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Abstract

Among the most popular model selection procedures in high-dimensional regression,
Lasso provides a solution path to rank the variables and determines a cut-off position on
the path to select variables and estimate coefficients. In this paper, we consider variable
selection from a new perspective motivated by the frequently occurred phenomenon
that relevant variables are often mixed with noise variables on the solution path. We
propose to characterize the positions of the first noise variable and the last relevant
variable on the path. We then develop a new variable selection procedure to control
over-selection of the noise variables ranking after the last relevant variable, and, at the
same time, retain a high proportion of relevant variables ranking before the first noise
variable. Our procedure utilizes the recently developed covariance test statistic and
Q statistic in post-selection inference. In numerical examples, our method compares
favorably with existing methods in selection accuracy and the ability to interpret its
results.

Keywords: Jayanta K. Ghosh; Large p small n; Penalized regression; Variable

selection

*Department of Statistics, North Carolina State University, Raleigh, NC, USA. Email: xjjeng@ncsu.edu.
TSupported in part by NSF Grant DMS-1811360.

iDepartment of Statistics, North Carolina State University, Raleigh, NC, USA

$Department of Statistics, North Carolina State University, Raleigh, NC, USA



1 Introduction

The authors of the paper deeply mourn the loss of Dr. Jayanta K. Ghosh, whose dedication
to research and mentoring have benefited generations of statisticians and who has set an
eminent example of excellence as a scholar and role model. Dr. Ghosh has made substantial
contributions to a wide range of research areas such as higher order asymptotics, Bayesian
analysis, and high-dimensional inference. One of the authors, X.J. Jeng, was fortunate to
have Dr. Ghosh as her PhD advisor in Purdue University. Dr. Ghosh’s work in model
selection, multiple testing, and their biomedical applications (e.g. Wilbur et al. (2002),
Chakrabarti & Ghosh (2007), Bogdan et al. (2008), Chakrabarti & Ghosh (2011), Bogdan
et al. (2011)) has inspired the research in this paper.

We consider the linear regression model
y=X3" +¢, € ~ N(0,0°T), (1)

where y is a vector of response with length n, X is the n x p design matrix of standardized
predictors, and B* a sparse vector of coefficients. In high-dimensional regression, p can be
greater than n. Among the most popular methods for model selection and estimation in
the high-dimensional regression, Lasso (Tibshirani, 1996) solves the following optimization

problem

) 1
B = argmin - [ly — X85 + A8, (2)
BERP

where A\ > 0 is a tuning parameter. Lasso provides a solution path, which is the plot of the
estimate B (A) versus the tuning parameter A. Lasso solution path is piecewise linear with
each knot corresponding to the entry of a variable into the selected set. Knots are denoted

by Ay > Ay > -+ > A\, > 0, where m = min(n — 1,p) is the length of the solution path

(Efron et al., 2004).



Recent developments in high-dimensional regression focus on hypothesis testing for vari-
able selection. Impressive progress has been made in Zhang & Zhang (2014), Van De Geer
et al. (2014), Lockhart et al. (2014), Barber & Candes (2015), Bogdan et al. (2015), Lee
et al. (2016), G’sell et al. (2016), Jeng & Chen (2019), etc. Specifically, innovative test
statistics based on Lasso solution path have been proposed. For example, Lockhart et al.
(2014) construct the covariance test statistic as follows. Along the solution path, the variable
indexed by jp enters the selected model at knot \;. Define active set right before knot A\, as
A, = {j1,J2, -+, jr—1}. In addition, define true active set to be A* = {j: 37 # 0} and the
size of true active set as s = |A*|. Lockhart et al. (2014) considers to test the null hypothesis
Hy, : A* C Ay conditional upon the active set A, at knot A, and propose the covariance

test statistic as

T = (5, XBwsn)) = (v, X, B, (i) ) /7 3)

where B()\kzﬂ) = argMingepy %Hy - Xﬁ”% + Akg1 |81 and BAk()\kH) = argminBeR\Akl %Hy -
X4, B4 5+ ArsallBa, ll1- Lockhart et al. (2014) derived that under orthogonal design, if all
s relevant variables rank ahead of noise variables with probability tending to 1, then for any

fixed d,
(Tui1, Torar - Toya) = (Exp(1), Exp(1/2), - - - , Exp(1/d)), (4)

as p — oo, and that Ty, T5, - - - , Ty are asymptotically independent .
Later, G’sell et al. (2016) proposed to perform sequential test on Hyy : A* C Ay for k
increasing from 0 to m and developed the Q statistics for a stopping rule. The Q statistics

are defined as



for Kk = 1,...,m. It has been proved that in the case of perfect separation where all s
relevant variables rank ahead of noise variables, if T, 4, - - - , T}, are independently distributed

a5 (Tur, - T) ~ (Bxp(1), Bxp(1/2), -, Exp(1/(m — 5))), then
0 < (k— s)th order statistic of m — s independent standard uniform random variables (6)

for s+ 1 < k <m. G'sell et al. (2016) developed a stopping rule (TailStop) implementing
the Q statistics in the procedure of Benjamini & Hochberg (1995). Given the distribution
of g in (6), TailStop controls false discovery rate at a pre-specified level.

In this paper, we consider more general scenarios where relevant variables and noise
variables are not perfectly separated and some (or all) relevant variables intertwine with noise
variables on the Lasso path. Such scenarios would occur when the effect sizes of relevant
variables are not large enough. In fact, even with infinitely large effect size, perfect separation
on solution path is still not guaranteed when the number of relevant variables is relatively
large (Wainwright, 2009; Su et al., 2017). Studies in theory and method are limited in
such general scenarios because the inseparability among relevant and noise variables make it
difficult to estimate Type I and/or Type II errors. In order to perform variable selection in the
more general and realistic settings, we propose a new theoretical framework to characterize
the region on the solution path where relevant and noise variables are not distinguishable.

Figure 1 illustrates the indistinguishable region on solution path. Denote my as the
position right before the first noise variable on the path such that all entries up to mqg
correspond to relevant variables and m; as the position of the last relevant variable where
all entries afterwards correspond to noise variables. Given a solution path, both mg and
my are realized but unknown, and the region between mgy and m; is referred to as the
indistinguishable region.

Given the solution path, a sensible variable selection procedure would select all variables

up to mg but no variables after m;. Since both mgy and m; are unknown stochastic quantities,



Figure 1: An example of my and m; on Lasso solution path. mg is the entry right before
the first noise variable. m; is the entry of the last relevant variable.
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the selection procedure should automatically adapt to the unknown mgy and m;.

We develop a new variable selection procedure utilizing the Q statistic in (5). We refer
to the new procedure as Q-statistic Variable Selection (QVS). QVS searches through the
solution path and determines a cut-off position that is likely between mg and m; under

certain conditions that are more general than (6) on the distribution of the Q) statistic.

2 Method and Theory

QVS is inspired by earlier works on estimating the proportion of non-null component in a
mixture model of p-value (Meinshausen & Rice, 2006; Meinshausen & Buhlmann, 2005). We
extend the technique to high-dimensional regression considering the general scenarios with
indistinguishable relevant and noise variables.

Given a Lasso path, QVS searches through the empirical process k/m—qx—cpm/qr(1 — qx), 1 <
k < m, where gy is defined in (5), and determines the cut-off position as

. k
kqu:m' max {__qk_cm Qk(l_Qk>}7 (7)

1<k<m/2 | m

where ¢,, is a bounding sequence to control over selection of noise variables after m; and



constructed as follows. For 0 <t < 1, let

1 m
==Y Ui <),
m
=1
where Uy, - -+ , U, are i.i.d. standard uniform random variables. Further, let

U,(t) —t
Vin = sup L (8)
te(0,1) /t(1 — 1)

Then determine ¢, as an upper bound of V,, so that P(V,, > ¢,,) < a,,, — 0 as m — oo.
We consider the setting where some relevant variables intertwine with noise variables on
the Lasso path. In order to gain theoretical insights for the performance of QVS, we adopt
a similar strategy as in Section 4.2.1 of G’sell et al. (2016), and simplify the problem by
considering a sequence of arbitrary statistics ¢, ..., g, corresponding to the m ranked vari-
ables. Define U1) m—s, - - -, Uim—s)m—s as increasingly ordered statistics of m — s independent

standard uniform random variables, independent of ¢; ..., ¢,,. Assume that

Gmo+1 S U(l),m—s (9)

with probability tending to 1 as m — oo. It is easy to see that in the special case of perfect
separation with mg = my = s, (9) is implied by condition (6) from G’sell et al. (2016). In the
more general case with mqy # my, we show that QVS provides an asymptotic upper bound

for the unknown mg under (9).

Theorem 1. Consider the stopping rule in (7) under condition (9). Assume that the number

of relevant variables s = o(m) and that \/logm/mqy — 0 in probability. Then
P (k:q > (1 e)m0> 1 (10)

as m — oo for any small constant € > 0.



The proof of Theorem 1 is provided in Section 6.1. The condition, v/logm/mg — 0 in
probability, holds when my is large enough, which may be satisfied if the number of relevant
variables and their effect sizes are large enough. The result in Theorem 1 implies that QVS
can asymptotically retain a high proportion of relevant variables ranked up to my.

Next, we show the property of QVS to provide a lower bound for m; in Figure 1. Recall
the definition of U(;) ,—s as the jth ordered statistic of m — s independent standard uniform

random variables. Assume that for any t € (0,1),

k=mi+1 k=mi—s+1

with probability tending to 1 as m — oo, where 1(-) denotes an indicator function. Note
that in the special case with my = m; = s, condition (11)) is implied by (6) because the
latter assumes that g has the same distribution as that of Uy_g) m—s for k =s+1,...,m.

In the more general setting when mgy # my, we have the following result.

Theorem 2. Consider the stopping rule in (7) under condition (11). As m — oo,
P(]%qu < ml) — 1.

The proof of Theorem 2 is presented in Section 6.2. Theorem 2 implies that QVS provides
a parsimonious variable selection such that noise variables ranked after m; are not likely to

be over-selected. Combining Theorem 1 and 2, the following corollary is straightforward.

Corollary 1. Consider the stopping rule in (7) under conditions (9) and (11). If s = o(m)
and v/logm/mqy — 0 in probability, then

P ((1 — G)mo < ]%qu < m1> —1

as m — oo for any small constant € > 0.



3 Simulation

In our simulation study, design matrix X, is a Gaussian random matrix with each row
generated from N,(0, X). Response y is generated from N, (X3",I), where 3" is the vector
of true coefficients. The locations of non-zero entries of 3" are randomly simulated.

For the QVS procedure, we simulate the bounding sequence c¢,, by the following steps. We
generate X,,, and y,x; under the null model and compute the Lasso solution path using the
lars package in R. Covariance test statistics and Q statistics {¢;}*, are calculated by (3) and
(5), respectively. Then, we compute V,, using V;, = maxi<icpm/o(i/m — ¢)/v/a:(1 — ;). We
repeat the above steps for 1000 times and obtain V! V2 ... V100 The hounding sequence
Cm is computed as the upper a, percentile of V1 V2 ... V100 We set o, = 1/y/Togm
as recommended in Jeng et al. (2019) to bound the exceedance probability of V,, at a
degenerating level. For each combination of sample size n and dimension p, we only need to

simulate the bounding sequence once.

3.1 Positions of /Acqu, mo, and my

Recall the definitions of the my and m; on the Lasso path and Figure 1. Table 1 reports
the realized values of l%qu, mg, my. It can be seen that the distance between mgy and m;y
increases as the number of relevant variables s increases. In all the cases, l%qu is greater than
mg, which agrees with the theoretical property of QVS in Theorem 1. On the other hand,
l%qu is less than my with high frequency when n = 200. When n = 300, l%qu is mostly less
than m; with relatively large s but greater than m; with smaller s. We suspect that in the
latter case, condition (11) in Theorem 2 may not hold.

Recall that condition (9) is imposed in Theorem 1 for QVS to retain relevant variables
before mg, and condition (11) is imposed in Theorem 2 to avoid over-selecting noise variables
after m;. Consider the settings in Table 1. Figure 2 shows the empirical distributions of

Gmo+1 and Uy m—s, respectively, from 1000 replications. The top row has n = 200 and



s = 30, and the bottom row increases the sample size to n = 300. The results seem to
support condition (9) that gm,+1 < Unym—s with high probability. Condition (11) is more
difficult to check in simulation because it is supposed to hold for arbitrary ¢ € (0,1) with

high probability. We would defer the verification of this condition to future research.

Table 1: Mean values of the QVS cut-off positions (l%qu) the positions of mg, and the
positions of my from 1000 replications. Standard errors are in parenthes1s F(l%qu > myg)
and F (kqu < my) represent the frequencies of kqu > mg and k:qu < my, respectively. In
these examples, p = 2000, Cov(X) = I, and non-zero coefficients are equal to 0.5.

n S kqu my mq F(kqu Z mO) F(kqu S ml)
200 | 30 | 79(6.2) | 4(2.8) | 142(32.9) | 1.00 0.99

40 | 92(3.4) | 3(2.4) |171(21.4) | 1.00 1.00

50 | 96(1.9) | 3(2.2) | 180(17.5) | 1.00 1.00
300 | 30 | 68(8.1) | 10(4.8) | 58(17.7) | 1.00 0.18

40 | 99(9.9) | 8(4.5) | 120(41.2) | 1.00 0.68

50 | 127(7.7) | 6(3.9) | 206(49.8) | 1.00 0.98

3.2 Comparisons with other methods

We compare the performance of QVS with other variable selection methods, such as Lasso
with BIC (“BIC”), Lasso with 10-fold cross-validation (“LCV”), Bonferroni procedure ap-
plied to the Q statistics (“Q-BON”), and Benjamini-Hochberg procedure applied to the Q
statistics (“Q-FDR”). Specifically, Q-BON and Q-FDR select the top-ranked variables on the
solution path with sizes equal to argmax; {k : ¢ < 0.05/m} and argmax, {k : ¢x < 0.05k/m},
respectively. The nominal levels for both Q-BON and Q-FDR are set at 0.05. We note that
Q-FDR is equivalent to the TailStop method introduced in G’sell et al. (2016).

We demonstrate the performances of these methods by presenting the true positive pro-
portion (TPP), false discovery proportion (FDP), and g-measure of these methods. TPP
is the ratio of true positives to the number of relevant variables entered the solution path.
FDP is the ratio of false positives to the number of selected variables. TPP and FDP

measure the power and type I error of a selection method, respectively. We also compute



Figure 2: Histograms of gp,4+1 and Uy m—s. The top row has n = 200, s = 30, p = 2000,
Cov(X) = I, and non-zero coefficients equal to 0.5. The bottom row increases the sample

size to n = 300.
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the g-measure, which is the geometric mean of specificity and sensitivity, i.e. g-measure

= 4/specificity x sensitivity, where specificity is the ratio of true negatives to the number
of noise variables in the solution path and sensitivity is equivalent to TPP. G-measure can
be used to evaluate the overall performance of a variable selection method. Higher value of
g-measure indicates better performance (Powers, 2011).

Figure 3 summarizes the mean values of TPP, FDP, and g-measure for different methods
under various model settings with p = 2000, n = 200 and Cov(X) = X = (0.50791),_; . . je1. p-

The number of non-zero coefficients s = 10, 20,40, and the non-zero effect vary from 0.3 to

10



2. It can be seen that the Lasso-based BIC and LCV tend to select fewer variables, which
results in lower TPP and FDP. On the other hand, the Q Statistic-based methods, Q-BON,
Q-FDR, and QVS, all have higher TPP and FDP. However, in these examples, Q-BON does
not control family-wise error at the nominal level of 0.05, and Q-FDR does not control FDR
at the nominal of 0.05. The reason is because relevant and noise variables are not perfectly
separated in these examples. As illustrated in Table 1, mg is much smaller than m;, and
the results of Q-BON and Q-FDR cannot be interpreted presumably. In terms of g-measure,
QVS generally outperforms other methods. We suspect that the relatively better perfor-
mance of QVS is related to its control of over-selecting noise variables and under-selecting
relevant variables to certain degrees in the challenging scenarios when my and m; are far

apart.

4 Real Application

We obtain a dataset for expression quantitative trait loci (eQTL) analysis related to Down
Syndrome. Down Syndrome is one of the most common gene-associated diseases. Our
dataset includes the expression levels of gene CCTS, which contains a critical region of
Down syndrome, and genome-wide single-nucleotide polymorphism (SNP) data from three
different populations (Bradic et al., 2011): Asia (Japan and China) with sample size n = 90,
Yoruba with n = 60, and Europe with n = 60. We perform eQTL mapping to identify SNPs
that are potentially associated with the expression level of gene CCTS8 for each population.
Due to the limited sample size, we randomly select subsets of SNPs with p = 6000, 2000, 4000
for the three populations, respectively.

For the sample of each population, we first compute the covariance test statistics by (3)
and Q statistics by (5) based on Lasso solution path. Table 2 presents these statistics for
the top 10 knots on the path.

We apply QVS as well as all the other methods analyzed in Section 3.2 to the datasets.

11



Figure 3:
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Table 2: Covariance test statistics and Q statistics along Lasso solution path for samples
from Asian, Yoruba, and European populations, respectively.

knots | Asian Yoruba European
Covtest | Q statistic | Covtest | Q statistic | Covtest | Q statistic

1 6.09e-01 | 0.00 4.20e-01 | 0.00 9.81e-03 | 0.85
2 3.05e 00 | 0.01 6.46e 00 | 0.00 2.94e-02 | 0.85
3 1.98e-01 | 0.26 4.41e-02 | 0.45 1.64e-02 | 0.88
4 5.66e-02 | 0.32 1.23e-01 | 0.47 1.78e-03 | 0.89
5 1.24e-01 | 0.34 1.06e-04 | 0.54 1.05e-02 | 0.90
6 3.94e-03 | 0.39 2.77e-02 | 0.54 6.99e-03 | 0.91
7 2.05e-02 | 0.39 1.60e-03 | 0.55 1.06e-03 | 0.91
8 2.24e-02 | 0.40 4.31e-02 | 0.55 6.49e-03 | 0.91
9 1.09e-02 | 0.41 9.26e-03 | 0.58 1.03e-04 | 0.92
10 4.61e-02 | 0.41 1.29e-02 | 0.58 7.83e-03 | 0.92

Table 3 presents the number of selected variables along the solution path for different meth-
ods. It can be seen that QVS generally selects more variables than the other methods for
these datasets. Particularly, when there exists a gap in the list of Q-statistics, such as for
Asian and Yoruba samples, QVS tends to stop right after the gap. This is because such
gap is likely to occur in the indistinguishable region between mg and m;. Stopping right
after the gap would include relevant variables ranked before mgy and, at the same time, not

over-select the noise variables ranked after m;.

Table 3: The number of selected variables long the Lasso solution path for different methods.

Population | n | p BIC | LCV | Q-BON | Q-FDR | QVS
Asian 90 | 6000 | O 1 0 0 3
Yoruba 60 | 2000 | 1 2 2 2 3
FEuropean | 60 | 4000 | 0 0 0 0 0

We further verify the result of QVS by comparing with the findings in literature. Bradic
et al. (2011) studied the same samples for eQTL mapping but only focused on cis-eQTLs.
Therefore, the numbers of SNPs included in their analysis are much smaller with p =
1955, 1978, 2146 for the three populations, respectively. More SNP variables are identified

in Bradic et al. (2011) for each population due to larger ratio of sample size to dimension.
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Table 4 reports the locations on the solution path of the variables identified in Bradic et al.
(2011). Note that the Lasso solution path is computed using our datasets with lower ratio
of sample size to dimension. We utilize this result as a reference to evaluation the results of
QVS.

For the solution path of Asian population, according to Bradic et al. (2011), the first
noise variable enters after two relevant variables and the last relevant variable enters at the
position 46. Therefore, my = 2 and m; = 46. QVS selects the top 3 variables on the path,
which is in-between my and m;. This result supports the theoretical property of QVS as a

sensible variable selection procedure. Similar results are observed in the other two cases.

Table 4: Locations on the Lasso solution paths of the reference variables identified in Bradic
et al. (2011).

Population | n | p location of reference variables | mg | m; | QVS
Asian 90 | 1955 | 1, 2, 6, 46 2 146 |3
Yoruba 60 | 1978 | 1, 4, 17, 34, 50, 58 1 |58 |3
European | 60 | 2146 | 2, 4, 18, 30 0 30 [0

5 Conclusion and Discussion

We develop a new variable selection procedure whose result is interpretable in the scenarios
where relevant variables may be mixed indistinguishably with noise variables on the Lasso
solution path. Our theoretical findings are very different from the existing results which
consider variable selection properties in the ideal setting where all relevant variables rank
ahead of noise variables on the solution path. The new analytic framework is unconventional
but highly relevant to Big Data applications.

The proposed QVS procedure utilizes the Q statistic (G’sell et al., 2016) that is built upon
the limiting distribution of the covariance test statistic developed in Lockhart et al. (2014)
under orthogonal design. In a more general setting where design matrix is in general position

as described in Lockhart et al. (2014), the theoretical analysis on covariance test statistic

14



is much more complicated and its limiting distribution has not be fully derived. Lockhart
et al. (2014) provides a control on the tail probability of the covariance test statistic. It
will be interesting to characterize the indistinguishable region on the Lasso solution path
and interpret the result of the proposed QVS method in the more general setting. We note
that the simulation and real data analyses in the paper have design matrices that are not
orthogonal. Compared with other popular methods, QVS shows advantages in selection

accuracy and the ability to interpret its results.

6 Appendix

6.1 Proof of Theorem 1.

By the construction of kg in (7),

~

Eovs k m m
I -1 = max {——].—_Qk__cm Qk<1_Qk)}
mo 1<k<m/2 | My mo myo
mo+ 1 m m
> —1-— m — —Cnm m
= mo moq o+1 mo vV Amo+1
m m
> - UYm — —Cp V 4m ) 12
moq o+1 mo q o+1 ( )

where the second step above is by taking k = mg + 1.
By condition (9), P(¢me+1 < Uaym-s) — 1, where Uy s ~ Beta(1,m — s). Therefore,
given s = o(m) and v/logm/my — 0 in probability,

m 1
%Qmoﬂ = Op(ﬁo) = Op(1)~ (13)

On the other hand, it has been shown in Meinshausen & Rice (2006) that ¢,, = O(y/logm/v/m).
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Then, by s = o(m) and v/logm/my — 0 in probability, we have

m logm
Tt = Op( B 6,1). (14)
mo mo

Combining (12) - (14) gives (10). O

6.2 Proof of Theorem 2.

Define F,,(t) = = >0, 1(gr < t). Re-write kgus in (7) as

~

kgws = m max{F,,(t) —t — cpm\/t(1 — 1)} (15)

o<1

For notation convenience, define m; = m;/m. Then

mi m m
1

Fal) = TS i<t 3 U <Hsmt o Y g <)

j=1 j=mi+1 j=mi+1

Therefore,
P(kgps > m1)
< P(sup {Fn(t) —t —cpVt(l —1t)} > m)
0<t<1
1 m
< P(sup {m + — Z g <t)—t—cp /(1 —1)} >m)
0<t<1 m e
1 m
= P(sup{— > 1g <t)—t—cu/t{L—1)}>0)
o<t<1 M JR——
1 m—s
< P(sup{— Y 1Ugms<t) —t—co/t1—1)} >0)+0(1),  (16)
o<i<1 M jemy—s+1

where the last step above is by condition (11). Note that " ° L(UgGym—s < t) is

j=m1—s+1

stochastically dominated by > ™" 1(U(j)m—s < t), which has the save distribution as that
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of Y7707 1(U; < t), where {U7}72" is a sequences of independent standard uniform random
variables, independent of {U;}72,. Further, » """ 1(U] < t) is stochastically dominated by
>y L(Uj < t), which has the same distribution as that of mU,,(t). Sum up the above, we

have

P(Oiggl{% S AUpyms < 1) — t— /LD > 0)
< P(sup {Un(t) =t —cn/t(1 = 1)} > 0). (17)

By the definition of the bounding sequence ¢,

P sup M>cm = Q.
o<t<1 4/t(1 —t)

Further,

P<Sup Up(t) =t — cm )t(l—t) >0> §P<Sup M>0m> — o

0<t<1 t(l —t 0<t<1 t(l — t)

And for every ¢ € (0,1),

Up(t) — t — e /TA — 1)
1 1)

> Up(t) —t — /(1 — 1)

almost surely. The above implies that

P(sup {Un(t) =t — e /t(1 — 1)} >O> < am, = o(1). (18)
0<t<1
Combining (16) with (17) and (18) gives P(kgys > my) — 0 as m — oc. O
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