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Abstract We�demonstrate� the�feasibility�of�using� the�single�
molecule�sensing�nanopore�as�a�digital�counter� to�enumerate�
the�amplicons�for�ultrasensitive�electronic�nucleic�acid�analysis.�
We� show� that� the�nanopore�digital�counting�approach� could�
capture�the�DNA�replication�dynamics�in�the�LAMP�reaction�
and�has�the�potential�to�be�used�in�a�qualitative�test�as�well�as�
in� a� quantitative� test.� By� keeping� nanopores� as� simple� as�

sensitivity,� the� amplification­coupled� nanopore� digital�
counting�approach�provides�a�promising�optics­free�method�for�
highly�sensitive�and�specific�nucleic�acid�testing.�

I. INTRODUCTION
Due� to� its� conceptual� simplicity,� nanopore� sensors� have�

attracted�intense�research�interest�in�electronic�single�molecule�
detection[1].�Although�considerable�success�has�been�achieved,�
analysis�of�the�analog�quantity�of�the�current�dip�events�is�still�
challenging�due�to�poor�signal­to­noise�ratios[2,�3].�While�the�
analog�features�of�individual�events�are�challenging�to�analyze,�
the� event� itself� can�be� easily� identified� i.e.,�nanopore�digital�
counting�of�molecules� is� easier� and�more� robust� to�perform.�
However,� nanopore� counting� alone� suffers� from� the� lack� of�
specificity[4]� and� extended� analysis� time� at� low� analyte�
concentration[5,�6].�Fortunately,�coding�the�specificity�into�the�
molecule� quantities� is� readily� achievable� in� nucleic� acid�
amplification� tests� (NAATs),�which�has� increasingly�become�
the� preferred�method�where� sensitivity� is� needed� due� to� its�
ability�to�identify�extremely�low�target�levels�from�the�sample�
(down� to� a� single� copy)[7,� 8].� We� here� demonstrate� the�
feasibility�of�using� the�nanopore�sensor� to�digitally�count� the�
amplicons� from� loop­mediated� isothermal� amplification�
(LAMP).�We� found� that� the� amplification­coupled� nanopore�
digital�counting�approach�could�capture�the�LAMP�replication�
dynamics�and�has�the�potential�to�be�used�in�a�qualitative�test�as�
well� as� in� a� quantitative� test.� While� we� employed� glass�
nanopores�and� the�LAMP�assay� to�demonstrate� the�proof­of­
concept,� this� approach� could�be� extended� to�other� thermally�
robust� nanopores� and� amplification� strategies.� Our� findings�
open�a�new�avenue�for�nanopore�sensors�towards�a�new�form�of�
compact,�robust,�low­cost�electronic�nucleic�acid�testing�at�the�
point�of�care.��

II. WORKING PRINCIPLE

While� the� amplicon� abundance� is� conventionally�
determined�by�bulk�fluorescence�sensing,�our�approach�relies�
on�using� the�glass�nanopore�as� the� single�molecule�counting�
device�to�quantify�the�amplicons�(Fig.�1).�When�a�single�DNA�

molecule�is�electrophoretically�driven�through�the�nanopore,�a�

Existing� works[9,� 10]� have� shown� that� the� DNA� molar�
concentration� is� linearly� related� to� the� translocation� rate.�
Therefore,�it�is�possible�to�infer�the�amplicon�concentration�by�
measuring� the� translocation�rate.�Fig.�1a�shows� the�schematic�
diagram�of�the�experimental�setup.�For�a�positive�reaction�(Fig.�
1b),�the�increase�of�amplicons�manifests�itself�as�the�increase�of�
the� translocation� rate.�For� the�negative�reaction� (Fig.�1c),� the�
translocation�rate�remains�unchanged�or�undetectable.�The�rate�
determined�at�certain�time�spots�during�the�amplification�is�an�
electronic� measurement� of� the� corresponding� amplicon�
concentrations�(Fig.�1d).��

III. RESULTS
A. Single­molecule�event�rate�as�the�readout�for�concentration��
������Before� the� amplification� experiment,� we� first� addressed�
whether� the�single�molecule�counting�rate�could�be�used�as�a�
reliable�readout�for�DNA�concentration�in�our�glass�nanopore.�
We� performed� studies� on� 5� kbp� DNAs� with� a� serial� of�
concentrations.�A�quick�eyeball�on� the�current� time� traces� in�
Fig.� 2a� shows� that� the� translocation� rate� is� faster� at� higher�
concentration.� The� extracted� inter­arrival� time� distribution�
shows� a� remarkable� exponential� distribution� for� each�
concentration� (Fig.� 2b).� Fig.� 2c� shows� an� expected� linear�
relationship� between� translocation� rate� and� the� DNA�
concentrations.�
B. Concept�validation�
We�set�out�to�test�if�the�glass�nanopore�could�detect�the�end­

product�of� the�LAMP�reaction.�First,�we� tested�a�no­template�
control� (NTC)� sample�before� (t=0�min)� and� after�35�min� of�
LAMP�reaction.�As�shown�in�Fig.�3a,�no�translocation�events�
were�observed.�We�then�continued�to�test�the�positive�control�
sample�with�Plasmodium�falciparum�genomic�DNA.�As�shown�
in� Fig.� 3b,� no� detectable� events�were� noticeable� before� the�
LAMP�reaction�(t=0�min)�and�clear�translocation�events�were�
immediately�observable�after�35�min�of�LAMP�reaction.�Fig.�3c�
shows� the� gel� image� of� the� final� LAMP� products� for� both�
positive� and� negative� controls� which� confirms� the� glass�
nanopore�is�able�to�qualitatively�detect�the�LAMP�end�products.

C. Resolving�the�pore�clogging�by�voltage�cycling�scheme�
Intriguingly,� in� testing� the� end� product� of� the� positive�

control�sample� (Fig.�3b),� two�abrupt�current�drops�sequential�
occurred�and�the�current�stopped�returning�to�its�baseline.�This�
clogging� issue� is� due� to� the� high� amplicon� concentration.�
Another�more�representative�current� time� trace�was�shown� in�
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Fig.�4a,�which�contains�a�full�picture�of�different�translocation�
scenarios.�The�normal�single�DNA�translocation�(Fig.�4a),�the�
temporary�clog�(Fig.�4b)�and�the�permanent�clog�case�(Fig.�4c).��

To� resolve� this� clogging� issue,� we� developed� a� voltage�
cycling�scheme�for�long­term�recording�(Fig.�4d)The�DNAs�are�
driven� into� the�glass�nanopore�when�applied�positive�voltage�
and� then�drift� in� reverse�direction�by� the� following�negative�
voltage.�Fig.�4e�shows�the�current�time�trace�in�two�consecutive�
voltage�cycles�on�the�same�LAMP�product.�Fig.�4f�shows�the�
overlay� of� the� current� traces� over� 5� s� with� a� total� of� 487�
translocation� events.� As� shown,� the� reconstructed� sensing�
current� shows� no� baseline� shift,�which� suggests� the� voltage�
cycling�scheme�resolves�the�clogging�issue�and�is�suitable�for�
long­time�measurement.�

D. Probing�LAMP�reaction�dynamics�
After�establishing�a�reliable�approach�for�rate�measurement,�

we� tested� if� the� nanopore� digital� counting� could� resolve� the�
LAMP� dynamics.� Using� the� P.� falciparum� genomic� DNA,�
LAMP�assays�were�performed�for�a�duration�ranging�from�10�
min� to� 37.5�min� at� 65ºC,� the� product� of�which� is� digitally�
counted�using�the�same�glass�nanopore.�Fig.�5a�shows�segments�
of�the�current�time�trace�for�each�reaction�time.�It�is�evident�that�
the�event�rate�increases�with�extended�reaction�time.��

Fig.� 5b� shows� the� extracted� rate� as� a� function� of�LAMP�
reaction� time.� Interestingly,� the� translocation� rate� versus� the�
reaction� time� can� be� fitted� remarkedly� well� with� a� logistic�
growth�model[11]��

�� � ��������(1)�

where� RL� and� RH� are� the� low� and� high� bound� of� the�
translocation�rate,�respectively,� �is�the�time�when�the�growth�
rate� is� at� maximum,� and� �is� a� measure� of� the� maximum�
steepness�of�amplification�rate�at�the�exponential�growth�stage.��

�Fig.�5c�shows�the�current�dip­dwell�time�scatter�plot�at�each�
LAMP� reaction� time.� As� the� amplification� time� increase,� a�
substantial� increase�of�population�with�higher�current�dip�and�
longer�dwell� time�was�observed,� indicating� longer�DNAs�are�
produced�when�reaction�continues.�This�is�indeed�expected�for�
the�LAMP�final�product[7].��

E. Qualitative�testing�
To�demonstrate�the�potential�utility�of�the�LAMP�coupled�

nanopore� digital� counting� approach� for� qualitative� (yes/no)�
specific� nucleic� acid� testing,�we� examined� two� of� the�most�
spread�species�of�malaria:�P.�falciparum�(Pf)�and�P.�vivax�(Pv).�
Each� species­specific� assay� was� tested� with� three� different�
types�of�samples�(Pf,�Pv,�and�NTC).�We�used�the�nanopore�to�
analyze� the� end�product�of� the�LAMP�assay� after�35�min�of�
reaction�at�65 C.�Fig.�6a�and�Fig.�6b�show�the�resulting�current�
time� traces� for� Pf­specific� assay� and� Pv­specific� assay,�
respectively.�The�digital�events�were�observed�when�the�assays�
match� with� the� intended� species.� The� reactions� were� then�
confirmed�by�gel�electrophoresis��

F. Quantitative�testing�
To� evaluate� the� potential� quantitative� application� of�

nanopore� digital� counting� platform,� we� performed� the�
nanopore­LAMP�assay�on� the�mitochondrial�gene�by�using�a�
10­fold�serial�dilution�of�purified�P.�falciparum�genomic�DNA.�
The�nanopore­LAMP�performance�(Fig.�7a)�is�benchmarked�to�
the�tube­based�quantitative�LAMP�(Fig.�7b)�on�a�benchtop�real­
time�PCR�instrument.�Both�the�fluorescence­based�method�and�
the� nanopore� method� show� the� expected� right­shift� of� the�
amplification�curve�when�reducing�the�gene�copy�numbers.�Fig.��
7c�shows�the�extracted�standard�curves�from�both�the�nanopore�
and�fluorescence�methods.�The�threshold�time�is�determined�by�
the� time� corresponding� to� the� reading� of� 500� RFU� in� the�
fluorescence� method� and� 1� s­1� in� the� nanopore� method,�
respectively.�The�amplification�over�a�range�of�serially�diluted�
DNA� sample� showed� excellent� linearity� in� both� methods�
(R2=0.98� for� fluorescence�method�and�R2=0.99� for�nanopore�
method).�The�linearity�in�the�nanopore�method�suggests�it�could�
be�used�for�quantitative�analysis�of�DNA.��

IV. CONCLUSIONS
In� summary,� our� findings� show� the� proof­of­concept� of�

using�single�molecule�sensing�glass�nanopore�as�an�electronic�

the�loop­mediated�isothermal�amplification.�We�show�that�the�
nanopore� digital� counting� approach� can� capture� the� DNA�
replication�dynamics�in�the�LAMP�and�has�the�potential�to�be�
used�in�a�qualitative� test�as�well�as� in�a�quantitative�test.�The�
amplification­coupled� nanopore� digital� counting� approach�
opens� a� new� avenue� for� nanopore� sensors,� bypassing�many�
challenges� in� the�analog�analysis�of�features�within� identified�
events�(e.g.,�dip�magnitude,�shape,�and�duration).�By�keeping�
the�nanopore�as�simple�as�an�orifice�that�lets�a�discrete�number�
of� molecules� to� pass� through� and� coding� the� specificity�
information�into�the�molecule�numbers�using�the�amplification�
chemistry,� it� provides� a� promising� optics­free� method� for�
highly�sensitive�and�specific�nucleic�acid�testing�at�the�point�of�
care.��
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Fig. 1. Illustration of the working principle of nanopore digital counting of amplicons. (a) Schematic measurement setup as well as the SEM
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Fig. 6. Qualitative specific nucleic acid testing using the nanopore­LAMP. (a) Current traces obtained from nanopore reading for
Pf­specific assay, and (b) for Pf­specific assay. The translocation rate difference between the positive and the negative is evident.
(c) Gel electrophoresis image (2% agarose gel) for Pf­specific assay and, (d) for Pv­specific assay.
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