, de-376

noted by Ftol, or (2) no element needs to be subdivided. It should be noted377

that, in the above-mentioned cycle, any h adaptivity step is immediately fol-378

lowed by an r adaptivity step. The reason why we do not allow consecutive379

h adaptivity steps will be elaborated by the numerical examples detailed in380

Section 7.381

As in any numerical approach, the question arises as to how to select the382

various tolerances introduced above. For the numerical examples discussed383

later, trial and error revealed that the following choices of tolerances give384

satisfactory performance: Ftol = 0.1, ∆vtol = v0, vtol = 0.01v0, where v0 de-385

notes the magnitude of the velocity along the boundary where the limit load386

is evaluated. Because the volume filtering mechanism described above can387
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potentially stop subdivision prematurely, a small value of 1E−3b3 is assigned388

to the tolerance Vtol, where b is the largest dimension of the loading area.389

7. Example problems390

To explore the performance of the proposed method, three examples are391

studied: (1) bearing capacity of a square foundation on cohesionless soil or392

purely cohesive soil; (2) passive uplift resistance of a square, horizontal anchor393

embedded in cohesionless soil; and (3) passive resistance of a rectangular394

retaining wall in cohesionless soil.395

7.1. Bearing capacity of a square foundation396

The limit load for a square surface foundation of width b on cohesionless397

soil can be expressed as398

F =
1

2
γb3Nγs (15)

In Eq. (15), the dimensionless quantity Nγs is a function of the internal fric-399

tion angle φ and the interfacial roughness between the footing and the soil.400

The subscript “s” is used to distinguish this factor, for a square foundation,401

from the 2D (plane strain) bearing capacity factor commonly denoted as402

Nγ. Exact values for Nγ were obtained numerically by Martin (2005), who403

performed detailed calculations based on the method of characteristics and404

utilized, notably, adaptive subdivision in his approach. In 3D, exact theoret-405

ical solutions remain elusive, and Nγs in particular is an unknown function.406

However, upper bounds obtained through limit analysis have been evaluated407

semi-analytically and numerically (Michalowski, 2001; Krabbenhøft et al.,408

2008; Lyamin et al., 2007). This work models cohesionless soils by assigning409
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zero-valued cohesion c to the dissipated power (Eq. 10). The unit weight of410

the soil γ and the footing width b are each assumed to be 1 for ease in inter-411

preting Nγs. The relative slip between the footing and the soil is prevented412

(i.e., perfectly rough) in the simulation.413

To initiate the computation, one has to guess an initial mesh. For refer-414

ence, we consider the mechanism constructed by Michalowski (2001) rendered415

in Fig. 5(a). This mechanism is characterized by a single pyramidal block416

that moves downward vertically with the foundation and four adjacent re-417

gions composed of rigid blocks truncated by conical surfaces. For clarity, Fig.418

5 shows only one of the four regions. By comparison, the starting guess con-419

sidered in this work is extremely simple. It is depicted in Fig. 5(b). Taking420

advantage of the four-fold symmetry (i.e., OMN shown in Fig. 5(a) represents421

a 45◦ slice of the footing), the mesh consists of only three elements (blocks),422

one directly beneath the foundation and two that are adjacent. Initially, one423
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b

(a) plane of symmetry
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Figure 5: Bearing capacity of a rough rigid square foundation on cohesionless soils: (a)

multi-block mechanism (adapted from Michalowski (2001)); (b) initial mesh assumed in

the r -h adaptive approach.
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has to guess the positions of the nodes n1, n2, and n3 (or equivalently the424

values of three geometric variables h, l and w in Fig. 5(b)). Throughout the425

r -h adaptive optimization procedure (Fig. 2), these nodes are constrained426

to move parallel to the plane of symmetry in which they reside, y = 0 or427

x = y, as are any nodes within these planes added through adaptive sub-428

division. Additionally, the components of velocity normal to the planes are429

constrained to be zero.430

When the friction angle is high, the jump condition given by Eq. (2)431

becomes increasingly restrictive with respect to finding a kinematically ad-432

missible velocity field for a particular mesh. Consequently, the existence of433

a feasible solution for SOCP becomes sensitive to the mesh geometry, and434

selecting initial values for the above geometric variables becomes challeng-435

ing. This issue was resolved by sequentially optimizing the nodal positions436

while gradually increasing the friction angle. In other words, one can start437

the computation by (1) introducing a low, fictitious friction angle denoted438

by φ0, (2) optimizing the nodal positions, and (3) using the optimized mesh439

as a starting guess to obtain a feasible initial solution for a higher friction440

angle. The procedure is repeated until the true friction angle is reached. In441

this work, the starting guess in all cases was h = b/2, w = b, and l = b with442

φ0 = 10◦.443

The solid line in Fig. 6 shows the computed values of Nγs for φ = 35◦
444

as they vary for each iteration of the SQP algorithm utilized within the445

proposed r -h adaptive solution procedure to solve Eq. (12). The figure shows446

that the computed upper bound on Nγs rapidly decreases as the iteration447

number increases, highlighting the sensitivity of the solution to the mesh,448
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Figure 6: Variation of the Nγs value as a function of the iteration numbers in the non-linear

optimization (φ = 35◦).

and thus also revealing the effectiveness of r adaptivity. In this example,449

the method resulted in two subdivisions. The initial mesh and the meshes450

corresponding to these subdivisions are presented in Figs. 7(a)-(c), wherein451

the number of elements after each subdivision is also provided. Prior to452

each subdivision, the convergence curve becomes flat, signaling that better453

upper bounds cannot be reached for the current mesh. Through the use of454

h adaptivity, the computed limit load can be further reduced, and a faster455

convergence rate can be recovered (e.g., 1st subdivision in Fig. 6). The456

reason why h adaptivity is effective is revealed in Fig. 7. Comparing the457

initial mesh to those obtained after subdivision, the approach enables the458

creation of more velocity discontinuities radiating outward from the edge459
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(a) Initial mechanism, NB = 3 (b) 1st subdivision, NB = 6

(c) 2nd subdivision, NB = 14 (d) Alternative 1, NB = 14

Figure 7: Mesh before and after element subdivisions (φ = 35◦).

of the footing. Moreover, the lowermost part of the collapse mechanism is460

gradually divided in a way that the above radial discontinuities can extend all461

the way to the boundary of the region of failing (moving) soil. Both features462

are important in forming a radial shearing zone, which accommodates the463

rotation of the principal directions of strain.464

Figure 6 highlights the fact that the rate of improvement in the solution465

generally diminishes as the r -h adaptive iterations proceed. This response466

may be attributed to two possible explanations. The first hypothesis is that467

the smaller element sizes obtained through h adaptivity constrain the mag-468

nitude of nodal position changes that can occur in the optimization, due469

to the imposed non-linear constraints requiring no interpenetration between470

elements (see Eq. (12)). This reduces the amount that nodes are able to471

perturb around their current positions, thereby demanding more r -adaptive472

iterations to achieve a better mechanism. The second hypothesis is that, as473

the current mechanism is closer to the optimum, the optimization algorithm474
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adopts smaller step size (i.e., nodal perturbation during one iteration), and475

consequently the rate of improvement is reduced.476

To test these two hypotheses, we consider an alternative initial mesh with477

the same overall geometry as the original one (Fig. 7(a)) but with the same478

connectivity and number of elements as in the final solution (Fig. 7(c)). Com-479

pared with the original starting guess, this new initial mechanism (Fig. 7(d))480

simply has smaller initial element sizes. The dashed line in Fig. 6 designated481

by “Alternative 1” shows that the r adaptive iterations are more effective482

for the new initial mesh with smaller element sizes. This reveals that the483

deterioration in the effectiveness of r adaptivity is not related to the number484

and size of elements but rather due to the fact that an optimal mechanism is485

approached (the second of the two hypotheses above). One might infer from486

the above discussion that starting from a more refined mesh is generally487

more effective, given that better results are achieved with fewer iterations.488

However, this is not the case, since the refined solution with element edges489

(velocity discontinuities) placed at strategic locations is known only after490

refinements are obtained through iterations of r -h adaptivity.491

We use the data corresponding to “Alternative 2” in Fig. 6 to illustrate492

why an r adaptive step is employed immediately following any h adaptive493

step, as described in Section 6. In Alternative 2, two consecutive h adaptive494

steps are performed on the initial mesh depicted in Fig. 7(a). The nodal495

positions of this refined mesh are then optimized using r adaptivity. Fig-496

ure 6 shows that after multiple h adaptive steps, r adaptivity becomes less497

efficient compared with the proposed algorithm. This can be explained as498

follows. When only subdividing elements without optimizing nodal positions,499
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the elements on both sides of the new discontinuities have the same veloc-500

ity as if the original elements have yet to be subdivided, and there are no501

velocity jumps across these new discontinuities. These new discontinuities502

with zero velocity jumps do not provide effective information regarding how503

to refine the mesh (see Section 5). This analysis shows that simply increas-504

ing the number of elements often does not lead to an improved solution. It505

underscores the merit of the proposed approach, which starts from a simple506

mesh that is progressively refined through combined r -h adaptivity.507

Figure 8 presents the Nγs values computed with the proposed method for508

friction angles from φ = 15◦ to 35◦. For the purpose of comparison, the exist-509

ing semi-analytical solution of Michalowski (2001) and the FELA results of510
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Figure 8: Comparison of Nγs values computed from the proposed method and existing

solutions.
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Lyamin et al. (2007) are included in the figure. Figure 8 shows that the pro-511

posed method gives a better (smaller) solution than the analytical approach,512

with the improvement increasing as the friction angle grows. On the other513

hand, the Nγs values computed in the present study are larger than the ones514

given by FELA, with the difference again tending to increase as the friction515

angle increases. Such a discrepancy between these two methods might be at-516

tributed the the continuous deformation allowed within elements in FELA.517

Through the use of rigid elements, the implementation presented in this work518

is potentially restrictive in the manner in which it accommodates the dilation519

of soils with large friction angles. Nevertheless, the ability of such a simple520

approach, and relatively simple collapse mechanism, to capture reasonable521

values of the limit load for such a challenging problem is remarkable.522

Figure 9 compares the computed failure mechanisms for different friction523

x (m)

0 2 4 6

0

5

y (m)

0

z (m)

-1

-2

(a) ϕ = 35 ̊ 

0

5

0 2 4

0

-1

-2

0

5

x (m)

0 2 4

0

-1

-2

(b) ϕ = 25 ̊ (c) ϕ = 15 ̊ 

z (m)

y (m)

x (m)

z (m)

y (m)

Figure 9: Optimal failure mechanism beneath the square foundation computed with the

proposed approach: (a) φ = 35◦; (b) φ = 25◦; (c) φ = 15◦.
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angles. As a matter of clarity, some block edges are removed from the figure.524

It should be emphasized that while all three mechanisms start from the525

same guess in terms of the initial mesh (Fig. 5(b)), they automatically evolve526

depending on the friction angle of the material. For larger friction angles, the527

failure mechanism extends both horizontally and vertically a larger distance528

compared to solutions with lower friction angles.529

To further test the proposed method, especially against existing tech-530

niques, the problem of a square foundation on cohesive soil is analyzed. The531

limit load for this problem, first considered by Shield and Drucker (1953),532

can be expressed in terms of the soil cohesion c as533

F = cb2Ncs (16)

where Ncs is a constant. Computations were completed in the same manner534

as for Nγs, using the same initial guess for the mesh as described above535

(Fig. 5(b); h = b/2, w = b, and l = b). The unit weight of soils is assumed536

to be zero and the cohesion c is equal to 1.537

Table 1 compares the Ncs values computed in this study to those ob-538

tained semi-analytically (Michalowski, 2001), using FELA (Vicente da Silva539

and Antão, 2008), and using DLO (Hawksbee et al., 2013). The recorded540

or reported computation time for each numerical method is also included.541

Calculations in this study were completed on a PC equipped with an Intel542

i7-4790 processor (3.6 GHz; 4 cores) and 8 GB memory. Results from FELA543

were obtained by distributing computations over 5 or 18 PCs, where each544

PC was equipped with a single core processor clocked at 3.0 GHz (Intel Pen-545

tium IV) and 512 MB memory. The DLO computations were performed on546

a workstation equipped with an AMD Opteron 6140 processor (2.6 GHz; 8547
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Table 1: Comparison of computed Ncs values by different methods with corresponding

computation costs (wall-clock time: the total processing time, including time spent on

pre-processing, kernel computation through the FMINCON function and MOSEK, and

post-processing; MOSEK time: the processing time spent on solving the second-order

cone programming through MOSEK).

Analytical

upper

bound

FELA

upper

bound

DLO This work

Ncs Ncs wall-

clock

times

(s)

node

spacing

Ncs MOSEK

times

(s)

subdivision Ncs wall-

clock

times

(s)

MOSEK

times

(s)

6.56 6.05 2000 1/2 6.52 0.02 0 8.27 0.96 0.2

to 1/4 6.41 13 1 6.67 2.0 0.4

15000 1/6 6.22 6400 2 6.44 4.4 0.9

cores) and 8 GB memory, and only the CPU times for SOCP with Mosek548

were reported. Because the basic computation unit in the proposed r -h adap-549

tive approach is solving Eq. (10) using SOCP, the CPU times for executing550

Mosek are separated from the total wall-clock times. Due to differences in551

the hardware and the particulars of programming (e.g., language and code552

optimization), the computation times reported in Table 1 are merely indi-553

cators of the computation cost rather than strictly comparable performance554

measures.555

Table 1 shows that DLO and the r -h adaptive approach provide reason-556

ably accurate estimates of the limit load (better than the analytical solution),557

and that FELA gives the least upper bound (best estimate of the limit load).558
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Compared to DLO and FELA, for which accuracy and computation time de-559

pend strongly on the element size or grid spacing, the r -h adaptive approach560

displays a significant improvement in the computed limit load without an561

exorbitant increase in computational cost. This difference can be attributed562

to the fact that uniform mesh or grid refinement tends to add a large num-563

ber of additional unknowns that do not contribute towards improving the564

solution. Finally, we note that the CPU times for running Mosek in this565

work are only a small portion of the total times, thus suggesting that the566

reported computational times can be potentially reduced by utilizing more567

efficient optimization schemes and programming languages for the non-linear568

optimization problem posed by r adaptivity (Section 4).569

7.2. Uplift resistance of a plate anchor in cohesionless soil570

With reference to the collapse mechanism considered by Murray and Ged-571

des (1987), Fig. 10(a) illustrates the problem of a horizontal anchor problem572

embedded at depth h. The anchor is square with sides of length, b, and the573

material is assumed to be cohesionless. The status of “immediate breakaway”574

is considered, which implies that the underside of the anchor loses contact575

with the soil. The ultimate uplift force F is expressed as576

F = γhb2Nγb (17)

The factor Nγb is referred to as the anchor break-out factor, and its value577

depends on φ, the ratio of the embedment depth to the anchor width (h/b),578

and friction at the soil-anchor interface. For a fixed friction angle of φ = 30◦,579

this example considers the Nγb factors corresponding to varying values of580

h/b. Here, as in the previous example, we assume zero-valued cohesion to581
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Figure 10: Uplift of an anchor in cohesionless soil: (a) collapse mechanism considered by

Murray and Geddes (1987); (b) initial mesh used in the r -h adaptive approach; (c) typical

collapse mechanism computed with the r -h adaptive approach.

model cohesionless soils. The unit weight of the soil γ and the anchor width582

b are each assumed to be 1. Above the anchor, a perfectly rough interface583

is simulated by eliminating relative movement between the anchor and the584

soil.585

Fig. 10(b) depicts the initial mesh selected for the r -h adaptive approach.586

As in the previous example, symmetry is invoked to reduce the model to a587

45◦ slice of the anchor (i.e., slice OMN in Fig. 10(a)), where the planes y = 0588

and x = y represent the planes of symmetry. The initial mesh is again one589

of the simplest conceivable, and it consists of three elements. The geometric590

variables l and w are initially assumed to be 2h, which leads to feasible initial591

solutions for all embedment ratios.592

Figure 11 compares the Nγb values computed with the r -h adaptive ap-593

proach to values obtained in previous works: those obtained with the ana-594

lytical solution of Murray and Geddes (1987) and the 3D DLO analysis of595

Hawksbee et al. (2013). Satisfactory agreement between the three methods596

can be observed for both shallow and deep embedment. Figure 10(c) presents597
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Figure 11: Nγb values computed with the r -h adaptive approach compared to existing

solutions.

a typical collapse mechanism computed by this work. The mechanism is char-598

acterized by single active velocity discontinuity that extends from the edge of599

the anchor to the ground surface and bounds a plug of material that moves600

upward with the anchor. This mechanism is similar to the one constructed601

by Murray and Geddes (1987) (Fig. 10(a)), but it differs with respect to the602

the conical surfaces assumed at the edges of the collapse mechanism. With603

these cone-shaped edges, the soil volume lifted by the anchor is reduced, and604

consequently a slightly lower (better) upper-bound solution is obtained, as605

shown in Fig. 11.606

One possible cause for the above mismatch is that no subdivision step is607

performed for this anchor problem, as all velocity jumps are below the toler-608
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ance for triggering h adaptivity (i.e., ∆vtol ≤ v0, where v0 in this example is609

the anchor velocity). Accordingly, we lowered the tolerance ∆vtol to 0.1v0 to610

explore whether the Murray and Geddes (1987)’s solution can be recovered611

by refining the mesh. Figure 12 compares the optimized collapse mechanism612

based on the initial mesh and the refined one. It can be seen that because613

the initial mesh produces a uniform velocity field across elements (i.e., ve-614

locity jumps between elements are zero), only the blocks at the boundary615

of the failing soil volume are subdivided. In other words, this subdivision616

is based exclusively on the velocity jumps between moving blocks (i.e, the617

blocks OBDA and OCDB in Fig. 12(a)) and the assumed stationary region.618

Whereas a discontinuity passing the nodes D and O and insects the edge AB619

could lead to an improved mechanism, Figure 12(b) shows that the proposed620

subdivision strategy adds new discontinuities that intersect with the failure621

plane ABCD and do not help in forming a more critical mechanism. As a622

consequence, the elements and discontinuities introduced in the refined mesh623

x
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x

z plane of symmetry

added nodes
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O

Figure 12: Collapse mechanism after optimizing nodal positions: (a) initial mesh; (b) after

first subdivision.
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do not alter the optimized collapse mechanism or the computed limit load.624

7.3. Rectangular wall in cohesionless soil625

As a final example, the r -h adaptive approach is applied to compute the626

limit load on a rectangular retaining wall in cohesionless soil. The problem is627

illustrated in Fig. 13(a), which also depicts the collapse mechanism assumed628

by Soubra and Regenass (2000). The width and height of the wall are denoted629

by b and h, respectively, and the wall is assumed to move laterally into the630

soil (passive condition). The passive force on the wall at collapse can be631

expressed as632

F =
1

2
γbh2Kγp (18)

where Kγp is the so-called passive earth pressure coefficient. Generally, the633

passive resistance depends on the mode of wall movement, and in particu-634

lar whether it translates, rotates, or moves with combined translation and635

rotation (Widuliński et al., 2011). Here, only translational movement is con-636

sidered.637
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Figure 13: Collapse mechanism for passive failure of a rectangular retaining wall in cohe-

sionless soil: (a) truncated multi-block mechanism (adapted from Soubra and Regenass

(2000)); (b) initial mesh assumed in the r -h adaptive approach.
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This example models cohesionless soils in the same manner as those dis-638

cussed earlier. The unit weight γ is assumed to be 1, and both the wall width639

b and height h are assumed to be 2. Unlike the previous two examples, the640

perfectly rough interface between soils and the retaining wall is modeled as641

a velocity discontinuity, whose jump condition is characterized by friction642

angle φ. This change is made in accordance with the assumption in the work643

of Soubra and Regenass (2000), thus enabling a direct comparison.644

Figure 13(b) shows the starting mesh used to initiate the computation.645

Considering that x = 0 is a plane of symmetry, only half of the wall is646

modeled. The geometric variables l and w are initially assumed to be 2h,647

and are adjusted to l = 3.53h and w = 7.20h, for all values of φ, by the648

sequential optimization discussed in Section 7.1. In this case the direction of649

the force F is not horizontal but inclined at an angle φ with respect to the650

direction normal to the wall (see Fig. 13(a)).651

Figure 14 compares the Kγp values computed in this study and to those652

assessed using the analytical solution proposed by Soubra and Regenass653

(2000). The analytical solution corresponds to the failure mechanism shown654

in Fig. 13(a), which consists of multiple blocks truncated by portions of cir-655

cular cones. The methods provide very close results for small friction angles.656

As the friction angle increases, the r -h adaptive approach gives lower (better)657

estimates of the limit load.658

The collapse mechanisms assessed through the r -h adaptive approach for659

large and small friction angles are presented in Fig. 15. While both cases start660

from the same initial mechanism, the proposed adaptive approach allows for661

the mechanism to extend to greater depth and horizontal distance as the662
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Figure 14: Comparison of the passive earth pressure coefficients Kγp computed by this

work and the analytical solution of Soubra and Regenass (2000).

friction angle grows, as in the solution of Soubra and Regenass (2000).663

8. Discussion664

Table 2 summarizes the computational cost of the r -h adaptive approach665

for the three examples considered. The table includes the number of rigid666

blocks (NB), the number of nodal position components subjected to op-667

timization (DOF ), wall-clock times, and the CPU times required to run668

MOSEK. Such information is organized for both the initial mesh configura-669

tion and those after h adaptivity steps. For these examples, the r -h adaptive670

approach displays promising computational efficiency. The maximum com-671

putation time is no more than 30 seconds, observed in the square footing672
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Figure 15: Collapse mechanisms computed with the r -h adaptive approach: (a) φ = 40◦;
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Table 2: Computational cost for the three examples.

Example subdivision NB NDOF wall-clock time (s) MOSEK time (s)

square footing

0 3 3 0.8 to 1.2 0.1 to 0.3

1 5 to 6 5 to 7 2.0 to 4.3 0.4 to 0.6

2 11 to 14 11 to 18 4.4 to 21.2 0.9 to 4.2

retaining wall
0 3 2 1.7 to 2.1 0.6 to 0.7

1 10 to 11 10 to 14 1.8 to 9.4 0.4 to 1.6

square anchor 0 3 2 1.8 to 2.2 0.7 to 0.8

case. The fact that the maximum MOSEK running time is around 4 seconds673

suggests that the approach could also be accelerated by formulating a more674

efficient strategy to solve the non-linear optimization problem of Eq. (12),675

rather than using the FMINCON solver available in MATLAB.676

While the above computation times are promising, they are not yet suf-677
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ficiently small to enable highly efficient sequential kinematic analysis for 3D678

applications, one of the underlying objectives of this work. The computa-679

tional demands of the proposed approach can be traced to the fact that a680

forward numerical differentiation is employed to compute the gradient of the681

objective function in the non-linear optimization. In other words, the ob-682

jective function (the SOCP problem of Eq. 10) is called DOF + 1 times683

to obtain the gradient. Therefore, computing the gradient consumes a sig-684

nificant amount of time when DOF , corresponding to the number of nodal685

positions, becomes large. To improve the computational efficiency, a future686

refinement of the current work could be to approximate rather than directly687

compute the gradient. For instance, the objective function can be linearized688

with respect to its unknowns (cf. Hambleton and Sloan, 2013; Milani and689

Lourenço, 2009), thus rendering an approximated but analytical form of the690

gradient.691

Compared with previous works on r adaptivity, an important contribu-692

tion of this work is the adaptive subdivision, which automatically changes the693

topological connectivity of blocks based on velocity jumps between blocks.694

Table 3 summarizes the computed limit loads under initial mesh configura-695

tion and after subsequent subdivisions. It can be seen that the calculated696

upper bounds significantly decrease as the mesh is gradually refined, thus697

suggesting that element subdivision based on the velocity jump is effective698

in improving the collapse mechanism. Table 3 reports the computed results699

only up to 2 subdivisions. The reason is that further mesh refinements only700

lead to marginal improvement on the collapse loads. For example, additional701

mesh refinement only decreases the computed Nγs value in the square foot-702
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Table 3: Limit loads computed by the initial mesh and after element subdivision (all

reported values are obtained after optimizing nodal positions).

Numerical example φ (◦) initial mesh 1st subdivision 2nd subdivision

square footing Nγs or Ncs

35 718.6 159 100.2

30 150.5 50.9 35.0

25 41.9 17.9 13.2

20 13.6 6.6 5.4

15 4.8 2.4 1.8

0 8.3 6.7 6.4

retaing wall Kγp

40 699.7 68.7 -

30 23.9 14.6 -

20 5.8 4.9 -

15 3.5 3.5 -

ing example by less than 5%, while the coefficient Kγp in the retaining wall703

problem remains unchanged even more subdivisions are performed.704

The fact r -h adaptive approach eventually reaches a limit of no improve-705

ment can be attributed to two reasons. First, as demonstrated explicitly706

in Section 7.2, the proposed subdivision scheme does not always lead to an707

improvement in the solution. Indeed, the development of a more sophisti-708

cated subdivision strategy is an matter for future investigation. Such future709

algorithms can be devised by (1) identifying other useful indicators that flag710

the regions to be refined and (2) devising effective methods to subdivide711

elements so that discontinuities can be added at strategic locations. The712

second reason is that the algorithm used to solve the non-linear optimization713

is only a local optimizer, and the solution is susceptible to being trapped at714

a point that is a local rather than global optimum. The likelihood of this715
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occurring increases as elements are are subdivided, since the the number of716

unknowns (nodal positions) handled by the optimization is higher. As a part717

of future work, global optimization techniques (e.g., genetic algorithm) can718

be employed to resolve this potential limitation.719

The initial mesh used as a starting guess in the proposed algorithm also720

plays a significant role in the accuracy of the computed solution and whether721

or not a global minimum can be attained. As made evident in the results722

shown in Table 1, 3D DLO with a coarse grid may provide a reasonable723

estimate of the limit loads at low cost, thus representing an encouraging724

approach to systematically define initial meshes that can subsequently be725

refined using the approach proposed in this work.726

9. Conclusions727

We propose an r -h adaptive kinematic approach for computing collapse728

mechanisms and limit loads in 3D problems. Considering a velocity field729

consisting of rigid elements (blocks) separated by zero-thickness velocity dis-730

continuities, this method progressively improves the collapse mechanism and731

bound on the limit load by successively adjusting the element nodal positions732

(r adaptivity) as well as the element number and connectivity (h adaptivity).733

Examination of the proposed technique through examples shows that when734

the optimal mechanism is relatively simple, satisfactory limit loads can be735

obtained solely by optimizing nodal positions (i.e., the locations of velocity736

discontinuities), even if a simple mesh is assumed. However, when the op-737

timal collapse mechanism becomes more intricate, adding discontinuities at738

critical locations becomes crucial for the performance of r adaptivity. The739
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subdivision scheme proposed in this work automatically splits existing ele-740

ments with velocity jumps greater than a specified threshold, adding new741

elements so that velocity jumps can be further reduced through r adap-742

tivity. This approach allows for the initiation of calculations from a very743

simple mesh to which new discontinuities are progressively added at critical744

locations, a paradigm that gives demonstrably high efficiency and may yield745

higher efficiencies with future refinements.746

To further speed up computations and enable efficient sequential kine-747

matic analysis, wherein a full process of deformation is simulated through748

a series of kinematic limit analysis computations, the proposed method can749

be improved by pursuing alternatives to solving the non-linear optimiza-750

tion of Eq. (12), devising more effective subdivision schemes, and developing751

a systematic means of defining the initial mesh. These future refinements752

represent important steps towards efficiently simulating large deformation753

problems, especially those involving cohesionless soils, that are extremely754

challenging to model by any other means.755
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Borges, L., Feijó, R., Zouain, N., 1999. A directional error estimator for765

adaptive limit analysis. Mechanics Research Communications 26 (5), 555–766

563.767

Borges, L., Zouain, N., Costa, C., Feijóo, R., 2001. An adaptive approach768
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