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Abstract

Among the most popular model selection procedures in high-dimensional regression,

Lasso provides a solution path to rank the variables and determines a cut-off position on

the path to select variables and estimate coefficients. In this paper, we consider variable

selection from a new perspective motivated by the frequently occurred phenomenon

that relevant variables are often mixed with noise variables on the solution path. We

propose to characterize the positions of the first noise variable and the last relevant

variable on the path. We then develop a new variable selection procedure to control

over-selection of the noise variables ranking after the last relevant variable, and, at the

same time, retain a high proportion of relevant variables ranking before the first noise

variable. Our procedure utilizes the recently developed covariance test statistic and

Q statistic in post-selection inference. In numerical examples, our method compares

favorably with existing methods in selection accuracy and the ability to interpret its

results.
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1 Introduction

The authors of the paper deeply mourn the loss of Dr. Jayanta K. Ghosh, whose dedication

to research and mentoring have benefited generations of statisticians and who has set an

eminent example of excellence as a scholar and role model. Dr. Ghosh has made substantial

contributions to a wide range of research areas such as higher order asymptotics, Bayesian

analysis, and high-dimensional inference. One of the authors, X.J. Jeng, was fortunate to

have Dr. Ghosh as her PhD advisor in Purdue University. Dr. Ghosh’s work in model

selection, multiple testing, and their biomedical applications (e.g. Wilbur et al. (2002),

Chakrabarti & Ghosh (2007), Bogdan et al. (2008), Chakrabarti & Ghosh (2011), Bogdan

et al. (2011)) has inspired the research in this paper.

We consider the linear regression model

y = Xβ∗ + ε, ε ∼ N(0, σ2I), (1)

where y is a vector of response with length n, X is the n× p design matrix of standardized

predictors, and β∗ a sparse vector of coefficients. In high-dimensional regression, p can be

greater than n. Among the most popular methods for model selection and estimation in

the high-dimensional regression, Lasso (Tibshirani, 1996) solves the following optimization

problem

β̂(λ) = argmin
β∈Rp

1

2
‖y −Xβ‖22 + λ‖β‖1, (2)

where λ ≥ 0 is a tuning parameter. Lasso provides a solution path, which is the plot of the

estimate β̂(λ) versus the tuning parameter λ. Lasso solution path is piecewise linear with

each knot corresponding to the entry of a variable into the selected set. Knots are denoted

by λ1 ≥ λ2 ≥ · · · ≥ λm ≥ 0, where m = min(n − 1, p) is the length of the solution path

(Efron et al., 2004).
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Recent developments in high-dimensional regression focus on hypothesis testing for vari-

able selection. Impressive progress has been made in Zhang & Zhang (2014), Van De Geer

et al. (2014), Lockhart et al. (2014), Barber & Candès (2015), Bogdan et al. (2015), Lee

et al. (2016), G’sell et al. (2016), Jeng & Chen (2019), etc. Specifically, innovative test

statistics based on Lasso solution path have been proposed. For example, Lockhart et al.

(2014) construct the covariance test statistic as follows. Along the solution path, the variable

indexed by jk enters the selected model at knot λk. Define active set right before knot λk as

Ak = {j1, j2, · · · , jk−1}. In addition, define true active set to be A∗ = {j : β∗j 6= 0} and the

size of true active set as s = |A∗|. Lockhart et al. (2014) considers to test the null hypothesis

H0k : A∗ ⊂ Ak conditional upon the active set Ak at knot λk and propose the covariance

test statistic as

Tk =
(
〈y,Xβ̂(λk+1)〉 − 〈y,XAk

β̃Ak
(λk+1)〉

)
/σ2, (3)

where β̂(λk+1) = argminβ∈Rp
1
2
‖y−Xβ‖22 +λk+1‖β‖1 and β̃Ak

(λk+1) = argminβ∈R|Ak|
1
2
‖y−

XAk
βAk
‖22 + λk+1‖βAk

‖1. Lockhart et al. (2014) derived that under orthogonal design, if all

s relevant variables rank ahead of noise variables with probability tending to 1, then for any

fixed d,

(Ts+1, Ts+2, · · · , Ts+d)
d→ (Exp(1),Exp(1/2), · · · ,Exp(1/d)), (4)

as p→∞, and that T1, T2, · · · , Td are asymptotically independent .

Later, G’sell et al. (2016) proposed to perform sequential test on H0k : A∗ ⊂ Ak for k

increasing from 0 to m and developed the Q statistics for a stopping rule. The Q statistics

are defined as

qk = exp

(
−

m∑
j=k

Tj

)
(5)
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for k = 1, . . . ,m. It has been proved that in the case of perfect separation where all s

relevant variables rank ahead of noise variables, if Ts+1, · · · , Tm are independently distributed

as (Ts+1, · · · , Tm) ∼ (Exp(1),Exp(1/2), · · · ,Exp(1/(m− s))), then

qk
d
= (k−s)th order statistic of m−s independent standard uniform random variables (6)

for s + 1 ≤ k ≤ m. G’sell et al. (2016) developed a stopping rule (TailStop) implementing

the Q statistics in the procedure of Benjamini & Hochberg (1995). Given the distribution

of qk in (6), TailStop controls false discovery rate at a pre-specified level.

In this paper, we consider more general scenarios where relevant variables and noise

variables are not perfectly separated and some (or all) relevant variables intertwine with noise

variables on the Lasso path. Such scenarios would occur when the effect sizes of relevant

variables are not large enough. In fact, even with infinitely large effect size, perfect separation

on solution path is still not guaranteed when the number of relevant variables is relatively

large (Wainwright, 2009; Su et al., 2017). Studies in theory and method are limited in

such general scenarios because the inseparability among relevant and noise variables make it

difficult to estimate Type I and/or Type II errors. In order to perform variable selection in the

more general and realistic settings, we propose a new theoretical framework to characterize

the region on the solution path where relevant and noise variables are not distinguishable.

Figure 1 illustrates the indistinguishable region on solution path. Denote m0 as the

position right before the first noise variable on the path such that all entries up to m0

correspond to relevant variables and m1 as the position of the last relevant variable where

all entries afterwards correspond to noise variables. Given a solution path, both m0 and

m1 are realized but unknown, and the region between m0 and m1 is referred to as the

indistinguishable region.

Given the solution path, a sensible variable selection procedure would select all variables

up to m0 but no variables after m1. Since both m0 and m1 are unknown stochastic quantities,
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Figure 1: An example of m0 and m1 on Lasso solution path. m0 is the entry right before
the first noise variable. m1 is the entry of the last relevant variable.

the selection procedure should automatically adapt to the unknown m0 and m1.

We develop a new variable selection procedure utilizing the Q statistic in (5). We refer

to the new procedure as Q-statistic Variable Selection (QVS). QVS searches through the

solution path and determines a cut-off position that is likely between m0 and m1 under

certain conditions that are more general than (6) on the distribution of the Q statistic.

2 Method and Theory

QVS is inspired by earlier works on estimating the proportion of non-null component in a

mixture model of p-value (Meinshausen & Rice, 2006; Meinshausen & Buhlmann, 2005). We

extend the technique to high-dimensional regression considering the general scenarios with

indistinguishable relevant and noise variables.

Given a Lasso path, QVS searches through the empirical process k/m−qk−cm
√
qk(1− qk), 1 ≤

k ≤ m, where qk is defined in (5), and determines the cut-off position as

k̂qvs = m · max
1≤k≤m/2

{
k

m
− qk − cm

√
qk(1− qk)

}
, (7)

where cm is a bounding sequence to control over selection of noise variables after m1 and
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constructed as follows. For 0 < t < 1, let

Um(t) =
1

m

m∑
i=1

1(Ui ≤ t),

where U1, · · · , Um are i.i.d. standard uniform random variables. Further, let

Vm = sup
t∈(0,1)

Um(t)− t√
t(1− t)

. (8)

Then determine cm as an upper bound of Vm so that P (Vm > cm) < αm → 0 as m→∞.

We consider the setting where some relevant variables intertwine with noise variables on

the Lasso path. In order to gain theoretical insights for the performance of QVS, we adopt

a similar strategy as in Section 4.2.1 of G’sell et al. (2016), and simplify the problem by

considering a sequence of arbitrary statistics q1, . . . , qm corresponding to the m ranked vari-

ables. Define U(1),m−s, . . . , U(m−s),m−s as increasingly ordered statistics of m− s independent

standard uniform random variables, independent of q1 . . . , qm. Assume that

qm0+1 ≤ U(1),m−s (9)

with probability tending to 1 as m→∞. It is easy to see that in the special case of perfect

separation with m0 = m1 = s, (9) is implied by condition (6) from G’sell et al. (2016). In the

more general case with m0 6= m1, we show that QVS provides an asymptotic upper bound

for the unknown m0 under (9).

Theorem 1. Consider the stopping rule in (7) under condition (9). Assume that the number

of relevant variables s = o(m) and that
√

logm/m0 → 0 in probability. Then

P
(
k̂qvs ≥ (1− ε)m0

)
→ 1 (10)

as m→∞ for any small constant ε > 0.
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The proof of Theorem 1 is provided in Section 6.1. The condition,
√

logm/m0 → 0 in

probability, holds when m0 is large enough, which may be satisfied if the number of relevant

variables and their effect sizes are large enough. The result in Theorem 1 implies that QVS

can asymptotically retain a high proportion of relevant variables ranked up to m0.

Next, we show the property of QVS to provide a lower bound for m1 in Figure 1. Recall

the definition of U(j),m−s as the jth ordered statistic of m− s independent standard uniform

random variables. Assume that for any t ∈ (0, 1),

m∑
k=m1+1

1(qk ≤ t) ≤
m−s∑

k=m1−s+1

1(U(k),m−s ≤ t), (11)

with probability tending to 1 as m → ∞, where 1(·) denotes an indicator function. Note

that in the special case with m0 = m1 = s, condition (11)) is implied by (6) because the

latter assumes that qk has the same distribution as that of U(k−s),m−s for k = s + 1, . . . ,m.

In the more general setting when m0 6= m1, we have the following result.

Theorem 2. Consider the stopping rule in (7) under condition (11). As m→∞,

P (k̂qvs ≤ m1)→ 1.

The proof of Theorem 2 is presented in Section 6.2. Theorem 2 implies that QVS provides

a parsimonious variable selection such that noise variables ranked after m1 are not likely to

be over-selected. Combining Theorem 1 and 2, the following corollary is straightforward.

Corollary 1. Consider the stopping rule in (7) under conditions (9) and (11). If s = o(m)

and
√

logm/m0 → 0 in probability, then

P
(

(1− ε)m0 ≤ k̂qvs ≤ m1

)
→ 1

as m→∞ for any small constant ε > 0.
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3 Simulation

In our simulation study, design matrix Xn×p is a Gaussian random matrix with each row

generated from Np(0,Σ). Response y is generated from Nn(Xβ∗, I), where β∗ is the vector

of true coefficients. The locations of non-zero entries of β∗ are randomly simulated.

For the QVS procedure, we simulate the bounding sequence cm by the following steps. We

generate Xn×p and yn×1 under the null model and compute the Lasso solution path using the

lars package in R. Covariance test statistics and Q statistics {qi}mi=1 are calculated by (3) and

(5), respectively. Then, we compute Vm using Vm = max1≤i≤m/2(i/m− qi)/
√
qi(1− qi). We

repeat the above steps for 1000 times and obtain V 1
m, V

2
m, · · · , V 1000

m . The bounding sequence

cm is computed as the upper αm percentile of V 1
m, V

2
m, · · · , V 1000

m . We set αm = 1/
√

logm

as recommended in Jeng et al. (2019) to bound the exceedance probability of Vm at a

degenerating level. For each combination of sample size n and dimension p, we only need to

simulate the bounding sequence once.

3.1 Positions of k̂qvs, m0, and m1

Recall the definitions of the m0 and m1 on the Lasso path and Figure 1. Table 1 reports

the realized values of k̂qvs, m0, m1. It can be seen that the distance between m0 and m1

increases as the number of relevant variables s increases. In all the cases, k̂qvs is greater than

m0, which agrees with the theoretical property of QVS in Theorem 1. On the other hand,

k̂qvs is less than m1 with high frequency when n = 200. When n = 300, k̂qvs is mostly less

than m1 with relatively large s but greater than m1 with smaller s. We suspect that in the

latter case, condition (11) in Theorem 2 may not hold.

Recall that condition (9) is imposed in Theorem 1 for QVS to retain relevant variables

before m0, and condition (11) is imposed in Theorem 2 to avoid over-selecting noise variables

after m1. Consider the settings in Table 1. Figure 2 shows the empirical distributions of

qm0+1 and U(1),m−s, respectively, from 1000 replications. The top row has n = 200 and
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s = 30, and the bottom row increases the sample size to n = 300. The results seem to

support condition (9) that qm0+1 ≤ U(1),m−s with high probability. Condition (11) is more

difficult to check in simulation because it is supposed to hold for arbitrary t ∈ (0, 1) with

high probability. We would defer the verification of this condition to future research.

Table 1: Mean values of the QVS cut-off positions (k̂qvs), the positions of m0, and the

positions of m1 from 1000 replications. Standard errors are in parenthesis. F (k̂qvs ≥ m0)

and F (k̂qvs ≤ m1) represent the frequencies of k̂qvs ≥ m0 and k̂qvs ≤ m1, respectively. In
these examples, p = 2000, Cov(X) = I, and non-zero coefficients are equal to 0.5.

n s k̂qvs m0 m1 F (k̂qvs ≥ m0) F (k̂qvs ≤ m1)
200 30 79(6.2) 4(2.8) 142(32.9) 1.00 0.99

40 92(3.4) 3(2.4) 171(21.4) 1.00 1.00
50 96(1.9) 3(2.2) 180(17.5) 1.00 1.00

300 30 68(8.1) 10(4.8) 58(17.7) 1.00 0.18
40 99(9.9) 8(4.5) 120(41.2) 1.00 0.68
50 127(7.7) 6(3.9) 206(49.8) 1.00 0.98

3.2 Comparisons with other methods

We compare the performance of QVS with other variable selection methods, such as Lasso

with BIC (“BIC”), Lasso with 10-fold cross-validation (“LCV”), Bonferroni procedure ap-

plied to the Q statistics (“Q-BON”), and Benjamini-Hochberg procedure applied to the Q

statistics (“Q-FDR”). Specifically, Q-BON and Q-FDR select the top-ranked variables on the

solution path with sizes equal to argmaxk {k : qk ≤ 0.05/m} and argmaxk {k : qk ≤ 0.05k/m},

respectively. The nominal levels for both Q-BON and Q-FDR are set at 0.05. We note that

Q-FDR is equivalent to the TailStop method introduced in G’sell et al. (2016).

We demonstrate the performances of these methods by presenting the true positive pro-

portion (TPP), false discovery proportion (FDP), and g-measure of these methods. TPP

is the ratio of true positives to the number of relevant variables entered the solution path.

FDP is the ratio of false positives to the number of selected variables. TPP and FDP

measure the power and type I error of a selection method, respectively. We also compute
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Figure 2: Histograms of qm0+1 and U(1),m−s. The top row has n = 200, s = 30, p = 2000,
Cov(X) = I, and non-zero coefficients equal to 0.5. The bottom row increases the sample
size to n = 300.

the g-measure, which is the geometric mean of specificity and sensitivity, i.e. g-measure

=
√

specificity× sensitivity, where specificity is the ratio of true negatives to the number

of noise variables in the solution path and sensitivity is equivalent to TPP. G-measure can

be used to evaluate the overall performance of a variable selection method. Higher value of

g-measure indicates better performance (Powers, 2011).

Figure 3 summarizes the mean values of TPP, FDP, and g-measure for different methods

under various model settings with p = 2000, n = 200 and Cov(X) = Σ = (0.5|i−j|)i=1,··· ,p; j=1,··· ,p.

The number of non-zero coefficients s = 10, 20, 40, and the non-zero effect vary from 0.3 to
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2. It can be seen that the Lasso-based BIC and LCV tend to select fewer variables, which

results in lower TPP and FDP. On the other hand, the Q Statistic-based methods, Q-BON,

Q-FDR, and QVS, all have higher TPP and FDP. However, in these examples, Q-BON does

not control family-wise error at the nominal level of 0.05, and Q-FDR does not control FDR

at the nominal of 0.05. The reason is because relevant and noise variables are not perfectly

separated in these examples. As illustrated in Table 1, m0 is much smaller than m1, and

the results of Q-BON and Q-FDR cannot be interpreted presumably. In terms of g-measure,

QVS generally outperforms other methods. We suspect that the relatively better perfor-

mance of QVS is related to its control of over-selecting noise variables and under-selecting

relevant variables to certain degrees in the challenging scenarios when m0 and m1 are far

apart.

4 Real Application

We obtain a dataset for expression quantitative trait loci (eQTL) analysis related to Down

Syndrome. Down Syndrome is one of the most common gene-associated diseases. Our

dataset includes the expression levels of gene CCT8, which contains a critical region of

Down syndrome, and genome-wide single-nucleotide polymorphism (SNP) data from three

different populations (Bradic et al., 2011): Asia (Japan and China) with sample size n = 90,

Yoruba with n = 60, and Europe with n = 60. We perform eQTL mapping to identify SNPs

that are potentially associated with the expression level of gene CCT8 for each population.

Due to the limited sample size, we randomly select subsets of SNPs with p = 6000, 2000, 4000

for the three populations, respectively.

For the sample of each population, we first compute the covariance test statistics by (3)

and Q statistics by (5) based on Lasso solution path. Table 2 presents these statistics for

the top 10 knots on the path.

We apply QVS as well as all the other methods analyzed in Section 3.2 to the datasets.
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Figure 3: Comparisons of QVS with other methods when p = 2000, Σ =
(0.5|i−j|)i=1,··· ,p; j=1,··· ,p, and n = 200.
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Table 2: Covariance test statistics and Q statistics along Lasso solution path for samples
from Asian, Yoruba, and European populations, respectively.

knots Asian Yoruba European
Covtest Q statistic Covtest Q statistic Covtest Q statistic

1 6.09e-01 0.00 4.20e-01 0.00 9.81e-03 0.85
2 3.05e 00 0.01 6.46e 00 0.00 2.94e-02 0.85
3 1.98e-01 0.26 4.41e-02 0.45 1.64e-02 0.88
4 5.66e-02 0.32 1.23e-01 0.47 1.78e-03 0.89
5 1.24e-01 0.34 1.06e-04 0.54 1.05e-02 0.90
6 3.94e-03 0.39 2.77e-02 0.54 6.99e-03 0.91
7 2.05e-02 0.39 1.60e-03 0.55 1.06e-03 0.91
8 2.24e-02 0.40 4.31e-02 0.55 6.49e-03 0.91
9 1.09e-02 0.41 9.26e-03 0.58 1.03e-04 0.92
10 4.61e-02 0.41 1.29e-02 0.58 7.83e-03 0.92

Table 3 presents the number of selected variables along the solution path for different meth-

ods. It can be seen that QVS generally selects more variables than the other methods for

these datasets. Particularly, when there exists a gap in the list of Q-statistics, such as for

Asian and Yoruba samples, QVS tends to stop right after the gap. This is because such

gap is likely to occur in the indistinguishable region between m0 and m1. Stopping right

after the gap would include relevant variables ranked before m0 and, at the same time, not

over-select the noise variables ranked after m1.

Table 3: The number of selected variables long the Lasso solution path for different methods.

Population n p BIC LCV Q-BON Q-FDR QVS
Asian 90 6000 0 1 0 0 3
Yoruba 60 2000 1 2 2 2 3
European 60 4000 0 0 0 0 0

We further verify the result of QVS by comparing with the findings in literature. Bradic

et al. (2011) studied the same samples for eQTL mapping but only focused on cis-eQTLs.

Therefore, the numbers of SNPs included in their analysis are much smaller with p =

1955, 1978, 2146 for the three populations, respectively. More SNP variables are identified

in Bradic et al. (2011) for each population due to larger ratio of sample size to dimension.
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Table 4 reports the locations on the solution path of the variables identified in Bradic et al.

(2011). Note that the Lasso solution path is computed using our datasets with lower ratio

of sample size to dimension. We utilize this result as a reference to evaluation the results of

QVS.

For the solution path of Asian population, according to Bradic et al. (2011), the first

noise variable enters after two relevant variables and the last relevant variable enters at the

position 46. Therefore, m0 = 2 and m1 = 46. QVS selects the top 3 variables on the path,

which is in-between m0 and m1. This result supports the theoretical property of QVS as a

sensible variable selection procedure. Similar results are observed in the other two cases.

Table 4: Locations on the Lasso solution paths of the reference variables identified in Bradic
et al. (2011).

Population n p location of reference variables m0 m1 QVS
Asian 90 1955 1, 2, 6, 46 2 46 3
Yoruba 60 1978 1, 4, 17, 34, 50, 58 1 58 3
European 60 2146 2, 4, 18, 30 0 30 0

5 Conclusion and Discussion

We develop a new variable selection procedure whose result is interpretable in the scenarios

where relevant variables may be mixed indistinguishably with noise variables on the Lasso

solution path. Our theoretical findings are very different from the existing results which

consider variable selection properties in the ideal setting where all relevant variables rank

ahead of noise variables on the solution path. The new analytic framework is unconventional

but highly relevant to Big Data applications.

The proposed QVS procedure utilizes the Q statistic (G’sell et al., 2016) that is built upon

the limiting distribution of the covariance test statistic developed in Lockhart et al. (2014)

under orthogonal design. In a more general setting where design matrix is in general position

as described in Lockhart et al. (2014), the theoretical analysis on covariance test statistic
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is much more complicated and its limiting distribution has not be fully derived. Lockhart

et al. (2014) provides a control on the tail probability of the covariance test statistic. It

will be interesting to characterize the indistinguishable region on the Lasso solution path

and interpret the result of the proposed QVS method in the more general setting. We note

that the simulation and real data analyses in the paper have design matrices that are not

orthogonal. Compared with other popular methods, QVS shows advantages in selection

accuracy and the ability to interpret its results.

6 Appendix

6.1 Proof of Theorem 1.

By the construction of k̂qvs in (7),

k̂qvs
m0

− 1 = max
1≤k≤m/2

{
k

m0

− 1− m

m0

qk −
m

m0

cm
√
qk(1− qk)

}
≥ m0 + 1

m0

− 1− m

m0

qm0+1 −
m

m0

cm
√
qm0+1

> − m

m0

qm0+1 −
m

m0

cm
√
qm0+1, (12)

where the second step above is by taking k = m0 + 1.

By condition (9), P (qm0+1 ≤ U(1),m−s)→ 1, where U(1),m−s ∼ Beta(1,m− s). Therefore,

given s = o(m) and
√

logm/m0 → 0 in probability,

m

m0

qm0+1 = Op(
1

m0

) = op(1). (13)

On the other hand, it has been shown in Meinshausen & Rice (2006) that cm = O(
√

logm/
√
m).
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Then, by s = o(m) and
√

logm/m0 → 0 in probability, we have

m

m0

cm
√
qm0+1 = Op(

√
logm

m0

) = op(1). (14)

Combining (12) - (14) gives (10).

6.2 Proof of Theorem 2.

Define Fm(t) = 1
m

∑m
k=1 1(qk ≤ t). Re-write k̂qvs in (7) as

k̂qvs = m max
0<t<1

{Fm(t)− t− cm
√
t(1− t)}. (15)

For notation convenience, define π1 = m1/m. Then

Fm(t) =
m1

m

1

m1

m1∑
j=1

1(qj ≤ t) +
1

m

m∑
j=m1+1

1(qj ≤ t) ≤ π1 +
1

m

m∑
j=m1+1

1(qj ≤ t).

Therefore,

P (k̂qvs > m1)

≤ P ( sup
0<t<1

{Fm(t)− t− cm
√
t(1− t)} > π1)

≤ P ( sup
0<t<1

{π1 +
1

m

m∑
j=m1+1

1(qj ≤ t)− t− cm
√
t(1− t)} > π1)

= P ( sup
0<t<1

{ 1

m

m∑
j=m1+1

1(qj ≤ t)− t− cm
√
t(1− t)} > 0)

≤ P ( sup
0<t<1

{ 1

m

m−s∑
j=m1−s+1

1(U(j),m−s ≤ t)− t− cm
√
t(1− t)} > 0) + o(1), (16)

where the last step above is by condition (11). Note that
∑m−s

j=m1−s+1 1(U(j),m−s ≤ t) is

stochastically dominated by
∑m−s

j=1 1(U(j),m−s ≤ t), which has the save distribution as that
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of
∑m−s

j=1 1(U ′j ≤ t), where {U ′j}m−sj=1 is a sequences of independent standard uniform random

variables, independent of {Uj}mj=1. Further,
∑m−s

j=1 1(U ′j ≤ t) is stochastically dominated by∑m
j=1 1(U ′j ≤ t), which has the same distribution as that of mUm(t). Sum up the above, we

have

P ( sup
0<t<1

{ 1

m

m−s∑
j=m1−s+1

1(U(j),m−s ≤ t)− t− cm
√
t(1− t)} > 0)

≤ P ( sup
0<t<1

{Um(t)− t− cm
√
t(1− t)} > 0). (17)

By the definition of the bounding sequence cm,

P

(
sup
0<t<1

Um(t)− t√
t(1− t)

> cm

)
= αm.

Further,

P

(
sup
0<t<1

Um(t)− t− cm
√
t(1− t)√

t(1− t)
> 0

)
≤ P

(
sup
0<t<1

Um(t)− t√
t(1− t)

> cm

)
= αm.

And for every t ∈ (0, 1),

Um(t)− t− cm
√
t(1− t)√

t(1− t)
> Um(t)− t− cm

√
t(1− t)

almost surely. The above implies that

P

(
sup
0<t<1

{Um(t)− t− cm
√
t(1− t)} > 0

)
≤ αm = o(1). (18)

Combining (16) with (17) and (18) gives P (k̂qvs > m1)→ 0 as m→∞.
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