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C A N C E R

Sporadic activation of an oxidative stress–dependent 
NRF2-p53 signaling network in breast epithelial 
spheroids and premalignancies
Elizabeth J. Pereira1, Joseph S. Burns1*, Christina Y. Lee1†, Taylor Marohl1, Delia Calderon2, 
Lixin Wang1, Kristen A. Atkins3, Chun-Chao Wang4, Kevin A. Janes1,5‡

Breast and mammary epithelial cells experience different local environments during tissue development and tu-
morigenesis. Microenvironmental heterogeneity gives rise to distinct cell regulatory states whose identity and 
importance are just beginning to be appreciated. Cellular states diversify when clonal three-dimensional (3D) 
spheroids are cultured in basement membrane, and one such state is associated with stress tolerance and poor 
response to anticancer therapeutics. Here, we found that this state was jointly coordinated by the NRF2 and p53 
pathways, which were costabilized by spontaneous oxidative stress within 3D cultures. Inhibition of NRF2 or p53 
individually disrupted some of the transcripts defining the regulatory state but did not yield a notable phenotype 
in nontransformed breast epithelial cells. In contrast, combined perturbation prevented 3D growth in an oxidative 
stress–dependent manner. By integrating systems models of NRF2 and p53 signaling in a single oxidative stress 
network, we recapitulated these observations and made predictions about oxidative stress profiles during 3D 
growth. NRF2 and p53 signaling were similarly coordinated in normal breast epithelial tissue and hormone-negative 
ductal carcinoma in situ lesions but were uncoupled in triple-negative breast cancer (TNBC), a subtype in which 
p53 is usually mutated. Using the integrated model, we correlated the extent of this uncoupling in TNBC cell lines 
with the importance of NRF2 in the 3D growth of these cell lines and their predicted handling of oxidative stress. 
Our results point to an oxidative stress tolerance network that is important for single cells during glandular devel-
opment and the early stages of breast cancer.

INTRODUCTION
Among glandular tissues, the breast-mammary epithelium is unique 
because of the marked expansion and reorganization that occur after 
birth (1). During puberty, a branched network of epithelial ducts is 
pioneered by terminal end buds (TEBs), which emerge from the ru-
dimentary gland and extend into the surrounding mesenchyme (2). 
TEBs contain a mixture of proliferating stem-progenitor cells and 
differentiating cells fated to the secretory luminal-epithelial or con-
tractile basal-myoepithelial lineages. During morphogenesis, TEB cells 
are dynamically exposed to different microenvironments that inform 
final organization of the gland (3). Some microenvironmental cues 
are supportive or instructive to cells [hormones (4), growth factors 
(5), and basement membrane (6)]. Others are deleterious or lethal [loss 
of polarity (7), detachment (8), and endoplasmic reticulum stress (9)]. 
All of these cues are reconfigured aberrantly and heterogeneously 
during the early stages of breast-mammary cancer (10–12).

Stress and survival signals also juxtapose when breast-mammary 
epithelial cells are grown in three-dimensional (3D) culture with re-
constituted basement membrane extracellular matrix (ECM) (13, 14). 
Combining the appropriate adhesive and soluble cues yields TEB-like 

behavior in 3D-cultured multicellular epithelial fragments from the 
mammary gland (7). For single-cell cultures that reliably organize as 
3D structures, clones or progenitors must iteratively proliferate, main-
tain cell-cell adhesions, and coordinate function to establish a multi-
cellular ecosystem (15, 16). Cell regulatory states diversify within 3D 
organoids of primary breast-mammary epithelia (17–19) and also in 
the simplest 3D spheroids of isogenic cell lines (20–23). Identifying 
such cell regulatory heterogeneities is important, because there are 
parallels to in situ lesions of the breast, where premalignant cells must 
survive and proliferate in the duct (24, 25).

Previously, we identified a cluster of transcripts (Fig. 1A, top) that 
covaries heterogeneously among hormone-negative, basal breast ep-
ithelial cells grown as 3D spheroids (20). The cluster contains KRT5 
(a PAM50 classifier for basal-like breast cancer) (26) along with mul-
tiple stress tolerance genes, including JUND (27), CDKN1A (28), 
MUS81 (29), and HSPE1 (30). The transcripts in this cluster were 
among the strongest and most-negative predictors of breast cancer 
response to chemotherapy and targeted agents in an independent 
clinical trial (31). We reported that individual genes in the cluster 
have complex time- and microenvironment-dependent relationships 
in 3D spheroids, animal models of ductal carcinoma in situ (DCIS), 
and clinical hormone-negative premalignancies (24). However, the 
overarching regulation of the cluster was not determined.

Here, we found that regulatory state heterogeneity emerges from 
the coordinated action of two stress-responsive transcription fac-
tors (TFs)—NFE2L2 (NRF2) (32, 33) and TP53 (p53) (34)—which 
become stabilized posttranslationally when breast epithelial cells vari-
ably experience oxidative stress in 3D culture. Genetic disruption of 
NRF2 signaling altered the transcriptional cluster, but 3D phenotypes 
were buffered or redirected by compensatory increases in p53 signaling. 
Disabling p53 function synergized with NRF2 deficiency, suppressing 
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normal 3D proliferation and promoting irregular hyperproliferation 
in a transformed-yet-premalignant derivative. These observations 
were consistent with an integrated systems model of NRF2-p53 sig-
naling that encoded a shared oxidative stress trigger and common 
pool of antioxidant target genes without any further cross-talk. Among 
clinical specimens, NRF2-p53 coordination was retained in normal 
primary breast tissue and hormone-negative DCIS. However, the 
two pathways were largely uncoupled in triple-negative breast can-
cers (TNBCs), in which p53 is usually mutated (35). The integrated 
NRF2-p53 model predicted variable extents of uncoupling among 
TNBCs lines, and high uncoupling coincided with the most severe 
3D growth alterations upon NRF2 knockdown. Past work on NRF2 
in breast cancer has focused on its direct interactions with TNBC-
associated tumor suppressors (36, 37). Our results suggest a broader 

systems-level role for NRF2 and p53 in oxidative stress tolerance of nor-
mal breast-mammary epithelia and hormone-negative premalignancies.

RESULTS
Statistical bioinformatics links gene cluster regulation 
to NRF2 and p53
We began by looking within the gene cluster (Fig. 1A, top) for po-
tential regulatory mechanisms. The only TF in the cluster is JUND, 
and we showed previously that its chronic knockdown in MCF10A-5E 
cells (20) causes specific morphometric defects during spheroid growth 
(24). We revisited these results by acutely knocking down the ex-
pression of JUND with inducible short hairpin RNA (shRNA) and 
measuring transcript abundance of cluster genes by quantitative 
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Fig. 1. Transcriptomic fluctuations of ECM-cultured breast epithelial spheroids reveal a gene cluster associated with heterogeneous NRF2 stabilization in a 
3D-specific environment. (A) Maximum likelihood inference parameterization (bottom) of a two-state distribution of transcript abundances for the gene cluster from 
microarray profiles (top) of ECM-attached basal-like MCF10A-5E breast epithelial cells, randomly collected as 10-cell pools (n = 16) from 3D-cultured spheroids after 
10 days, extracted from (20). Inferred expression frequencies are the maximum likelihood estimate with 90% confidence interval (CI). (B) Venn diagram summarizing the 
candidate TFs predicted from four different bioinformatics algorithms (data file S1). (C and D) Quantitative immunofluorescence of (C) hyperphosphorylated RB (pRB, an 
upstream proxy of active E2F1) and (D) NRF2 in 3D culture with ECM (top), 2D culture (middle), and 2D culture with ECM (bottom). Expression frequencies for a two-state 
lognormal mixture model (preferred over a one-state model by F test; P < 0.05) were calculated by nonlinear least squares of 60 histogram bins collected from n = 1100 
to 1600 of cells quantified from 100 to 200 spheroids from two separate 3D cultures. For each subpanel, representative pseudocolored images are shown in the top right 
inset and merged (magenta) with DAPI nuclear counterstain (blue) in the bottom right inset. Scale bars, 10 m.
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polymerase chain reaction (qPCR) (see Materials and Methods). Un-
expectedly, other than JUND itself, no transcripts were reliably altered 
by its knockdown (see later in this section), supporting a regulatory 
role for other factors outside of the cluster.

We constrained the search for candidate regulators by using max-
imum likelihood inference (38) to estimate a frequency of bimodal 
transcriptional regulation (39) for the gene cluster. Given the 10-cell-
averaged fluctuations from the original study (20), the maximum 
likelihood approach inferred two lognormal regulatory states defined 
by transcript abundance (Fig. 1A, bottom). The data supported a low-
abundance regulatory state predominating in 58% of ECM-attached 
cells along with a second, high-abundance subpopulation in the re-
maining 42%. The frequency estimates placed quantitative bounds on 
the bimodal characteristics of upstream regulatory mechanisms.

Next, we applied a panel of bioinformatics approaches to search 
for TFs that might impinge upon the gene cluster (see Materials and 
Methods). The informatic methods adopt different strategies for as-
sessing binding site overrepresentation (40–43). Therefore, we in-
tersected their respective outputs to arrive at predictions that were 
robust to algorithmic details. The analysis converged upon two TFs: 
the G1/S regulator E2F1 and the stress response effector NRF2 (Fig. 1B 
and data file S1). We assessed the relative activation of the NRF2 and 
E2F1 pathways in single cells by quantitative immunofluorescence 
for the total stabilized NRF2 protein or phosphorylated RB1 (pRB in-
dicates disinhibited E2F1; see Materials and Methods). In 3D spheroid 
cultures, pRB immunostaining was bimodal, but high-pRB cells were 
much rarer than the inferred regulatory frequency of the gene cluster 
(Fig. 1C, top). In 2D cultures, pRB staining was more than twice 
as immunoreactive and nearly twice as prevalent in the population 
(Fig. 1C, middle). The reduced proportion of high-pRB cells in 3D is 
consistent with the proliferative suppression of late-stage spheroid 
cultures (23). A 3D-like distribution of pRB was achieved in 2D cul-
tures upon addition of dilute ECM (Fig. 1C, bottom), stemming from 
soluble proliferation-suppressing factors in the reconstituted base-
ment membrane preparation (44). By contrast, NRF2 stabilization 
was only distinctly bimodal in 3D spheroids, and the observed fre-
quency of low- and high-NRF2 states almost exactly coincided with 
that inferred for the gene cluster (Fig. 1D). Stabilization of hypoxia-
inducible factor 1 (HIF-1) was negligible in 3D spheroids overall 
(fig. S1, A and B), excluding irregular hypoxic stress as a contributor 
to the two-state distribution of NRF2. These results build a strong sta-
tistical argument for NRF2 as a covarying regulator of the gene cluster.

The NRF2-associated gene cluster (Fig. 1A, top) was originally 
identified by quantitative analysis of transcriptomic fluctuations among 
4557 genes profiled by oligonucleotide microarray (20). The same 
samples were later reprofiled by 10-cell RNA sequencing (10cRNA-
seq) (45), creating an opportunity to look more deeply at covariates 
with the NRF2-associated gene cluster. We used the median ranked 
fluctuations of the cluster across 10 cell samples (Fig. 1A, top) and 
surveyed the 10cRNA-seq data for genes that covaried (Spearman 
 > 0.5), identifying 633 candidates (Fig. 2A). When this expanded 
cluster was assessed for functional enrichments by Gene Ontology 
(GO) (data file S2) (46), we noted multiple GO terms linked to cell 
stress (“Response to stress” and “Oxidative stress”) and the TF p53 
(“DNA damage response” and “p53 pathway”). p53 is sporadically 
stabilized in regenerating epithelia such as the intestine and skin, 
but p53 activation in quiescent tissues is rare (47). Recognizing the 
residual proliferation observed in 3D cultures (Fig. 1C), we immuno
stained for p53 and found nonuniform stabilization associated with 

the abundance of NRF2 in single cells [Fig. 2B, estimated mutual 
information (MI) = 0.15 (0.12 to 0.18); see Materials and Methods]. 
The analysis raised the possibility of a coordinated NRF2-p53 regu-
latory event triggered heterogeneously when breast epithelial cells 
proliferate and organize in reconstituted ECM.

NRF2 coimmunoprecipitates with p53 in TNBC cells harbor-
ing gain-of-function p53 mutations, but this complex is absent in 
MCF10A cells with wild-type p53 (37). Loss of wild-type p53 function 
in MCF10A cells yields only minor 3D culture defects, but gain-of-
function p53 mutants strongly perturb 3D architecture (48). Sus-
pecting that some of p53’s effects could be explained through NRF2, 
we inducibly knocked down NRF2 with shRNA and inducibly coex-
pressed a truncated p53 (49) that acts as a dominant negative (DNp53; 
Fig. 2C). Compared with the gene cluster response to JUND knock-
down or constitutive E2F1 activation through RB inhibition with 
overexpressed human papillomavirus E7 protein, we observed sub-
stantially more alterations upon NRF2 knockdown (66%) or inhibi-
tion of p53 (31%; Fig. 2D and fig. S2, A to D). Using public chromatin 
immunoprecipitation sequencing (ChIP-seq) datasets (50, 51), we 
found significant enrichment of proximal NRF2 binding among tran-
scripts reduced by NRF2 knockdown and a slight enrichment in p53 
binding among those increased by NRF2 knockdown (fig. S2C). 
Compound perturbation of NRF2 and p53 elicited further nonaddi-
tive changes to multiple genes in the cluster, including synergistic re-
duction in CDKN1A, encoding a cyclin-dependent kinase inhibitor, 
and KRT5, encoding a basal cytokeratin. Although p53 can antagonize 
certain NRF2 target genes in reporter assays (52), significant antago-
nism was detected for only one transcript in the cluster (MRPL33; fig. 
S2C). Phenotypically, disruption of NRF2 reduced mean 3D growth 
by 10 to 13% (fig. S3, A to D), but dual perturbation with p53 gave rise 
to an increase in aborted spheroids unable to grow in the culture 
(Fig. 2E). The penetrance of the phenotype (37%; range, 34 to 44%) 
was close to the percentage of cells showing stabilized NRF2 at the 
same time point in 3D culture (43%; Fig. 1E). For this clonal basal-like 
breast epithelial line (20), we conclude that 3D culture heterogeneously 
elicits NRF2- and p53-inducing stresses, which must be withstood 
for extended proliferation.

NRF2 disruption in basal-like premalignancy causes similar 
p53 adaptations but different 3D phenotypes
We next asked how the cellular, molecular, and phenotypic relation-
ships between NRF2 and p53 change in basal-like premalignancy by 
using isogenic MCF10DCIS.com cells (53) as a proxy for DCIS (54). 
MCF10DCIS.com cells express oncogenic HRAS (55) and hyperpro-
liferate as 3D spheroids (confirmed in fig. S4A), but they retain wild-
type p53 function, albeit at reduced levels compared with parental 
MCF10A cells (fig. S4, B and C). By two-color immunostaining, we 
found that NRF2-p53 costabilization was even more pronounced in 
MCF10DCIS.com cells [MI = 0.30 (0.27 to 0.33); Fig. 3A]. To identify 
common adaptive programs downstream of NRF2 deficiency, we in-
ducibly knocked down NRF2 and profiled 3D spheroids by RNA-
seq (see Materials and Methods). Among transcripts consistently 
increased or decreased in both MCF10A-5E and MCF10DCIS.com 
spheroids, there was a significant enrichment in gene signatures en-
compassing p53, including transcriptional programs downstream of 
BRCA1, ATM, and CHEK2 (Fig. 3B and data file S3). Consistent 
with these results, NRF2 knockdown in MCF10DCIS.com cells was 
sufficient to significantly stabilize p53 (fig. S5A). Stabilization of wild-
type p53 upon NRF2 knockdown was also observed in premalignant 
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CHEK21100delC SUM102PT cells (56) and became even more pro-
nounced when these cells were reconstituted with inducible wild-
type CHEK2 (fig. S5, B and C), as expected, given the feedforward 
stabilization of p53 by ATM and ATM-activated CHEK2 (57). Thus, 
NRF2 impairment promotes p53 pathway activity in basal-like breast 

epithelia without the need for specific 
oncogenic drivers.

Despite many transcriptomic alter-
ations in common with MCF10A-5E 
cells (Fig. 3B), MCF10DCIS.com cells 
yielded very different 3D phenotypes 
when NRF2 or p53 was perturbed. NRF2 
knockdown did not detectably alter 3D 
growth (fig. S6A) but instead gave rise to 
more rounded, organized MCF10DCIS.
com spheroids of high circularity com-
pared with control (Fig. 3C), which 
reverted upon addback of an RNA in-
terference (RNAi)–resistant (RR) NRF2 
mutant (fig. S6B). NRF2 deficiency also 
increased rounding in 3D cultures of 
SUM102PT cells with or without CHEK2 
reconstitution (fig. S6C). By contrast, 
p53 disruption in MCF10DCIS.com cells 
with either DNp53 or a gain-of-function 
p53R280K mutant increased the preva-
lence of hyper-enlarged outgrowths (Fig.  
3D). Combined NRF2-p53 perturbation 
elicited a synergistic increase in non-
spherical hyper-enlargement (Fig. 3E), 
starkly contrasting the proliferative sup-
pression observed with the same combina-
tion in nontransformed MCF10A-5E cells 
(Fig. 2E). The data suggested that the 
coordinate transcriptional adaptations 
of NRF2 and p53 are conserved in pre-
malignant cells but insufficient to buffer 
the cellular phenotypes caused by single-
gene perturbations in either pathway.

NRF2 and p53 are coordinately 
stabilized by sporadic  
oxidative stress
Coordination of the NRF2-p53 path-
ways could be achieved if they shared 
the same inducer. We thus considered 
various potential upstream and inter-
mediate triggers for NRF2 and p53 sta-
bilization in basal-like breast epithelia. 
Inhibition of KEAP1 with the electro-
phile sulforaphane (58) stabilized NRF2 
but not p53, and pharmacologic inhibi-
tion of MDM2 with nutlin-3 (59) stabi-
lized p53 but not NRF2 (fig. S4, B to E), 
suggesting they act as parallel pathways 
downstream of a common inducer. An 
obvious candidate was DNA damage, 
given CDKN1A and MUS81 in the gene 
cluster (Fig. 1A, top) and the most rec-

ognized function of p53 (60). However, chemotherapy-induced 
double-strand breaks did not appreciably stabilize NRF2 in cells 
with wild-type p53 (Fig. 4A and fig. S7, A and B), and genetically 
driving increased proliferation (61) did not detectably affect regula-
tion of the gene cluster in 3D spheroids (fig. S2, B and D). The lack 
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(B) Quantitative immunofluorescence of NRF2 and p53 abundance in ECM-attached MCF10A-5E cells grown as 3D 
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plete set of transcripts in the gene cluster is shown in fig. S2C. (E) Dual inactivation of NRF2 and p53 causes synergis-
tic proliferative suppression in MCF10A-5E 3D spheroids. Black arrows indicate proliferation-suppressed spheroids. 
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of NRF2-p53 coinduction by conventional 
agonists prompted a search for less ca-
nonical activators.

One shared inducer of the KEAP1-
NRF2 and ATM-CHEK2-p53 pathways 
is oxidative stress (62, 63). In human 
breast tissue, increased levels of reactive 
oxygen species (ROS) are generated and 
tolerated by basoluminal progenitors (64), 
which are the cells of origin for basal-
like breast cancer (65). We documented local niches of Nrf2 stabili-
zation in the murine mammary gland during puberty (fig. S8, A to 
F), potentially linking NRF2 and oxidative stress in expanding pro-
genitor(-like) cells, such as MCF10A. When MCF10A-5E cells were 
exogenously stimulated with H2O2, NRF2 was rapidly stabilized, and 

p53 also accumulated after several hours (Fig. 4B and fig. S7, A and 
B). Recognizing oxidative stress heterogeneities in 3D spheroids 
(21, 22, 66), we used the genetically encoded sensor HyPer-2 (67) 
together with an engineered mRFP1-NRF2 reporter (NRF2rep) to 
colocalize intracellular H2O2 with stabilized NRF2 (see Materials 
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Fig. 3. NRF2-p53 costabilization is enhanced, 
and shNRF2-induced p53 adaptations are pre-
served in basal-like premalignancy but have 
different morphometric consequences. (A) Quan-
titative immunofluorescence of NRF2 and p53 
abundance in ECM-attached MCF10DCIS.com cells 
grown as 3D spheroids. Median-scaled two-color 
average fluorescence intensities are quantified 
along with the log-scaled and background-
subtracted MI with 90% CI for n = 1832 cells seg-
mented from 70 to 110 spheroids from two 
separate 3D cultures. (B) Common changes in 
transcript abundance identified by RNA-seq of 
MCF10A-5E (5E) and MCF10DCIS.com (DCIS.com) 
cells grown as 3D spheroids with or without NRF2 
knockdown. The negative control for shNRF2 was 
an inducible shGFP (5E) or shLacZ (DCIS.com). 
Data are log2-transformed Z scores for genes de-
tected at >5 transcripts per million from n = 4 
biological replicates. Enriched gene sets for the 
BRCA1, ATM, and CHEK2 networks are indicated, 
with black denoting multiple enrichments. The 
complete list of enrichments is available in data 
file S3. (C) Quantification of rounded spheroids 
(circularity >0.9) in 3D-cultured MCF10DCIS.com 
cells with or without NRF2 knockdown. The neg-
ative control for shNRF2 was an inducible shLacZ. 
(D) Quantification of large spheroids (size > e8.5 ≈ 
5000 m2) in 3D-cultured MCF10DCIS.com cells 
with or without p53 disruption. The negative 
control for p53 constructs was an inducible 
FLAG-tagged LacZ. (E) Quantification of size and 
circularity in 3D-cultured MCF10DCIS.com cells 
with or without NRF2 knockdown, p53 disrup-
tion, or both. For (C) to (E), cells with or without 
inducible perturbations were treated with doxy-
cycline (1 g/ml) for 48 hours, grown as 3D 
spheroids for 10 days, imaged by brightfield mi-
croscopy, and segmented. For (C) and (D), data 
are mean ± 90% bootstrap-estimated CI from n = 
8 biological replicates, with P values by rank sum 
test estimated by bootstrapping. For (E), data are 
means ± SEM of n = 8 biological replicates. Sta-
tistical interaction between NRF2 and p53 per-
turbations (Pint) was assessed by two-way ANOVA 
with replication. Scale bars, 100 m.
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and Methods and fig. S9, A to F). We observed a small but nonzero 
MI between HyPer-2 fluorescence ratios and NRF2rep [MI = 0.05 
(0.02 to 0.10); randomized MI = 0.0004 (0.0001 to 0.0007); Fig. 4C], 
suggesting a complex connection between the two reporters (see next 
section). Next, we evaluated whether oxidative stress resided upstream 
of NRF2-p53 coordination by using the cell-permeable, vitamin E 
analog Trolox to quench overall ROS in the 3D cultures. Trolox treat-
ment halved the MI between stabilized NRF2-p53 and significantly 
reduced the synergistic proliferative suppression caused by dual per-
turbation of NRF2 and p53 (Fig. 4, D and E, and fig. S10). Together, 
the data suggested that the NRF2 and p53 pathway coregulation in-
volves upstream heterogeneities in oxidative stress.

An integrated NRF2-p53 model of oxidative stress reconciles 
pathway coordination with 3D phenotypes
To connect NRF2 and p53 costabilization with spontaneous hetero-
geneities in oxidative stress, we assembled an integrated computa-
tional systems model. The model expands or condenses isolated 
modules of NRF2 and p53 signaling from the literature, fusing them 
through known or reported mechanisms of cross-talk and conver-
gence (Fig. 5A). For the NRF2 pathway, we streamlined the detailed 
model of Khalil et al. (68) at several points. Instead of relying on 
ill-defined kinetic parameters for KEAP1-mediated ubiquitination, 
KEAP1-NRF2 complexes were modeled as separate oxidized or re-
duced species with distinct half-lives estimated by experiment (see 
Materials and Methods). We likewise abandoned the elaborate multi-
step encoding of thioredoxins, peroxiredoxins, and glutathione 
transferases (68) by substituting a simpler, lumped pool of antioxidant 
enzymes in the model. The resulting architecture is similar to the 
general negative-feedback control scheme of stress response gene 
regulatory networks described by Zhang and Andersen (69). Last, 
we retained the nucleocytoplasmic trafficking of stabilized NRF2 to 
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Fig. 4. NRF2-p53 signaling coordination and 3D phenotypes arise from spon-
taneous and oncogene-induced oxidative stress. (A and B) NRF2 and p53 stabi-
lization by oxidative stress compared with DNA double-strand breaks. MCF10A-5E 
cells were treated with 5 M doxorubicin (double-strand breaks) or 200 M H2O2 
(oxidative stress) for the indicated time points, and NRF2 (magenta) or p53 (green) 
protein abundance was estimated by quantitative immunoblotting. Data are 
means ± SEM of n = 3 (A) or 4 (B) independent perturbations. n.s., not significant. 
(C) Endogenous oxidative stress association with NRF2 stabilization in 3D spheroids. 
MCF10A-5E cells stably expressing HyPer-2 (67) and mRFP1-NRF2 reporter (NRF2rep) 
were grown as 3D spheroids for 10 days and imaged by laser scanning confocal 
microscopy. Representative pseudocolored images for HyPer-2 ratio (top left) and 
mRFP1-NRF2 reporter (bottom left) are shown. HyPer-2 ratios and mRFP1-NRF2 re-
porter fluorescence are quantified (right) along with the log-scaled MI with 90% CI 
for n = 605 cells segmented from 10 to 25 spheroids from four separate 3D cultures. 
(D) Suppression of endogenous NRF2-p53 coordination during 3D culture with the 
antioxidant Trolox. Representative pseudocolored images for NRF2 (top left) and 
p53 (middle left) are shown merged with DAPI nuclear counterstain (bottom left). 
White arrows indicate concurrent NRF2 and p53 stabilization. The log-scaled and 
background-subtracted MI (right) is shown with 90% CI estimated from n = 1000 
bootstrap replicates. (E) Trolox interference with the synergistic proliferative sup-
pression caused by dual inactivation of NRF2 and p53 in MCF10A-5E cells. Data are 
mean percentage of proliferation-suppressed spheroids ± SEM of n = 8 indepen-
dent 3D-cultured samples after 10 days. The overall effect of Trolox on spheroid 
size is shown in fig. S10. Statistical interaction between Trolox and NRF2-p53 (Pint) 
was assessed by three-way ANOVA with replication. For (A) and (B), change in protein 
abundance over time was assessed by one-way ANOVA. For (D) and (E), MCF10A-5E 
cells cultured for 10 days in 3D with or without 50 M Trolox supplemented every 
2 days. Scale bars, 10 m (C) and 20 m (D).
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account for observations that H2O2 stimulation retains NRF2 in 
the cytoplasm longer than treatment with the electrophilic stress, 
sulforaphane (fig. S11, A to C). Oxidative stress feeds directly into the 
NRF2 module according to a basal production rate of ROS, which 

was adjusted in the final model to yield steady-state intracellular H2O2 
concentrations consistent with the literature (70).

For the p53 pathway, we built upon the base model of Batchelor et al. 
(71), which was originally used to describe oscillations in p53 abundance 
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Fig. 5. NRF2-p53 pathway coordination and synergistic phenotypes are captured by an integrated systems model of oxidative stress. (A) Connecting NRF2 and 
p53 signaling models (68, 69, 71) through oxidative stress activators and antioxidant target enzymes. Additional cross-talk linking oxidative stress to p53 inhibition (73), 
p53 to NRF2 through p21 (76), and NRF2 to MDM2 (74, 75) was considered (gray). (B) Simulation strategy for quantifying association between signaling intermediates. The 
model was challenged with various ROS production rates and randomly sampled at multiple intermediate time points (yellow to blue). Integrated intracellular H2O2 (gray) 
is used for phenotype predictions related to NRF2 and p53 perturbation. (C) Intracellular H2O2 concentration is associated with a reporter of NRF2 stabilization (NRF2rep) 
following simulated step increases in ROS production rate as illustrated in (B). (D and E) Coordination of NRF2 and p53 stabilization in the oxidative stress model and in 
simulations of premalignancy through the computational approach illustrated in (B). (F and G) Modeling NRF2 knockdown by reduced synthesis captures the synergistic 
oxidative stress profile of cells harboring dual perturbation of the NRF2 and p53 pathways. In (F), transcriptional changes secondary to NRF2 knockdown were added to 
the model according to the results in Fig. 3B. For (C) to (E), simulated time points are log-scaled and background-subtracted MI with 90% CI for 10 time points from n = 
100 random ROS generation rates. For (F) and (G), time-integrated intracellular H2O2 profiles are scaled to the unperturbed simulations and reported as the mean oxida-
tive stress with 90% CI from n = 100 random ROS generation rates. Statistical interaction between shNRF2 and DNp53 perturbations (Pint) was assessed by two-way 
ANOVA with replication.
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after ionizing radiation. In this model, the kinases ATM and CHEK2 
act as aggregate sensor transducers of the DNA damage response 
(Fig. 5A). They phosphorylate and stabilize p53 against degradation 
triggered by the ubiquitin ligase MDM2, which is also directly phos-
phorylated and inactivated by ATM. Stabilized p53 promotes its 
own degradation by inducing the expression of MDM2 transcripts 
and deactivates ATM-CHEK2 by enhancing transcription of the 
phosphatase-encoding gene PPM1D. For the integrated model, ox-
idative stress replaced DNA double-strand breaks as the pathway 
trigger, recognizing that ATM autoactivates in the presence of oxidants 
(63). Furthermore, in response to oxidative stress, proper induction of 
many antioxidant enzymes requires p53 (72), which contributes to the 
overall antioxidant pool along with antioxidant response element 
(ARE) target genes (Fig. 5A). Oxidative stress has also been reported 
to inhibit p53 DNA binding (73), but we found that p53 stabilized 
by H2O2 treatment was as capable at increasing MDM2 abundance 
as was p53 stabilized by nutlin-3 (fig. S12). Likewise, NRF2 increases 
MDM2 abundance in some settings (Fig. 5A, gray) (74, 75), but we 
were unable to detect changes in MDM2 when NRF2 was knocked 
down with shRNA or stabilized with sulforaphane (fig. S13, A to D). 
As a final candidate for NRF2-p53 cross-talk that was conditionally 
incorporated in the model, we considered reports that p21, encoded 
by the p53 target gene CDKN1A, directly stabilizes NRF2 by inter-
fering with KEAP1-catalyzed turnover (Fig. 5A, gray) (76, 77). To-
gether, the modifications provided an integrated model of NRF2-p53 
signaling downstream of oxidative stress with enough molecular 
detail to enable kinetic and functional predictions.

We revisited the oxidative stress time course (Fig. 4B) to append 
immunoblot quantification of ATM-CHEK2 phosphorylation and 
p21 abundance after H2O2 addition (fig. S14A). Exogenous H2O2 
was encoded as an extracellular spike-in that decayed rapidly and 
spontaneously (78) amidst a basal ROS generation rate, yielding a 
realistic intracellular H2O2 burden at steady state (70). The H2O2 
partition coefficient in the model was calibrated to capture the mag-
nitude of NRF2 stabilization (see Materials and Methods). Likewise, 
the parameters for H2O2-induced autoactivation of ATM-CHEK2 
and signal inactivation were defined to align with the time-delayed 
kinetics and duration of p53 stabilization (fig. S14B). In this model, 
addition of p53-p21-NRF2 cross-talk (76) caused NRF2 stabilization 
to peak earlier and deactivate faster than observations (fig. S14C). We 
were also unable to detect even transient short-range interactions be-
tween inducible BirA*-fused versions of p21 or NRF2 and endoge-
nous NRF2 or p21 by proximity ligation (fig. S15, A to C). The results, 
thus, argued against p53-p21-NRF2 cross-talk during oxidative stress 
in these cells.

With the provisionally calibrated base model, we sought to test 
whether the encoded mechanisms of regulation were sufficient to 
capture prior observations relating NRF2, p53, and oxidative stress. 
The data obtained by quantitative fluorescence microscopy (Figs. 2B, 
3A, and 4C) presumably arose from spontaneous oxidative stress 
that was occurring transiently and asynchronously during imaging. 
We mimicked oxidative stress transients by triggering a step increase 
in the rate of ROS production for 2 hours, followed by relaxation of 
the system for an additional 10 hours (Fig. 5B). The magnitude of the 
step was sampled lognormally to elicit intracellular H2O2 concentra-
tions within the range of HyPer-2 ratios observed experimentally 
(see Materials and Methods). We represented the asynchrony of im-
age acquisition by randomly selecting 10 snapshots of the network 
for each model iteration. This collection of 1000 snapshots (100 random 

generation rates × 10 random time points) was used to quantify co-
ordination of species within the model.

For connecting oxidative stress to NRF2 stabilization (Fig. 4C), 
we expanded the base model to include the mRFP1-NRF2 reporter, 
which does not bind DNA or interact with MAF proteins and re-
quires ~1 hour to mature fully (see Materials and Methods) (79). By 
contrast, HyPer-2 becomes fully oxidized within ~1 min of H2O2 
addition (67), enabling intracellular H2O2 concentration in the model 
to be used directly as a surrogate of HyPer-2 fluorescence ratio. We 
calculated the MI from 1000 simulated snapshots and found that the 
two reporters were statistically coupled in the model [MI = 0.14 (0.10 
to 0.19); randomized MI = 0.001 (2.8 × 10−6 to 0.0005); Fig. 5C]. As-
sociations were stronger than those observed by experiment (Fig. 4C) 
due to the early time points sampled in the model (yellow-orange 
times in Fig. 5C), suggesting that peak H2O2 transients may be diffi-
cult to observe in practice. We next compared endogenous NRF2-p53 
costabilization between MCF10A-5E and MCF10DCIS.com cells. 
The base MCF10A-5E model was adjusted to reflect (i) proportional 
differences in species abundance estimated from RNA-seq (see Mate-
rials and Methods) and (ii) an increased ROS generation rate estimated 
from HyPer-2 imaging (fig. S9D). NRF2-p53 MI was much less de-
pendent on signaling transients, and coupling was substantially higher 
in MCF10DCIS.com cells. The simulations were consistent with our 
immunofluorescence data (Figs. 3A, 4C, and 5, D and E) and support 
that NRF2-p53 pathway kinetics were accurately encoded in the 
base model.

We then investigated whether the base model could also relate to 
the synergistic phenotypes observed upon dual NRF2-p53 perturba-
tion in MCF10A-5E and MCF10DCIS.com cells (Figs. 2E and 3E). 
We mimicked shNRF2-mediated knockdown by reducing the NRF2 
production rate fivefold in the model (fig. S3B) and encoding sec-
ondary transcriptional adaptations in other components by using the 
associated RNA-seq data (Fig. 3B). For DNp53, the p53 species was 
rendered unable to induce transcription of MDM2, PPM1D, p21, 
and its share of the antioxidant enzyme pool. After reestablishing 
steady state, the perturbed models were challenged with the random 
step increase in ROS production described above. We used the time-
integrated intracellular H2O2 concentration as the overall measure 
of oxidative stress experienced during simulation with either the 
MCF10A-5E or the MCF10DCIS.com initial conditions. For both 
cell lines, the base model predicted synergistic increases in oxidative 
stress beyond the linear superposition of shNRF2 and DNp53 effects 
(Fig. 5F). Encouragingly, the same conclusions were reached with 
models that simply encoded the reduced NRF2 production rate with-
out secondary adaptations (Fig. 5G). Beyond oxidative stress inducers 
and antioxidant target enzymes, we conclude that the NRF2-p53 
network does not require any additional mechanisms to capture sig-
naling coordination or phenotypic interactions.

NRF2-p53 coregulation occurs in normal breast tissue 
and hormone-negative DCIS but not in invasive TNBC
The regulatory heterogeneities observed in 3D culture often reflect 
adaptations in hormone-negative premalignancy (24) that become 
further disrupted in TNBCs (25). We thus sought to quantify NRF2- 
p53 coordination in TNBC and premalignant DCIS lesions, using 
adjacent normal tissue as a comparator. The TP53 gene is frequently 
mutated in TNBC (35) and gives rise to loss of p53 protein or hyper-
stabilization of a dominant-negative mutant in tumors (80). By con-
trast, prior immunohistochemistry of NRF2 abundance in breast 
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carcinomas was inconclusive (81), 
owing to an NRF2 antibody that 
was later shown to be nonspecific 
(82). There was an opportunity 
to revisit NRF2-p53 abundance 
heterogeneities from the perspec-
tive of costabilization, with a fo-
cus on TNBC and its precursor 
lesions.

Using a knockout-verified com
mercial antibody (83), we immu-
noblotted with our production lot 
and confirmed detection of basal 
and induced NRF2 with only ~35% 
immunoreactivity attributed to 
nonspecific bands (fig. S16, A to 
C). By immunohistochemistry, the 
antibody-detected endogenous 
NRF2 stabilized with electrophiles in paraffin sections of cell pellets 
(fig. S16D). The antibody has also been used independently to 
track NRF2 abundance in other solid tumors (84). However, when 
we stained adjacent normal epithelium immunohistochemically, 
NRF2 was not clearly discernible (Fig. 6A, top). In MCF10A 3D 
spheroids, stabilized p53 is not detected by immunohistochemistry 
either (85), and yet we readily visualized it by immunofluorescence 

(Fig. 2B). Therefore, to improve signal-to-background and facili-
tate multiplex quantification, we used two-color immunofluo-
rescence after antigen retrieval, segmenting 24,949 normal and 
transformed epithelial cells in 15 cases of TNBC and hormone-
negative DCIS.

In adjacent normal epithelium, we observed local niches of sta-
bilized NRF2 in lobules and ducts, which often corresponded with 

Fig. 6. NRF2 and p53 are costabilized 
in breast epithelial tissue and prema-
lignant lesions but uncoupled in TNBC. 
(A) Immunohistochemistry (top) and im-
munofluorescence (bottom) for NRF2 and 
p53 in tumor-adjacent normal breast lob-
ules. Hematoxylin and eosin (H+E, top 
right) histology is from a serial paraffin 
section for p53. Images from a tumor-
adjacent normal breast duct are shown 
in fig. S17. (B and C) Multicolor immuno-
fluorescence for NRF2 and p53 in (B) 
hormone-negative DCIS and (C) TNBC. 
(D) Quantification of the association be-
tween NRF2 and p53 immunoreactivities 
represented in (A) to (C). (E and F) Median 
NRF2 and p53 immunoreactivities for the 
designated tissue type in each clinical 
case. n.s., not significant (P > 0.05). For 
(A) to (C), immunofluorescence is shown 
as representative pseudocolored images 
for NRF2 (left) and p53 (middle) are shown 
merged with DAPI nuclear counterstain 
(right). White arrows indicate concurrent 
NRF2 and p53 stabilization, and magenta 
or green arrows indicate stabilization of 
NRF2 or p53 separately. Scale bars, 20 m. 
For (D) to (F) data are means ± SEM of 
n = 14 cases with tumor-adjacent normal 
epithelium (Normal), 8 cases with DCIS, 
and 7 cases with TNBC. Multigroup com-
parison was made by Kruskal-Wallis rank 
sum test with Šidák correction for multi-
ple hypothesis testing.
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stabilized p53 (Fig. 6A, bottom; and fig. S17). Stabilized NRF2 was 
frequently detected in the cytoplasm, consistent with the prolonged 
cytoplasmic localization observed in H2O2-treated cells compared 
with cells stressed with an electrophile (fig. S11). The results corrob-
orated findings that KEAP1 senses oxidative stress differently than 
electrophilic stress (62). The patterns of NRF2-p53 coaccumulation 
were largely preserved in hormone-negative DCIS (Fig. 6B and fig. S18, 
A to C), even in cases with abundantly stabilized p53 that was likely 
mutated (see later in this section). Nuclear localization of NRF2 was 
also more prominent, perhaps reflecting the stronger ROS generation 
rates of transformed cells (86). NRF2 and p53 were almost completely 
uncoupled in invasive TNBCs (Fig. 6C and fig. S18D), reflecting a 
profound shift in single-cell regulation. We quantified NRF2-p53 
coordination by MI and found that it was largely eliminated in re-
gions of invasive TNBC, irrespective of whether p53 was chronically 
stabilized (Fig. 6D). Such alterations were not apparent in regional 
estimates of protein abundance by cell population–averaged fluores-
cence, where neither NRF2 nor p53 was reproducibly different among 
groups (Fig. 6, E and F). We conclude that 3D culture in reconstituted 
basement membrane costimulates the NRF2-p53 pathways akin to 
that observed in normal breast tissue and hormone-negative prema-
lignancy. Full-blown TNBC, by contrast, evokes a different set of 
dependencies.

TNBC adaptations to p53 disruption predict variable NRF2 
miscoordination, NRF2-deficient oxidative stress profiles, 
and 3D growth responses
TP53 is the most frequently mutated gene in TNBC (35), and tran-
scriptomic analyses support it as a prevalent founder mutation in the 
disease (87). Disrupting p53 would undoubtedly affect transcrip-
tional feedback and the overall cellular response to oxidative stress 
(Fig. 5A). Conversely, neither NFE2L2 nor KEAP1 is mutated in 
breast cancer (88), but it is unclear whether wild-type NRF2 might 
serve as a transient “non-oncogene” (89) that promotes stress toler-
ance during early tumorigenesis. Compared with in situ lesions, the 
stromal environment of invasive tumors is stiffer and more mesen-
chymal (90), which may render NRF2 signaling dispensable at later 
stages. We wondered whether the fragmentation of the NRF2-p53 
network in TNBC cells and its origins could be reconciled with the 
systems model.
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Fig. 7. TNBC-specific signatures of the oxidative stress network predict NRF2-p53 
coupling and the response to NRF2 perturbations. (A) Transcripts per million for the in-
dicated TNBC cell lines scaled to MCF10A cells from the NIH LINCS dataset (91). (B) NRF2-p53 
MI and ROS tolerance for TNBC cell lines using the simulation strategy in Fig. 5B. (C to G) 
Quantification of mean spheroid area with or without NRF2 knockdown in 3D-cultured 
TNBC cells with higher simulated ROS tolerance and NRF2-p53 MI (C and D) and with lower 
simulated ROS tolerance and NRF2-p53 MI (E to G). (H) Transcripts per million for the TNBC 
lines in (A) scaled to clinical cases of TNBC in TCGA (35). (I) Simulated NRF2-p53 MI and ROS 
tolerance for TNBC tumors. Vertical lines indicate cases with high MI in the lower quartile of 
ROS tolerance. For (A) and (H), the clustered transcripts were used to adjust the initial con-
ditions of the model simulations for each cell line and tumor. For (B) and (I), ROS tolerance 
was defined as the integrated intracellular H2O2 concentration in each cell line compared 
with that of MCF10A-5E cells in response to an increased ROS production rate as in Fig. 5B. 
For (C) to (G), TNBC cells with or without inducible NRF2 knockdown were treated with 
doxycycline (1 g/ml) for 72 hours, grown as 3D spheroids, imaged by brightfield microscopy, 
and segmented. Data are means ± SEM of n = 4 to 8 biological replicates. The difference 
between means was assessed by Student’s t test with Šidák correction for multiple hypothesis 
testing, and the specific p53 mutation of each line is shown (bottom left).
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Using RNA-seq data from the National Institutes of Health (NIH) 
Library of Integrated Network-Based Cellular Signatures (LINCS) 
consortium (91) on 15 TNBC lines with mutated p53 (six claudin-low 
subtype and nine basal-like subtype), we adjusted initial conditions 
from the original MCF10A model and removed all transcriptional 
processes downstream of p53 (Fig. 7A; see Materials and Methods). 
The individual TNBC models were run to steady state and then chal-
lenged with increased ROS generation rates as in Fig. 5B. The coordi-
nation between NRF2 and mutant p53 was calculated by MI, and the 
integrated H2O2 response was scaled to that of MCF10A-5E cells as 
a relative measure of ROS tolerance. The goal was to associate the 
model-derived predictions with NRF2-knockdown phenotype in 
ROS-generating environments such as 3D culture. To the extent pos-
sible, we hoped that 3D growth in reconstituted basement membrane 
might quantify any vestigial requirements for NRF2 signaling from 
the in situ stage of the TNBC lines.

For all TNBC lines, the model predicted substantially reduced 
covariation between mutant p53 and NRF2 compared with MCF10
DCIS.com cells with wild-type p53 (MI < 0.25; Fig. 7B). We noted a 
spectrum of residual NRF2-p53 costabilization from weak (HCC1937 
and SUM159PT) to virtually nonexistent (MDA-MB-468 and 
MDA-MB-231). Despite complete p53 deficiency in the model, this 
residual NRF2-p53 MI correlated strongly with the simulated relative 
increase in oxidative stress when ROS generation rate was increased 
(Fig.  7B). Neither of these predictions mapped directly to specific 
transcripts in the TNBC-specific RNA-seq data (Fig. 7A), reinforcing 
that the models were making nonobvious predictions about oxidative 
stress handling.

To connect the model predictions with a continued role for NRF2 
signaling in TNBC behavior, we selected five lines along the spectrum 
of MI and ROS tolerance. HCC1937 and SUM159PT cells were both 
predicted to have residual NRF2-p53 coordination and moderate 
ROS tolerance (Fig. 7B). Accordingly, inducible knockdown of NRF2 
in these lines did not lead to any consistent changes in 3D growth 
(Fig. 7, C and D). By contrast, MDA-MB-231, HCC1806, and MDA-
MB-468 cells were predicted to have among the least NRF2-p53 
costabilization and ROS tolerance (Fig. 7B). Knockdown of NRF2 in 
these lines with two different shRNAs caused significant increases or 
decreases in overall cell growth (Fig. 7, E to G). Thus, model and exper-
iment support that, despite p53 mutation, residual NRF2-p53 coupling 
indicates the primordial susceptibility of triple-negative cell lines to 
perturbations in the NRF2 pathway.

Last, we sought to extend model predictions to 122 cases of TNBC 
sequenced by The Cancer Genome Atlas (TCGA) (35). Compared 
with the TNBC lines, we noted reduced abundance of MDM2, the 
NRF2 binding partner MAFK, ATM, and CHEK2 (Fig. 7H), which 
suggested that TCGA tumors would be a considerable deviation from 
prior simulations. There was also more variability in the abundance 
of multiple antioxidant genes (SOD1, TXN, and PRDX1), anticipating 
a greater breadth in model outcomes. Unexpectedly, when tumor-
derived profiles were encoded and simulated (see Materials and 
Methods), the models predicted ROS tolerances that were largely 
within the range of TNBC lines analyzed before (Fig. 7I). The 
associated NRF2-p53 coordination, by contrast, was qualitatively 
different, with various TCGA cases giving rise to strong coordina-
tion despite pervasive TP53 mutation (Fig. 7I, purple). The high-
coordination, low-tolerance TNBC cases (Fig. 7I, vertical lines) 
form a subset that could be especially sensitive to changes in NRF2 
activation.

DISCUSSION
This work posits ROS as an endogenous, spatially heterogeneous 
trigger of dual NRF2-p53 activation in breast-mammary epithelia sur-
rounded by basement membrane ECM. NRF2 and p53 regulate target 
gene abundance—both cooperatively and independently—to promote 
stress tolerance and adaptation. NRF2 deficits are buffered by com-
pensatory increases in p53 signaling, and notable ROS-dependent 
phenotypes arise when both pathways are perturbed. In hormone-
negative premalignant lesions, stabilization of NRF2-p53 remains 
coordinated, even in cases where p53 has likely mutated. At this pre-
invasive stage, NRF2 should be most important for tumorigenesis. 
After invasion through basement membrane and progression to TNBC, 
the stromal microenvironment reduces the overall NRF2 signaling 
and often uncouples it from (now mutant) p53. Here, the effect of 
activating or inhibiting NRF2 will depend more on the exact cellular 
context and, thus, be unpredictable (for example, Fig. 7, E to G). 
Despite the overall complexity of NRF2- and p53-mediated tran-
scriptional programs (92, 93), the coordinated response to oxidative 
stress is captured by a relatively simple mathematical encoding. Known 
core mechanisms of NRF2-p53 regulation are brought together by a 
shared ROS inducer and a common pool of detoxifying target genes 
without the need for any further cross-talk. Therefore, oxidative stress 
handling in normal breast-mammary epithelia is usefully abstracted 
as two stability-regulated TFs working independently toward a com-
mon homeostatic goal.

Although NRF2 is not an oncogene for breast cancer, it has been 
connected with multiple breast cancer tumor suppressors previously. 
In mouse mammary epithelial cells, loss of Brca1 (a predisposing 
event for basal-subtype TNBC) destabilizes Nrf2 and causes an increase 
in ROS, favoring the future acquisition of p53 mutations (36, 94). 
In human breast cancer cells, gain-of-function p53 mutants inter-
act directly with NRF2 and may help retain NRF2 in the nucleus (37). 
If certain p53 mutations were also to promote NRF2 stabilization, then 
it would provide a two-for-one benefit to cancer progression by reliev-
ing tumor suppression and conferring ROS tolerance constitutively. 
However, we did not note any association between gain-of-function 
p53 mutants and NRF2 abundance in TNBC lines, suggesting that 
KEAP1 regulation predominates, as indicated by the TNBC models. 
Chronic activation of the NRF2 pathway (for example, by activating 
NFE2L2 mutation or KEAP1 loss) may be disfavored if increased intra-
cellular ROS is not permanent. The models suggest that supraphys-
iological activation of NRF2 would lead to runaway induction of 
antioxidant enzymes, causing reductive stress as documented for NRF2 
in other tissues (95). Wild-type NRF2 function must be sufficient to 
buffer cells from the early stresses of premalignancy and p53 disrup-
tion, allowing invasive TNBCs to deactivate the pathway when it is no 
longer needed. There are parallels to FOXO TFs (96), which are revers-
ibly inactivated by mitogenic signals yet provide critical oxidative stress 
tolerance when the breast cancer tumor suppressor RUNX1 is disrupted 
(22, 97, 98).

Breast cancer cell lines organize very differently in 3D culture (99), 
but their response to perturbations is often less disparate. For exam-
ple, gain-of-function p53 mutations cause luminal filling in MCF10A 
3D cultures (48), similar to the delay in mammary gland involution 
observed with mutant p53 in vivo (100). Reciprocally, knockdown 
of mutant p53 in MDA-MB-468 cells promotes luminal hollowing 
(101). Among p53-mutant TNBC lines, the impact of NRF2 knock-
down on 3D growth was nonuniform but explainable through the 
stress profiles inferred from TNBC-specific systems models. The balance 
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of complexity and tractability makes 3D spheroid-organoid cultures 
a compelling platform for systems-level dissection of cell state het-
erogeneity and early tumorigenesis.

The 3D behavior of breast-mammary cancer cells is highly de-
pendent on the surrounding ECM (102). Invasive cancers no longer 
encounter basement membrane ECM but must have bypassed it 
upon progression to carcinoma. Although multiple TNBC lines will 
grow as 3D colonies in reconstituted basement membrane, others 
cannot, suggesting a type of cellular “amnesia” toward that past en-
counter. For cancers that do grow in 3D, the use of reconstituted 
basement membrane (as a more normal-like microenvironment) 
may give rise to cellular changes reminiscent of premalignancy. We 
exploited these changes to evaluate the relative importance of NRF2 
signaling in different TNBC backgrounds. There are likely other op-
portunities to examine hurdles of premalignancy by using basement 
membrane 3D cultures. For 3D organoid biobanks (19), however, it 
is a reminder that such cultures are not propagating the primary breast 
tumor but rather tumor-derived cells in a more primitive state.

Cancer mutations engage and cooperate with cell signaling in ways 
that are not captured by DNA sequencing (103). The coupling of the 
NRF2 and p53 pathways described here provides a robust oxidative 
stress–handling network for glandular morphogenesis and mainte-
nance. However, this same coupling creates a redundancy upon which 
p53 mutations can occur and neoplasms can evolve. Our results give 
pause to the nutraceutical use of sulforaphane as a potent NRF2 stabi-
lizer (104)—in lung cancer, where KEAP1-NRF2 mutations are com-
mon and TP53 mutation is secondary, antioxidants accelerate tumor 
progression (105). The extraordinary complexity of ROS generation 
and its cellular effects reinforce the value of modeling redox networks 
at a granularity suited to a given physiology or pathology (106).

MATERIALS AND METHODS
Plasmids
shRNA targeting sequences from the RNAi consortium (107) were 
cloned into tet-pLKO.1-puro as previously described (38) for shLuc 
(TRCN0000072250, Addgene #136587), shNRF2 #1 (TRCN0000281950, 
Addgene #136584), shNRF2 #2 (TRCN0000284998, Addgene #136585), 
shJUND #1 (TRCN0000416347, Addgene #136581), and shJUND #2 
(TRCN0000416920, Addgene #136583).

For the mRFP1-NRF2 reporter (Addgene #136580), the DNA bind-
ing domain of NRF2 was mutated (C506S) along with four leucines 
(L4A) in the leucine zipper region of the bZIP (basic leucine zipper) 
domain by site-directed mutagenesis of the pBabe mRFP1-NRF2 hygro 
plasmid (Addgene #136579) originally prepared by subcloning into 
pBabe mRFP1 hygro. The RR version of NRF2 (Addgene #136522) was 
prepared by introducing four silent mutations into the sequence targeted 
by shNRF2 #1 in pEN_TT 3xFLAG-NRF2 (Addgene #136527). Site-
directed mutagenesis was performed with the QuikChange II XL kit 
(Agilent).

pDONR223 CHEK2 was obtained from the human Orfeome 
V5.1 (108). CHEK2 amplicon was prepared with Xba I and Mfe I 
restriction sites and cloned into pEN_TTmiRc2 3xFLAG (Addgene 
#83274) that had been digested with Spe I and Mfe I (Addgene 
#136526). BirA* was cloned out of pcDNA3.1 mycBioID (Addgene) 
(109) with Xba I and Spe I restriction sites and cloned into pEN_
TTmiRc2 digested with Spe I and Mfe I (Addgene #136521). CDKN1A 
and NRF2 PCR amplicons were prepared with Spe I and Mfe I restric-
tion sites and cloned into pEN_TTmiRc2 BirA* (Addgene #136521). 

Luciferase PCR amplicon was prepared with Spe I and Eco RI re-
striction sites and cloned into pEN_TTmiRc2 3xFLAG digested 
with Spe I and Mfe I sites (Addgene #136519). p53DD (p53DN) and 
p53(R280K)-V5 PCR amplicon was prepared with Spe I and Mfe I 
restriction sites and cloned into pEN_TTmiRc2 (Addgene #25752), 
digested with Spe I and Mfe I (Addgene #136520 and #136525).

pEN_TT donor vectors were recombined into pSLIK neo (Addgene 
#25735), pSLIK zeo (Addgene #25736), or pSLIK hygro (Addgene 
#25737) by LR recombination to obtain pSLIK 3xFLAG-Luciferase zeo 
(Addgene #136533), pSLIK p53DD zeo (Addgene #136534), pSLIK 
3xFLAG-Luciferase hygro (Addgene #136528), pSLIK 3xFLAG-
NRF2(RR) hygro (Addgene #136535), pSLIK BirA* hygro (Addgene 
#136537), pSLIK BirA*-CDKN1A hygro (Addgene #136538), pSLIK 
BirA*-NRF2 hygro (Addgene #136539), pSLIK p53(R280K)-V5 hygro 
(Addgene #136540), and pSLIK 3xFLAG-CHEK2 neo (Addgene 
#136536).

pLXSN HPV16E7 (110) and the ∆DLYC mutant (Addgene #136588) 
were provided by S. Vande Pol (University of Virginia). pCDH–
HyPer-2–puro (66) was provided by J. Brugge (Harvard Medical 
School).

Cell lines
The MCF10A-5E clone was previously reported and cultured as de-
scribed for MCF-10A cells (13, 20). MCF10DCIS.com cells were 
obtained from Wayne State University and cultured in Dulbecco’s 
modified Eagle’s medium/F-12 medium (Gibco) plus 5% horse serum 
(Gibco). SUM102PT cells were obtained from Asterand Biosciences 
and cultured in Ham’s F-12 (Gibco) plus 10 mM Hepes (Gibco), epi-
dermal growth factor (10 ng/ml; PeproTech), 5 mM ethanolamine 
(Sigma-Aldrich), 50 nM sodium selenite (Sigma-Aldrich), apo-
Transferrin (5 g/ml; Sigma-Aldrich), 10 nM triiodo-l-thyronine (VWR), 
insulin (5 g/ml; Sigma-Aldrich), hydrocortisone (1 g/ml; Sigma-
Aldrich), and 5% fatty acid–free bovine serum albumin (VWR). 
SUM159PT cells were obtained from Asterand Biosciences and 
cultured in Ham’s F-12 (Gibco) plus 10 mM Hepes (Gibco), insulin 
(5 g/ml; Sigma-Aldrich), hydrocortisone (1 g/ml; Sigma-Aldrich), 
and 5% fetal bovine serum (Hyclone). All other cell lines were ob-
tained directly from the American Type Culture Collection (ATCC). 
MDA-MB-231 and MDA-MB-468 cells were cultured in L-15 medium 
plus 10% fetal bovine serum without supplemental CO2. HCC1806 
and HCC1937 cells were cultured in RPMI 1640 medium plus 10% 
fetal bovine serum. All base media were further supplemented with 1× 
penicillin and streptomycin (Gibco). All cell lines are female, were 
grown at 37°C, authenticated by short tandem repeat profiling by 
ATCC, and confirmed negative for mycoplasma contamination.

Viral transduction and selection
Lentiviruses were prepared in human embryonic kidney 293 T cells 
(ATCC) by triple transfection of the viral vector with psPAX2 + 
pMD.2G (Addgene) and transduced into MCF10A-5E, MCF10
DCIS.com, HCC1937, SUM159PT, MDA-MB-231, HCC1806, and 
MDA-MB-468 as previously described (25). Retroviruses were pre-
pared similarly by double transfection of the viral vector with pCL 
ampho (Addgene) and transduced into MCF10A-5E cells as previ-
ously described (22). Transduced cells were selected in growth 
medium containing puromycin (2 g/ml), G418 (300 g/ml), 
hygromycin (100 g/ml), or zeocin (25 g/ml) until control plates had 
cleared. For RR addback, viral titers were adjusted to match the en-
dogenous protein abundance as closely as possible. For mRFP1-NRF2 
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fluorescent reporter, we used the minimum viral titer that gave 
sufficient signal in sulforaphane-treated cells compared with di-
methyl sulfoxide (DMSO)–treated cells. Reporter abundance was 
roughly equal to endogenous NRF2 expression (fig. S9F).

3D culture
3D overlay cultures were performed on top of Matrigel (BD Biosciences) 
as described previously for MCF-10A cells (111) with culture media 
previously optimized for each cell line (25). In addition, HCC1806 cells 
were cultured in MCF10A assay media (111), and SUM159PT cells 
were cultured in SUM159PT growth media (described above) plus 2% 
fetal bovine serum. For each culture, 45 l of Matrigel was spread with 
a pipette tip on the bottom of an eight-well chamber slide. A suspen-
sion of 5000 single cells per well was laid on top of the Matrigel in cul-
ture media supplemented with 2% Matrigel. 3D culture medium was 
replaced every 4 days as originally described (111). For antioxidant 
supplementation, cells were treated with 50 M Trolox (Calbiochem) 
for 2 days before 3D culture, and Trolox was included in media refeeds 
and supplemented every 2 days between refeeds. For long-term knock-
down experiments, cells were treated with doxycycline (1 g/ml; 
Sigma-Aldrich) for 3 days before 3D culture, and doxycycline was 
maintained in the 3D culture medium throughout the experiment. For 
experiments with long-term knockdown and inducible overexpres-
sion, cells were treated with doxycycline (1 g/ml) for 2 days before 3D 
culture, and doxycycline was maintained in the 3D culture medium 
throughout the experiment.

RNA purification
RNA from cultured cells was isolated with the RNeasy Plus Mini Kit 
(QIAGEN) according to the manufacturer’s protocol. RNA from 3D 
cultures at day 10 was extracted by lysing individual wells in 500 l 
of RNA STAT-60 (Tel-Test) and purified as described previously (25).

RNA-seq and analysis
Total RNA was diluted to 50 ng/l and prepared using the TruSeq 
Stranded mRNA Library Preparation Kit (Illumina). Samples were 
sequenced on a NextSeq 500 instrument with NextSeq 500/550 
High Output v2.5 kits (Illumina) to obtain 75–base pair (bp) paired-
end reads at an average depth of 15 million reads per sample. Adapters 
were trimmed using fastq-mcf in the EAutils package (version ea-
utils.1.1.2-537) with the following options: -q 10 -t 0.01 -k 0 
(quality threshold 10, 0.01% occurrence frequency, and no nucleo-
tide skew causing cycle removal). Quality checks were performed 
with FastQC (version 0.11.7) and multiqc (version 1.5). Datasets 
were aligned to the human (GRCh38.86) genome using HISAT2 
with the option: --rna-strandness RF (for paired-end reads gen-
erated by the TruSeq strand–specific library). Alignments were 
assembled into transcripts using StringTie (version 1.3.4) with the 
reference guided option. Transcripts that were expressed at greater 
than five transcripts per million across all samples were retained for 
downstream analysis. Differential gene expression analysis was car-
ried out using edgeR (version 3.8) (112) on raw read counts corre-
sponding to transcripts that passed the abundance-filtering step. 
Trimmed mean of M values normalization using the calcNormFactors 
function was performed before differential expression analysis 
using exactTest in edgeR. The 1132 transcripts that were commonly 
differentially expressed [5% false discovery rate (FDR)] between 
MCF10A-5E shControl and shNRF2 #1, shControl and shNRF2 #2, 
and MCF10DCIS.com shControl and shNRF2 #1 are shown in 

Fig. 3B. Gene set enrichment analysis was done on transcripts that 
were differentially increased or decreased in shNRF2 compared 
with shControl using the Molecular Signatures database collections 
C1, C2, C3, C4, C6, and C7 (113, 114). The full list of enrichments 
(5% FDR) is provided in data file S2.

Quantitative PCR
cDNA synthesis and qPCR were performed as previously described 
(25, 115) with the primers listed in table S1. Human samples were 
normalized to the geometric mean of ACTB, HINT1, PP1A, and TBP 
(Fig. 2D and fig. S2C); B2M, GAPDH, GUSB, HINT1, and PRDX6 
(fig. S2A); or ACTB, B2M, GUSB, PPIA, and PRDX6 (fig. S2B).

Brightfield imaging and quantification of spheroid 
phenotypes
Brightfield 3D images were acquired on an Olympus CKX41 inverted 
microscope with a 4× plan objective (four fields per chamber) and a 
qColor3 camera (Q-Imaging). Images were segmented using OrganoSeg 
(116) to produce morphometric measures for each segmented 
spheroid. “Rounded” spheres were classified as having circularity 
greater than 0.9 (Fig. 3, C and E; and fig. S6, B and C). “Hyper-
enlarged” spheres were classified as having an area greater than e8.5 ≈ 
5000 µm2 (Fig. 3, D and E). “Proliferation suppressed” spheres were 
classified as having an area less than 1600 m2 for MCF10A-5E cells 
after 10 days of 3D culture (Figs. 2E and 4E).

Clinical samples
Cases were identified from the pathology archives at the University 
of Virginia and build upon a cohort of samples previously described 
(24, 25). Hormone-negative DCIS lesions were deemed negative (less 
than 10% expression frequency) for estrogen receptor and progesterone 
receptor by clinical immunohistochemistry, and TNBC cases were 
additionally scored negative for HER2 amplification by clinical DNA 
chromogenic in situ hybridization. All clinical work was done according 
to the Institutional Review Board for Health Sciences Research 
approval #14176 and Protocol Review Committee approval #1363 
(502-09).

Immunofluorescence
MCF10A-5E and MCF10DCIS.com 3D cultures were embedded at 
day 10 of morphogenesis, and 5-m sections were cut and mounted 
on Superfrost Plus slides (Fisher Scientific). For clinical samples, 
paraffin tissue sections were dewaxed and antigens were retrieved 
on a PT Link (Dako) with low-pH EnVision FLEX Target Retrieval 
Solution (Dako) for 20 min at 97°C. Immunofluorescence on cryo-
sections and antigen-retrieved slides was performed as previously 
described (20) with the following primary antibodies: NRF2 (1:100; 
Santa Cruz Biotechnology, #sc-13032), phospho-Rb (1:1600; Cell 
Signaling, #8516), HIF-1 (1:800; Cell Signaling, #79233), and p53 
(1:200; Santa Cruz Biotechnology, #sc-126). Slides were incubated 
the next day for 1 hour in the following secondary antibodies: Alexa 
Fluor 555–conjugated goat anti-rabbit (1:200; Invitrogen) and Alexa 
Fluor 647–conjugated goat anti-mouse (1:200; Invitrogen).

Image acquisition analysis and MI calculation
Fluorescence images were collected unblinded on an Olympus BX51 
fluorescence microscope with a 40× 1.3 numerical aperture (NA) 
UPlanFL oil immersion objective and an Orca R2 charge-coupled 
device (CCD) camera (Hamamatsu) with no binning. Images were 
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segmented in CellProfiler (117) using 4′,6-diamidino-2-phenylindole 
(DAPI) to identify nuclei. Nuclear objects were dilated to a median 
diameter of 15 m to capture about one whole cell. NRF2 staining 
was quantified in the nucleus, the whole cell, and the cytoplasm (whole 
cell area − nuclear area). p53 staining was quantified in the whole cell. 
Immunoreactivity was quantified as the median fluorescence inten-
sity of the whole cell unless otherwise noted.

For pRB and NRF2 immunofluorescence (Fig. 1, D and E), log-
transformed distributions were analyzed with the MClust function 
in R using the unequal variance model with either one or two mix-
ture components specified. Model fit was evaluated by F test.

MCF10A-5E cells stably expressing pCDH–HyPer-2–puro were 
imaged at 37°C in Hanks’ balanced salt solution (Gibco) with a 40× 
1.3 NA EC plan Neofluar oil immersion objective on a Zeiss LSM 
700 laser scanning confocal microscope. Lasers (405 and 488 nm) 
were used to sequentially excite two excitation peaks of HyPer-2 
and collect fluorescence emission from 500 to 550 nm. To calculate 
HyPer-2 ratios on a pixel-by-pixel basis, 488-nm images were divided 
by 405-nm images and thresholded in ImageJ to remove background 
pixel values (~10%). For quantification of cells cultured in 2D (fig. S9, 
B to D), the mean HyPer-2 ratio per image was used for analysis. 
For quantification of cells cultured as spheroids (Fig. 4C), cells were 
manually segmented to calculate the median HyPer-2 ratio per cell.

Clinical samples were imaged on an Olympus BX51 fluorescence 
microscope with a 40× 1.3 NA UPlanFL oil immersion objective and 
an Orca R2 CCD camera (Hamamatsu) with 2 × 2 binning and fixed 
exposure times for NRF2 (150 ms) and p53 (50 ms). Images were 
autoexposed in the DAPI channel for nuclear segmentation and in 
the unlabeled fluorescein isothiocyanate (FITC) channel for auto-
fluorescence estimation. Image fields were classified as follows: 
normal—bilayered epithelium, intact basement membrane (visualized 
by FITC autofluorescence), and normal cytoarchitecture; DCIS—
multilayered and disorganized epithelium (with partial or complete 
luminal filling), intact basement membrane, and cytologic atypia; 
and TNBC—invasive carcinoma cells with cytologic atypia and no 
discernable basement membrane. All images were segmented in 
CellProfiler as described above. After nuclear identification, nuclei out-
side of the ductal epithelium (fibroblasts, endothelial cells, and im-
mune cells) were manually removed using the IdentifyObjectManually 
module. Because paraffin fixation of tissue increases autofluores-
cence (118), the analysis excluded images that were dominated by 
autofluorescent bleedthrough into the Alexa 555 channel localizing 
NRF2. Spearman correlation was calculated between cellular FITC-
555 channels and FITC-DAPI channels on a pixel-by-pixel basis for 
each image. Images with a FITC-555 correlation coefficient above 
the 95th percentile for FITC-DAPI correlation (in which autofluo-
rescent artifacts were negligible due to the low exposure time) were 
excluded from further analysis.

For NRF2 quantification in neighboring cells (fig. S8), spheroid 
and mouse mammary gland images were loaded into CellProfiler, and 
the IdentifyObjectManually module was used to manually identify 
regions of ductal epithelium. The images were cropped manually, 
and cell nuclei within the cropped area were identified by DAPI 
staining. Nuclear area was dilated to a median diameter of ~15 m 
to define a cell. Position, area, and median NRF2 staining intensity 
were measured for each cell. Measurements were loaded into MATLAB, 
and single-cell NRF2 intensities were normalized to the median in-
tensity of all exposure-matched cells. Neighboring cells were defined 
as cells located within a radius of 1.5 times the median cell diameter. 

For more distant neighbors, annular areas of 3 to 5 and 5 to 10 times 
the median cell diameter were used. Cells that fell within the applied 
search area were used to calculate the median neighbor NRF2 in-
tensity. The original cell at the center of the search area was not in-
cluded in the intensity calculations, and cells with NRF2 intensity 
values equal to 0 or lacking neighboring cells within the defined 
search area were excluded from calculations.

To quantify the association between fluorescence channels, we 
used MI in lieu of standard correlation measures (Pearson and 
Spearman). After appropriate transformation and binning into dis-
crete high-low states, MI provides greater flexibility to capture non-
linear relationships (119) and more stringency to detect compressions 
in dynamic range (120). Median fluorescence intensity distributions 
were transformed by their respective cumulative distribution func-
tions (probability integral transform) to produce uniformly distributed 
random variables (121). The uniform distributions were split into low 
and high states at the 67th percentile, and the joint marginal state 
probabilities estimated for the two fluorescence channels (R and G) 
were used to calculate the MI as follows

	​​ MI  =  ∑ ∑ ​p​ RG​​ log​(​​ ​ 
​p​ RG​​

 ─ ​p​ R​​ ​p​ G​​ ​​)​​​​	

MI confidence intervals were estimated by bootstrapping the seg-
mented cell population 1000 times. To create a randomized (null) 
dataset, the values of one fluorescence channel were randomly shuffled 
before analysis.

Clinical samples often had fewer areas of classified cells for im-
aging, which require an added analysis step in the MI calculation. 
For a classification (normal, DCIS, and TNBC) composed of two 
images from one case, we evaluated batch effects by hypergeometric 
test to determine if the two images separated by high versus low stain-
ing intensity. If so, the case for that classification was excluded.

Quantitative immunoblotting
Quantitative immunoblotting was performed as previously described 
(122). Primary antibodies recognizing the following proteins or epi-
topes were used: NRF2 (1:1000; Santa Cruz Biotechnology, #sc-13032), 
p53 (1:1000; Santa Cruz Biotechnology, #sc-126), p21 (1:1000; 
ProteinTech, #10355-1-AP), total Chk2 (1:1000; Cell Signaling, 
#2662), phospho-Chk2 (Thr68; 1:1000; Cell Signaling, #2197), phospho-
ATM (Ser1981; 1:1000; Abcam, #ab81292), KEAP1 (1:1000; Santa Cruz 
Biotechnology, #sc-15246), CDK4 (1:1000; Cell Signaling, #12790), 
CDK2 (1:200; Santa Cruz Biotechnology, #sc-6248), vinculin (1:10,000; 
Millipore, #05-386), glyceraldehyde-3-phosphate dehydrogenase 
(GAPDH; 1:20,000; Ambion, #AM4300), tubulin (1:20,000; Abcam, 
#ab89984), p38 (1:5000; Santa Cruz Biotechnology, #sc-535), and 
Hsp90 (1:5000; Santa Cruz Biotechnology, #sc-7947).

Proximity ligation using BirA* fusions of p21 and NRF2
MCF10A-5E cells inducibly expressing the promiscuous biotin ligase 
BirA* (123), BirA*-NRF2, or BirA*-CDKN1A were plated on 10-cm 
plates and induced with doxycycline (1 g/ml) at 50% confluency. 
After 24 hours, medium was refed with doxycycline (1 g/ml), 10 M 
sulforaphane (Sigma-Aldrich), 10 M nutlin-3 (Calbiochem), and 
1 mM biotin (Sigma-Aldrich). After 24 hours, cells were lysed in 200 l 
of radioimmunoprecipitation assay (RIPA) buffer [50 mM tris (pH 
8.0), 150 mM NaCl, 5 mM EDTA, 1% Triton X-100, 0.1% SDS, and 
0.5% sodium deoxycholate]. Anti-biotin antibody enrichment of 
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biotinylated peptides was performed as previously described (124). 
Briefly, biotin antibody bound agarose beads (ImmuneChem Phar-
maceuticals Inc., #ICP0615) were washed three times in immuno
affinity purification (IAP) buffer [50 mM MOPS (pH 7.2), 10 mM 
sodium phosphate, and 50 mM NaCl]. Antibody (500 g; 50 l) was 
added to each RIPA lysate on ice. Ice-cold IAP buffer was added up 
to 1 ml, and samples were incubated on a nutator overnight at 
4°C. The next day, beads were washed four times with ice-cold IAP 
buffer, boiled in dithiothreitol-containing 2× Laemmli sample buffer, 
and used for immunoblotting against the indicated targets.

Promoter bioinformatics
The 36 transcripts of the Fig. 1A gene cluster (20, 24) were assessed 
with four promoter analysis algorithms to identify recurrent TF can-
didates (125). First, distant regulatory elements (DiRE) analysis was 
conducted using the DiRE website (https://dire.dcode.org) (40) search-
ing evolutionarily conserved 5′ untranslated regions (5′ UTR ECRs) 
and evolutionarily conserved promoter regions (promoter ECRs) for 
genes on the human genome (hg18). A random set of 7500 genes was 
selected as background control genes. Second, Expression2Kinases 
(X2K) software was used to identify upstream TFs for the Fig. 1A 
gene cluster (41). The potential TFs were selected from ChIP-X 
Enrichment Analysis (ChEA) database using “mouse + human” as 
the background organisms (126). The P value from the Fisher’s exact 
test and Z score were used for sorting and ranking. Third, from the 
National Center for Biotechnology Information (NCBI), we collected 
the proximal promoter of each transcript—defined as 1416 bp upstream 
and 250 bp downstream of the transcription start site to remain within 
the 60-kb sequence limit—for use as an input set for MEME (127, 128). 
Using MEME-defined motifs from classic discovery mode, the top 
three enriched motifs were searched against the JASPAR CORE (2018) 
database (containing 1404 defined TF binding sites for eukaryotes) 
(129) or HOCOMOCO (Homo Sapiens Comprehensive Model Col-
lection) Human (v11) database (containing 769 TF binding motifs) 
(130) using Tomtom (131) to identify TF recognition sequences. A 
recognition sequence for E2F6 was considered within the E2F group, 
and a recognition sequence for the NRF2 binding partner MAFK was 
considered within the NRF2 group. Last, oPOSSUM (43) was used to 
identify potential TFs targeting transcripts in the cluster. We selected 
Single Site Analysis–Human mode and used all 24,752 genes in the 
oPOSSUM database as a background. All vertebrate profiles with a 
minimum specificity of eight bits in the JASPAR CORE Profiles were 
selected as TF binding site sources. oPOSSUM was run with the 
following parameters: conservation cutoff of 0.4, matrix score threshold 
of 85%, amount of upstream/downstream sequence: 2000/0, and 
sort results by Fisher score. Outputs of the promoter bioinformatics 
are available in data file S1.

ChIP-seq bioinformatics
NRF2 ChIP-seq raw data files were downloaded from ENCODE 
(ENCAB800OND) (50), consisting of fastq files from three cell lines 
(K562, A549, and HepG2) with two biological replicates each. Qual-
ity of the sequenced reads was analyzed using FastQC. Reads were 
aligned to the human genome (hg19) using BWA with the -M option. 
Peaks were identified using MACS2 (version 2.1.0) with an FDR cut-
off of 0.01 to reduce the number of spurious peaks. Irreproducibility 
discovery rate analysis was performed on biological replicates, and a 
cutoff of 0.05 was used to generate a list of high-confidence peaks for 
each cell line. Peaks were annotated using the Homer annotatePeaks 

program. p53 ChIP-seq binding sites were used from a ChIP-seq 
dataset (GSE86164) (51). Briefly, ChIP-seq was performed on three 
cell lines (HCT116, MCF7, and SJSA) treated with or without nutlin-3. 
Reads were mapped to hg19 using Bowtie2, and peaks were identified 
and annotated using the Homer suite. NRF2-p53 binding sites were 
indicated (fig. S2C) if a peak was present for a gene in at least one cell 
line analyzed for each ChIP-seq dataset.

Computational modeling
The NRF2 pathway was encoded as first- and second-order rate 
equations for KEAP1 oxidation and NRF2 stabilization; NRF2-
mediated transcription of antioxidant enzymes was modeled as a Hill 
function (68, 69). The p53 pathway was reconstructed from a delay 
differential equation model of p53 signaling in response to DNA 
damage (71). Abundances in the original p53 model were unitless, 
but abundances were cast as concentrations in the earlier NRF2 
models. Consequently, the integrated model adopted unitless abun-
dances in its initial conditions and second-order parameters (table S2). 
To adapt the p53 DNA damage model to respond to oxidative stress, 
we changed the “Signal” activation (representing activation of up-
stream kinases p-ATM and p-CHEK2) from a Heaviside step func-
tion to a first-order oxidation reaction of ATM/CHEK2 by intracellular 
H2O2 (63). A basal ROS generation rate was added yielding a realistic 
intracellular H2O2 burden at steady state (70). Transcription of anti
oxidant enzymes by p53 (72) was modeled using the same model 
parameters describing the p53-mediated induction of MDM2 (71). 
p53- and NRF2-mediated antioxidant gene transcription contributes 
to a shared pool of antioxidant enzymes, which catalytically reverse 
the oxidation states of KEAP1 and p-ATM/CHEK2. Transcription of 
CDKN1A by p53 (132) was included for model calibration (fig. S14) 
and for testing the relevance of p53-p21-NRF2 cross-talk (see next 
paragraph). The integrated base model of NRF2-p53 oxidative stress 
signaling contains 42 reactions and 22 ordinary differential equations 
(ODEs). The model was simulated with dde23 in MATLAB to reach 
steady state before the addition of oxidative stress.

The integrated model was calibrated to capture the dynamics of 
MCF10A-5E cells stimulated with 200 M H2O2 (fig. S14). Bolus 
addition of H2O2 was simulated as an impulse of intracellular H2O2. 
We used an H2O2 partition coefficient that gave rise to NRF2 stabi-
lization levels comparable to immunoblot quantification (extracel-
lular/intracellular partition = 3). We approximated p-ATM/CHEK2 
in the integrated model as the maximum normalized increase in 
p-ATM or p-CHEK2 over baseline at each experimental time point. 
Robustness of the system output to initial conditions was evaluated 
by randomly varying the concentration of model species with a log 
coefficient of variation of 10%, taking the base model as the geomet-
ric mean.

For simulations involving the mRFP1-NRF2 reporter (NRF2rep; 
Fig. 5C), NRF2rep and mature fluorescent species (Nrf2repmat) were 
added to the MCF10A-5E base model. Both reporter species were al-
lowed to react with KEAP1, but neither could bind MAF proteins or 
antioxidant response elements in the model (fig. S9E). We used an 
mRFP1 maturation time of 1 hour (79) to model the conversion of 
NRF2rep to NRF2repmat. The modifications added 19 additional re-
actions and eight additional ODEs to the MCF10A-5E base model.

For simulations involving p53-p21-NRF2 cross-talk (fig. S14C), we 
added reactions involving p21 binding to NRF2 to the MCF10A-5E 
base model. p21 was assumed to interact with NRF2 like KEAP1 and 
compete with KEAP1 for binding NRF2 through its DLG and ETGE 

 on A
pril 14, 2020

http://stke.sciencem
ag.org/

D
ow

nloaded from
 

https://dire.dcode.org
http://stke.sciencemag.org/


Pereira et al., Sci. Signal. 13, eaba4200 (2020)     14 April 2020

S C I E N C E  S I G N A L I N G  |  R E S E A R C H  A R T I C L E

16 of 20

domains (76). The p21-NRF2 complex was assumed to degrade at 
the same reduced rate as when NRF2 is bound to oxidized KEAP1 
(k_nrf2degox). These modifications added eight additional reactions 
and two additional ODEs to the MCF10A-5E base model.

For simulations involving MCF10DCIS.com cells (Fig. 5, E to G), 
RNA-seq data (Fig. 3B) were used to estimate proportional differ-
ences in model species abundance between MCF10DCIS.com and 
MCF10A-5E cells. Average gene expression in transcripts per million 
from the four biological replicates of MCF10DCIS.com and MCF10A-
5E control cell lines was calculated for each gene. Fold changes in 
model species of MCF10DCIS.com relative to MCF10A-5E were 
used to adjust each initial condition in the model. For the “MAF” 
species, we used the median fold change in NRF2-binding small 
MAFs MAFF, MAFG, and MAFK (133). For the antioxidant species, 
we used the median fold change in TXN, SOD1, PRDX1, and HMOX1 
to include antioxidants that react with both free radicals and oxidized 
proteins (134). In addition, the MCF10DCIS.com model included a 
1.4-fold increase in the basal ROS generation rate, informed by the 
increased median HyPer-2 ratio in MCF10DCIS.com cells compared 
with MCF10A-5E cells (fig. S9D). The increased ROS generation rate 
was paired with an increased basal turnover of the antioxidant pool 
to arrive at steady-state antioxidant gene expression levels consistent 
with MCF10DCIS.com RNA-seq data.

For simulations involving bursts of oxidative stress, an increased 
ROS production rate was added for 2 hours to match the duration 
of transient stabilizations of JUND (a gene in the NRF2-associated 
gene cluster) in 3D (24). We selected the minimum increase in ROS 
generation (20-fold; log coefficient of variation = 20%) that gave 
rise to a detectable stabilization of both the NRF2 and p53 pathways 
in the MCF10A-5E base model. Under these conditions, overall ox-
idative stress burden was within 4 to 16% of that observed with 200 
M H2O2. For MCF10DCIS.com and TNBC models, the mean ROS 
generation rate was scaled 1.4-fold to reflect the increased basal ROS 
generation rate described above. NRF2 knockdown was encoded by 
decreasing the net synthesis rate of NRF2 fivefold to mimic the five-
fold decrease in NRF2 protein resulting from short-hairpin knock-
down (fig. S3B). To account for secondary transcriptional adaptations 
(Fig. 5F), initial conditions were also adjusted by RNA-seq–based fold 
changes in model species for shNRF2 cells relative to negative control 
cells (Fig. 3B). DNp53 was encoded by removing all reactions down-
stream of p53 (transcriptional activation of MDM2, PPM1D, CDKN1A, 
and the p53 share of the antioxidant enzyme pool).

For the control case and all genetic perturbations (shNRF2, DNp53, 
and shNRF2 + DNp53), 100 simulations were run with random ROS 
generation rates varied with a log coefficient of variation of 25% to 
capture the variability of HyPer-2 ratios observed experimentally 
(Fig. 4C). Each simulation was run for 2 hours with increased ROS 
production rate and then an additional 10 hours to allow relaxation 
back to steady state. For assessment of species coordination (Figs. 5, 
C to E, and 7, B and I), species abundances were captured at 10 random 
time points from each simulation, and MI was calculated as it was 
for quantitative immunofluorescence datasets. For oxidative stress 
analysis (Figs. 5, F and G, and 7, B and I), the time-integrated intra-
cellular H2O2 concentration was used as an overall measure of oxi-
dative stress.

For simulations involving TNBC cells (Fig. 7, A and B), RNA-seq 
data from the NIH LINCS consortium (91) (Harvard Medical School 
dataset ID: 20348) was used to estimate proportional differences in 
model species abundance between 15 TNBC cell lines and MCF10A 

cells. Reads per kilobase per million mapped reads values were nor-
malized as transcripts per million before fold change calculation. MAF 
and antioxidant species were estimated as described above. TNBC 
models used the same increased basal ROS generation rate as in the 
MCF10DCIS.com model (135). To simulate p53 mutation in the 15 
p53-mutant TNBC cell lines, all reactions downstream of p53 were 
removed.

For simulations involving TNBC tumors from TCGA (Fig. 7, 
H and I), breast cancer sequencing data and associated clinical in-
formation were downloaded from TCGA Data Portal (https:// 
portal.gdc.cancer.gov/). We identified 122 TNBC cases as tumors 
that were scored negative for estrogen receptor expression, pro-
gesterone receptor expression, and HER2 amplification in the clinical 
record. Fragments per kilobase per million mapped reads were nor-
malized as transcripts per million before fold change calculation to 
model species abundance relative to MCF10A cells. Simulations were 
carried out exactly as described for TNBC cell lines. All computa-
tional models and associated results are available in data file S4.

Statistical analysis
For analysis of the 10cRNA-seq dataset (Fig. 2A), Spearman correla-
tion between transcripts and the median expression of the NRF2-
associated gene cluster was calculated at an FDR of 10%. Transcripts 
with a Spearman correlation coefficient above 0.5 were examined 
by GO analysis. Statistical enrichment of GO terms was assessed by 
Fisher’s exact test with FDR-corrected P values. Statistical enrich-
ments in ChIP-seq binding were determined by hypergeometric test 
(fig. S2C). For qPCR data, differences in geometric means were as-
sessed by Welch’s t test after log transformation (fig. S2, A and B). 
Statistical interaction between shNRF2 and DNp53 and differences 
between immunoblotting time courses were assessed by one-way 
analysis of variance (ANOVA) (Figs. 2, D and E; 3E; 4, A and B; and 
5, F and G; and fig. S2C). Statistical interaction between shNRF2, 
DNp53, and Trolox was assessed by three-way ANOVA (Fig. 4E). For 
fig. S15B, two-way ANOVA without replication was used. For un-
paired clinical data, multigroup comparison was made by Kruskal-
Wallis rank sum test (Fig. 6, D to F). For 3D spheroid growth, 
mean differences in area were assessed by Kruskal-Wallis test with 
Dunn’s post hoc test (Fig. 7, C to G). Distributions were compared 
by Kolmogorov-Smirnov test (figs. S2D, S9, and S11). All other two-
sample comparisons were performed by Student’s t test.

SUPPLEMENTARY MATERIALS
stke.sciencemag.org/cgi/content/full/13/627/eaba4200/DC1
Fig. S1. HIF-1 is not appreciably stabilized in 3D culture.
Fig. S2. Abundance of the heterogeneously regulated gene cluster is perturbed by NRF2 
knockdown or p53 disruption, but not by JUND knockdown or human papillomavirus  
E7–induced inhibition of RB.
Fig. S3. NRF2 knockdown and 3D phenotype quantification in MCF10A-5E cells.
Fig. S4. Proliferation differences and signaling similarities between MCF10A-5E and 
MCF10DCIS.com cells.
Fig. S5. NRF2 knockdown causes p53 stabilization in premalignant breast epithelial cell lines.
Fig. S6. Premalignant breast epithelial cell lines have similar adaptations to NRF2 knockdown 
in spheroid culture.
Fig. S7. Representative immunoblot images for the double-strand break and oxidative stress 
time courses in MCF10A-5E cells.
Fig. S8. Local niches of NRF2 stabilization in MCF10A-5E 3D spheroids and pubertal murine 
mammary glands.
Fig. S9. Description and validation of the HyPer-2 probe for H2O2 and the mRFP1-NRF2 
reporter.
Fig. S10. Antioxidant treatment causes an overall increase in MCF10A-5E spheroid size.
Fig. S11. Oxidative stress stabilizes NRF2 in the cytoplasm more so than electrophilic stress.
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Fig. S12. Oxidative stress does not measurably inhibit MDM2 induction by stabilized p53.
Fig. S13. NRF2 perturbations do not detectably alter MDM2 abundance.
Fig. S14. Calibration of an integrated NRF2-p53 systems model for oxidative stress.
Fig. S15. Endogenous NRF2 and p21 are not proximity labeled by BirA* fusions of each other.
Fig. S16. Anti-NRF2 antibody validation for immunohistochemistry.
Fig. S17. NRF2 and p53 are costabilized in breast epithelial ducts.
Fig. S18. Low-magnification hematoxylin-eosin images of the tissues and tumors in the work.
Table S1. qPCR primer sequences.
Table S2. Parameter summary for the integrated NRF2-p53 computational model.
Data file S1. Promoter analysis results underlying the summary Venn diagram in Fig. 1B.
Data file S2. GO enrichment analysis.
Data file S3. Gene set enrichment analysis of differentially abundant transcripts in MCF10A-5E 
and MCF10DCIS.com cells upon NRF2 knockdown compared with control.
Data file S4. NRF2-p53 computational model and associated files.
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the relevance of these networks to normal tissue development, tumor progression, and therapeutic strategies.
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