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Deep Q-Network Based Power Allocation
Meets Reservoir Computing in Distributed

Dynamic Spectrum Access Networks
Hao Song, Lingjia Liu, Hao-Hsuan Chang, Jonathan Ashdown, and Yang Yi

Abstract—Dynamic spectrum access (DSA) is regarded
as one of the key enabling technologies for future com-
munication networks. In this paper, we introduce a power
allocation strategy for distributed DSA networks using a
powerful machine learning tool, namely deep reinforcement
learning. The introduced power allocation strategy enables
DSA users to conduct power allocation in a distributed
fashion without relying on channel state information and
cooperations among DSA users. Furthermore, to capture
the temporal correlation of the underlying DSA network
environments, the reservoir computing, a special class
of recurrent neural network, is employed to realize the
introduced deep reinforcement learning scheme. The com-
bination of reservoir computing and deep reinforcement
learning significantly improves the efficiency of the intro-
duced resource allocation scheme. Simulation evaluations
are conducted to demonstrate the effectiveness of the
introduced power allocation strategy.

I. INTRODUCTION

It is predicted that mobile traffic will increase seven-
fold between 2016 and 2021 with a compound annual
growth rate (CAGR) of 46% [1]. This explosive growth
in mobile traffic imposes a huge challenge to future
mobile broadband networks searching for methods to
increase the underlying spectrum utilization for mobile
communications. Meanwhile, various experimental tests
and measurements reveal the fact that much licensed
spectrum is under-utilized. This motivated Federal Com-
munication Commission (FCC) to re-investigate spec-
trum access related techniques and introduced the con-
cept of dynamic spectrum access (DSA) to enhance
spectrum utilization [2].

To support DSA, many frequency bands are opened
up for unlicensed spectrum access, such as industrial,
scientific and medical (ISM) bands. LTE-Advanced is
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also extended to the 5.8 GHz ISM band through licensed-
assisted access (LAA) [3]. The over utilization caused
mainly by Wi-Fi access makes these bands extremely
congested. To cope with that, the FCC further exploits
under-utilized licensed frequency bands for DSA oppor-
tunities. For example, in 2015, the FCC held an auction
on the licenses of AWS-3 bands, including 1695-1710
MHz, 1755-1780 MHz, and 2155-2180 MHz bands.
Besides, 3.5 GHz bands (3550-3700 MHz) will also be
opened up for DSA [4].

Despite tremendous benefits of using opened licensed
bands, many research challenges have to be addressed
first. In most of opened licensed bands, there would
exist primary users (PUs) with high priorities, which
are normally incumbents on licensed bands and should
be protected from detrimental interference. For example,
according to relevant policies, the DSA network opera-
tors that attempt to access AWS-3 bands need to treat
federal systems, like the federal Meteorological-Satellite
(MetSat) systems, as PUs [4]. On the other hand, DSA
users may be of heterogenous nature with limited coop-
erations among themselves. In this case, global channel
state information (CSI) may be unavailable.

In this paper, we investigate resource allocations of
DSA networks by introducing efficient and robust wire-
less resource management strategies, including spec-
trum access and power allocation. Our earlier work
[5] introduces a framework of an artificial intelligence-
enabled spectrum access strategy using Deep Q-network
(DQN) and reservoir computing (RC). The introduced
resource allocation strategy focuses on spectrum access
without considering the underlying power allocation. To
further address the challenges and improve performance,
we focus on studying power allocation strategies for
distributed DSA networks in this work.

II. SYSTEM MODEL

In DSA, multiple DSA users share spectrum resources
with PUs. Without loss of generality, we assume each
DSA user consists of a DSA pair: a transmitter
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Fig. 1. Received signals of a DSA user.

and a receiver. Furthermore, for simplification we
assume that each PU occupies one particular wireless
channel. For DSA users, we consider the general
case where DSA users simultaneously utilize multiple
channels to conduct transmissions. In this way,
different DSA users may access the same channel
causing interference among themselves. In this paper
we focus on power allocations assuming channel
allocations are given. Notations adopted in this
paper are the following: N = {n|n = 1, 2, · · ·, N}T
represents the set of DSA users. We use
M = {m|m = 1, 2, · · ·,M}T to represent the
sets of PUs and wireless channels associated with
corresponding PUs. Ωn = {m|m = 1, 2, · · ·,Mn}T

and Φn = {n|n = 1, 2, · · ·, Nm}T denote the set of
channels allocated to DSA user n and the set of users
sharing channel m, respectively.

In DSA networks, DSA users receives interference
from other DSA users and PUs, as shown in Fig. 1.
The received signal of DSA user n on channel m is

ymn = xmn · hmnn + xmm · hmmn +
∑

j∈Φm,j 6=n

xmj · hmjn + zmn ,

where xmn denotes the desired signal of DSA user n.
xmm and xmj stand for interference caused by PU m and
DSA user j, respectively. Accordingly, hmnn, hmmn, and
hmjn represent channel gains of links from the transmitter
to the receiver of DSA user n, from PU m to DSA user
n, and from DSA user j to DSA user n, respectively. zmn
is the received additive white Gaussian noise (AWGN).

The corresponding signal to interference-plus-noise-
ratio (SINR) can be expressed as

rmn =
pmn · |hmnn|

2

pmm · |hmmn|
2︸ ︷︷ ︸

Interference from
PU m

+
∑

j∈Φm,j 6=n

pmj ·
∣∣hmjn∣∣2︸ ︷︷ ︸

Interference from
other DSA users

+B ·N0︸ ︷︷ ︸
noise

,

where pmn , pmm, and pmj denote transmit power of n, m,
and j on channel m. B and N0 are channel bandwidth

and noise spectral density, respectively.
Due to the lack of cooperations, each DSA user can

only obtain the CSI of the link between its own trans-
mitter and receiver. For DSA networks, it is important to
protect PUs from harmful interference. Therefore, PUs
should provide basic feedback on the received inter-
ference to facilitate DSA users to adjust their transmit
power. As shown in Fig. 2, it is assumed that each PU
is capable of detecting its interference and is able to
feedback the interference to DSA users.

Fig. 2. Feedback specific interference level to each DSA user.

III. DEEP Q-NETWORK BASED DISTRIBUTED POWER
ALLOCATION SCHEME

Without centralized control, DSA users have to make
the decision of power allocations individually through
limited CSI. In this paper, we utilize reinforcement
learning (RL) and deep neural network (DNN) to enable
intelligent distributed power allocations.

A. Reinforcement learning

Reinforcement learning is a promising machine learn-
ing paradigm. With reinforcement learning, agents are
able to learn which actions should be taken to yield
the maximum reward without relying on labels, the
acknowledged correct actions provided by authoritative
external supervisor. Instead, agents need to try a variety
of actions to accumulate the knowledge of rewards.
Furthermore, each action should be tried many times to
obtain the reward knowledge associated with different
states. By exploiting accumulated reward knowledge,
agents will take the actions that are expected to bring
in maximum rewards [6].

Q-learning is a type of reinforcement learning, which
is widely used in various applications due to its model-
free nature. The model-free nature makes agents learn
optimal action policy directly through interacting with
environments rather than investigating environment mod-
els, such as transition probability. Since Q-learning uses
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iterative approach to update Q-value of each state and
each action, a big challenge that has to be addressed is
the tradeoff between exploitation and exploration. For
exploitation, it is better for agents to select actions that
has been tried and found to be optimal for the current
state, aiming at gaining high reward. The optimal policy
π∗ could be employed to guarantee exploitation:

A∗t = arg max
At

Qπ
∗

(St, At) (1)

where St and At represent an initial state and the action
selected following the optimal policy π∗.

However, to obtain higher reward in the future, agents
need to try actions that have not been experienced to ac-
cumulate reward knowledge, so-called exploration. The
exploration in Q-learning would be more important and
meaningful in distributed DSA networks with dynamic
environments, enabling Q-values to keep updating to
adapt to the variations of wireless environments. In this
paper, the ε-greedy method is applied to take into ac-
count both exploitation and exploration, where ε ∈ [0, 1]
is the probability that agents randomly select actions
regardless of Q-values. The corresponding policy used
for action selections is shown as

A∗t =

{
argmax

At

Qπ
∗
(St, At) , with the probability of 1− ε,

Randomly select actions, with the probability of ε,

Accordingly, an online Q-value update method is
adopted, which is defined by

Q (St, At)← Q (St, At)

+α ·
[
Rt+1 + γ ·max

At+1

Q (St+1, At+1)− Q (St, At)

]
where Rt+1, α ∈ (0, 1), and γ ∈ [0, 1] denote the
obtained reward, the learning rate, and the discounted
rate, respectively. It is noticeable that γ could be deemed
as a factor to adjust the weights of immediate rewards
and future rewards. If the future reward is considered to
be more important than the immediate reward, γ should
be set to a relatively large value.

B. Deep Q-network for distributed power allocations

A DQN based distributed power allocation scheme
is introduced where powerful DNNs are employed to
efficiently perform Q-learning especially for large-scale
model. For the feasibility of using DQN in power
allocations, basic configurations of Q-learning need to
be designed, which is described as the following:
1) Each DSA user possesses independent DNNs to
perform Q-learning, including updating Q-values and
fulfilling action selections based on the policy.
2) The state in the Q-table of DSA user n is de-
fined as a transmit power vector expressed by S =

(
p1, p2, · · ·, p|Ωn|

)T
, where pi, i = 1, 2, · · ·, |Ωn|,

denotes the transmit power on ith channel, and |Ωn|
is the number of the channels used by DSA user n. To
limit the scale of the Q-table, the transmit power should
be discretized properly. For example, if the total transmit
power constraint of a user is 300 mW, its transmit power
on one channel could be discretized into 4 levels: 0 mW,
100 mW, 200 mW, and 300 mW.
3) The action in the Q-table is defined as a vector,
indicating transmit power adjustments of all channels
used by a DSA user. The vector can be expressed as
A =

(
a1, a2, · · ·, a|Ωn|

)T
, where ai, i = 1, 2, · · ·, |Ωn|,

stands for the transmit power change of ith channel.
Considering the scale of the Q-table, the number of
possible actions should be restricted, therefore, we only
consider 3 kinds of transmit power adjustments: increas-
ing transmit power to the next level, decreasing transmit
power to the next level, and no change, represented by
In, De, and Un, respectively.

Based on the aforementioned configurations, a design
example of a DSA user’s Q-table is given as shown in
Table I under the condition of 2 wireless channels, 300
mW transmit power constraint, and 4 transmit power
levels. It should be noticed that when a user is in
a specific state, some actions should not be chosen.
For example, at state 8 (100 mW, 200 mW), taking
actions 5, 6, and 9 will make the transmit power exceed
the maximum power constraint. As for state 2 (100
mW,0 mW), actions 2, 4, 8 should not be chosen, since
they will make the transmit power become negative. To
resolve these issues, an operating mechanism is designed
that the state will kept the same if taking an action will
make the transmit power vector out of the scope defined
in the Q-table. For example, if the initial state is state
7 (200 mW, 100 mW) while action 6 is chosen, in this
case the transmit power vector will turn to (300 mW, 100
mW), which is not defined in the Q-table. As a result,
state 7 will be kept.

From Table I, it is easy to see that the size of Q-
table will exponentially increase with the growth of
the number of channels and the number of transmit
power levels. A large Q-table will make it hard or
even impossible to train [7]. Thus, DNNs are utilized to
provide efficient Q-learning operations, so-called deep
Q-network [8]. An iteration of DQN is depicted in
Fig. 3. There are two neural networks (NNs) in DQN.
The first one, named Evaluated NN (ENN), is used
to generate Q-values of the initial state St on each
action, Q (St, A1) , Q (St, A2) , · · ·, Q (St, AL), where
L is the total number of the actions defined in Q-
table. An action At is selected based on generated Q-
values and a predefined policy. After taking action At
in environments, the corresponding reward and the next
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TABLE I
Q-TABLE IN A DSA USER

A1 : (Un,Un)A2 : (Un,De)A3 : (De,Un)A4 : (De,De)A5 : (Un, In)A6 : (In, Un)A7 : (De, In)A8 : (In,De)A9 : (In, In)
S1 : (0mW, 0mW ) Q (S1, A1) Q (S1, A2) Q (S1, A3) Q (S1, A4) Q (S1, A5) Q (S1, A6) Q (S1, A7) Q (S1, A8) Q (S1, A9)
S2 : (100mW, 0mW ) Q (S2, A1) Q (S2, A2) Q (S2, A3) Q (S2, A4) Q (S2, A5) Q (S2, A6) Q (S2, A7) Q (S2, A8) Q (S2, A9)
S3 : (0mW, 100mW ) Q (S3, A1) Q (S3, A2) Q (S3, A3) Q (S3, A4) Q (S3, A5) Q (S3, A6) Q (S3, A7) Q (S3, A8) Q (S3, A9)
S4 : (100mW, 100mW ) Q (S4, A1) Q (S4, A2) Q (S4, A3) Q (S4, A4) Q (S4, A5) Q (S4, A6) Q (S4, A7) Q (S4, A8) Q (S4, A9)
S5 : (200mW, 0mW ) Q (S5, A1) Q (S5, A2) Q (S5, S3) Q (S5, A4) Q (S5, A5) Q (S5, A6) Q (S5, A7) Q (S5, A8) Q (S5, A9)
S6 : (0mW, 200mW ) Q (S6, A1) Q (S6, A2) Q (S6, A3) Q (S6, A4) Q (S6, A5) Q (S6, A6) Q (S6, A7) Q (S6, A8) Q (S5, A9)
S7 : (200mW, 100mW ) Q (S7, A1) Q (S7, A2) Q (S7, A3) Q (S7, A4) Q (S7, A5) Q (S7, A6) Q (S7, A7) Q (S7, A8) Q (S7, A9)
S8 : (100mW, 200mW ) Q (S8, A1) Q (S8, A2) Q (S8, A3) Q (S8, A4) Q (S8, A5) Q (S8, A6) Q (S8, A7) Q (S8, A8) Q (S8, A9)
S9 : (300mW, 0mW ) Q (S9, A1) Q (S9, A2) Q (S9, A3) Q (S9, A4) Q (S9, A5) Q (S9, A6) Q (S9, A7) Q (S9, A8) Q (S9, A9)
S10 : (0mW, 300mW ) Q (S10, A1) Q (S10, A2) Q (S10, A3) Q (S10, A4) Q (S10, A5) Q (S10, A6) Q (S10, A7) Q (S10, A8) Q (S10, A9)

state St+1 could be obtained. Then, the next state St+1

will be input to another neural network, named Target
NN (TNN), to output Q-values that correspond to St+1,
Q (St+1, A1) , Q (St+1, A2) , · · ·, Q (St+1, AL). Based
on the Q-values generated by TNN and the obtained
reward, the Q (St, At) is updated which will be used as
the target value to train the ENN by the back propagation
method. After multiple iterations, the ENN will be
adopted as a new TNN to replace original one.

Fig. 3. An iteration of deep Q-network.

Under the condition of no centralized control, the
reward of DSA user n is defined as

Rn =
∑
m∈Ωn

log2 (1+

+
|hmnn|2 · pmn

|hmmn|2 · pmm +
∑

j∈Φm,j 6=n

∣∣hmjn∣∣2 · pmj +B ·N0


− κ ·

∑
m∈Ωn

e
Imn
∆I

(2)

where Imn and ∆I stand for the interference strength
received by PU m that comes from DSA user n, and
a reference interference level, respectively. In (2), the
first term is the achievable spectral efficiency of DSA
user n on channel m, while the second term represents
the penalty regarding interference caused to PUs. Ap-
parently, ∆I could be viewed as a threshold. Once the
interference suffered by PU m exceeds the threshold,
the reward will exponentially decrease with the growth
of Imn . κ is a weight to adjust the impact of penalty
on the reward. From (2), it can be seen that the only
feedback that DSA users need is Imn , since a DSA user
can monitor its achievable spectral efficiency by itself
without depending on any feedback from other users.

C. Selection of Neural Networks

A key factor to directly determine the performance
of DQN is the selection of neural networks. The Feed-
Forward Neural Network (FFNN) is widely used in di-
verse applications because of its characteristics of simple
structure and being easy to train. However, in distributed
DSA networks, the Recurrent Neural Network (RNN)
may be a better choice to capture the dynamic of wireless
environments. This is because the activation update in
RNN needs to take into account not only current input
data, but also the previous activations of recurrent neu-
rons and output neurons. These feedback connections
make RNN capable of learning temporal correlations in
dynamic systems. For example, a typical application of
RNN is the natural language processing, since under-
standing a sentence normally needs to consider previous
sentences, namely temporal correlations. Similar to the
natural language processing, temporal correlations also
exist in the variations of wireless environments, since
most of wireless devices adjust their transmission param-
eters following a fixed protocol, like the Carrier Sense
Multiple Access with Collision Avoidance (CSMA/CA)
in Wi-Fi systems. Unfortunately, compared to FFNN,
the training of the RNN has been proven to be very
difficult [7]. This barrier makes the application of RNN
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TABLE II
SIMULATION PARAMETERS.

Parameters Values
Transmit power of PUs 400mW

Transmit power constraint of DSA users 300mW
Channel bandwidth B 2MHz

Noise spectral density N0 -174dBm/Hz
Center frequency 5GHz

Path-loss model (WINNER II) 41 + 22.7 · log10(d[m])
+20 · log10(fc[GHz]/5)

K-factor 8
Penalty weight κ 0.5

Reference interference level ∆I 10−4mW

in distributed DSA networks more challenging. Thus, a
special type of RNN, Reservoir Computing (RC), will
be studied and utilized to construct DQN in this paper.
RC can be deemed as a simplified RNN, in which only
the weights of the output layer will be trained, while
other weights in the input layer and the reservoir layers
are generated randomly and fixed in the training process
[9]. By this way, the difficulty of training RNN could be
significantly alleviated.

IV. SIMULATION RESULTS AND ANALYSIS

By conducting simulation studies, the effectiveness of
our proposed distributed power allocation strategy will
be demonstrated. Furthermore, the convergence of RC
based DQN used in distributed DSA network scenarios
will be investigated. We consider a distributed DSA
network with M = 2 wireless channels and N = 4
DSA users. On each channel, a PU keeps occupying
it and transmitting data. Both PUs and DSA users are
randomly distributed in an region of a 150m × 150m
square. Moreover, the Rician channel model and the
WINNER II channel model are adopted to calculate
channel gains [10]. According to the aforementioned
analysis, the tradeoff between exploration and exploita-
tion is a critical factor for Q-learning which should be
considered. In simulation studies, the total number of
training is 14000. In first 4000 times training, the ε in
the ε-greedy method is set to be a relatively large value,
namely 0.5, allowing DSA users to fully explore and
investigate all the possible power allocation strategies.
After that, ε will be adjusted to be 0, under which DSA
users attend to select the power allocation strategy able
to bring in the optimal reward. The detailed simulation
parameters are presented in Table II.

In simulations, Q-learning and FFNN based DQN will
be employed as referred methods to testify the effective-
ness and convergence of RC based DQN. Q-learning has
been widely studied to improve the performance of DSA
networks [11]. Unfortunately, Q-learning is not capable

Fig. 4. Total reward versus training steps.

of handling the large size of states and actions. When
the number of states and actions become large, it is very
hard for Q-learning to converge. By comparing with Q-
learning, we will investigate whether RC based DQN
has preferable convergence performance. Because of
training-friendly feature, FFNN is widely used in diverse
applications. We will compare the performance of RC
based DQN with that of FFNN based DQN to verify
whether the temporal correlation nature of RC is able to
improve performance in distributed DSA networks.

In Fig. 4, the total reward of all the DSA users
is illustrated versus training steps. It is apparent that
RC based DQN has excellent convergence behaviors,
which can converge fast. The choice of the learning
rate is crucial for convergence speed. Here, the learning
rate is set to be 0.01, and all the methods use the
same learning rate. Another obvious observation is that
with RC based DQN our proposed distributed power
allocation strategies could let DSA users obtain higher
reward. According to the reward definition in (2), higher
reward indicates that DSA users attain higher spectral
efficiency and PUs suffer from lower interference.

The same phenomenon can be seen in Fig. 5, which
presents the total data rate of all the DSA users with
the unit of Mbits/s versus training steps. In distributed
DSA networks, DSA users will compete with each other
to gain more data rate. In such an environment, raising
transmit power may be able to let a DSA user enhance
data rate in a short term. However, after a while, the
DSA user may suffer from more severe interference, as
higher transmit power will also cause higher interfer-
ence to other DSA users that will boost their transmit
power to preserve communication quality as well. Hence,
distributed power allocation strategies should be able to
facilitate DSA users to reach a balance on transmit power
to allow each DSA user to get a preferable performance.
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Fig. 5. Total data rate versus training steps.

Fig. 6. Total interference versus training steps.

From both Fig. 5 and Fig. 6, it is obvious that our
proposed power allocation strategy enable DSA users
to reach a balance quickly. Besides, compared to other
methods, our proposed method can make distributed
DSA networks have relatively higher data rate, proving
better data rate enhancement performance.

Another important performance indicator is the in-
terference caused by DSA users, which is investigated
in Fig. 6 by showing the total interference suffered
by PUs versus training steps. Apparently, our proposed
method is able to effectively and promptly restrain the
interference caused to PUs in a relatively low level. Since
the interference is treated as a penalty in the reward
defined in (2), DSA users are encouraged to choose
power allocation strategies that tend to lower the inter-
ference. Additionally, with the assistance of the powerful
RC, DSA users are able to learn wireless environments
better and make more appropriate decisions on power
allocations to protect PUs from detrimental interference.

V. CONCLUSION

In this paper, we study resource allocation techniques
that could be effectively utilized in distributed DSA net-
works. Firstly, technical challenges that may encounter in
distributed DSA networks are analyzed. To tackle those
challenges, a power allocation strategy based on rein-
forcement learning is proposed for intelligent distributed
power allocations. However, typical reinforcement learn-
ing technologies, like Q-learning, cannot handle the large
size of states and actions. In other words, if the number
of channels and DSA users become large, reinforcement
learning is very hard to be trained, causing instabil-
ity. Thus, the reservoir computing, a type of recurrent
neural network, is used to realize deep reinforcement
learning for efficient operations. Moreover, the temporal
correlation nature of reservoir computing could enable
DSA users to accurately learn wireless environments
variations and properly carry out distributed power al-
locations. The extensive simulation study indicates that
our proposed power allocation strategy has excellent
convergence behaviors. Moreover, the simulation results
demonstrate that our proposed power allocation strategy
could achieve better performance on both data rate
enhancement and PUs protection.

REFERENCES

[1] CISCO Whitepaper, “CISCO Visual Networks Index: Global
Mobile Data Traffic Forecast Update, 2016-2021,” Feb 2017.

[2] Federal Communications Commission, “Spectrum policy task
force,” Rep. ET Docket 02-135, Nov. 2002.

[3] H. Song, X. Fang, L. Yan, and Y. Fang, “Control/User Plane
Decoupled Architecture Utilizing Unlicensed Bands in LTE Sys-
tems,” IEEE Wireless Commun., vol. 24, no. 5, pp. 132-142,
October 2017.

[4] S. Bhattarai, J. J. Park, B. Gao, K. Bian, and W. Lehr, “An
Overview of Dynamic Spectrum Sharing: Ongoing Initiatives,
Challenges, and a Roadmap for Future Research,” IEEE Trans.
Cognitive Commun. and Netw., vol. 2, no. 2, pp. 110-128, June
2016.

[5] H. Chang, H. Song, Y. Yi, J. Zhang, H. He, and L. Liu, “Dis-
tributive Dynamic Spectrum Access through Deep Reinforcement
Learning: A Reservoir Computing Based Approach,” IEEE IoT
J., (Early Access), Sept 2018.

[6] R. Sutton and A. Barto, “Reinforcement Learning: An Introduc-
tion,” The MIT press, Nov 2017.

[7] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of
training recurrent neural networks,” ICML, pp. 1310-1318, Feb
2013

[8] H. Sak, A. Senior, and F. Beaufays, “Long short-term memory
recurrent neural network architectures for large scale acoustic
modeling,” ISCA, pp. 338-342, Sep 2014.

[9] M. Lukosevicius and H. Jaeger, “Reservoir computing approaches
to recurrent neural network training,” Computer Science Review,
vol. 3, no. 3, pp. 127-149, 2009.

[10] P. Kyosti, “WINNER II channel models,” D1.1.2, V1.2, Sep.
2007.

[11] N. Morozs, T. Clarke, and D. Grace, “Distributed Heuristically
Accelerated Q-Learning for Robust Cognitive Spectrum Manage-
ment in LTE Cellular Systems,” IEEE Trans. on Mobile Comput.,
vol. 15, no. 4, pp. 817-825, April 2016.

2019 IEEE INFOCOM WKSHPS: WCNEE 2019: Wireless Communications and Networking in Extreme Environments

779
Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on June 14,2020 at 19:30:02 UTC from IEEE Xplore.  Restrictions apply. 


