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Abstract: A particle-cluster treecode based on barycentric Hermite interpolation is presented for fast sum-
mation of electrostatic particle interactions in 3D. The interpolation nodes are Chebyshev points of the 2nd
kind in each cluster. It is noted that barycentric Hermite interpolation is scale-invariant in a certain sense
that promotes the treecode’s efficiency. Numerical results for the Coulomb and screened Coulomb potentials
show that the treecode run time scales like O(N log N), where N is the number of particles in the system. The
advantage of the barycentric Hermite treecode is demonstrated in comparison with treecodes based on Taylor
approximation and barycentric Lagrange interpolation.
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1 Introduction

Electrostatic effects play an important role in determining biomolecular structure, function, and dynam-
ics [4, 16]. For example among a wide range of applications, biophysics researchers are interested in under-
standing the influence of electrostatic effects on protein folding and protein-ligand binding [30, 31]. Electro-
static effects are inherently multiscale and they pose an outstanding challenge in computational molecular
biophysics [23]. Powerful computer hardware is certainly required, but advances in numerical algorithms are
also necessary to achieve the goal of accurate and efficient simulations of large-scale biomolecular systems.

Here we consider the basic problem of computing the electrostatic potential due to a set of charged par-
ticles in 3D space,

N
¢(Xi)= Z g(Xi’Xj)qj’ i= 1"-~’N, (1)
j=1,ji
where x; is a target site, X; is a source site of a particle with charge g;, and g(x, y) is an interaction kernel. Two
important examples are the Coulomb potential and screened Coulomb potential,
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where k is the inverse Debye length. Computing the potential ¢(x;) at all the target sites by direct summation
requires O(N?) operations and many fast summation methods have been developed to reduce the cost in-
cluding particle-mesh methods (e.g. PPPM [15], PME [8], MSM [13]) and tree-based methods (e.g. treecode [1],
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FMM [11], panel clustering [12]). However there is continuing interest in exploring different approaches to
improve the performance of these methods, especially in the context of parallel simulations of large-scale
biomolecular systems.

Treecode algorithms are interesting due to their relatively simple structure and low memory consump-
tion. In these algorithms, some of the particle-particle interactions are computed directly and others are com-
puted by particle-cluster approximations. The resulting run time scales like O(N log N), where N is the num-
ber of particles in the system. Previously we developed a treecode based on Cartesian Taylor approximation
(TTC) [18] and a kernel-independent treecode based on barycentric Lagrange interpolation (BLTC) [27]. Here
we extend the latter method to obtain a treecode based on barycentric Hermite interpolation (BHTC); it in-
terpolates the kernel and its first partial derivatives in the three coordinate directions at Chebyshev points of
the 2nd kind. As we explain below, barycentric Hermite interpolation is scale-invariant in a certain sense that
promotes the efficiency of the treecode. Although the BHTC it is not strictly kernel-independent, for many
kernels of practical interest the necessary derivatives can be easily computed. In this work we demonstrate
the BHTC in computing electrostatic potentials due to Coulomb and screened Coulomb interactions, and nu-
merical results show the improved performance of BHTC in comparison with TTC and BLTC.

The paper is organized as follows. Section 2 reviews polynomial interpolation in 1D. Section 3 discusses
the extension to polynomial interpolation in 3D. Section 4 presents the barycentric Hermite treecode. Sec-
tion 5 displays numerical results. Conclusions are given in Section 6.

2 Polynomial interpolation in 1D

We review polynomial interpolation in 1D including Lagrange form, barycentric Lagrange form, and barycen-
tric Hermite form [25].

Lagrange form. Given a function f(x) and a set of n + 1 distinct nodes {xo, ..., xn}, the Lagrange form
of the interpolating polynomial is

n
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where the Lagrange polynomials satisfy L;(x;) = §ji for j, k = 0 : n. This form is well-known and appears in
many textbooks, however Berrut and Trefethen [3] pointed out the advantages of the barycentric Lagrange
form.

Barycentric Lagrange form. The interpolating polynomial can also be written in barycentric Lagrange
form,

n
w
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where the removable singularity at the nodes is resolved by setting p(x;) = f(x;). Here we choose the nodes
to be Chebyshev points of the 2nd kind,

X =cosO, Op=km/n, k=0:n. (5)

In this case as shown in [22], the barycentric weights wy, in (4) may be taken as

1, k=1:n-1,
wi = (%8, 6 = (6)
1/2, k=0,n.

Among the advantages of barycentric Lagrange interpolation at Chebyshev points are excellent approxima-
tion properties, low cost, and stability [3, 25, 14]. It also has a scale-invariance property in that the same
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weights (6) can be used for any interval [a, b], as long as the Chebyshev points are adapted to the interval;
this is particularly useful in the context of the treecode [27].

Barycentric Hermite form. Next we consider Hermite interpolation [24, 21, 2]. Given function values and
first derivative values at the nodes, {f, f;, k = 0 : n}, the Hermite interpolating polynomial can be written in

the form .

p0) = 3 (Hof + H0fi ) %

k=0

where the Hermite basis functions Hy(x), H(x) are polynomials of degree 2n + 1 satisfying
Hi(x) =6, Hi(x) =0, Hi(x))=0, Hi(x)=8y, jk=0:n. (8)

It can be verified that the polynomial (7) interpolates the prescribed function and derivative values at the
nodes, p(xy) = fi, p'(x) = f}, k = 0 : n. Following [24], the Hermite interpolating polynomial can be written

in barycentric form,
- ay bk bk /
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where again the removable singularity is resolved by setting p(x;) = fi. When the nodes are the Chebyshev
points of the 2nd kind (5), it was shown in [2] that the barycentric Hermite weights may be taken as

1)—(kxi’ k=1:n-1,
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In practice the removable singularity at x = x; can be handled following [3] (see also [27]); if the argument x
is closer to a node x; than some tolerance, this is flagged and the correct values H(x;) = 6ji, Hi(x;) = O are
provided when evaluating the polynomial (7); details relevant to the treecode will be given further below.

Extension to a general interval. The Chebyshev points (5) are suitable for interpolation on the interval
[-1, 1]. For a general interval [a, b], the function x — (a + b)/2 + x(b — a)/2 is used to map the Chebyshev
points to the desired interval, but we must also consider what happens to the barycentric Hermite weights
ay, by in (10). First note that the barycentric expressions (9), (11) are scale-invariant; if the weights ay, by
have a common factor independent of k, then the factor can be cancelled and the expressions (9), (11) stay
the same. In the case of general nodes, following the derivation of the barycentric Lagrange weights in [22],
it can be shown that the barycentric Hermite weights satisfy

n

1 1 n
ay = —Zbk Z —_— bk = W’ l/J(X) = Hj=O(X—X]'). (12)
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Hence under the mapping [-1, 1] — [a, b], the weights b, acquire a factor (2/(b - a))*", while the weights a;
acquire a factor (2/(b — a))***!. Due to scale-invariance, the factor (2/(b - a))*" can be cancelled from a;, by,
so that for a general interval [a, b], the barycentric Hermite weights in (10) should be scaled so that a; —
2a;/(b - a), while the b;, stay the same. The scale-invariance property of barycentric Hermite interpolation

facilitates the treatment of different clusters in the treecode and this promotes the scheme’s efficiency.
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3 Extension to 3D

Now consider a function f(x) = f(x1,x>,x3), and a tensor product grid of Chebyshev points s, =
(Sk,» Sky» Sk3) € [-1, 1), where k = (kq, k1, k3) is a multi-index with k, = 0, ..., n for ¢ = 1, 2, 3. Letting
p(x1, x2, x3) denote the Hermite interpolating polynomial, there are eight interpolation conditions to be sat-
isfied at each Chebyshev point sy,

p:f’ p1=f19 p2=f2! p3=f3a

(13)
P12 = f12, P13 =f13, D23 =/ 23, D123 = f123,

where the subscript denotes a partial derivative, for example p1, = 0°p/dx10x,; here and below we some-
times omit function arguments for clarity. The eight conditions (13) represent all combinations of first partial
derivatives in three variables. Using the properties of the basis functions (8), it follows that the Hermite in-
terpolating polynomial is

n n n
PO, xa, %) = 30 S SO[Hg (B (HOf + Hofs) + B (Hofs + Hf3s )
k1=0 k2=0 k3=0 (14)
+Hy (2 (HOR + Hoffs) + He (HRfh + Hofls ).
where H;{‘j = Hy,(x,), ﬁiﬁ =H k,(X¢), and superscript s indicates that f and its partial derivatives are evaluated
at the Chebyshev points (s, , Sk, » Sk, ). It can be verified that (14) satisfies the interpolation conditions (13).

This result is applied in the treecode to approximate a kernel g(x, y) where x, y € R>. In that case, holding
x fixed and interpolating with respect to y yields,

n n n
g0y~ SN [Hp (Hp (Hpet + Hpgs) « B (HE g3+ H83s )
k1=0 k=0 k3=0 (15)
+ 2 (H2 (B 83 + Bt ) + B (High + Hogl) ).
where now the target variables (x1, x», x3) are parameters in the kernel and its partial derivatives, the Hermite

basis functions are evaluated at the source variables (y1, y,, y3), while the partial derivatives of the kernel
are taken with respect to (y1, y», y3) and are evaluated at the Chebyshev points (s, , Sk, , Sk,)-

4 Barycentric Hermite treecode

In a treecode the particles x; are partitioned into a hierarchy of clusters C, and the sum (1) is written as

N
() => g, x)q5 =Y p(x;,C), i=1,...,N, (16)
=1 c
where
o(x;, C) = Z 8(x;, v,)gj, (17)
y;eC

is the interaction between a target particle x; and a cluster of source particles C = {y;}. The sum over C in (16)
denotes a suitable set of clusters depending on the target particle. In our implementation, the clusters are
rectangular boxes.

Particle-cluster approximation. The particle-cluster interaction (17) can be approximated using
barycentric Hermite interpolation as follows. We substitute the kernel approximation (15) into the particle-
cluster interaction (17) and switch the order of summation to obtain the particle-cluster approximation,

n n

n
¢(Xi, C) = Z Z Z(gs,gi’g‘;’ g;: giZ’g{B’ giB,g‘iZ}) ‘ (/q\, /q\l,/q\z’ /q\B’ 512’ 613’21\23,21\123), (18)
k1=O k2=0 k3=0
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where the modified charges are
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andy; = (yj1, ¥j2, ¥j3) are the source particles. Note that in the exact particle-cluster interaction (17) the target
x; interacts with the source particles and charges {yj, g;}, while in the particle-cluster approximation (18) the
target x; interacts with the Chebyshev grid points and modified charges {sy, gy }. It should also be noted that
the Chebyshev grid points are mapped to the cluster C using the linear function mentioned above in the
discussion of general intervals [a, b].

The particle-cluster approximation has two advantages. First, the operation count for the exact interac-
tion (17) is O(N.), where N is the number of particles in cluster C, while the operation count for the approx-
imation (18) is O(n?), hence the approximation is faster when n3 << N. Second, the modified charges are
independent of the target Xx;, so they can be precomputed and reused in different particle-cluster approxima-
tions.

Treecode algorithm. The treecode algorithm has two stages. Stage 1 starts by building a hierarchical tree
of particle clusters. The root cluster is a rectangular box containing all the particles. The root is bisected along
itslong edges, yielding 2, 4, or 8 child clusters, and these are similarly bisected until a cluster has fewer than a
user-specified number of particles Ny. A long edge is defined to be any edge whose length exceeds ¢max/v/2,
where {imax is the maximum edge length of the cluster. Once the tree is built, the modified charges (19) for
each cluster are computed; the procedure is explained below. This completes stage 1.

In stage 2, the treecode cycles through the target particles and computes particle-cluster interactions
starting at the root. Well-separated particle-cluster interactions are computed using the approximation (18).
The criterion for being well-separated is r/R < 6, where r is the cluster radius, R = |X; — Y| is the distance
between the target particle and the cluster center, and 6 is a user-specified parameter; this is the multipole
acceptance criterion (MAC). If the MAC fails, then the code descends to the child clusters, until the leaves are
reached at which point the particle-cluster interaction is computed by direct summation (17). This is essen-
tially the Barnes-Hut treecode algorithm [1], extended to barycentric Hermite interpolation; references can be
consulted for further details [18, 27].

Computation of modified charges. We explain some details of how the modified charges (19) for a
given cluster are computed. Note that the Hermite basis functions appearing there can be written concisely
in barycentric form (11) as

: Cikot [28% bk
H'¢ =H (Vip) = J5Kes , G = £ + L s (20a)
ke ke Yje n Joke,t Vit - Sk, ()/jé _ Ské)z
E Gk,
k=0
S dir. o by
Ht=H ) = I:Kes . = _ ke 2
ke ke()/]é) n ’ d],kl/..f Vit — Sk, ’ (20b)

Z Cj ke
k=0

where (yj1, ¥j2, ¥j3) are the source particles in the cluster and (s, , Sk, , Sk,) are the Chebyshev points adapted
to the cluster. First the temporary variables ¢; i ¢, d; i, are computed; there are three loops, one loop over
source particles j = 1 : N¢, one loop over Chebyshev points k = 0 : n, and one loop over coordinate
indices ¢ = 1,2, 3; this requires O(nN.) operations and a storage array of size O(nN.) which is reused
for different clusters. To handle the removable singularity, we adopt the procedure in [3] (page 510), see
also [27]; the code checks whether a source particle coordinate is close to a Chebyshev point; the condition
is |yji - s, | < DBL_MIN, where DBL_MIN = 2.22507e-308 is the smallest positive IEEE double precision float-
ing point number; if this condition is met, then the temporary variables ¢;  ,, d; i, are adjusted to enforce
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the interpolation conditions (8). Having computed the temporary variables c; i (, d; x ¢, the code computes
the Hermite basis functions in (20), and then the modified charges are computed as indicated in (19). For
each cluster this process requires O(n>N.) operations and O(1n>) storage. The modified charges are computed
for each cluster when the tree is constructed and in practice this requires only a small fraction of the total
treecode run time.

Relation to other methods. We briefly discuss the relation of the barycentric Hermite treecode (BHTC)
to some other tree-based fast summation methods. Makino [19] proposed using pseudoparticles in a treecode
or FMM to reproduce the multipole moments of the actual particles in a cluster; in some sense the Cheby-
shev grid points in the BHTC can be considered as pseudoparticles, although their charges are determined
by interpolating the kernel and its derivatives, rather than moment matching. Fong and Darve [9] developed
the black-box FMM which uses polynomial interpolation at Chebyshev points of the 1st kind to approximate
cluster-cluster interactions, where the interpolating polynomial is expressed in terms of Chebyshev polyno-
mials; by contrast, the BHTC uses Hermite polynomial interpolation at Chebyshev points of the 2nd kind to ap-
proximate particle-cluster interactions, where the Hermite interpolating polynomial is expressed in barycen-
tric form. Finally note that the BHTC is not strictly kernel-independent in the same sense as the KIFMM [28, 29]
and bbFMM [9], which require only kernel evaluations, but for many kernels of practical interest the first par-
tial derivatives needed in BHTC are easily computed. The methods mentioned here have various similarities
and differences, and a detailed performance comparison is an interesting topic for future investigation.

5 Numerical results

The BHTC was programmed in C++ in double precision and compiled using the Intel compiler icpc with -02
optimization. The computations were performed on the University of Wisconsin-Milwaukee Mortimer Faculty
Research Cluster, where each node is a Dell PowerEdge R430 server with two 12-core Intel Xeon E5-2680 v3
processors at 2.50 GHz and 64 GB RAM. Parallel runs used OpenMP with up to 24 cores on a single node. The
source code is available for download (github.com/Treecodes/barycentric-hermite-treecode). We start with a
single particle-cluster interaction and proceed to the full treecode. The particle charges are random numbers
in the interval [-1, 1] and the screened Coulomb potential uses k = 0.1 for the inverse Debye length.

5.1 Asingle particle-cluster interaction

Consider a target particle x = (1.214, 1.214, 1.214) and a cluster of N = 1000 randomly located source par-
ticles in the unit cube [0, 1]?; this corresponds to MAC 6 = 0.7. The potential is computed at the target using
Taylor approximation [18], barycentric Lagrange interpolation [27], and barycentric Hermite interpolation as
described above. Figure 1 plots the error as a function of the degree parameter n = 1 : 2 : 31, where the exact
value is computed by direct summation (17). Note that the degree parameter n has two different meanings;
in the case of the Taylor approximation, the expansion is carried out at the cluster center y. = (0.5, 0.5, 0.5)
and includes terms (x—yc)k satisfying k; + k, + k3 < n, whereas in the case of the barycentric approximations,
n is the degree of the interpolating polynomial in each direction. Bearing this in mind, Fig. 1 shows that the
error decreases most rapidly for barycentric Hermite interpolation, followed by barycentric Lagrange inter-
polation and then Taylor approximation. Results for the Coulomb potential and screened Coulomb potential
are very close. Note however that the three approximations have different cost, so next we consider the error
and run time in the full treecode.
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Figure 1: A single particle-cluster interaction, target particle at (1.214, 1.214, 1.214), cluster of N = 1000 particles in [0, 113,
MAC 0 = 0.7, error is plotted versus degree parametern = 1 : 2 : 31 for Taylor approximation, barycentric Lagrange interpola-
tion, barycentric Hermite interpolation, (a) Coulomb potential, (b) screened Coulomb potential.

5.2 Treecode results

We compute the electrostatic potential (1) for N charged particles randomly located in a cube. The maximum
leaf size is Ny = 2000. The error is measured by

1/2

N N
E- (Z % (x:) - ' (%)) / 3 ¢d(xi)|2> : (21)
i=1 i=1

where ¢?(x;) is computed by direct summation and ¢(x;) is the treecode approximation.

Run time versus error. Figure 2 compares the BHTC with treecodes based on Taylor approximation [18]
and barycentric Lagrange interpolation [27]. Results are shown for the Coulomb and screened Coulomb po-
tentials (a,b), with system size N=1e6. The run time is shown versus error for treecode MAC 6 = 0.5, 0.7 and
degree n = 1:2:15 (T), n=1:2:9 (L,H). With these parameters, the Taylor and Lagrange treecodes reach error 1e-8,
while the BHTC reaches error le-13. The direct sum run time is the red horizontal line (4306 s in (a), 8146 s in
(b)), and all three treecodes are faster than direct summation. For both the direct sum and treecode, the run
time for the screened Coulomb potential is roughly twice that for the Coulomb potential; this is attributed
to the exponential function evaluation in the former. For a given error E, the Taylor and Lagrange treecodes
have comparable run time, but the BHTC is faster than both, especially as the error decreases. Focusing on
the BHTC, MAC 6 = 0.7 is more efficient for error above 1e-9 and MAC 6 = 0.5 is more efficient for error below
le-9.

Error and run time versus system size. Figure 3 presents the BHTC error (a,b) and run time (c,d) for
system size N=1e5, 1e6, 1e7, with MAC 6 = 0.7 and degree n = 1 : 2 : 9. Results are shown for the Coulomb (a,c)
and screened Coulomb (b,d) potentials. Since the direct sum for the largest system size N=1€7 is prohibitively
expensive, in that case the error is computed at 2000 sample target particles and the run time is extrapolated
from the smaller systems. Figure 3a,b shows that for a given degree n, the treecode error is nearly independent
of system size N, and for a given system size N, the error decreases as the degree n increases. The errors for the
two potentials are comparable. Figure 3c,d shows that for a given degree n, the treecode run time increases
at a slightly superlinear rate consistent with O(N log N) scaling. For a given system size N, the treecode run
time increases as the degree n increases, but for these parameters it remains below the direct sum run time.
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Figure 2: Comparison of treecodes based on Taylor approximation (T), barycentric Lagrange interpolation (L), barycentric Her-
mite interpolation (H), random particles in a cube, system size N=1e6, run time (s) versus error, (a) Coulomb potential, (b)
screened Coulomb potential, direct sum run time (red horizontal line), treecode results use MAC 6 = 0.5, 0.7, degree n = 1:2:15
(T), n=1:2:9 (L,H), degree increases from right to left.

Speedup. Table 1 quantifies the speedup defined as the ratio of run time for the direct sum (d) and BHTC
(t). Results are shown for treecode parameters MAC 6 = 0.7 and degree n = 3, yielding error E between
7.65e-6 and 2.59e-5. The speedup is similar for the Coulomb potential and screened Coulomb potential, and it
increases with system size; the speedup is approximately 7x for N=1e5, 45x for N=1e6, and 400x for N=le7.

Table 1: Barycentric Hermite treecode, random particles in a cube, Coulomb potential, screened Coulomb potential, system size
N, run time (s) for direct sum (d), treecode (t), speedup (d/t), error, E, treecode MAC 6 = 0.7, degree n = 3.

N directsum(s),d treecode(s),t speedup,d/t error, E
Coulomb potential

le5 42.62 5.62 7.58 7.65e-6

le6 4305.93 93.31 46.15 2.58e-5

le7 430593.00 1078.43 399.28 1.97e-5
screened Coulomb potential

le5 81.13 11.07 7.33 8.36e-6

le6 8146.08 179.87 45.29 2.5%9e-5

le7 814608.00 1911.27 426.21 2.11e-5

Memory consumption. Table 2 records the memory (MB) consumed by direct summation and the three
treecodes (TTC, BLTC, BHTC); this was obtained using the Valgrind Massif tool (www.valgrind.org). Results
are shown for the Coulomb potential with MAC 6 = 0.7, but the same results hold for the screened Coulomb
potential and different 6.

Table 2 shows how the memory consumption depends on the system size N and degree n; these param-
eters contribute as follows. First, the particle coordinates and charges are stored in arrays of size O(N); this
memory is common to all methods and can be seen in the direct sum column in Table 2. Second, the treecodes
require memory for the tree data structure. A certain portion of this memory is overhead common to all three
treecodes and is O(N); this accounts for the increase between the direct sum column and the n = 1 column in
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(a) Coulomb potential , (b) screened Coulomb potential
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Figure 3: Barycentric Hermite treecode, random particles in a cube, system size N=1e5, 1e6, 1e7, (a,c) Coulomb potential, (b,d)
screened Coulomb potential, treecode MAC 6 = 0.7, degreen = 1 : 2 : 9, (a,b) error, (c,d) run time, direct sum run time (red
line).

Table 2. The treecodes differ however in the memory required for each cluster. The TTC stores cluster moments
in arrays of asymptotic size %n3; the factor % arises from the sum k; + k, + k3 < n. The BLTC stores modified
charges in arrays of asymptotic size n’; this is due to the tensor product nature of the Chebyshev grid points.
The BHTC stores modified charges in arrays of asymptotic size 8n?; the factor 8 arises because there are eight
modified charges at each Chebyshev grid point as shown in Eq. (19). Hence the treecode memory consump-
tion is O(N) + O(Nn3), where the first term is the particle memory and tree data structure overhead, and the
second term is the cluster memory with a prefactor depending on the treecode version.

These trends can be seen in Table 2. For degree n = 1 all three treecodes use the same memory to within
two decimal digits; in this case the O(N) particle/overhead memory dominates the O(Nn>) cluster memory.
As the degree n increases, the TTC memory remains the same, while the BLTC memory increases, and the
BHTC memory increases even more; in this case the O(N n3) cluster memory eventually dominates the O(N)
particle/overhead memory. We checked that for larger degree n, the TTC memory also shows the expected
O(Nn?) increase. Note that even with the largest system size N=le7 and degree n = 9, the BHTC still uses less
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than 7 GB of memory. The larger memory consumption of the BHTC in comparison with the BLTC and TTC is
compensated by its better performance as shown in Fig. 2.

Table 2: Memory consumption (MB), random particles in a cube, system size N = 1e5, 1e6, 1e7, results shown for direct
sum, Taylor treecode (TTC), barycentric Lagrange treecode (BLTC), barycentric Hermite treecode (BHTC), treecode degree
n=1,3,5,7,9.

N  direct sum n=1 n=3 n=5 n=7 n=9
TTC
le5 5.60 7.45 7.45 7.45 7.45 7.45

le6 56.02 72.42 72.42 72.42 72.42 72.42

le7 560.20 782.67 782.67 782.67 782.67 782.67
BLTC

le5 5.60 7.45 7.45 7.45 7.56 7.65

le6 56.20 72.42 72.42 72.42 72.42 81.81

le7 560.20 782.67 782.67 782.67 995.05 1383.54
BHTC

le5 5.60 7.45 7.56 8.57 12.23 18.24

le6 56.02 72.42 72.52 99.84 158.33 254.57

le7 560.20 782.67 995.05 1960.78 3832.49 6912.16

Parallel simulations. Table 3 records parallel results for the direct sum and BHTC using OpenMP with
up to 24 cores on a single node. The system size is N=le6 and the treecode uses MAC 0 = 0.7, degree n = 3,
yielding error about 2.6e-5. As before, the run time for the screened Coulomb potential is about twice that for
the Coulomb potential. Direct summation parallelizes very well; the parallel efficiency remains above 86% up
to 24 cores. The treecode also parallelizes well considering its complexity; with 24 cores the parallel efficiency
is 61% for the Coulomb potential and 68% for the screened Coulomb potential. With 1 core the treecode is 45x
faster than direct summation, and even with 24 cores the treecode is still more than 32x faster than direct
summation.

6 Conclusions

We presented a particle-cluster treecode based on barycentric Hermite interpolation (BHTC) for fast summa-
tion of electrostatic particle interactions in 3D. The interpolating polynomial matches the kernel and its first
partial derivatives in the three coordinate directions at a tensor product grid of Chebyshev points in each
cluster. Barycentric Hermite interpolation is scale-invariant in a certain sense that facilitates the treatment of
different clusters in the treecode and this promotes the scheme’s efficiency. The treecode run time scales like
O(Nlog N), where N is the number of particles in the system. We demonstrated the method for the Coulomb
potential and screened Coulomb potential. Numerical results show that for these two kernels, the BHTC is
more efficient than the Taylor treecode [18] and barycentric Lagrange treecode [27] especially in the high ac-
curacy regime. The parallel efficiency of the BHTC was demonstrated using up to 24 cores on a single node.
There are several directions for future research. In principle the BHTC can be extended to interpolate
higher-order derivatives, but it remains to be seen whether this is advantageous in practice. Although we
demonstrated the method for electrostatic potentials, it can be extended to compute electrostatic forces
arising from Coulomb and screened Coulomb potentials, as needed in molecular dynamics simulations.
It would also be interesting to consider whether the BHTC is advantageous for more complicated kernels
such as those arising in the Method of Regularized Stokeslets [5, 6, 20]. We plan to install the BHTC in the
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Table 3: Barycentric Hermite treecode parallel performance, random particles in a cube, system size N=1e6, treecode parame-
ters MAC 6 = 0.7, degree n = 3, Coulomb potential (error E = 2.58e-5), screened Coulomb potential (error E = 2.59e-5), number
of cores (nc), run time (s) is shown for direct sum and treecode (d, t), parallel speedup = di/dnc, t1/tnc, parallel efficiency (PE
%) = (d1/dnc)/nc, (t1/tac)/nc, parallel treecode speedup (d/t).

nc dtime(s) di/dnc dPE(%) ttime(s) t1/tnc tPE (%) djt
Coulomb potential
1 4305.07 1.00 100.00 93.62 1.00 100.00 45.98
2 2167.15 1.99 99.33 47.32 1.98 98.92 45.80
4 1093.24 3.94 98.45 24.41 3.84 95.88  44.79
8 599.26 7.18 89.80 13.76 6.80 85.05  43.55
12 412.14 10.45 87.05 10.25 9.13 76.11 40.21
24 206.31 20.87 86.95 6.35 14.74  61.43 32.49
screened Coulomb potential

1 8159.46 1.00 100.00 180.11 1.00 100.00 45.30
2 4082.25 1.00 99.94 91.13 1.98 98.82 44.80
4 2053.37 3.97 99.34 46.40 3.88 97.04  44.25
8 1131.98 7.21 90.10 25.94 6.97 86.79  43.63
12 765.24 10.66 88.86 19.02 9.47 78.91 40.23
24 383.77 21.26 88.59 11.00 16.37 68.22 34.89

treecode-accelerated boundary integral (TABI) Poisson-Boltzmann solver [10] and the Adaptive Poisson-
Boltzmann Solver (APBS) [17] for electrostatics of solvated biomolecules. Work is also proceeding on a GPU
implementation of the BHTC [26].
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