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Abstract

This paper explores a pathway for increasing efficiency in numerical 3D limit
analysis through r-h adaptivity, wherein nodal positions (r) and element
lengths (h) are successively refined. The approach uses an iterative, nested
optimization procedure involving three components: (1) determination of ve-
locities for a fixed mesh of rigid, translational elements (blocks) using second-
order cone programming; (2) adaptation of nodal positions using non-linear
optimization (r adaptivity); and (3) subdivision of elements based on the
magnitude of the velocity jumps (h adaptivity). Examples show that the
method can compute reasonably accurate limit loads at relatively low com-

putational cost.
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1. Introduction

Accurate evaluation of the limit load, or collapse load, causing failure of
a mass of geomaterial is crucial for the design of geotechnical infrastructure,
including foundations, slopes, and earth retaining systems. Limit load com-
putations are also central in the determination of how to induce failure de-
liberately, as in excavation, mining, and earthmoving (e.g., Hettiaratchi and
Reece, 1974; Godwin and O’Dogherty, 2007; Hambleton et al., 2014; Ham-
bleton, 2017). Many models rely on a two-dimensional (2D) idealization of
the true configuration (e.g., plane strain or axisymmetry), which significantly
simplifies the calculations. However, in many cases, the three-dimensional
(3D) nature of the problem cannot be ignored. When 3D conditions pre-
vail, computations based on the 2D simplification can overestimate or un-
derestimate the limit load (Soubra and Regenass, 2000; Antao et al., 2011;
Michalowski, 2001; Griffiths and Marquez, 2007; Michalowski and Drescher,
2009; Worden and Achmus, 2013).

Among various existing methods, the kinematic approach of limit anal-
ysis is a particularly effective and useful means of evaluating limit loads
(cf. Chen, 1975). The kinematic theorem states that for any kinematically
admissible velocity field (i.e., failure or collapse mechanism), the load com-
puted by equating the work rate of external forces to the internal energy
dissipation rate is a rigorous bound on the true limit load. It gives an upper
bound for a load inducing collapse and a lower bound for a load resisting
collapse (Drescher, 1991). A kinematically admissible velocity field is one
that satisfies boundary conditions and the plastic flow rule. The kinematic

theorem requires that material is perfectly plastic and obeys the associative
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flow rule. The consequences of associativity and possible workarounds in
instances where it may lead to unrealistic predictions are discussed by vari-
ous authors (Davis, 1968; Davis and Booker, 1971; Chen, 1975; Drescher and
Detournay, 1993; Krabbenhoft et al., 2012; Sloan, 2013). For 3D problems
with simple geometries and loading conditions, a kinematically admissible
mechanism can be constructed manually, thereby permitting an analytical
or semi-analytical solution (e.g., Murray and Geddes 1987; Soubra and Re-
genass 2000; Michalowski 2001). Nevertheless, it is generally difficult to
construct collapse mechanisms for 3D problems, and numerical methods are
usually necessary.

Finite element limit analysis (FELA) is a powerful numerical implemen-
tation that can evaluate 3D collapse loads without assuming a failure mech-
anism a priori (Lyamin and Sloan, 2002a,b; Lyamin et al., 2007; Vicente da
Silva and Antao, 2008; Krabbenhgft et al., 2008; Martin and Makrodimopou-
los, 2008; Sloan, 2013). As in the conventional finite element method (FEM),
FELA discretizes the domain into elements and interpolates the velocity field
based on discrete values at nodes and the assumed shape functions. The opti-
mal velocity field is computed by solving a large-scale optimization problem.
The objective function corresponds to the limit load, and the unknown nodal
velocities are constrained by enforcing kinematically admissibility. In FELA,
a certain discretization of the domain (i.e., meshing) leads only to a subset
of all possible velocity fields. Therefore, the limit load computed by FELA
is often highly sensitive to the finite element mesh, particularly in regions of
localized deformation. To maximize the solution accuracy using a minimum

number of elements, adaptive mesh refinement techniques (i.e., h adaptivity)
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have been proposed to automatically refine regions featuring large gradients
(Borges et al., 1999, 2001; Lyamin et al., 2005; Martin, 2011) or large gaps be-
tween upper-bound and lower-bound solutions computed on the same mesh
(Ciria et al., 2008; Munoz et al., 2009). The concept of h adaptivity has
played a key role in improving the accuracy and computational efficiency of
2D analyses. In contrast, 3D FELA based on adaptive mesh refinement (e.g.,
Dunne and Martin, 2017) and its performance have not been investigated in
great detail.

Another general numerical approach referred to as discontinuity layout
optimization (DLO) has been developed by Smith and Gilbert (2007) and
Hawksbee et al. (2013) on the basis of optimizing a velocity field consisting
only of so-called velocity discontinuities, which represent infinitesimally thin
zones of shearing. DLO focuses on optimizing the arrangement of these
discontinuities, with the tacit assumption that the material enclosed by the
discontinuities is rigid. This method searches for an optimal combination of
the possible discontinuities interconnecting a fized grid of nodes. Because the
grid is fixed, the grid resolution has to be refined to capture intricate features
or reasonably represent a continuous velocity field, which can dramatically
increase the number of potential discontinuities at the cost of computational
expediency (Hawksbee et al., 2013).

While the above-mentioned numerical approaches represent valuable tools
to evaluate limit loads for 3D problems, they tend to be computationally in-
tensive. In many cases, the optimal mechanism is in fact relatively simple,
and the standard formulations of FELA and DLO can be unnecessarily oner-

ous. Furthermore, the computational demands of existing techniques impose
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a significant limitation for the emerging computational approach referred to
in this paper as the sequential kinematic method (SKM). In SKM, kinematic
solutions are sequentially computed as a means of simulating a full process of
deformation, and the optimal velocity field within any particular increment
is used to update the model geometry and material properties. Given its
computational efficiency and stability, SKM has become a compelling alter-
native to conventional techniques such as FEM for simulating problems in
which capturing the evolution of material boundaries is critical (Hambleton
and Drescher, 2012; Mary et al., 2013; Hambleton et al., 2014; Kong et al.,
2017). In particular, SKM shows a remarkable capability in modeling the
large deformation of cohesionless soils (Hambleton et al., 2014; Kashizadeh
et al., 2014), which poses a significant challenge for conventional approaches.
Current SKM formulations, however, are restricted to 2D. Extension to 3D
has been largely halted by the lack of efficient methods to compute the op-
timal velocity field within each increment of simulation.

In this work, we investigate the concept of r adaptivity, in combination
with h adaptivity, and assess the potential of this approach for increasing
computational efficiency in 3D limit analysis. Pioneered in the earlier work
of Johnson (1995) and more recently explored for 2D limit analysis (Mi-
lani and Lourenco, 2009; Hambleton and Sloan, 2013; Milani, 2015; He and
Gilbert, 2016; Munoz et al., 2018), r adaptivity improves the computed limit
load by explicitly optimizing the nodal positions that control the locations
of possible velocity discontinuities. Because relatively coarse meshes with
suitably placed edges (velocity discontinuities) are often sufficient to obtain

accurate solutions, kinematic FELA and DLO enriched with r adaptivity of-
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fers a promising pathway for improving efficiency, as previously demonstrated

for 2D formulations.

2. Overview of the r-h adaptive approach

The general concept we explore in this paper is to start with a simple ve-
locity field, one requiring minimal computational effort, and then refine this
field to improve the accuracy of the computed limit load and collapse mech-
anism. We adopt a formulation in which the velocity field is characterized
by discrete regions (blocks or elements) of translational motion separated by
velocity discontinuities. These elements are tetrahedral by assumption, such
that the edges, representing velocities discontinuities, are planar. We restrict
our attention to material obeying the Mohr-Coulomb yield criterion and as-
sume that the internal friction angle ¢ and cohesion ¢ are constant across
the soil mass. Similarly, the material unit weight, denoted by ~, is assumed
to be constant. Spatially varied ¢, ¢, and v can be included into the current
formulation by constructing mesh according to the soil stratigraphy, in that
no discontinuity spans across different layers of soils. In the case of inter-
layer discontinuities, the highest angle of friction and cohesion encountered
should be used to maintain the upper-bound status of the solution.

Starting from an initial arrangement (mesh) of elements, the proposed
r-h adaptive approach proceeds iteratively, and each iteration involves three
key components. First, as explained in detail in Section 3, the optimal ve-
locities for a fixed mesh are determined using second-order cone program-
ming (SOCP). Second, as described in Section 4, the nodal positions are

regarded as variables determined through non-linear optimization (r adap-
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tivity). Third, elements are potentially subdivided (h adaptivity). Section
5 and 6 explain this third step and how each of the three components are
combined to obtain a complete solution algorithm, respectively. Section 7

considers several example problems to which the algorithm is applied.

3. Optimization of the velocity field for a fixed mesh

Considering an arbitrary mesh of rigid tetrahedral elements (blocks),
Hambleton and Sloan (2016) proposed a technique that utilizes second-order
cone programming (SOCP) to search for a kinematically admissible velocity
field that yields an optimal limit load and collapse mechanism. For com-
pleteness, its mathematical formulation is summarized here.

A generic pair of blocks is depicted in Fig. 1(a). The velocity jump
between these blocks is denoted by Av; and is calculated as Av; = vf — vl

where v} and v/’ are the block velocities. The superscripts I and II indicate,

arbitrarily, the first and second block, and the index ¢ = 1,2, 3 indicates the

velocity discontinuity

rigid block P A
(a) (b)

Figure 1: Schematics showing (a) 3D rigid blocks separated by a planar velocity disconti-
nuity and (b) the definition of a local coordinate system associated with the discontinuity

plane.
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velocity component. In this work, the component associated with ¢ = 3 is
always in the vertical direction, and it is assumed to be positive when the
velocity is upward (i.e., opposite the direction of gravity). Chen (1975) shows
that for materials obeying the Mohr-Coulomb yield criterion, the energy
dissipation rate along the planar velocity discontinuities between elements

(blocks) can be expressed as
d = cA|Avy| (1)

The variable A denotes the area, and Aw; is the tangential velocity jump with
respect to the plane of the discontinuity. The absolute value is prescribed
so that the dissipated power is always positive, regardless of the shearing
direction. To fulfill the associative flow rule corresponding to the Mohr-
Coulomb yield condition, a kinematically admissible velocity discontinuity

has to meet the following “jump condition” (Chen, 1975):
Av, = |Av| tan ¢ (2)

The variable Av, denotes the normal velocity jump. By adopting the local

coordinate system shown in Fig. 1(b), Egs. (1) and (2) can be rewritten as

d = cAv/(Avit;)? + (Avss;)? (3)

Avmi = tan (b\/(AUltl)Q + (Avisi)Q

Following the summation convention, the quantities Av;t; and Awv;s; are dot
products calculated, for example, as Av;t; = Avit; + Avaty + Avsts. In
Eq. (3), n; is a unit vector normal to the plane of the discontinuity, and ¢;
and s; are two unit vectors parallel to the plane. These three vectors give a

mutually orthogonal transformed basis for expressing the velocity vectors, as

8
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depicted in Fig. 1(b). Note that in accordance with measuring the velocity
jump from block I to I discussed above, the vector n; points towards block I
such that a positive normal component of the velocity jump indicates dilation.

In order to write Eq. (3) in a form amenable to SOCP, the quantity

\/ (Av;t;)? + (Av;s;)? is replaced by a dummy variable p:

d=cAp
Av;n; = ptan ¢

The dummy variable p is then constrained as follows:

>V (Avit;)? + (Avis;)? (5)

Eq. (5) is in the form of a so-called second-order cone constraint, one of
the types permitted in SOCP in addition to linear equality and inequality
constraints (cf. Sturm, 2002).

We note that the expressions given by Eq. (4) are exact only in the

particular instance where strict equality is achieved in Eq. (5):

=V (Avit;)? + (Av;s;)? (6)

Equality is achieved by constructing the optimization problem such that the
dummy variable p is minimized, and thus p is driven to equality as in Eq.
(6). Application to example problems, such as those considered in Section
7.3, reveals that equality is achieved in most cases. However, in the case of
cohesionless material (¢ = 0) for which the dissipation d vanishes, equality
is not always achieved. Nevertheless, it should be noted that, when the
equality in Eq. (5) is not satisfied, the solution remains an upper bound of

the true collapse load because the energy dissipation and the jump condition

9
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are effectively computed according to a larger cohesion and friction angle,
respectively.

By equating the rate of internal energy dissipation to the work rate of
external forces for an assembly of elements (blocks), one obtains

Np Np

Zdj = —Z’}/Vkvgk+/

t;‘vids—i-/tivids (7)
j=1 k=1 s
In Eq. (7), Np and Np are the number of discontinuity planes and the number
of blocks, respectively, and subscripts j and k are used to indicate quantities
corresponding to the j* discontinuity plane and the k' block. The variable
V, denotes the volume of the k™ block, a readily computed constant for a
fixed mesh. The three terms on the right side of Eq. (7) represent the work
rate of body forces, fixed surface tractions (t}) and tractions along the surface
where the limit loads is evaluated (¢;), respectively.

Drescher (1991), Sloan (1995), and Michalowski (2001) among others
show how Eq. (7) can be manipulated to obtain various expressions of the
limit load. A case encompassing all examples considered in Section 7 is
that the direction of ¢; is fixed, or known a priori, and velocities along the
boundary S are uniform, as could occur for a rigid footing or translational
retaining wall. In this instance, the unknown traction ¢; is expressed in
terms of a fixed traction ¢} as ¢; = At], where A > 0 is an unknown multi-
plier dictating the magnitude of the limit load. The last term in Eq. (7) is
Jotivids = v; [ Mids = A F), where F}' = [, tids is the resultant force.
The magnitude of the velocity is arbitrary (cf. Chen, 1975), and thus one

can write v; F;* = «, where « is an arbitrary constant. Equation (7) can then

10
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be manipulated to write:

1 ND . NB
/\ = E (]Zl dj + ;’}/V}gvggk — /S* tz’l}id8> (8)

Here we assume « is unity (a value of 1 with appropriate units) for conve-
nience. Depending on the distribution of the fixed tractions ¢}, the final term
in parenthesis in Eq. (7) can be integrated to obtain a sum over the unknown

velocities, viz.
Np
/ tivids = Zﬁiwiz 9)
5* 1=1

In Eq. (9), N is the number of elements with fixed tractions, and 5, (i =
1,2,3;1 =1, ..., Ngr) are constant coefficients. The notation v; again indicates
the i'" velocity component of the I element.

Finally, the optimization of the velocity field for a fixed mesh is written

in the standard form of SOCP as follows:

Np Ny Np
min A= Zdj + Z’YVM}% — Zﬁuvil
j=1 k=1 =1
s.t. Avijnij = U tan¢ j = 1, ...,ND (10)
dj:CAj[Lj j:]_,...,ND

[,l,j Z \/(Avijtijﬁ + (AUZ‘jSij)z ] = ]_, ceey ND

For a load resisting collapse, where the work rate of the unknown tractions
on the velocity is negative, the kinematic theorem of limit analysis leads to
a lower bound on the true collapse load (cf. Drescher, 1991). To compute
such a lower bound, Eq. (10) is converted to a maximization problem by

minimizing the negative of the objective function. In this work, the Mosek
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toolbox integrated with MATLAB (Mosek, 2015) is employed to solve the
SOCP problem.

Upon solving the SOCP problem of Eq. (10), one obtains an optimal
value for the load multiplier, denoted by A,,:. The computed bound on the

true collapse load is then simply

Fy = Aot Fy' (11)

4. Optimization of nodal positions (r adaptivity)

The bound on the limit load computed using Eq. (10) depends strongly
on the positions of the nodes within the mesh that define the locations of
potential velocity discontinuities. In particular, the optimal velocity field
and load multiplier A\,,; depend on the coordinates of the nodes that are not
constrained by boundary conditions or symmetry, and are therefore free to
move. The coordinates of these nodes are denoted by x;,. Index ¢ again
gives the component (i = 1,2,3), and index m (i = 1,..., Ng) identifies each
of the free nodes.

For the purpose of optimizing the nodal positions, a non-linear optimiza-

tion problem is formulated as follows:

min - Aopt(Tim)

st. Vi(xym) >0 k=1,..,Np (12)

l u

This non-linear optimization is nested with the SOCP described above, in
that the objective function in Eq. (12) is the load multiplier computed for

a given set of nodal positions z;,, (i = 1,2,3; m = 1,..., Ng), defined and

12
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evaluated in precisely the same way as in Section 3. To prevent the inter-
penetration of elements and ensure computational stability, the first set of
constraints in Eq. (12) requires that element volume Vi (k = 1,...,Np) is
always positive. It should be noted that we permit the possibility V, = 0, thus
allowing elements to collapse to transition layers with zero thickness. The
variables z} ~and x% appearing in the second set of inequality constraints
define allowable limits for certain nodal position components. For instance,
the z-coordinate of the ground surface is an upper bound on the position of
all nodes along the z-direction.

Due to boundary conditions and symmetry, some of the position compo-
nents (z, y, and z) are fixed. Rather than imposing constraints, the total
number of free variables introduced in the non-linear optimization problem
of Eq. (12) is condensed from 3Ng to DOF', where DOF = 3Nr — Np¢ and
Nrpc is the total number of fixed position components.

As the objective function and constraints are non-linear functions of the
free (unknown) variables x;,, the optimization problem of Eq. (12) falls
within the general domain of non-linear constrained optimization. A pre-
liminary study employs two algorithms embedded in the FMINCON solver
of MATLAB to solve this problem: the interior point method (IPM) and
sequential quadratic programming (SQP). Both methods represent the state
of the art in solving general constrained optimization problems. It is found
that these two methods can achieve similar solutions. However, IPM requires
more iterations, and during some iteration processes it diverges (i.e., the ob-
jective function increases rather than decreases). Accordingly, SQP is used

throughout this work. It should be noted that the theoretical reason why

13
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SQP outperforms IPM remains unclear. This is due in part to the lack of an
explicit expression for the objective function in the constrained optimization
problem (i.e., the objective function itself is the SOCP problem defined in
Eq. (10)).

To determine when to stop the iterations for solving the optimization
problem of Eq. (12), we adopt two criteria, and the satisfaction of either
one is assumed to signal the convergence to a solution. Specifically, the
optimization ends once (1) the quantity referred to as “first-order optimality”
is lower than a tolerance, opty,, or (2) the norm of the vector containing the
changes of nodal positions during an iteration is lower than a tolerance,
Axyy. First-order optimality, described in greater detail by Nocedal and
Wright (2006), is a well-known and widely used measure of how close the
current solution is to optimal. We use the second criterion to cease iterations
when r adaptivity produces only minor perturbations that lead to marginal
improvement the computed limit load. The following tolerance values are
employed in this work: opt,; = 1E~? and Awz,y = 1E~2. The usage of
lower tolerances increases the number of iterations but does not noticeably
improve the solution. For detailed descriptions of the above stopping criteria
and their implementation in MATLAB, the reader is referred to Nocedal and
Wright (2006) and The MathWorks, Inc (2018).

5. Element subdivision (h adaptivity)

Once r adaptivity is applied to optimize the limit load and velocity field
for a particular mesh topology (element number and connectivity), further

improvement of the solution requires either uniformly or selectively refining

14
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the mesh. This section proposes a strategy to refine the mesh by selectively
dividing elements, such that refinement will only be performed as needed and
at locations that potentially improve the solution.

Any subdivision strategy must decide where to refine the mesh based
on certain a posteriori indicators (i.e., information derived from the current
computation). For a rigid block system, a simple indicator is the magni-
tude of the velocity jump, which is proportional to the integral of strain rate
over the infinitesimally thin layers between adjacent elements (Chen, 1975)
represented as velocity discontinuities. The magnitude of the velocity jump
therefore identifies regions characterized by high strain rate, and mesh re-
finement in these regions typically has the highest potential for improving
the solution. This concept is similar to the adaptive mesh refinement pro-
posed by Martin (2011) for FELA, which attempts to evenly distribute the
integral of the maximum shear strain rate over all elements, such that the
concentration of elements reflects the intensity of the shearing rate (change
of velocity). The specific subdivision criterion postulated in this work is to
subdivide elements sharing an edge for which the magnitude of the velocity
jump is greater than a tolerance Avyy, i.e., VAV;Av; > Avyy.

The flow chart within the dashed box of Fig. 2 presents the basic algo-
rithm iterated over all elements to perform the subdivision. This algorithm
first filters out elements with nearly zero velocity or small volume through
prescribed tolerances vy, and Vi, respectively. The former filtering prevents
unnecessary refinement in stationary regions, and the latter contributes to
forming the best overall shape of the mechanism, excluding the partition of

small elements that tend only to result in small and localized improvement
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. _ I
Terminate the computation <!

Figure 2: Computation flow chart of the proposed r-h adaptive approach.

of the collapse mechanism. Each element that passes this first screening and
has edges with \/Av;Av; > Av,y will be subdivided according to either Fig. 3
or Fig. 4, depending on whether this velocity jump is between two moving
elements (i.e., both have velocity greater than v,), or between a moving
element and a stationary region.

As depicted in Fig. 3, when the targeted velocity jump is between two
moving elements, we propose two different approaches to subdivide the el-

ement corresponding to the subfigures (a) and (b). The adoption of one

16
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Figure 3: Schematic showing the subdivision of a pair of blocks based on the flow direction

of the local velocity field.

of these two alternatives depends on the flow direction of the local velocity
field. Fig. 3 shows the two possibilities: a flow tending to “rotate” about the
point O, as shown in subfigure (a), or rotate about the axis AB, as shown in
subfigure (b). Identifying this flow direction is important because regional
velocity jumps can be reduced (smoothed) when more elements are added
aligning with this direction.

For the scenario shown in Fig. 3(a), the blocks OABC and OADB are
divided so that the newly added discontinuities radiate from the point O
and bisect the edges AC', BC', AD and BD. Note that for illustration pur-
poses, we have assumed the surface OAB possesses the maximum velocity
jump for both blocks; otherwise, only one block is subdivided. Fig. 3(a) also
shows that the subdivision of the targeted element OADB adds a new node
E to the edge BD, which is shared by an adjacent element ODBH. These

neighboring elements will automatically be partitioned by new discontinuities
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passing through the new nodes (e.g., the new discontinuity OEH is created
to pass through the node F in Fig. 3(a)). Without such partition of neigh-
boring elements, subsequently changing the positions of the new nodes (e.g.,
the node F) can lead to interpenetration or gaps between the newly formed
elements (e.g., the blocks OFEB and OF DE) and those that already ex-
isted (e.g., the block ODBH). Moreover, subdividing these adjacent blocks
ensures that the newly formed discontinuities are connected (e.g., the dis-
continuities OF'E and OFEH), thus enabling immediate benefits from the r
adaptivity. Due to the fact that only tetrahedral elements are considered,
some secondary discontinuities (e.g., the discontinuities OAG and OF B in
Fig. 3(a)) are added during the subdivision process. Extending the proposed
approach to other element shapes would eliminate this requirement.

When the local velocity field features the characteristics shown in Fig. 3(b),
the newly added discontinuities radiate from the axis AB and bisect the edges
OC and OD, and there are many possible ways to distinguish the above two

different flow directions. The one employed in this work is given by

rotate about AB if Awvr; <0
(13)

rotate about O if Avir; >0
where Av; = v/ —v!?, with v/ and v/ denoting the element velocities pointing
toward and away from the shared surface OAB shown in Fig. 3, respectively.
The variable r; in Eq. (13) represents a unit vector pointing from O to M. It
is used as a reference direction for distinguishing the direction of the velocity
jump. When a pair of elements have velocities that both point toward or

away from the interface (OAB in Fig. 3), they will not be divided in the

current iteration, due to the ambiguity of the flow direction.

18
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Figure 3 shows only one of three possible permutations, namely the flow
direction of the local velocity field can also rotate about the other two pairs:
(1) the point A paired with the axis BO and (2) the point B paired with
the axis AO. These three possibilities are distinguished by projecting the
velocity jump to the three edges of the triangle OAB. The edge with the
least projection is the one to which the velocity jump has the greatest per-
pendicular component, and thereby the one about which the local velocity

flow tends to rotate. Mathematically, this criterion can be expressed as

/

rotate about O/AB if |Av0;| < min(|Av;p;l, |Avig;|)

rotate about  A/BO if |Avp;| < min(|Av;0;], |Avig;|) (14)

rotate about B/AO if |Av;q;| < min(|Av;o;|, |[Avipi|)

where 0;, p; and ¢; denote vectors along edges AB, BO and AQ, respectively.

Elements adjacent to stationary regions are subdivided as illustrated in
Fig. 4. Specifically, the element is divided by creating a new discontinuity
that radiates from the point O and bisects the edges AC' and BC. The

subd1V1s1o
A (B) c A®
stationary region

stationary region

!

(0]
subdivision
5 —
A A
C

Figure 4: Schematic showing subdivision of a moving block adjacent to stationary region.
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decision as to which edges to bisect are determined in a manner similar to
Eq. (14). In the rightmost figures, we show the new nodes in their optimized
positions (off of plane ABC) to illustrate that this type of subdivision enables
an accurate resolution of the boundary between moving material and the
stationary region, which is typically a discontinuity whose shape is not known

beforehand.

6. Algorithm summary

The complete algorithm for the proposed r-h adaptive method is summa-
rized in the main flow chart of Fig. 2. The computations start by optimizing
the nodal positions of the initial mesh. Then, the algorithm repeats the cycle
of subdividing elements and adjusting nodal positions, until satisfying either
of the following two criteria: (1) the relative improvement of the limit load
between two consecutive subdivisions is less than a prescribed tolerance, de-
noted by Fj,, or (2) no element needs to be subdivided. It should be noted
that, in the above-mentioned cycle, any h adaptivity step is immediately fol-
lowed by an r adaptivity step. The reason why we do not allow consecutive
h adaptivity steps will be elaborated by the numerical examples detailed in
Section 7.

As in any numerical approach, the question arises as to how to select the
various tolerances introduced above. For the numerical examples discussed
later, trial and error revealed that the following choices of tolerances give
satisfactory performance: Fy,; = 0.1, Avyey = vg, vsr = 0.01vg, where vg de-
notes the magnitude of the velocity along the boundary where the limit load

is evaluated. Because the volume filtering mechanism described above can
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potentially stop subdivision prematurely, a small value of 1E73b? is assigned

to the tolerance Vj,;, where b is the largest dimension of the loading area.

7. Example problems

To explore the performance of the proposed method, three examples are
studied: (1) bearing capacity of a square foundation on cohesionless soil or
purely cohesive soil; (2) passive uplift resistance of a square, horizontal anchor
embedded in cohesionless soil; and (3) passive resistance of a rectangular

retaining wall in cohesionless soil.

7.1. Bearing capacity of a square foundation

The limit load for a square surface foundation of width b on cohesionless
soil can be expressed as
1

F = §7b3Nws (15)

In Eq. (15), the dimensionless quantity N, is a function of the internal fric-
tion angle ¢ and the interfacial roughness between the footing and the soil.
The subscript “s” is used to distinguish this factor, for a square foundation,
from the 2D (plane strain) bearing capacity factor commonly denoted as
N,. Exact values for N, were obtained numerically by Martin (2005), who
performed detailed calculations based on the method of characteristics and
utilized, notably, adaptive subdivision in his approach. In 3D, exact theoret-
ical solutions remain elusive, and IV, in particular is an unknown function.
However, upper bounds obtained through limit analysis have been evaluated
semi-analytically and numerically (Michalowski, 2001; Krabbenhgft et al.,
2008; Lyamin et al., 2007). This work models cohesionless soils by assigning
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zero-valued cohesion ¢ to the dissipated power (Eq. 10). The unit weight of
the soil v and the footing width b are each assumed to be 1 for ease in inter-
preting N.,. The relative slip between the footing and the soil is prevented
(i.e., perfectly rough) in the simulation.

To initiate the computation, one has to guess an initial mesh. For refer-
ence, we consider the mechanism constructed by Michalowski (2001) rendered
in Fig. 5(a). This mechanism is characterized by a single pyramidal block
that moves downward vertically with the foundation and four adjacent re-
gions composed of rigid blocks truncated by conical surfaces. For clarity, Fig.
5 shows only one of the four regions. By comparison, the starting guess con-
sidered in this work is extremely simple. It is depicted in Fig. 5(b). Taking
advantage of the four-fold symmetry (i.e., OMN shown in Fig. 5(a) represents
a 45° slice of the footing), the mesh consists of only three elements (blocks),

one directly beneath the foundation and two that are adjacent. Initially, one

455lice of footing

n

(b)

Figure 5: Bearing capacity of a rough rigid square foundation on cohesionless soils: (a)
multi-block mechanism (adapted from Michalowski (2001)); (b) initial mesh assumed in
the r-h adaptive approach.
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has to guess the positions of the nodes ny, ng, and ng (or equivalently the
values of three geometric variables h, [ and w in Fig. 5(b)). Throughout the
r-h adaptive optimization procedure (Fig. 2), these nodes are constrained
to move parallel to the plane of symmetry in which they reside, y = 0 or
r = y, as are any nodes within these planes added through adaptive sub-
division. Additionally, the components of velocity normal to the planes are
constrained to be zero.

When the friction angle is high, the jump condition given by Eq. (2)
becomes increasingly restrictive with respect to finding a kinematically ad-
missible velocity field for a particular mesh. Consequently, the existence of
a feasible solution for SOCP becomes sensitive to the mesh geometry, and
selecting initial values for the above geometric variables becomes challeng-
ing. This issue was resolved by sequentially optimizing the nodal positions
while gradually increasing the friction angle. In other words, one can start
the computation by (1) introducing a low, fictitious friction angle denoted
by ¢o, (2) optimizing the nodal positions, and (3) using the optimized mesh
as a starting guess to obtain a feasible initial solution for a higher friction
angle. The procedure is repeated until the true friction angle is reached. In
this work, the starting guess in all cases was h = b/2, w = b, and [ = b with
Po = 10°.

The solid line in Fig. 6 shows the computed values of N, for ¢ = 35°
as they vary for each iteration of the SQP algorithm utilized within the
proposed 7-h adaptive solution procedure to solve Eq. (12). The figure shows
that the computed upper bound on N,, rapidly decreases as the iteration

number increases, highlighting the sensitivity of the solution to the mesh,
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Figure 6: Variation of the V.., value as a function of the iteration numbers in the non-linear

optimization (¢ = 35°).

and thus also revealing the effectiveness of r adaptivity. In this example,
the method resulted in two subdivisions. The initial mesh and the meshes
corresponding to these subdivisions are presented in Figs. 7(a)-(c), wherein
the number of elements after each subdivision is also provided. Prior to
each subdivision, the convergence curve becomes flat, signaling that better
upper bounds cannot be reached for the current mesh. Through the use of
h adaptivity, the computed limit load can be further reduced, and a faster
convergence rate can be recovered (e.g., 1st subdivision in Fig. 6). The
reason why h adaptivity is effective is revealed in Fig. 7. Comparing the
initial mesh to those obtained after subdivision, the approach enables the

creation of more velocity discontinuities radiating outward from the edge
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(a) Initial mechanism, Ny=3  (b) 1st subdivision, Nz =
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(¢) 2nd subdivision, N = 14 (d) Alternative 1, Ny =

Figure 7: Mesh before and after element subdivisions (¢ = 35°).

of the footing. Moreover, the lowermost part of the collapse mechanism is
gradually divided in a way that the above radial discontinuities can extend all
the way to the boundary of the region of failing (moving) soil. Both features
are important in forming a radial shearing zone, which accommodates the
rotation of the principal directions of strain.

Figure 6 highlights the fact that the rate of improvement in the solution
generally diminishes as the r-h adaptive iterations proceed. This response
may be attributed to two possible explanations. The first hypothesis is that
the smaller element sizes obtained through h adaptivity constrain the mag-
nitude of nodal position changes that can occur in the optimization, due
to the imposed non-linear constraints requiring no interpenetration between
elements (see Eq. (12)). This reduces the amount that nodes are able to
perturb around their current positions, thereby demanding more r-adaptive
iterations to achieve a better mechanism. The second hypothesis is that, as

the current mechanism is closer to the optimum, the optimization algorithm
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adopts smaller step size (i.e., nodal perturbation during one iteration), and
consequently the rate of improvement is reduced.

To test these two hypotheses, we consider an alternative initial mesh with
the same overall geometry as the original one (Fig. 7(a)) but with the same
connectivity and number of elements as in the final solution (Fig. 7(c)). Com-
pared with the original starting guess, this new initial mechanism (Fig. 7(d))
simply has smaller initial element sizes. The dashed line in Fig. 6 designated
by “Alternative 17 shows that the r adaptive iterations are more effective
for the new initial mesh with smaller element sizes. This reveals that the
deterioration in the effectiveness of r adaptivity is not related to the number
and size of elements but rather due to the fact that an optimal mechanism is
approached (the second of the two hypotheses above). One might infer from
the above discussion that starting from a more refined mesh is generally
more effective, given that better results are achieved with fewer iterations.
However, this is not the case, since the refined solution with element edges
(velocity discontinuities) placed at strategic locations is known only after
refinements are obtained through iterations of r-h adaptivity.

We use the data corresponding to “Alternative 2”7 in Fig. 6 to illustrate
why an 7 adaptive step is employed immediately following any h adaptive
step, as described in Section 6. In Alternative 2, two consecutive h adaptive
steps are performed on the initial mesh depicted in Fig. 7(a). The nodal
positions of this refined mesh are then optimized using r adaptivity. Fig-
ure 6 shows that after multiple h adaptive steps, r adaptivity becomes less
efficient compared with the proposed algorithm. This can be explained as

follows. When only subdividing elements without optimizing nodal positions,
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the elements on both sides of the new discontinuities have the same veloc-
ity as if the original elements have yet to be subdivided, and there are no
velocity jumps across these new discontinuities. These new discontinuities
with zero velocity jumps do not provide effective information regarding how
to refine the mesh (see Section 5). This analysis shows that simply increas-
ing the number of elements often does not lead to an improved solution. It
underscores the merit of the proposed approach, which starts from a simple
mesh that is progressively refined through combined r-h adaptivity.

Figure 8 presents the IV, values computed with the proposed method for
friction angles from ¢ = 15° to 35°. For the purpose of comparison, the exist-

ing semi-analytical solution of Michalowski (2001) and the FELA results of

200 I I i

this work —H—
TAnalytical upper bound (Michalowski, 2001) —&—
FELA upper bound (Lyamin et al., 2007) - - - - -

180

160 —
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120

15 20 25 30 35
friction angle ¢ (deg)

Figure 8: Comparison of N,s values computed from the proposed method and existing

solutions.
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Lyamin et al. (2007) are included in the figure. Figure 8 shows that the pro-
posed method gives a better (smaller) solution than the analytical approach,
with the improvement increasing as the friction angle grows. On the other
hand, the N, values computed in the present study are larger than the ones
given by FELA, with the difference again tending to increase as the friction
angle increases. Such a discrepancy between these two methods might be at-
tributed the the continuous deformation allowed within elements in FELA.
Through the use of rigid elements, the implementation presented in this work
is potentially restrictive in the manner in which it accommodates the dilation
of soils with large friction angles. Nevertheless, the ability of such a simple
approach, and relatively simple collapse mechanism, to capture reasonable
values of the limit load for such a challenging problem is remarkable.

Figure 9 compares the computed failure mechanisms for different friction

(b) ¢ =25° (©)¢=15°

0 0 N — 0 X
z(m) z (m) \ z(m)

-1 -1 . -1

2 -2 2

51 5 5
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Figure 9: Optimal failure mechanism beneath the square foundation computed with the

proposed approach: (a) ¢ = 35°%; (b) ¢ = 25°; (¢) ¢ = 15°.
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angles. As a matter of clarity, some block edges are removed from the figure.
It should be emphasized that while all three mechanisms start from the
same guess in terms of the initial mesh (Fig. 5(b)), they automatically evolve
depending on the friction angle of the material. For larger friction angles, the
failure mechanism extends both horizontally and vertically a larger distance
compared to solutions with lower friction angles.

To further test the proposed method, especially against existing tech-
niques, the problem of a square foundation on cohesive soil is analyzed. The
limit load for this problem, first considered by Shield and Drucker (1953),

can be expressed in terms of the soil cohesion ¢ as
F = cb®N,, (16)

where N, is a constant. Computations were completed in the same manner
as for N,,, using the same initial guess for the mesh as described above
(Fig. 5(b); h =b/2, w = b, and | = b). The unit weight of soils is assumed
to be zero and the cohesion c is equal to 1.

Table 1 compares the N, values computed in this study to those ob-
tained semi-analytically (Michalowski, 2001), using FELA (Vicente da Silva
and Antao, 2008), and using DLO (Hawksbee et al., 2013). The recorded
or reported computation time for each numerical method is also included.
Calculations in this study were completed on a PC equipped with an Intel
i7-4790 processor (3.6 GHz; 4 cores) and 8 GB memory. Results from FELA
were obtained by distributing computations over 5 or 18 PCs, where each
PC was equipped with a single core processor clocked at 3.0 GHz (Intel Pen-
tium IV) and 512 MB memory. The DLO computations were performed on
a workstation equipped with an AMD Opteron 6140 processor (2.6 GHz; 8
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Table 1: Comparison of computed N.s; values by different methods with corresponding
computation costs (wall-clock time: the total processing time, including time spent on
pre-processing, kernel computation through the FMINCON function and MOSEK, and
post-processing; MOSEK time: the processing time spent on solving the second-order

cone programming through MOSEK).

Analytical ~FELA DLO This work

upper upper

bound bound

N N,  wall- node N.s, MOSEK| subdivision N., wall- MOSEK
clock | spacing times clock  times
times (s) times  (s)
(s) (s)

6.56 6.05 2000 1/2 6.52  0.02 0 8.27 0.96 0.2
to 1/4 6.41 13 1 6.67 2.0 0.4
15000 | 1/6 6.22 6400 2 6.44 44 0.9

cores) and 8 GB memory, and only the CPU times for SOCP with Mosek
were reported. Because the basic computation unit in the proposed r-h adap-
tive approach is solving Eq. (10) using SOCP, the CPU times for executing
Mosek are separated from the total wall-clock times. Due to differences in
the hardware and the particulars of programming (e.g., language and code
optimization), the computation times reported in Table 1 are merely indi-
cators of the computation cost rather than strictly comparable performance
measures.

Table 1 shows that DLO and the r-h adaptive approach provide reason-
ably accurate estimates of the limit load (better than the analytical solution),

and that FELA gives the least upper bound (best estimate of the limit load).
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Compared to DLO and FELA, for which accuracy and computation time de-
pend strongly on the element size or grid spacing, the r-h adaptive approach
displays a significant improvement in the computed limit load without an
exorbitant increase in computational cost. This difference can be attributed
to the fact that uniform mesh or grid refinement tends to add a large num-
ber of additional unknowns that do not contribute towards improving the
solution. Finally, we note that the CPU times for running Mosek in this
work are only a small portion of the total times, thus suggesting that the
reported computational times can be potentially reduced by utilizing more
efficient optimization schemes and programming languages for the non-linear

optimization problem posed by r adaptivity (Section 4).

7.2. Uplift resistance of a plate anchor in cohesionless soil

With reference to the collapse mechanism considered by Murray and Ged-
des (1987), Fig. 10(a) illustrates the problem of a horizontal anchor problem
embedded at depth h. The anchor is square with sides of length, b, and the
material is assumed to be cohesionless. The status of “immediate breakaway”
is considered, which implies that the underside of the anchor loses contact

with the soil. The ultimate uplift force F' is expressed as
F = ~vhb*N,, (17)

The factor N, is referred to as the anchor break-out factor, and its value
depends on ¢, the ratio of the embedment depth to the anchor width (h/b),
and friction at the soil-anchor interface. For a fixed friction angle of ¢ = 30°,
this example considers the N, factors corresponding to varying values of

h/b. Here, as in the previous example, we assume zero-valued cohesion to
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Figure 10: Uplift of an anchor in cohesionless soil: (a) collapse mechanism considered by
Murray and Geddes (1987); (b) initial mesh used in the r-h adaptive approach; (c) typical

collapse mechanism computed with the r-h adaptive approach.

model cohesionless soils. The unit weight of the soil v and the anchor width
b are each assumed to be 1. Above the anchor, a perfectly rough interface
is simulated by eliminating relative movement between the anchor and the
soil.

Fig. 10(b) depicts the initial mesh selected for the r-h adaptive approach.
As in the previous example, symmetry is invoked to reduce the model to a
45° slice of the anchor (i.e., slice OM N in Fig. 10(a)), where the planes y = 0
and = y represent the planes of symmetry. The initial mesh is again one
of the simplest conceivable, and it consists of three elements. The geometric
variables [ and w are initially assumed to be 2h, which leads to feasible initial
solutions for all embedment ratios.

Figure 11 compares the N,, values computed with the r-h adaptive ap-
proach to values obtained in previous works: those obtained with the ana-
lytical solution of Murray and Geddes (1987) and the 3D DLO analysis of
Hawksbee et al. (2013). Satisfactory agreement between the three methods

can be observed for both shallow and deep embedment. Figure 10(c) presents
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Figure 11: N,; values computed with the r-h adaptive approach compared to existing

solutions.

a typical collapse mechanism computed by this work. The mechanism is char-
acterized by single active velocity discontinuity that extends from the edge of
the anchor to the ground surface and bounds a plug of material that moves
upward with the anchor. This mechanism is similar to the one constructed
by Murray and Geddes (1987) (Fig. 10(a)), but it differs with respect to the
the conical surfaces assumed at the edges of the collapse mechanism. With
these cone-shaped edges, the soil volume lifted by the anchor is reduced, and
consequently a slightly lower (better) upper-bound solution is obtained, as
shown in Fig. 11.

One possible cause for the above mismatch is that no subdivision step is

performed for this anchor problem, as all velocity jumps are below the toler-
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ance for triggering h adaptivity (i.e., Avyy < vg, where vy in this example is
the anchor velocity). Accordingly, we lowered the tolerance Aw, to 0.1vy to
explore whether the Murray and Geddes (1987)’s solution can be recovered
by refining the mesh. Figure 12 compares the optimized collapse mechanism
based on the initial mesh and the refined one. It can be seen that because
the initial mesh produces a uniform velocity field across elements (i.e., ve-
locity jumps between elements are zero), only the blocks at the boundary
of the failing soil volume are subdivided. In other words, this subdivision
is based exclusively on the velocity jumps between moving blocks (i.e, the
blocks OBDA and OCDB in Fig. 12(a)) and the assumed stationary region.
Whereas a discontinuity passing the nodes D and O and insects the edge AB
could lead to an improved mechanism, Figure 12(b) shows that the proposed
subdivision strategy adds new discontinuities that intersect with the failure
plane ABC'D and do not help in forming a more critical mechanism. As a

consequence, the elements and discontinuities introduced in the refined mesh

Z 1 plane of symmetry
y
o

added nodes

(b)

Figure 12: Collapse mechanism after optimizing nodal positions: (a) initial mesh; (b) after

first subdivision.
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do not alter the optimized collapse mechanism or the computed limit load.

7.3. Rectangular wall in cohesionless soil

As a final example, the r-h adaptive approach is applied to compute the
limit load on a rectangular retaining wall in cohesionless soil. The problem is
illustrated in Fig. 13(a), which also depicts the collapse mechanism assumed
by Soubra and Regenass (2000). The width and height of the wall are denoted
by b and h, respectively, and the wall is assumed to move laterally into the
soil (passive condition). The passive force on the wall at collapse can be

expressed as

1
F = 570Ky, (18)

where K., is the so-called passive earth pressure coefficient. Generally, the
passive resistance depends on the mode of wall movement, and in particu-
lar whether it translates, rotates, or moves with combined translation and

rotation (Widuliniski et al., 2011). Here, only translational movement is con-

sidered.

(b)

plane of symmetry

x\}

Figure 13: Collapse mechanism for passive failure of a rectangular retaining wall in cohe-
sionless soil: (a) truncated multi-block mechanism (adapted from Soubra and Regenass

(2000)); (b) initial mesh assumed in the r-h adaptive approach.
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This example models cohesionless soils in the same manner as those dis-
cussed earlier. The unit weight ~ is assumed to be 1, and both the wall width
b and height h are assumed to be 2. Unlike the previous two examples, the
perfectly rough interface between soils and the retaining wall is modeled as
a velocity discontinuity, whose jump condition is characterized by friction
angle ¢. This change is made in accordance with the assumption in the work
of Soubra and Regenass (2000), thus enabling a direct comparison.

Figure 13(b) shows the starting mesh used to initiate the computation.
Considering that x = 0 is a plane of symmetry, only half of the wall is
modeled. The geometric variables [ and w are initially assumed to be 2h,
and are adjusted to [ = 3.53h and w = 7.20h, for all values of ¢, by the
sequential optimization discussed in Section 7.1. In this case the direction of
the force F is not horizontal but inclined at an angle ¢ with respect to the
direction normal to the wall (see Fig. 13(a)).

Figure 14 compares the K, values computed in this study and to those
assessed using the analytical solution proposed by Soubra and Regenass
(2000). The analytical solution corresponds to the failure mechanism shown
in Fig. 13(a), which consists of multiple blocks truncated by portions of cir-
cular cones. The methods provide very close results for small friction angles.
As the friction angle increases, the r-h adaptive approach gives lower (better)
estimates of the limit load.

The collapse mechanisms assessed through the r-h adaptive approach for
large and small friction angles are presented in Fig. 15. While both cases start
from the same initial mechanism, the proposed adaptive approach allows for

the mechanism to extend to greater depth and horizontal distance as the
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Figure 14: Comparison of the passive earth pressure coefficients K., computed by this

work and the analytical solution of Soubra and Regenass (2000).

friction angle grows, as in the solution of Soubra and Regenass (2000).

8. Discussion

Table 2 summarizes the computational cost of the r-h adaptive approach
for the three examples considered. The table includes the number of rigid
blocks (Ng), the number of nodal position components subjected to op-
timization (DOF'), wall-clock times, and the CPU times required to run
MOSEK. Such information is organized for both the initial mesh configura-
tion and those after h adaptivity steps. For these examples, the r-h adaptive
approach displays promising computational efficiency. The maximum com-

putation time is no more than 30 seconds, observed in the square footing
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Figure 15: Collapse mechanisms computed with the r-h adaptive approach: (a) ¢ = 40°;
(b) ¢ = 15°.

Table 2: Computational cost for the three examples.

Example subdivision Np Npor wall-clock time (s) MOSEK time (s)
0 3 3 0.8 to 1.2 0.1 to 0.3
square footing 1 5to 6 5to 7 2.0 to 4.3 0.4 to 0.6
2 11to14 11to 18 4.4to21.2 0.9 to 4.2
0 3 2 1.7 to 2.1 0.6 to 0.7
retaining wall
1 10to11 10to 14 1.8to 9.4 0.4 to 1.6
square anchor 0 3 2 1.8 to 2.2 0.7 to 0.8

case. The fact that the maximum MOSEK running time is around 4 seconds
suggests that the approach could also be accelerated by formulating a more
efficient strategy to solve the non-linear optimization problem of Eq. (12),

rather than using the FMINCON solver available in MATLAB.

While the above computation times are promising, they are not yet suf-
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ficiently small to enable highly efficient sequential kinematic analysis for 3D
applications, one of the underlying objectives of this work. The computa-
tional demands of the proposed approach can be traced to the fact that a
forward numerical differentiation is employed to compute the gradient of the
objective function in the non-linear optimization. In other words, the ob-
jective function (the SOCP problem of Eq. 10) is called DOF + 1 times
to obtain the gradient. Therefore, computing the gradient consumes a sig-
nificant amount of time when DOF', corresponding to the number of nodal
positions, becomes large. To improve the computational efficiency, a future
refinement of the current work could be to approximate rather than directly
compute the gradient. For instance, the objective function can be linearized
with respect to its unknowns (cf. Hambleton and Sloan, 2013; Milani and
Lourenco, 2009), thus rendering an approximated but analytical form of the
gradient.

Compared with previous works on 7 adaptivity, an important contribu-
tion of this work is the adaptive subdivision, which automatically changes the
topological connectivity of blocks based on velocity jumps between blocks.
Table 3 summarizes the computed limit loads under initial mesh configura-
tion and after subsequent subdivisions. It can be seen that the calculated
upper bounds significantly decrease as the mesh is gradually refined, thus
suggesting that element subdivision based on the velocity jump is effective
in improving the collapse mechanism. Table 3 reports the computed results
only up to 2 subdivisions. The reason is that further mesh refinements only
lead to marginal improvement on the collapse loads. For example, additional

mesh refinement only decreases the computed N, value in the square foot-
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Table 3: Limit loads computed by the initial mesh and after element subdivision (all

reported values are obtained after optimizing nodal positions).

Numerical example ¢ (°) initial mesh 1st subdivision 2nd subdivision
35 718.6 159 100.2
30 150.5 50.9 35.0
25 41.9 17.9 13.2
square footing IN.,s or N,
20 13.6 6.6 5.4
15 4.8 24 1.8
0 8.3 6.7 6.4
40 699.7 68.7 -
30 23.9 14.6 -
retaing wall K,
20 5.8 4.9 -
15 3.5 3.5 -

ing example by less than 5%, while the coefficient K, in the retaining wall
problem remains unchanged even more subdivisions are performed.

The fact r-h adaptive approach eventually reaches a limit of no improve-
ment can be attributed to two reasons. First, as demonstrated explicitly
in Section 7.2, the proposed subdivision scheme does not always lead to an
improvement in the solution. Indeed, the development of a more sophisti-
cated subdivision strategy is an matter for future investigation. Such future
algorithms can be devised by (1) identifying other useful indicators that flag
the regions to be refined and (2) devising effective methods to subdivide
elements so that discontinuities can be added at strategic locations. The
second reason is that the algorithm used to solve the non-linear optimization
is only a local optimizer, and the solution is susceptible to being trapped at

a point that is a local rather than global optimum. The likelihood of this
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occurring increases as elements are are subdivided, since the the number of
unknowns (nodal positions) handled by the optimization is higher. As a part
of future work, global optimization techniques (e.g., genetic algorithm) can
be employed to resolve this potential limitation.

The initial mesh used as a starting guess in the proposed algorithm also
plays a significant role in the accuracy of the computed solution and whether
or not a global minimum can be attained. As made evident in the results
shown in Table 1, 3D DLO with a coarse grid may provide a reasonable
estimate of the limit loads at low cost, thus representing an encouraging
approach to systematically define initial meshes that can subsequently be

refined using the approach proposed in this work.

9. Conclusions

We propose an r-h adaptive kinematic approach for computing collapse
mechanisms and limit loads in 3D problems. Considering a velocity field
consisting of rigid elements (blocks) separated by zero-thickness velocity dis-
continuities, this method progressively improves the collapse mechanism and
bound on the limit load by successively adjusting the element nodal positions
(r adaptivity) as well as the element number and connectivity (h adaptivity).
Examination of the proposed technique through examples shows that when
the optimal mechanism is relatively simple, satisfactory limit loads can be
obtained solely by optimizing nodal positions (i.e., the locations of velocity
discontinuities), even if a simple mesh is assumed. However, when the op-
timal collapse mechanism becomes more intricate, adding discontinuities at

critical locations becomes crucial for the performance of r adaptivity. The
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subdivision scheme proposed in this work automatically splits existing ele-
ments with velocity jumps greater than a specified threshold, adding new
elements so that velocity jumps can be further reduced through r adap-
tivity. This approach allows for the initiation of calculations from a very
simple mesh to which new discontinuities are progressively added at critical
locations, a paradigm that gives demonstrably high efficiency and may yield
higher efficiencies with future refinements.

To further speed up computations and enable efficient sequential kine-
matic analysis, wherein a full process of deformation is simulated through
a series of kinematic limit analysis computations, the proposed method can
be improved by pursuing alternatives to solving the non-linear optimiza-
tion of Eq. (12), devising more effective subdivision schemes, and developing
a systematic means of defining the initial mesh. These future refinements
represent important steps towards efficiently simulating large deformation
problems, especially those involving cohesionless soils, that are extremely

challenging to model by any other means.
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