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Abstract: Variable selection methods have been developed in linear re-
gression to provide sparse solutions. Recent studies have focused on further
interpretations on the sparse solutions in terms of false positive control.
In this paper, we consider false negative control for variable selection with
the goal to efficiently select a high proportion of relevant predictors. Differ-
ent from existing studies in power analysis and sure screening, we propose
to directly estimate the false negative proportion (FNP) of a decision rule
and select the smallest subset of predictors that has the estimated FNP less
than a user-specified control level. The proposed method is adaptive to the
user-specified control level on FNP by selecting less candidates if a higher
level is implemented. On the other hand, when data has stronger effect size
or larger sample size, the proposed method controls FNP more efficiently
with less false positives. New analytic techniques are developed to cope
with the major challenge of FNP control when relevant predictors cannot
be consistently separated from irrelevant ones. Our numerical results are in
line with the theoretical findings.
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1. Introduction

We consider a sparse linear model

y = Xβ + ε, (1.1)

where y = (y1, . . . , yn)T is the vector of n observations of response, X =
[x1, . . . ,xp] ∈ Rn×p is the design matrix, β = (β1, . . . , βp)

T is the vector of
unknown coefficients, and ε ∼ Nn

(
0, σ2I

)
is the vector of random errors. We

assume σ2 = O (1). Let I1 = {1 ≤ j ≤ p : βj 6= 0} be the set of indices for non-
zero coefficients with cardinality s = |I1| and I0 = {1 ≤ j ≤ p : βj = 0} with
cardinality p0 = |I0|.

Variable selection methods often provide sparse solutions for the estimation
of β. The non-zero elements of an estimate correspond to variables selected
as candidates for relevant predictors. A great amount of literature with many
fruitful ideas has contributed to the development of sparse solutions to accom-
modate the underlying features of the data. We refer to [5] and the references
therein for a nice introduction.

Given a selection result, a false positive (FP) occurs when an irrelevant pre-
dictor is selected, and a false negative (FN) occurs when a relevant predictor is
not selected. It is natural to interpret a selection result in terms of false positive
or false negative control, and exciting progress has emerged for false positive
control, e.g. [3], [4], [9], [17], [24], [32], [38]. However, the study for efficient false
negative control remains relatively underdeveloped.

False negative control is important in many real applications and sometimes
a more serious concern than false positive control. For example, in pre-surgical
brain mapping with functional MRI, the primary goal is to reduce false negatives
where genuine functional areas are not identified. This is because neurosurgical
patients are more likely to experience significant harm from mistakenly deeming
a region to be functionally uninvolved and subsequently resecting critical tissue
than from incorrectly assigning function to an uninvolved region [25, 26, 31].
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Another example where false negative control is of main concern is in the ex-
ploratory stage of high-dimensional data analysis, where pre-screening is often
conducted to reduce data dimension while keeping a high proportion of true
signal variables for follow-up studies.

The problem of false negative control is conceptually related but method-
ologically very different from Sure Screening in, e.g., [14, 15]. Sure Screening
aims to reduce the data dimension by removing only irrelevant predictors. For
instance, the Sure Independence Screening procedure in [14] ranks variables by
estimated marginal regression coefficients and selects the top d variables where d
is fixed at n−1 or n/ log n. It has been proved that under certain conditions, the
screening procedure has eliminated only irrelevant predictors with high proba-
bility. The false negative control problem considered here focuses on selecting
a high proportion of relevant predictors without including many unnecessary
irrelevant predictors. It may be regarded as a more refined screening procedure
with a data-adaptive selection rule instead of a fixed d.

We use false negative proportion (FNP) as a measure for false negative con-
trol. For a given selection rule, FNP is defined as the ratio of the number of false
negatives to the total number of relevant predictors. FNP takes values in [0, 1]
and is equivalent to 1− Sensitivity in binary classification framework. Our work
starts with consistently estimating FNP for a given selection rule. To achieve
this, we develop novel analyses on the tail behavior of the empirical processes
associated with FNP. Based on the estimation of FNP, we develop a new vari-
able selection procedure to control FNP at a user-specified level. If users can
tolerate more false negatives, they may implement lower control levels on FNP
in the procedure and select less candidates for relevant predictors. On the other
hand, if the effect of relevant predictors gets stronger or sample size increases,
the procedure controls FNP more efficiently with less false positives.

An important component of the proposed FNP control method is an estima-
tor for the number of relevant predictors. We provide a consistent estimator for
dependent test statistics, for which we adopt the recently developed debiased
Lasso estimates [20, 34, 37].

Although FNP, by definition, is equivalent to the power in (single) hypothesis
testing, our proposed study on FNP control is very different from the existing
power analysis in hypothesis testing. In the latter, a decision rule is built upon
Type I error control and followed by power calculation with assumptions on
the effect size. For such methods to control FNP in addition to controlling
family-wise Type I error when multiple hypotheses are considered, the effect
sizes of relevant variables need to be larger enough to ensure essentially perfect
separation of relevant and irrelevant variables. The proposed method, on the
other hand, directly bound the estimated FNP at a user-specified level, which
allows a more effective control on FNP. Our condition on effect size for FNP
control is shown to be weaker than the existing beta-min conditions that are
required for perfect separation of relevant and irrelevant variables.

The rest of the paper is organized as follows. Section 2 presents FNP estima-
tion in two steps: (1) constructing test statistics for regression coefficients and
(2) approximating FNP based on the test statistics. Section 3 develops a variable
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selection method to control FNP at a user-specified level and a computational
algorithm to implement the method. Section 4 presents the finite-sample perfor-
mance of the proposed method in simulation. Conclusion and further discussion
are provided in Section 5. Proofs for the main theoretical results are presented
in Section 6. Extra technical details are provided in Appendix.

2. False Negative Proportion Estimation

Recall that for a selection rule, FNP is the ratio of the number of false negatives
to the total number of relevant predictors. In this section, we rank the predictors
based on the debiased Lasso estimates and approximate FNP at a given cut-off
point on the list of ranked predictors.

2.1. Test Statistics Based on Debiased Lasso Estimates

Recall model (1.1). The well-known Lasso estimator is

β̂ = β̂(λ) = arg min
β∈Rp

(‖y −Xβ‖22/n+ 2λ‖β‖1), (2.1)

where λ is a tuning parameter [33]. Recently, the debiased Lasso estimator has
been developed to mitigate the bias of Lasso estimator [34, 37]. The debiased
Lasso estimator is defined as

b̂ =
(
b̂1, . . . , b̂p

)T
= β̂ + n−1Θ̂XT (y −Xβ̂), (2.2)

where Θ̂ ∈ Rp×p is an estimate for the precision matrix of the predictors and
can be obtained via nodewise regression on X as in [28]. Let Σ̂ = n−1XTX. It
has been shown that

√
n(b̂− β) = n−1/2Θ̂XTε− δ = w − δ, (2.3)

where
w|X ∼ Np(0, σ2Ω̂), Ω̂ = Θ̂Σ̂Θ̂

T
,

and
δ = (δ1, . . . , δp)

T
=
√
n(Θ̂Σ̂− I)(β̂ − β). (2.4)

Under certain conditions, ‖δ‖∞ = op(1), which implies the asymptotic normality

of b̂ [6, 20, 21, 34, 37]. We present the set of conditions from [21] as A1) - A3)
in Appendix A.1.

In this paper, we obtain test statistics for β using the standardized debiased
Lasso estimator as

zj =
√
nb̂jσ

−1Ω̂
−1/2
jj for 1 ≤ j ≤ p (2.5)

where Ω̂jj denotes the (j, j) entry of Ω̂. Therefore, for each 1 ≤ j ≤ p,

zj = µj + w′j − δ′j ,
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where, given X,

w′j =
wj

σ
√

Ω̂jj

∼ N (0, 1), δ′j =
δj

σ
√

Ω̂jj

and µj =

√
nβj

σ
√

Ω̂jj

. (2.6)

2.2. Approximating False Negative Proportion

We aim to determine a cut-off value for the realized test statistics to control
false negative proportion (FNP) at an user-specified level. For this purpose, we
first study the consistent estimation of FNP. For any t > 0, define

R (t) =

p∑
j=1

1{|zj |>t}, TP (t) =
∑
j∈I1

1{|zj |>t},

FN (t) =
∑
j∈I1

1{|zj |≤t}, FP (t) =
∑
j∈I0

1{|zj |>t}.

Note that FN (t) is unobservable as I1 is unknown, and that the dependence
among zj ’s also affect FN (t). It is easy to see that

FN (t) = s− TP (t) = s− [R (t)− FP (t)] (2.7)

and

FNP (t) =
FN (t)

s
= 1− R (t)− FP (t)

s
. (2.8)

Since R (t) is directly observable from the data, the unknown quantities in (2.8)
are FP (t) and s. We propose to substitute FP (t) in (2.7) by 2(p − s)Φ (−t),
where Φ(·) is the cumulative distribution function (CDF) of a standard Normal
random variable, because zj is asymptotically standard Normal for j ∈ I0.
Further, we can plug in an estimator ŝ for s, which results in the estimator

F̂NP (t) = 1− R (t)− 2(p− ŝ)Φ (−t)
ŝ

. (2.9)

From the definitions of FNP (t) and F̂NP (t), it can be shown that∣∣∣F̂NP (t)− FNP (t)
∣∣∣ = oP (1) is implied by

s−1 |FP(t)− 2p0Φ(−t)| = oP (1) and |ŝ/s− 1| = oP (1). (2.10)

Because FP(t) is the summation of p0 terms and s can be much smaller than
p0, approximating FP(t)/s requires more delicate analysis than approximating
FP(t)/p0, which has been studied in the literature for False Discovery Proportion
(FDP) control (e.g. [13]). Also, the dependence among test statistics {zj}pj=1

adds another layer of difficulty.
In this paper, we consider s = p1−η for some η ∈ (0, 1), so that the number of

relevant predictors is of a smaller order than the total number of variables. On
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the other hand, we consider t values calibrated as t = tξ =
√

2ξ log p for some
ξ > 0, so that the scale of t is comparable to that of the extreme value of p
independent standard Gaussian variables. Such calibration has been utilized to
study the detection of Gaussian mixtures [2, 7, 12], and to analyze variable selec-
tion consistency in linear regression [23]. In this paper, we adopt the calibration
to study the estimation of FNP in linear regression.

Further, define the precision matrix of the predictors as Θ and let

sj = |{k 6= j : Θjk 6= 0}| and smax = max
1≤j≤p

sj .

Namely, the parameter smax represents the row-sparsity of the precision matrix,
which contributes to the strength of the dependence among the test statistics.
Define

γ∗1 = 2η −min{1, log(n/smax)

2 log p
}, γ∗2 = 2− 2η − log n

2 log p
,

and
γ∗ = max{γ∗1 , γ∗2}. (2.11)

The next theoretical result demonstrates the range of t values in which the
first equation s−1 |FP(t)− 2pΦ(−t)| = oP (1) in (2.10) is achievable.

Theorem 2.1. Consider model (1.1) and the test statistics {zj}pj=1 in (2.5).
Assume conditions A1) through A3) in Appendix A.1 for the asymptotic nor-
mality of {zj}pj=1. Let s = p1−η for some η ∈ (0, 1) and t = tξ =

√
2ξ log p for

ξ > 0. Assume ξ > min{η, γ∗} for γ∗ in (2.11), then

s−1 |FP(tξ)− 2p0Φ(−tξ)| = oP (1) . (2.12)

Because FP(t) is the summation of p0 indicator functions and p0 � s(=
p1−η), FP(t)/s blows up at constant t. Theorem 2.1 says that the approximation
of FP(t)/s is achievable for t at the scale of tξ. This is substantially different
from the existing study of FDP control, where the approximation of FP(t)/p0
and R(t)/p0 are studied at constant t.

The condition ξ > min{η, γ∗} can be decomposed as follows. When η ≤ γ∗, we
have ξ > η, and the claim in (2.12) follows by showing that s−1FP(tξ) = op(1) =
s−1p0Φ(−tξ). On the other hand, when η > γ∗ and γ∗ < ξ ≤ η, more delicate
analysis is needed to study the variability of FP(tξ). The condition ξ > γ∗1
essentially controls the variability of s−1FPw′(tξ), where w′ is the Gaussian
component of z as in (2.6) and FPw′(tξ) =

∑
j∈I0 1{|w′j|>tξ}. The condition

ξ > γ∗2 controls the cumulative errors caused by the component δ′ of z.
Existing study in [23] has shown optimal phase diagram in (ξ, η) for high-

dimensional variable selection. Their work, however, focuses on scenarios with
ξ > η. We extend the analysis to the more challenging case with γ∗ < ξ ≤ η,
for which we study the variability of s−1FPw′(tξ) under the dependence of test

statistics. Recall the covariance matrix σ2Ω̂ in (2.3). Since Ω̂ = Θ̂Σ̂Θ̂
T

and
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that Σ̂ is not a sparse matrix, σ2Ω̂ is not sparse or possessing any well-known
structures. The study in [23] imposes conditions on the covariance matrix of pre-
dictors that essentially prohibit excessive signal cancellations when performing
marginal regression. Our condition of dependence, on the other hand, demon-
strate the effect of the sparsity of precision matrix (smax) through γ∗. Overall,
ξ > min{η, γ∗} is easier to be satisfied with larger n, smaller p, or smaller smax.

To achieve the second equation in (2.10), we modify the estimator introduced
in [29] and study its consistency for estimating s in our setting. We refer to the
modified estimator as the MR estimator. Recall the standardized debiased Lasso

estimator zj =
√
nb̂jσ

−1Ω̂
−1/2
jj , 1 ≤ j ≤ p. Let Fp(t) = p−1

∑p
j=1 1{|zj |>t} and

σ̄ (t) =
√

2Φ̄(t)
(
1− 2Φ̄(t)

)
, where Φ̄(t) = 1 − Φ(t). The MR estimator for the

portion of relevant predictors (π = s/p) is constructed as

π̂ = sup
t>0

Fp(t)− 2Φ̄(t)− cpσ̄ (t)

1− 2Φ̄(t)
, (2.13)

where cp is a bounding sequence pre-specified as follows. Define

Gp (t) = p−1
p∑
j=1

1{|w′j |>t},

H(t) =
Gp(t)− 2Φ̄(t)

σ̄ (t)
, and Vp = sup

t>0
H(t). (2.14)

Set cp as the (1 − αp)-th quantile of Vp for αp = o(1), so that P (Vp > cp) =
αp → 0 as p → ∞. In other words, cp can be looked upon as an upper bound
for Vp probabilistically, and the implement of cp in (2.13) eventually controls
over-estimation on π.

Compared to the original MR estimator in [29], the key modification in (2.13)
and (2.14) is the use of Fp(t) and Gp (t), two empirical processes each with de-
pendent random summands. Naturally, this requires different techniques to find
{cp}p≥1. The setting in [29] considers independent p-values that are uniformly
distributed under the null hypothesis. Since the limiting distribution of the
uniform empirical process with independent summands is known and has an
analytic expression, a bounding sequence can be directly found from the distri-
bution in the construction of the original MR estimator. However, in our settings
{zj}pj=1 are dependent, and the exact distributions of {b̂j}pj=1 are unspecified.

In fact, {b̂j}pj=1 asymptotically has covariance matrix σ2Ω̂ = σ2Θ̂Σ̂Θ̂
T

. In

theory, |Ω̂ij − Θij | = op(1) for any (i, j) under conditions A1) through A3)

in Appendix A.1. However, Ω̂ itself is neither diagonal nor sparse, and the
approximation errors of all the elements in Ω̂ add up to influence Vp . Note
that Vp is the higher criticism statistic of [12] based on the Gaussian component
w′ of z. Unfortunately, existing techniques for higher criticism statistic under
short-range and long-range dependence [18] cannot be applied here because our

test statistics with covariance matrix σ2Ω̂ cannot be partitioned as in [18].
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In this paper, we employ a discretization technique adopted from [1] to derive
bounds on the variance of a discretized {H(t) : t > 0} and define a discretized
version of Vp as

V ∗p = max
{
H(t) : t ∈

[√
τ0 log p,

√
τ1 log p

]
∩ N

}
(2.15)

for two positive constants τ0 and τ1 such that 0 < τ0 < τ1. Then, a discretized
version of the MR estimator is defined as

π̂∗ = max

{
Fp(t)− 2Φ̄(t)− c∗pσ̄ (t)

1− 2Φ̄(t)
: t ∈

[√
τ0 log p,

√
τ1 log p

]
∩ N

}
, (2.16)

where c∗p is the (1− αp)-th quantile of V ∗p for αp = o(1). Let

µmin = min
j∈I1

√
n |βj |σ−1Θ−1/2jj (2.17)

as a measure on the minimal effect size of relevant variables. The following
theorem demonstrates the consistency of π̂∗. Its proof is presented in Section 6.2.

Theorem 2.2. Assume conditions A1) through A3) in Appendix A.1 for the
asymptotic normality of {zj}pj=1. Let s = p1−η for some η ∈ (0, 1) and µmin ≥√

2(γ∗ + c) log p for µmin and γ∗ in (2.17) and (2.11) and some constant c >
0. Then π̂∗ with bounding sequence c∗p at the order of (smax/n)1/4 log p, τ0 ∈
(2γ∗, 2γ∗ + c), and τ1 > 2(γ∗ + c) consistently estimates the proportion π of
relevant predictors, i.e., for any δ > 0,

P (|π̂∗/π − 1| < δ)→ 1

and, consequently, ŝ = π̂∗p satisfies

P (|ŝ/s− 1| < δ)→ 1.

Note that the order of c∗p shows the effects of sparsity of the precision matrix
(smax), sample size (n), and dimensionality (p) on V ∗p . The condition µmin ≥√

2(γ∗ + c) log p shows that consistent estimation of s gets easier with smaller
smax, larger n, and smaller p.

In summary, Theorem 2.1 and Theorem 2.2 facilitate the two equations in

(2.10) for FNP(t) estimation by F̂NP(t). Note that in practice we will need
to simulate Vp and cp to derive the estimated s and FNP(t). Please refer to
Section 3.2 for details of the numerical implementation.

3. FNP Control at a User-Specified Level

In this section, we introduce a new method for FNP control at a user-specified
level in high-dimensional regression. We say that a variable selection method
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asymptotically controls FNP at a pre-specified level ε ∈ (0, 1) if the FNP of its
selection outcome satisfies

P (FNP < ε)→ 1.

Such methods are useful in applications where data dimensions need to be
largely reduced for subsequent analyses while controlling false negatives at a
tolerable level.

3.1. The FNC-Reg Procedure

Based on the approximation results of FNP, we propose the False Negative Con-
trol for Regression (FNC-Reg) procedure, which determines the cut-off threshold
on the list of ranked {|zj |}pj=1 as

t∗(ε) = sup
{
t : F̂NP(t) ≤ ε

}
(3.1)

for an user-specified ε ∈ (0, 1). FNC-Reg selects predictors with |zj | > t∗(ε).
It can be seen that FNC-Reg is a procedure built upon direct estimation

of FNP and a user-specified control level of FNP. Given that F̂NP(t) is non-
increasing with t, FNC-Reg selects the smallest subset of {zj}pj=1 such that the
estimated FNP is less than ε. Moreover, this procedure depends on user’s pref-
erence for the control level of FNP. Since t∗(ε) is non-decreasing with ε, if users
can tolerate missing a higher proportion (larger ε) of relevant variables, they
may select less variables using the procedure. The selected subset of variables
can be much smaller than the full set of variables, which corresponds to no false
negatives. The next theorem shows that under certain conditions, the FNC-Reg
procedure asymptotically controls the true FNP at the level of ε.

Theorem 3.1. Assume conditions A1) through A3) in Appendix A.1. Assume
µmin ≥

√
2(γ∗ + c) log p for µmin and γ∗ in (2.17) and (2.11) and some con-

stant c > 0. Then t∗(ε) determined by (3.1) with ŝ = π̂∗p satisfies

P (FNP(t∗(ε)) ≤ ε)→ 1. (3.2)

Consequently, t∗(ε) determined by (3.1) with ŝ = π̂p and cp = c∗p also satisfies

P (FNP(t∗(ε)) ≤ ε)→ 1. (3.3)

Result in (3.2) shows the FNP control by FNC-Reg when the discretized MR
estimator is implemented in (2.9). (3.3) extends the result to FNC-Reg with the
MR estimator.

We compare the condition on µmin in Theorem 3.1 with the beta-min con-
dition of variable selection consistency. Our condition on µmin achieves the or-
der O(

√
(log p)/n) for βmin, which is the optimal oder for variable selection

consistency [19, 35]. On the other hand, Our condition on µmin specifies the
constant term

√
2γ∗ with γ∗ in (2.11), while existing beta-min conditions for
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different methods have various constant terms that are often not fully specified.
Therefore, we attempt to compare with the optimal constant term for variable
selection consistency in the ideal setting, where the predictors (Xi1, . . . , Xip)
are generated as i.i.d. samples from N(0, Ip×p). Existing study in, for exam-

ple, [23] has shown that the optimal constant is
√

2 +
√

2(1− η), i.e. smaller η
(larger s) makes it harder to perfectly separate all the signals from noise. Then,
it follows that

√
2γ∗ <

√
2 +

√
2(1− η) for any η ∈ (0, 1). The above analysis

shows that in the ideal setting, our condition on µmin is weaker than the opti-
mal beta-min condition for variable selection consistency, and that FNP control
can be achieved by FNC-Reg when relevant and irrelevant variables may not be
perfectly separated.

3.2. Numerical Implementation of FNC-Reg

We provide a computational algorithm to implement the proposed FNC-Reg
procedure. First, the estimation of s relies on the bounding sequence cp, which
is pre-fixed as the (1− αp)-th quantile of Vp. In numerical implementation, we
suggest to simulate Vp and cp as follows. We simulate the data under the global
null hypothesis that no relevant predictors exist and calculate the corresponding
standardized debiased Lasso estimator z̃j . Note that z̃j is asymptotically dis-
tributed as w′j under the global null hypothesis. We order z̃j ’s by their absolute
values such that |z̃(1)| > |z̃(2)| > . . . > |z̃(p)| and calculate

Ṽp = max
1<j<p/2

j/p− 2Φ̄(|z̃(j)|)
σ̄
(
|z̃(j)|

) . (3.4)

Repeat the above 1000 times and determine c̃p as the (1 − 1/
√

log p)-th quan-

tile of the empirical distribution of Ṽ
(1)
p , . . . , Ṽ

(1000)
p . Consequently, given the

ordered test statistics |z(1)| > |z(2)| > . . . > |z(p)|, calculate

π̃ = max
1<j<p/2

j/p− 2Φ̄(|z(j)|)− c̃pσ̄
(
|z(j)|

)
1− 2Φ̄(|z(j)|)

. (3.5)

Algorithm 1 FNC-Reg

1. Derive the debiased Lasso estimator b̂ as in (2.2).

2. Standardize b̂ and obtain zj =
√
nb̂jσ

−1Ω̂
−1/2
jj for 1 ≤ j ≤ p. Order the

{zj}pj=1 as |z(1)| > |z(2)| > . . . > |z(p)|.
3. Calculate the bounding sequence c̃p as the (1 − 1/

√
log p)-th quantile of

the empirical distribution of Ṽp in (3.4).
4. Obtain π̃ by (3.5) and ŝ = π̃p.

5. Calculate F̂NP(|z(j)|) for j = 1, . . . , p by (2.9).

6. Obtain t∗(ε) = max{|z(j)| : F̂NP(|z(j)|) ≤ ε} for a user-specified ε > 0.
7. Select predictors with |zj | ≥ t∗(ε).
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4. Numerical Analysis

Examples in this section have the response y simulated by the regression model
(1.1) with ε ∼ Nn(0, I). Each row of X is simulated from Np(0,Σ). We use the
Ergös-Rényi random graph in [8] to generate the precision matrix Θ = Σ−1

with smax ∼ Binomial(p, θ), such that the nonzero elements of Θ are randomly
located in each of its rows with magnitudes randomly generated from the uni-
form distribution Uniform[0.4, 0.8]. The nonzero coefficients are set at β1, . . . , βs
with the same values. The debiased Lasso estimates are obtained by applying
the R package hdi [11].

4.1. Estimating s

We compare the estimated ŝ with the true s in two settings. The first setting
has p = 200, n = 100, s = 10, θ = 0.02, and β1 = 0.2 − 0.5. The second setting
increases sample size n to 150. As claimed in Theorem 2.2, the accuracy of
ŝ increases with the magnitude of non-zero coefficients and the sample size.
Figure 1 presents the box-plots of the ratio ŝ/s from 100 replications. When β1
or sample size is small, ŝ tends to under-estimate the true s. As β1 increases
from 0.2 to 0.5 or n increases from 100 to 150, ŝ/s concentrates more around 1.

Fig 1. Box-plots of ŝ/s with p = 200, s = 10, and β1 increasing from 0.2 to 0.5. The left plot
has n = 100 and the right plot has n = 150.

4.2. FNP control

We apply the FNC-Reg algorithm presented in Section 3.2 to the simulated
data with p = 200, n = 150, s = 10, θ = 0.02, and β1 = 0.2 − 0.5. Table 1 has
ε fixed at 0.1 and reports the mean value of FNP(t∗) as β1 increased from 0.2
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to 0.5. We also calculated the associated false discovery proportion (FDP(t∗) =
FP(t∗)/R(t∗)) to reveal the price in incurring false positives for FNP control.
Further, we calculate the F-measure, which summarizes FNP and FDP by the
harmonic mean of (1-FNP) and (1-FDP) [30]. F-measure takes a value between
0 and 1, and higher value corresponds to better summarized performance.

Because we are not aware of any existing methods that directly control FNP
in high-dimensional regression, we present the corresponding results of two other
methods that perform variable selection based on different criteria. These results
help to better understand the results of FNC-Reg. The first method is Lasso
whose solution is obtained using the R package hdi, in which λ is determined by
cross validation. The second method is Knockoff, which has been developed to
control false discovery rate (FDR) at a user-specified level in high-dimensional
regression [3, 9]. We use the ”knockoff.filter” function in default from the R
package knockoff, which creates model-X second-order Gaussian knockoffs as
introduced in [9]. The nominal level is set at 0.1.

Table 1
The mean values and standard deviations (in brackets) of FNP, FDP, and the F-measure

from 100 replications for FNC-Reg, Lasso, and Knockoff.

β1 Method FNP FDP F-measure

0.2 FNC-Reg 0.37 (0.16) 0.35 (0.30) 0.58 (0.20)
Lasso 0.29 (0.12) 0.51 (0.16) 0.56 (0.16)
Knockoff 0.91 (0.23) 0.06 (0.16) 0.08 (0.21)

0.3 FNC-Reg 0.19 (0.11) 0.20 (0.24) 0.77 (0.17)
Lasso 0.15 (0.09) 0.43 (0.11) 0.67 (0.09)
Knockoff 0.60 (0.44) 0.11 (0.15) 0.37 (0.41)

0.4 FNC-Reg 0.10 (0.09) 0.17 (0.25) 0.84 (0.19)
Lasso 0.06 (0.07) 0.42 (0.12) 0.71 (0.10)
Knockoff 0.34 (0.45) 0.12 (0.14) 0.61 (0.42)

0.5 FNC-Reg 0.04 (0.09) 0.13 (0.22) 0.90 (0.18)
Lasso 0.02 (0.10) 0.38 (0.12) 0.74 (0.14)
Knockoff 0.21 (0.49) 0.09 (0.11) 0.74 (0.38)

It can be seen from Table 1 that as β1 increases, the FNP of FNC-Reg
decreases, which agrees with the theoretical insight provided by the condition
on µmin in Theorem 3.1. In the challenging scenarios where β1 is very small, the
FNP of FNC-Reg mostly exceeds the nominal level of 0.1, which is due to the
under-estimation of ŝ and FNC-Reg’s tendency to select less variables to capture
the under-estimated number of signals. Furthermore, both FNP and FDP of
FNC-Reg get smaller for larger β1, suggesting that FNC-Reg automatically
adapt to and benefit from increasing signal intensity for both false negative
and false positive control. Table 1 also shows that Lasso has lower FNP and
much higher FDP than FNC-Reg, which agrees with Lasso’s known tendency
of over-selection when p > n. On the other hand, Knockoff has FDP reasonably
controlled at the nominal level of 0.1 but much higher FNP than those of FNC-
Reg and Lasso. In terms of the F-measure that summarizes FNP and FDP,
FNC-Reg seems to outperform the other two methods under different β1 values.
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We further illustrate the adaptivity of FNC-Reg to the user-specified control
level of FNP. For various values of ε, we calculate the relative frequency of the
event {FNP(t∗(ε)) ≤ ε}. Table 2 summarizes the results for different settings
with ε = 0.1, 0.2, 0.3 and β1 = 0.3, 0.5, 0.7. It can be seen that the relative
frequency of FNP ≤ ε for FNC-Reg increases with β1, which is consistent with
the theoretical insight in Theorem 3.1. On the other hand, for a fixed β1, the
relative frequency of FNP ≤ ε and the FDP of FNC-Reg decreases with ε, which
agrees with our expectation for FNC-Reg as more liberal control of FNP incurs
less price in false positives. Note that the results of Lasso and Knockoff do not
change with the varying ε.

Table 2
The relative frequencies of the event {FNP < ε} and mean values of FDP from 100

replications for FNC-Reg.

β1 = 0.3 β1 = 0.5 β1 = 0.7
ε = 0.1 0.2 0.3 ε = 0.1 0.2 0.3 ε = 0.1 0.2 0.3

1(FNP ≤ ε) 0.38 0.53 0.71 0.72 0.86 0.91 0.98 0.98 0.98
FDP 0.20 0.15 0.09 0.13 0.08 0.05 0.14 0.10 0.07

5. Conclusion and Discussion

We propose a new variable selection method, FNC-Reg, to efficiently control
false negatives in linear regression. Different from existing methods and theory
for power analysis and Sure Screening, our procedure directly estimates the FNP
of a decision rule and selects the smallest subset of variables that has the esti-
mated FNP less than a user-specified control level. FNP control is specifically
challenging when relevant variables cannot be consistently separated from irrel-
evant ones due to limited sample size and effect size. We develop new techniques
to analyze FNP control in the challenging setting and to cope with difficulties
caused by the dependence of test statistics.

FNC-Reg possesses two types of adaptivity property. First, it adapts to the
user’s preference level on the control of FNP. When a user can tolerate a less
stringent control on FNP, he or she can input a larger ε in the FNC-Reg pro-
cedure and select less variables with less false positives. Secondly, the proposed
method is adaptive to the unknown effect size. Note that the implementation of
the procedure does not requires the information of effect size. Nevertheless, the
result of the procedure automatically improves in both FNP and FDP as effect
size increases.

Our theoretical study presents a weaker condition on µmin for FNP control
by FNC-Reg than the beta-min condition for variable selection consistency. It
is also of interest to understand the result of FNC-Reg if the condition on µmin

may not be satisfied. Assume that among the s signal variables only s1 of them
satisfy µj ≥

√
2(γ∗ + c) log p for some constant c > 0. Then, similar arguments

as in the proof of Theorem 2.2 can be applied to show that P ((1 − δ)s1 <
ŝ < (1 + δ)s) → 1 for any δ > 0. Note that ŝ does not consistently estimate s
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anymore, nor is it a consistent estimator for s1. Such ŝ tends to under-estimate
s, which can cause the proposed method to select less variables to capture the
under-estimated number of signals. Because FNC-Reg ranks the test statistics
by their significance and select variables from the top, one can make a statement
about FNP control for the signals with effect sizes larger than the observed cut-
off position. Such interpretation of results remains valid whether the condition
on µmin holds or not.

Last but not least, we adopt the debiased Lasso estimator as the test statistic
in the paper to demonstrate the new analytic framework of FNP control. We
expect that the proposed framework can incorporate other test statistics in
linear regression and promote further developments in false negative control
based variable selection.

6. Proofs

This section contains the proofs of Theorem 2.1, Theorem 2.2, and Theorem 3.1.
Auxiliary lemmas are provided in the appendices. We will frequently use the
Mill’s ratio, i.e.,

Φ̄ (x) = x−1φ (x) (1 + o (1)) for x→ +∞,

without mentioning it at each instance. All arguments will be conditional on
X, and the symbol C denotes a generic, finite constant whose values can be
different at different occurrences.

6.1. Proof of Theorem 2.1

The proof is composed of two parts. The first part assumes ξ > η and the second
part assumes ξ ≤ η.

Consider the first part with ξ > η. It suffices to show s−1FP (tξ) = oP (1) and
s−1p0Φ (−tξ) = o(1) with ξ > η. By Mill’s ratio,

s−1pΦ (−tξ) ≤ Cpη−ξ/
√

log p = o(1)

when ξ > η. On the other hand, for a fixed constant a > 0,

P
(
s−1FP (tξ) > a

)
≤ E (FP (tξ))

as
=
p0 maxj∈I0 P (|zj | > tξ)

as
.

The following lemma help quantify the order of P (|zj | > tξ) for j ∈ I0, and its
proof is provided in Section A.3.

Lemma 6.1. Assume A1) through A3). Define

dp = C1

(√
s log p/

√
n+ min {s, smax} log p/

√
n
)

for some constant C1 ≥ max
{

1, 2(σ
√
Cmin)−1

}
. Then∣∣P (|w′j − δ′j | > tξ)− P (|w′j | > tξ)
∣∣ ≤ Cp−ξdp + Cp−2.
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Recall s = p1−η with 0 < η < 1. Then Lemma 6.1 implies

P
(
s−1FP (tξ) > a

)
≤
Cp0

(
p−ξ + p−ξdp + p−2

)
p1−η

= o (1) ,

where the last step is by dp = o(1) under A3) and ξ > η. Then s−1FP (tξ) =
oP (1). This justifies the claim of Theorem 2.1 for ξ > η.

Next, we present the second part of the proof with ξ ≤ η. Define

Dp = s−2(p1−ξ + p2−ξλ1
√
smax) log p.

By the order of λ1 in A2) and condition ξ > γ∗1 , Dp = o(1). Then it is sufficient
to show

P (s−1 |FP(tξ)− 2p0Φ(−tξ)| >
√
Dp)→ 0.

Perform the decomposition

s−1 |FP(tξ)− 2p0Φ(−tξ)| ≤ s−1 |FP(tξ)− E(FP(tξ))|
+ s−1 |E(FP(tξ)− 2p0Φ(−tξ))| .

Then it is sufficient to show

s−1 |FP(tξ)− E(FP(tξ))| = op(
√
Dp) (6.1)

and
s−1 |E(FP(tξ)− 2p0Φ(−tξ))| = o(

√
Dp). (6.2)

Consider (6.1) first. By Chebyshev’s inequality,

P (s−1 |FP(tξ)− E(FP(tξ))| >
√
Dp) ≤

Var(FP(tξ))

s2Dp
.

We derive the order of Var(FP(tξ)). By Lemma 6.1, P (|w′j−δ′j | > tξ) = P (|w′j | >
tξ)(1 + o(1)) given dp = o(1/

√
log p) from A3) and ξ ≤ η < 1, then direct

calculation gives

Var(FP(tξ)) = Var(FPw′(tξ))(1 + o(1)),

where FPw′(tξ) =
∑
j∈I0 1{|w′j |>tξ}. The following lemma is proved in Sec-

tion A.4.

Lemma 6.2. Assume A1) and A2) and let tξ =
√

2ξ log p for any ξ > 0. Then

Var
(∑p

j=1
1{|w′j |>tξ}

)
= O

(
p1−ξ + p2−ξλ1

√
smax

)
.

The above gives

Var(FP(tξ))

s2Dp
=

Var(FPw′(tξ))

s2Dp
(1 + o(1)) = o(1),
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so that
P (s−1 |FP(tξ)− E(FP(tξ))| >

√
Dp)→ 0.

Next consider (6.2). By Lemma 6.1

s−1 |E(FP(tξ)− 2p0Φ(−tξ))| ≤ s−1
∑
j∈I0

∣∣P (|w′j − δ′j | > tξ)− P (|w′j | > tξ)
∣∣

≤ Cs−1p1−ξdp + Cs−1p−1.

Recall s = p1−η and the definitions of dp and Dp. Note that dp > s log p/
√
n,

then direct calculation gives

s−1p1−ξdp = o(
√
Dp)

under condition ξ > γ∗2 , and

s−1p−1 = o(
√
Dp)

with ξ ≤ η < 1. (6.2) follows consequently. This concludes the second part of
the proof with ξ ≤ η.

6.2. Proof of Theorem 2.2

First, we have the following lemma showing the order of the bounding sequence
c∗p for V ∗p . The proof is provided in Section A.5.

Lemma 6.3. Assume conditions A1) through A3) in Appendix A.1. Consider
V ∗p as in (2.15). Then c∗p at the order of (smax/n)1/4 log p satisfies P (V ∗p >
c∗p)→ 0 as p→∞.

Now, recall Fp(t) = p−1
∑p
j=1 1{|zj |>t} and define

Φ̄p(t) = p−1
p∑
j=1

1{|µj+w′j |>t}.

Consider the decomposition

π̂∗ = max
t∈T

{
Fp(t)− Φ̄p(t)

1− 2Φ̄(t)
+

Φ̄p(t)− 2Φ̄(t)− c∗pσ̄ (t)

1− 2Φ̄(t)

}
, (6.3)

where T is defined in (A.10). The first summand within the parentheses on the
right hand side (RHS) of (6.3) can be safely ignored when bounding π̂∗/π as
asserted by the following Lemma 6.4.

Lemma 6.4. Assume t = tξ =
√

2ξ log p with ξ > γ∗. Then

π−1
∣∣Fp(t)− Φ̄p(t)

∣∣ (1− 2Φ̄(t)
)−1

= oP (1).
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Define

π̂∗∗ = max
t∈T

Φ̄p(t)− 2Φ̄(t)− c∗pσ̄ (t)

1− 2Φ̄(t)
.

Then it suffices to show

P (1− δ < π̂∗∗/π < 1)→ 1. (6.4)

We first show that π̂∗∗ is an asymptotic lower bound of π. Recall the definition
of V ∗p as

V ∗p = max
t∈T

p−1
∑p
j=1 1{|w′j |>t} − 2Φ̄(t)

σ̄(t)
.

Since

Φ̄p(t) ≤ p−1s+ p−1
∑
j∈I0

1{|w′j |>t} = π + (1− π)p−10

∑
j∈I0

1{|w′j |>t},

then

P (π̂∗∗ > π)

≤ P

(
max
t∈T

{
(1− π)

(
p−10

∑
j∈I0

1{|w′j |>t} − 2Φ̄(t)
)
− c∗pσ̄(t)

}
> 0

)
≤ P

(
max
t∈T

{
p−10

∑
j∈I0

1{|w′j |>t} − 2Φ̄(t)− c∗p0 σ̄(t)
}
> 0

)
≤ P

(
V ∗p0 > c∗p0

)
,

where the second inequality follows since c∗p is non-decreasing in p and c∗p(1 −
π)−1 > c∗p0 . However, Lemma 6.3 asserts P (V ∗p0 > c∗p0)→ 0. So,

P (π̂∗∗ > π) ≤ P (V ∗p0 > c∗p0)→ 0. (6.5)

Next, we show that π̂∗∗ is an asymptotic upper bound of (1 − δ)π for any
δ > 0. Let FPw′(t) =

∑
j∈I0 1{|w′j |>t} and rewrite

Φ̄p(t) =
π

s

∑
j∈I1

1{|µj+w′j |>t} +
1− π
p0

FPw′(t).

Since π̂∗∗ > Φ̄p(t)− 2Φ̄(t)− c∗pσ̄ (t) for any t ∈ T, then

π̂∗∗

π
− 1 >

(
s−1

∑
j∈I1

1{|µj+w′j |>t} − 1
)
− 2Φ̄(t) (6.6)

+
1− π
π

(
p−10 FPw′(t)− 2Φ̄(t)

)
− 1

π
c∗pσ̄(t)

for any any t ∈ T. Now set t in the inequality (6.6) to be

tτ =
√

2τ log p with τ = γ∗ + c/2, (6.7)
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where γ∗ is defined in (2.11). We will show that each term on the RHS of (6.6)
is oP (1).

Firstly, c∗p = O
(

(smax/n)
1/4

log p
)

set in Lemma 6.3 implies the last term at

tτ
π−1c∗pσ̄(tτ ) = O(pη−τ/2(smax/n)1/4 log p) = o(1).

The second term 2Φ̄(tτ ) = O(p−τ/
√

log p) = o(1).
Consider the third term at tτ . Similar arguments for (2.12) can be applied to

show s−1|FPw′(tτ )− 2p0Φ̄(tτ )| = oP (1). Then

1− π
π

∣∣p−10 FPw′(t)− 2Φ̄(t)
∣∣ ≤ Cs−1|FPw′(tτ )− 2p0Φ̄(tτ )| = oP (1).

For the first term of (6.6), let A1 (t) = s−1
∑
j∈I1 1{|µj+w′j |≤t}. Then the

first term is s−1
∑
j∈I1 1{|µj+w′j |>tτ} − 1 = A1 (tτ ). The following lemma shows

A1 (tτ ) = oP (1), and its proof is provided in Section A.7.

Lemma 6.5. Let A1 (t) = s−1
∑
j∈I1 1{|µj+w′j |≤t} and assume

µmin ≥
√

2(γ∗ + c) log p.

Then A1 (tτ ) = oP (1) for tτ in (6.7).

Thus, we have shown

P (π̂∗∗/π − 1 < −δ)→ 0 (6.8)

for any δ > 0. Consequently, (6.4) follows from (6.5) and (6.8).

6.3. Proof of Theorem 3.1

Recall FNP (t) = 1 − s−1R (t) + s−1FP (−t) and F̂NP (t) = 1 − ŝ−1R (t) +
2ŝ−1pΦ (−t) for t ≥ 0. Recall the definition of t∗(ε) and simplify the notation
by t∗ = t∗(ε). We have the following Lemma 6.6, whose proof is provided in
Section A.8.

Lemma 6.6. Assume µmin ≥
√

2(γ∗ + c) log p. If t∗ satisfies P (t∗ ≥ tτ ) → 1
for tτ in (6.7), then

|F̂NP(t∗)− FNP(t∗)| = oP (1). (6.9)

Now we aim to show P (t∗ ≥ tτ )→ 1. The proof of the following Lemma 6.7
is presented in Section A.9.

Lemma 6.7. Assume µmin ≥
√

2(γ∗ + c) log p. Then, for tτ in (6.7),

FNP(tτ ) = oP (1) . (6.10)
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Note that a special case of (6.9) is |F̂NP(tτ )−FNP(tτ )| = oP (1), which holds

when t∗ is set to be tτ . Then (6.10) implies F̂NP(tτ ) = oP (1), and P (t∗ ≥ tτ )→
1 follows from the definition of t∗.

On the other hand, the definition of t∗ implies F̂NP(t∗) < ε almost surely,
then Lemma 6.6 implies P (FNP(t∗) < ε)→ 1 as stated in (3.2).

Next, we show (3.3). Denote

F̂NPπ̂(t) = 1− R (t)− 2pΦ (−t)
π̂p

and F̂NPπ̂∗(t) = 1− R (t)− 2pΦ (−t)
π̂∗p

.

By the definition of π̂ and π̂∗ and cp = c∗p, it is easy to see that π̂ ≥ π̂∗ and,
consequently,

F̂NPπ̂(t) ≥ F̂NPπ̂∗(t)

for any t > 0. Denote

t∗π̂ = sup
{
t : F̂NPπ̂(t) ≤ ε

}
and t∗π̂∗ = sup

{
t : F̂NPπ̂∗(t) ≤ ε

}
.

Then t∗π̂ ≤ t∗π̂∗ almost surely.
Recall FNP(t∗π̂∗) < ε with probability tending to 1 as stated in (3.2) and the

fact that FNP(t) is non-decreasing in t, then FNP(t∗π̂) ≤ FNP(t∗π̂∗) < ε with
probability tending to 1. Therefore (3.3) holds.

Appendix A: Appendix

The notations we will use throughout the appendices are collected as follows.

For a matrix M, the q-norm ‖M‖q =
(∑

i,j |Mij |q
)1/q

for q > 0, ∞-norm

‖M‖∞ = maxi,j |Mij |, and ‖M‖1,∞ the maximum of the 1-norm of each row of
M. If M is symmetric, σi(M) denotes the ith largest eigenvalue of M.

A.1. Debiased Lasso

The matrix Θ̂ ∈ Rp×p appearing in the debiased Lasso estimator for β in
the main text is obtained as follows. Let X−j denote the matrix obtained by
removing the jth column of X. For each j = 1, . . . , p, let

γ̂j = argmin
γ∈Rp−1

(
n−1 ‖xj −X−jγ‖22 + 2λj ‖γ‖1

)
(A.1)

with components γ̂j,k, k = 1, . . . , p and k 6= j, and define

τ̂2j = n−1
∥∥xj −X−j γ̂j

∥∥2
2

+ 2λj
∥∥γ̂j∥∥1 .

Then

Θ̂ = diag
(
τ̂−21 , · · · , τ̂−2p

)


1 −γ̂1,2 · · · −γ̂1,p
−γ̂2,1 1 · · · −γ̂2,p

...
...

...
...

−γ̂p,1 −γ̂p,2 · · · 1

 .
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Recall
√
n(b̂ − β) = w − δ, where w ∼ Np(0, σ2Ω̂) conditional on X. To

quantify the magnitude of δ, we adopt and rephrase Theorem 3.13 of [21] for
unknown Σ as follows. Let Θ = Σ−1, sj = |{k 6= j : Θjk 6= 0}| and smax =
max1≤j≤p sj .

A1) Gaussian random design: the rows of X are i.i.d. Np (0,Σ) for which Σ
satisfies:

A1a) max1≤j≤p Σjj ≤ 1.

A1b) 0 < Cmin ≤ σ1 (Σ) ≤ σp (Σ) ≤ Cmax <∞ for constants Cmin and
Cmax.

A1c) ρ (Σ, C0s) ≤ ρ for some constant ρ > 0, where C0 = 32CmaxC
−1
min+

1,
ρ (A, k) = max

T⊆[p],|T |≤k

∥∥ (AT,T )
−1 ∥∥

1,∞

for a square matrix A, [p] = {1, ..., p} , AT,T is a sub-matrix formed
by taking entries of A whose row and column indices respectively
form the same subset T .

A2) Tuning parameters: for the Lasso in (2.1), λ = 8σ
√
n−1 log p; for nodewise

regression in (A.1), λj = κ̃
√
n−1 log p, j = 1, . . . , p for a suitably large

universal constant κ̃.
A3) Sparsities of β and Θ: s = o

(
n/(log p)2

)
, max{s, smax} = o(n/ log p),

min{s, smax} = o(
√
n/ log p).

Lemma A.1. Assume A1) and A2). Then there exist positive constants c and
c′ depending only on Cmin, Cmax and κ̃ such that, for max{s, smax} < cn/ log p,
the probability that

‖δ‖∞ ≤ c
′ρσ

√
s

n
log p+ c′σmin {s, smax}

log p√
n

(A.2)

is at least 1 − 2pe−16
−1ns−1Cmin − pe−cn − 6p−2. Further, assume A3), then

‖δ‖∞ = oP (1).

Note that the above result relaxed the ultra-sparse condition s = o(
√
n/ log p)

in [34] to s = o
(
n/(log p)2

)
as shown in A3).

Recall the standardized debiased Lasso estimate zj =
√
nb̂jσ

−1Ω̂
−1/2
jj for

1 ≤ j ≤ p. Namely, zj = µj + w′j − δ′j , w′j =
wj

σ
√

Ω̂jj

∼ N (0, 1), δ′j =
δj

σ
√

Ω̂jj

,

µj =
√
nβj

σ
√

Ω̂jj

for each j. The σΩ̂
1/2

jj ’s are refereed to as standardizers. Let

δ′ =
(
δ′1, . . . , δ

′
p

)T
. We quote from [22] some results on σΩ̂

1/2

jj for 1 ≤ j ≤ p

and the ‖·‖1-norms of the covariance matrices for w = (w1, . . . , wp)
T

and w′ =(
w′1, . . . , w

′
p

)T
.

Lemma A.2. Assume A2) and smax = o (n/ log p). Then ‖Ω̂ − Σ−1‖∞ =

oP (1). If further A1b) holds, then ‖Θ̂Σ̂−I‖∞ = OP (λ1), both min1≤j≤p Ω̂jj and
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max1≤j≤p Ω̂jj are uniformly bounded (in p) away from 0 and ∞ with probability
tending to 1, and

∥∥δ′∥∥∞ ≤ (σ
√
Cmin)−1 ‖δ‖∞ with probability tending to 1.

Lemma A.3. Let K̂ be the correlation matrix of w. Assume A1) and A2).
Then

p−2‖σ2Ω̂‖1 = OP (λ1
√
smax) and ‖ K̂‖1 = O(σ2‖Ω̂‖1). (A.3)

A.2. Hermite polynomials and Mehler expansion

The following is quoted from [22]. Let φ (x) = (2π)
−1/2

exp
(
−x2/2

)
and

fρ (x, y) =
1

2π
√

1− ρ2
exp

(
−x

2 + y2 − 2ρxy

2 (1− ρ2)

)

for ρ ∈ (−1, 1). For a nonnegative integer k, let Hk (x) = (−1)
k 1
φ(x)

dk

dxk
φ (x)

be the kth Hermite polynomial; see [16] for such a definition. Then Mehler’s
expansion [27] gives

fρ (x, y) =

(
1 +

∑∞

k=1

ρk

k!
Hk (x)Hk (y)

)
φ (x)φ (y) . (A.4)

Further, Lemma 3.1 of [10] asserts∣∣∣e−y2/2Hk (y)
∣∣∣ ≤ C0

√
k!k−1/12e−y

2/4 for any y ∈ R (A.5)

for some constant C0 > 0.

A.3. Proof of Lemma 6.1

By assumption A3), dp = o(1), s � n/ log p, and n � log p. Then Lemma A.1
implies

P (‖δ‖∞ ≥ dp) ≤ 2pe−c∗n/s + pe−Cn + 6p−2 ≤ Cp−2

where c∗ = Cmin/16. By Lemma A.2 and the definition of dp, we have

P (‖δ′‖∞ ≥ dp) ≤ Cp−2.

Now consider P (|w′j − δ′j | > tξ), which is bounded as follows.

P (|w′j | > tξ + |δ′j |) ≤ P (|w′j − δ′j | > tξ) ≤ P (|w′j | > tξ − |δ′j |).

The rightmost term

P (|w′j | > tξ − |δ′j |) ≤ P (|w′j | > tξ − |δ′j |, ‖δ
′‖∞ ≤ dp) + P (‖δ′‖∞ > dp)

≤ P (|w′j | > tξ − dp) + Cp−2.
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On the other hand, the leftmost term

P (|w′j | > tξ + |δ′j |) ≥ P (|w′j | > tξ + |δ′j |, ‖δ
′‖∞ ≤ dp)

≥ P (|w′j | > tξ + dp, ‖δ′‖∞ ≤ dp)
= P (|w′j | > tξ + dp)− P (|w′j | > tξ + dp, ‖δ′‖∞ > dp)

≥ P (|w′j | > tξ + dp)− P (‖δ′‖∞ > dp)

≥ P (|w′j | > tξ + dp)− Cp−2.

Summing up the above gives∣∣P (|w′j − δ′j | > tξ)− P (|w′j | > tξ)
∣∣ ≤ Cφ(tξ)dp + Cp−2,

and the claim in Lemma 6.1 follows.

A.4. Proof of Lemma 6.2

For i 6= j, let ρij be the correlation between w′i and w′j and

Cij,ξ = Cov
(

1{|w′i|≤tξ}, 1{|w′j |≤tξ}
)
.

Then, by Lemma A.2, ρij is also the correlation between wi and wj . Further,

Var
(∑p

j=1
1{|w′j |>tξ}

)
≤

p∑
j=1

Var
(

1{|w′j|≤tξ}
)

+
∑
i6=j

Cij,ξ. (A.6)

By Mill’s ratio,

p∑
j=1

Var
(

1{|w′j|≤tξ}
)
≤ 2pΦ (−tξ) (1− 2Φ (−tξ)) = O(p1−ξ). (A.7)

It is left to bound
∑
i6=j Cij,ξ in (A.6).

Define c1,ξ = −tξ and c2,ξ = tξ. Fix a pair of (i, j) such that i 6= j and
|ρij | 6= 1. Now we will use the results in Section A.2. Since Cij,ξ is finite and
the series in Mehler’s expansion in (A.4) as a trivariate function of (x, y, ρ) is
uniformly convergent on each compact set of R×R× (−1, 1) as justified by [36],
we can interchange the order of the summation and integration and obtain

Cij,ξ =

∫ c2,ξ

c1,ξ

∫ c2,ξ

c1,ξ

fρij (x, y) dxdy −
∫ c2,ξ

c1,ξ

φ(x)dx

∫ c2,ξ

c1,ξ

φ(y)dy

=
∞∑
k=1

ρkij
k!

∫ c2,ξ

c1,ξ

Hk(x)φ(x)dx

∫ c2,ξ

c1,ξ

Hk(y)φ(y)dy.
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Since Hk−1 (x)φ (x) =
∫ x
−∞Hk (y)φ (y) dy for x ∈ R, then

Cij,ξ =
∞∑
k=1

ρkij
k!

[Hk−1(c2,ξ)φ(c2,ξ)−Hk−1(c1,ξ)φ(c1,ξ)]
2

≤ 2
∞∑
k=1

|ρij |k

k!

{
[Hk−1 (c2,ξ)φ (c2,ξ)]

2
+ [Hk−1 (c1,ξ)φ (c1,ξ)]

2
}
.

Inequality (A.5) implies, for some finite constant C0 > 0 ,

[Hk−1 (c2,ξ)φ (c2,ξ)]
2

+ [Hk−1 (c1,ξ)φ (c1,ξ)]
2 ≤ C2

0 (k − 1)!(k − 1)−1/6e−t
2
ξ/2.

Therefore, ∣∣∣∑
i6=j

Cij,ξ

∣∣∣ ≤ C
∑

1≤i<j≤p

|ρij |
∞∑
k=1

k−7/6 |ρij |k−1 e−t
2
ξ/2

≤ Cp−ξ
∑

1≤i<j≤p

|ρij | = O(p−ξ‖K̂‖1). (A.8)

Combining (A.6) with (A.7) and (A.8) gives

Var
(∑p

j=1
1{|w′j |>tξ}

)
= O(p1−ξ) +O(p−ξ‖K̂‖1)

= O(p1−ξ) +O(p2−ξλ1
√
smax),

where the last inequality follows from Lemma A.3, i.e., ‖K̂‖1 = OP (p2λ1
√
smax).

A.5. Proof of Lemma 6.3

Recall

σ̄ (t) =
√

2Φ̄(t)
(
1− 2Φ̄(t)

)
, H(t) = (σ̄ (t))

−1
(
p−1

∑p

j=1
1{|w′j |>t} − 2Φ̄(t)

)
.

Then E(H(t)) = 0 since w′j ∼ N1(0, 1) for all j.

For any tξ =
√

2ξ log p such that limp→∞ tξ =∞, Lemma 6.2 implies

Var (HC(tξ)) = p−2σ̄−2p (tξ)Var
(∑p

j=1
1{|w′j |>tξ}

)
≤ Cpξ−2

√
log p

(
p1−ξ + p2−ξ

√
log p

√
smax/n

)
= O

(√
smax/n log p

)
. (A.9)

Let
T =

[√
τ0 log p,

√
τ1 log p

]
∩ N (A.10)
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for which 0 < τ0 < τ1. So, each t ∈ T can be written as t = tξ =
√

2ξ log p for
some ξ > 0 and limp→∞ tξ = ∞. Recall V ∗p = max {H(t) : t ∈ T}. Therefore,
(A.9) implies

P (V ∗p > c∗p) ≤ C
(
c∗p
)−2√

log pmax
t∈T

Var (H(t))

≤ C
(
c∗p
)−2 · (log p)3/2 ·

√
smax/n.

However, c∗p = O
(

(smax/n)
1/4

log p
)

. Thus, P (V ∗p > c∗p) = o (1) as desired.

A.6. Proof of Lemma 6.4

Since maxt∈T
(
1− 2Φ̄(t)

)
≥ 4−1 for all p sufficiently large. It suffices to show

π−1
∣∣Fp(t)− Φ̄p(t)

∣∣ = oP (1) (A.11)

for t = tξ =
√

2ξ log p with ξ > γ∗. Perform the decomposition∣∣Fp(t)− Φ̄p(t)
∣∣ ≤ |Fp(t)− E(Fp(t))|

+
∣∣Φ̄p(t)− E(Φ̄p(t))

∣∣+
∣∣E(Fp(t))− E(Φ̄p(t))

∣∣ .
Similar arguments for (6.1) can be applied to show

π−1 |Fp(t)− E(Fp(t))| = op(1) = π−1
∣∣Φ̄p(t)− E(Φ̄p(t))

∣∣ ,
and similar arguments for (6.2) imply

π−1
∣∣E(Fp(t))− E(Φ̄p(t))

∣∣ = o(1).

Summing up the above gives (A.11).

A.7. Proof of Lemma 6.5

We will show A1 (tτ ) = oP (1). Fix a constant a > 0,

P (A1 (tτ ) > a) ≤ 1

as

∑
j∈I1

P
(
|µj + w′j | ≤ tτ

)
≤ 1

a
max
j∈I1

P
(
|µj + w′j | ≤ tτ

)
(A.12)

and for each j ∈ I1

P
(
|µj + w′j | ≤ tτ

)
= 1− Φ̄ (tτ − µj)− Φ (−tτ − µj) , (A.13)

We only need to uniformly bound the RHS of (A.13).
Recall µmin = minj∈I1

√
n |βj |σ−1

√
Σjj and µmin ≥

√
2(γ∗ + c) log p. Let

µmin =
√

2r log p,

imsart-ejs ver. 2014/10/16 file: FNC-Reg.tex date: June 14, 2020



Jeng and Chen/False Negative Control in Regression 25

then r ≥ τ + c/2. Further, by Lemma A.2, the ratio µmin/minj∈I1 |µj | is uni-
formly bounded (in p) away from 0 and ∞. Then, two cases happen for each
j ∈ I1: (i) both tτ − µj → −∞ and −tτ − µj → −∞ when µj > 0; (b) both
tτ − µj → +∞ and −tτ − µj → +∞ when µj < 0. However, in either case,

min
j∈I1

min {|tτ − µj | , |−tτ − µj |} ≥
√

2c̃ log p,

where c̃ = 2−1
(√

2τ + c−
√

2τ
)2
> 0. Therefore,

max
j∈I1

P
(
|µj + w′j | ≤ tτ

)
≤ 4Φ̄

(√
2c̃ log p

)
= O

(
p−c̃
)
. (A.14)

Combining (A.14) with (A.12) gives

P (A1 (tτ ) > a) ≤ a−1O
(
p−c̃
)

= o (1) ,

which is the desired claim on A1 (tτ ).

A.8. Proof of Lemma 6.6

Recall F̂NP (t) = 1− ŝ−1 (R (t)− 2(p− ŝ)Φ (−t)). We only need to show∣∣s−1 (R (t∗)− FP (t∗))− ŝ−1 (R (t∗)− 2(p− ŝ)Φ (−t∗))
∣∣

≤
∣∣TP (t∗)

(
s−1 − ŝ−1

)∣∣+
∣∣ŝ−1(FP (t∗)− 2p0Φ (−t∗)

∣∣ (A.15)

+
∣∣2ŝ−1Φ(−t∗)(p− ŝ− p0)

∣∣ = oP (1) .

Since µmin ≥
√

2(γ∗ + c) log p, then Theorem 2.2 implies

P
(
1− δ ≤ ŝs−1 ≤ 1

)
→ 1 (A.16)

for any δ > 0. Let δ′ = δ
1−δ . Then, (A.16) is equivalent to

P
(
0 ≤ ŝ−1 − s−1 ≤ δ′s−1

)
→ 1.

Pick a δ > 0 such that δ < a
1+a . Then δ < 1 and δ′s−1TP (t∗) < a almost surely.

Therefore,

P
(∣∣TP (t∗)

(
s−1 − ŝ−1

)∣∣ > a
)

≤ P
(∣∣TP (t∗)

(
s−1 − ŝ−1

)∣∣ > a,
∣∣s−1 − ŝ−1∣∣ ≤ δ′s−1)

+ P
(∣∣s−1 − ŝ−1∣∣ > δ′s−1

)
≤ P

(
TP (t∗) δ′s−1 ≥ a

)
+ o (1)

= 0 + o (1) ,

i.e., the first term in (A.15) = oP (1). The remaining two terms in (A.15) are
also of oP (1) by (A.16) and Theorem 2.1. This concludes the proof.
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A.9. Proof of Lemma 6.7

Recall A1 (t) = s−1
∑
j∈I1 1{|µj+w′j |≤t}. Lemma 6.5 implies A1 (tτ ) = oP (1),

given µmin ≥
√

2(γ∗ + c) log p. Now we show FNP(tτ ) = oP (1). Clearly,

P (FNP(tτ ) > a) ≤ 1

a
max
j∈I1

P
(
|µj + w′j + δ′j | ≤ tτ

)
.

However, max1≤i≤p |δ′j | = oP (1) and w′j ∼ N1(0, 1) for each j together imply

max
j∈I1

∣∣P (|µj + w′j + δ′j | ≤ tτ
)
− P

(
|µj + w′j | ≤ tτ

)∣∣ = o (1) .

Combining the above with (A.14) gives maxj∈I1 P
(
|µj + w′j + δ′j | ≤ tτ

)
= o (1),

and FNP(tτ ) = oP (1) holds.
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[34] van de Geer, S., P. Bühlmann, Y. Ritov, and R. Dezeure (2014). On asymp-
totically optimal confidence regions and tests for high-dimensional models.
Ann. Statist. 42 (3), 1166–1202.

[35] Wainwright, M. J. (2009). Sharp thresholds for high-dimensional and noisy
sparsity recovery using l1-constrained quadratic programming (lasso). IEEE
Trans. Inf. Theory 55 (5), 2183–2202.

[36] Watson, G. N. (1933). Notes on generating functions of polynomials: (2)
hermite polynomials. J. Lond. Math. Soc. s1-8 (3), 194–199.

[37] Zhang, C.-H. and S. S. Zhang (2014). Confidence intervals for low dimen-
sional parameters in high dimensional linear models. J. R. Statist. Soc. Ser.
B 76 (1), 217–242.

[38] Zhang, X. and G. Cheng (2017). Simultaneous inference for high-
dimensional linear models. J. Amer. Statist. Assoc. 112 (518), 757–768.

imsart-ejs ver. 2014/10/16 file: FNC-Reg.tex date: June 14, 2020


	Introduction
	False Negative Proportion Estimation
	Test Statistics Based on Debiased Lasso Estimates
	Approximating False Negative Proportion

	FNP Control at a User-Specified Level
	The FNC-Reg Procedure
	Numerical Implementation of FNC-Reg

	Numerical Analysis
	Estimating s
	FNP control

	Conclusion and Discussion
	Proofs
	Proof of Theorem 2.1
	Proof of Theorem 2.2
	Proof of Theorem 3.1

	Appendix
	Debiased Lasso
	Hermite polynomials and Mehler expansion
	Proof of Lemma 6.1
	Proof of Lemma 6.2
	Proof of Lemma 6.3
	Proof of Lemma 6.4
	Proof of Lemma 6.5
	Proof of Lemma 6.6
	Proof of Lemma 6.7

	References

