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Breast and mammary epithelial cells experience different local environments during tissue development and tu-
morigenesis. Microenvironmental heterogeneity gives rise to distinct cell regulatory states whose identity and
importance are just beginning to be appreciated. Cellular states diversify when clonal three-dimensional (3D)
spheroids are cultured in basement membrane, and one such state is associated with stress tolerance and poor
response to anticancer therapeutics. Here, we found that this state was jointly coordinated by the NRF2 and p53
pathways, which were costabilized by spontaneous oxidative stress within 3D cultures. Inhibition of NRF2 or p53
individually disrupted some of the transcripts defining the regulatory state but did not yield a notable phenotype
in nontransformed breast epithelial cells. In contrast, combined perturbation prevented 3D growth in an oxidative
stress—dependent manner. By integrating systems models of NRF2 and p53 signaling in a single oxidative stress
network, we recapitulated these observations and made predictions about oxidative stress profiles during 3D
growth. NRF2 and p53 signaling were similarly coordinated in normal breast epithelial tissue and hormone-negative
ductal carcinoma in situ lesions but were uncoupled in triple-negative breast cancer (TNBC), a subtype in which
p53 is usually mutated. Using the integrated model, we correlated the extent of this uncoupling in TNBC cell lines
with the importance of NRF2 in the 3D growth of these cell lines and their predicted handling of oxidative stress.
Our results point to an oxidative stress tolerance network that is important for single cells during glandular devel-

opment and the early stages of breast cancer.

INTRODUCTION

Among glandular tissues, the breast-mammary epithelium is unique
because of the marked expansion and reorganization that occur after
birth (1). During puberty, a branched network of epithelial ducts is
pioneered by terminal end buds (TEBs), which emerge from the ru-
dimentary gland and extend into the surrounding mesenchyme (2).
TEBs contain a mixture of proliferating stem-progenitor cells and
differentiating cells fated to the secretory luminal-epithelial or con-
tractile basal-myoepithelial lineages. During morphogenesis, TEB cells
are dynamically exposed to different microenvironments that inform
final organization of the gland (3). Some microenvironmental cues
are supportive or instructive to cells [hormones (4), growth factors
(5), and basement membrane (6)]. Others are deleterious or lethal [loss
of polarity (7), detachment (8), and endoplasmic reticulum stress (9)].
All of these cues are reconfigured aberrantly and heterogeneously
during the early stages of breast-mammary cancer (10-12).

Stress and survival signals also juxtapose when breast-mammary
epithelial cells are grown in three-dimensional (3D) culture with re-
constituted basement membrane extracellular matrix (ECM) (13, 14).
Combining the appropriate adhesive and soluble cues yields TEB-like
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behavior in 3D-cultured multicellular epithelial fragments from the
mammary gland (7). For single-cell cultures that reliably organize as
3D structures, clones or progenitors must iteratively proliferate, main-
tain cell-cell adhesions, and coordinate function to establish a multi-
cellular ecosystem (15, 16). Cell regulatory states diversify within 3D
organoids of primary breast-mammary epithelia (17-19) and also in
the simplest 3D spheroids of isogenic cell lines (20-23). Identifying
such cell regulatory heterogeneities is important, because there are
parallels to in situ lesions of the breast, where premalignant cells must
survive and proliferate in the duct (24, 25).

Previously, we identified a cluster of transcripts (Fig. 1A, top) that
covaries heterogeneously among hormone-negative, basal breast ep-
ithelial cells grown as 3D spheroids (20). The cluster contains KRT5
(a PAMS50 classifier for basal-like breast cancer) (26) along with mul-
tiple stress tolerance genes, including JUND (27), CDKNIA (28),
MUSS81 (29), and HSPEI (30). The transcripts in this cluster were
among the strongest and most-negative predictors of breast cancer
response to chemotherapy and targeted agents in an independent
clinical trial (31). We reported that individual genes in the cluster
have complex time- and microenvironment-dependent relationships
in 3D spheroids, animal models of ductal carcinoma in situ (DCIS),
and clinical hormone-negative premalignancies (24). However, the
overarching regulation of the cluster was not determined.

Here, we found that regulatory state heterogeneity emerges from
the coordinated action of two stress-responsive transcription fac-
tors (TFs)—NFE2L2 (NRF2) (32, 33) and TP53 (p53) (34)—which
become stabilized posttranslationally when breast epithelial cells vari-
ably experience oxidative stress in 3D culture. Genetic disruption of
NRF?2 signaling altered the transcriptional cluster, but 3D phenotypes
were buffered or redirected by compensatory increases in p53 signaling.
Disabling p53 function synergized with NRF2 deficiency, suppressing
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Fig. 1. Transcriptomic fluctuations of ECM-cultured breast epithelial spheroids reveal a gene cluster associated with heterogeneous NRF2 stabilization in a
3D-specific environment. (A) Maximum likelihood inference parameterization (bottom) of a two-state distribution of transcript abundances for the gene cluster from
microarray profiles (top) of ECM-attached basal-like MCF10A-5E breast epithelial cells, randomly collected as 10-cell pools (n = 16) from 3D-cultured spheroids after
10 days, extracted from (20). Inferred expression frequencies are the maximum likelihood estimate with 90% confidence interval (Cl). (B) Venn diagram summarizing the
candidate TFs predicted from four different bioinformatics algorithms (data file S1). (C and D) Quantitative immunofluorescence of (C) hyperphosphorylated RB (pRB, an
upstream proxy of active E2F1) and (D) NRF2 in 3D culture with ECM (top), 2D culture (middle), and 2D culture with ECM (bottom). Expression frequencies for a two-state
lognormal mixture model (preferred over a one-state model by F test; P < 0.05) were calculated by nonlinear least squares of 60 histogram bins collected from n = 1100
to 1600 of cells quantified from 100 to 200 spheroids from two separate 3D cultures. For each subpanel, representative pseudocolored images are shown in the top right

inset and merged (magenta) with DAPI nuclear counterstain (blue) in the bottom right inset. Scale bars, 10 um.

normal 3D proliferation and promoting irregular hyperproliferation
in a transformed-yet-premalignant derivative. These observations
were consistent with an integrated systems model of NRF2-p53 sig-
naling that encoded a shared oxidative stress trigger and common
pool of antioxidant target genes without any further cross-talk. Among
clinical specimens, NRF2-p53 coordination was retained in normal
primary breast tissue and hormone-negative DCIS. However, the
two pathways were largely uncoupled in triple-negative breast can-
cers (TNBCs), in which p53 is usually mutated (35). The integrated
NRF2-p53 model predicted variable extents of uncoupling among
TNBC:s lines, and high uncoupling coincided with the most severe
3D growth alterations upon NRF2 knockdown. Past work on NRF2
in breast cancer has focused on its direct interactions with TNBC-
associated tumor suppressors (36, 37). Our results suggest a broader
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systems-level role for NRF2 and p53 in oxidative stress tolerance of nor-
mal breast-mammary epithelia and hormone-negative premalignancies.

RESULTS

Statistical bioinformatics links gene cluster regulation
toNRF2 and p53

We began by looking within the gene cluster (Fig. 1A, top) for po-
tential regulatory mechanisms. The only TF in the cluster is JUND,
and we showed previously that its chronic knockdown in MCF10A-5E
cells (20) causes specific morphometric defects during spheroid growth
(24). We revisited these results by acutely knocking down the ex-
pression of JUND with inducible short hairpin RNA (shRNA) and
measuring transcript abundance of cluster genes by quantitative
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polymerase chain reaction (QPCR) (see Materials and Methods). Un-
expectedly, other than JUND itself, no transcripts were reliably altered
by its knockdown (see later in this section), supporting a regulatory
role for other factors outside of the cluster.

We constrained the search for candidate regulators by using max-
imum likelihood inference (38) to estimate a frequency of bimodal
transcriptional regulation (39) for the gene cluster. Given the 10-cell-
averaged fluctuations from the original study (20), the maximum
likelihood approach inferred two lognormal regulatory states defined
by transcript abundance (Fig. 1A, bottom). The data supported a low-
abundance regulatory state predominating in 58% of ECM-attached
cells along with a second, high-abundance subpopulation in the re-
maining 42%. The frequency estimates placed quantitative bounds on
the bimodal characteristics of upstream regulatory mechanisms.

Next, we applied a panel of bioinformatics approaches to search
for TFs that might impinge upon the gene cluster (see Materials and
Methods). The informatic methods adopt different strategies for as-
sessing binding site overrepresentation (40-43). Therefore, we in-
tersected their respective outputs to arrive at predictions that were
robust to algorithmic details. The analysis converged upon two TFs:
the G1/S regulator E2F1 and the stress response effector NRF2 (Fig. 1B
and data file S1). We assessed the relative activation of the NRF2 and
E2F1 pathways in single cells by quantitative immunofluorescence
for the total stabilized NRF2 protein or phosphorylated RB1 (pRB in-
dicates disinhibited E2F1; see Materials and Methods). In 3D spheroid
cultures, pRB immunostaining was bimodal, but high-pRB cells were
much rarer than the inferred regulatory frequency of the gene cluster
(Fig. 1C, top). In 2D cultures, pRB staining was more than twice
as immunoreactive and nearly twice as prevalent in the population
(Fig. 1C, middle). The reduced proportion of high-pRB cells in 3D is
consistent with the proliferative suppression of late-stage spheroid
cultures (23). A 3D-like distribution of pRB was achieved in 2D cul-
tures upon addition of dilute ECM (Fig. 1C, bottom), stemming from
soluble proliferation-suppressing factors in the reconstituted base-
ment membrane preparation (44). By contrast, NRF2 stabilization
was only distinctly bimodal in 3D spheroids, and the observed fre-
quency of low- and high-NRF?2 states almost exactly coincided with
that inferred for the gene cluster (Fig. 1D). Stabilization of hypoxia-
inducible factor 1a (HIF-10) was negligible in 3D spheroids overall
(fig. S1, A and B), excluding irregular hypoxic stress as a contributor
to the two-state distribution of NRF2. These results build a strong sta-
tistical argument for NRF2 as a covarying regulator of the gene cluster.

The NRF2-associated gene cluster (Fig. 1A, top) was originally
identified by quantitative analysis of transcriptomic fluctuations among
4557 genes profiled by oligonucleotide microarray (20). The same
samples were later reprofiled by 10-cell RNA sequencing (10cRNA-
seq) (45), creating an opportunity to look more deeply at covariates
with the NRF2-associated gene cluster. We used the median ranked
fluctuations of the cluster across 10 cell samples (Fig. 1A, top) and
surveyed the 10cRNA-seq data for genes that covaried (Spearman
p > 0.5), identifying 633 candidates (Fig. 2A). When this expanded
cluster was assessed for functional enrichments by Gene Ontology
(GO) (data file S2) (46), we noted multiple GO terms linked to cell
stress (“Response to stress” and “Oxidative stress”) and the TF p53
(“DNA damage response” and “p53 pathway”). p53 is sporadically
stabilized in regenerating epithelia such as the intestine and skin,
but p53 activation in quiescent tissues is rare (47). Recognizing the
residual proliferation observed in 3D cultures (Fig. 1C), we immuno-
stained for p53 and found nonuniform stabilization associated with
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the abundance of NRF2 in single cells [Fig. 2B, estimated mutual
information (MI) = 0.15 (0.12 to 0.18); see Materials and Methods].
The analysis raised the possibility of a coordinated NRF2-p53 regu-
latory event triggered heterogeneously when breast epithelial cells
proliferate and organize in reconstituted ECM.

NRF2 coimmunoprecipitates with p53 in TNBC cells harbor-
ing gain-of-function p53 mutations, but this complex is absent in
MCFI10A cells with wild-type p53 (37). Loss of wild-type p53 function
in MCF10A cells yields only minor 3D culture defects, but gain-of-
function p53 mutants strongly perturb 3D architecture (48). Sus-
pecting that some of p53’s effects could be explained through NRF2,
we inducibly knocked down NRF2 with shRNA and inducibly coex-
pressed a truncated p53 (49) that acts as a dominant negative (DNp53;
Fig. 2C). Compared with the gene cluster response to JUND knock-
down or constitutive E2F1 activation through RB inhibition with
overexpressed human papillomavirus E7 protein, we observed sub-
stantially more alterations upon NRF2 knockdown (66%) or inhibi-
tion of p53 (31%; Fig. 2D and fig. S2, A to D). Using public chromatin
immunoprecipitation sequencing (ChIP-seq) datasets (50, 51), we
found significant enrichment of proximal NRF2 binding among tran-
scripts reduced by NRF2 knockdown and a slight enrichment in p53
binding among those increased by NRF2 knockdown (fig. S2C).
Compound perturbation of NRF2 and p53 elicited further nonaddi-
tive changes to multiple genes in the cluster, including synergistic re-
duction in CDKNIA, encoding a cyclin-dependent kinase inhibitor,
and KRT5, encoding a basal cytokeratin. Although p53 can antagonize
certain NRF2 target genes in reporter assays (52), significant antago-
nism was detected for only one transcript in the cluster (MRPL33; fig.
S2C). Phenotypically, disruption of NRF2 reduced mean 3D growth
by 10 to 13% (fig. S3, A to D), but dual perturbation with p53 gave rise
to an increase in aborted spheroids unable to grow in the culture
(Fig. 2E). The penetrance of the phenotype (37%; range, 34 to 44%)
was close to the percentage of cells showing stabilized NRF2 at the
same time point in 3D culture (43%; Fig. 1E). For this clonal basal-like
breast epithelial line (20), we conclude that 3D culture heterogeneously
elicits NRF2- and p53-inducing stresses, which must be withstood
for extended proliferation.

NRF2 disruption in basal-like premalignancy causes similar
p53 adaptations but different 3D phenotypes

We next asked how the cellular, molecular, and phenotypic relation-
ships between NRF2 and p53 change in basal-like premalignancy by
using isogenic MCF10DCIS.com cells (53) as a proxy for DCIS (54).
MCF10DCIS.com cells express oncogenic HRAS (55) and hyperpro-
liferate as 3D spheroids (confirmed in fig. S4A), but they retain wild-
type p53 function, albeit at reduced levels compared with parental
MCF10A cells (fig. S4, B and C). By two-color immunostaining, we
found that NRF2-p53 costabilization was even more pronounced in
MCF10DCIS.com cells [MI = 0.30 (0.27 to 0.33); Fig. 3A]. To identify
common adaptive programs downstream of NRF2 deficiency, we in-
ducibly knocked down NRF2 and profiled 3D spheroids by RNA-
seq (see Materials and Methods). Among transcripts consistently
increased or decreased in both MCF10A-5E and MCF10DCIS.com
spheroids, there was a significant enrichment in gene signatures en-
compassing p53, including transcriptional programs downstream of
BRCA1, ATM, and CHEK2 (Fig. 3B and data file S3). Consistent
with these results, NRF2 knockdown in MCF10DCIS.com cells was
sufficient to significantly stabilize p53 (fig. S5A). Stabilization of wild-
type p53 upon NRF2 knockdown was also observed in premalignant
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Fig. 2. Transcriptome-wide covariate analysis of the NRF2-associated gene cluster suggests a coordinated
adaptive-stress response involving p53. (A) Transcripts covarying with the median NRF2-associated fluctuation
signature (Fig. 1A, top) (20) measured by 10cRNA-seq (45) of ECM-attached MCF10A-5E cells grown as 3D spheroids
(n = 18 10-cell pools from GSE120261). Selected GO enrichment analysis (green and purple) is shown for the tran-
scripts with a Spearman correlation (p) greater than 0.5. The complete list of enrichments is available in data file S2.
(B) Quantitative immunofluorescence of NRF2 and p53 abundance in ECM-attached MCF10A-5E cells grown as 3D
spheroids. Representative pseudocolored images for NRF2 (top left) and p53 (middle left) are shown merged with
DAPI nuclear counterstain (bottom left). White arrows indicate concurrent NRF2 and p53 stabilization. Median-scaled
two-color average fluorescence intensities are quantified (right) along with the log-scaled and background-subtracted
mutual information (MI) with 90% Cl for n = 1691 cells segmented from 50 to 100 spheroids from two separate 3D
cultures. (C) Genetic perturbation of NRF2 by inducible shRNA knockdown (top) and p53 by inducible expression of
a FLAG-tagged carboxy terminal (residues 1 to 13 and 302 to 390) dominant-negative p53 (DNp53; bottom). NRF2
knockdown reduced NRF2 protein abundance to 22 + 4% of control knockdown (fig. S3B). MCF10A-5E cells were
treated with doxycycline (1 ug/ml) for 72 (top) or 24 (bottom) hours and immunoblotted for NRF2 or FLAG with vin-
culin, tubulin, and p38 used as loading controls and p21 used to confirm efficacy of DNp53. The negative control for
shNRF2 was an inducible shGFP, and the negative control for DNp53 was an inducible FLAG-tagged LacZ. (D) Abun-
dance changes in the gene cluster after single and combined perturbations of NRF2 and p53. NQOT was used as a
control for efficacy of shNRF2, and CDKNTA shows efficacy of DNp53. MCF10A-5E cells with or without NRF2
knockdown or DNp53 were treated with doxycycline (1 ug/ml) for 48 hours, grown as 3D spheroids for 10 days, and
profiled for the indicated genes by qPCR. Data are log, geometric mean relative to the negative control (shGFP +
FLAG-tagged LacZ), with asterisks indicating statistically significant changes (left and middle columns) or interaction
effects (right column) by two-way ANOVA of n = 8 independent 3D-cultured samples and an FDR of 5%. The com-
plete set of transcripts in the gene cluster is shown in fig. S2C. (E) Dual inactivation of NRF2 and p53 causes synergis-
tic proliferative suppression in MCF10A-5E 3D spheroids. Black arrows indicate proliferation-suppressed spheroids.
Data are mean percentage of proliferation-suppressed spheroids + SEM of n = 8 independent 3D-cultured samples after
10 days. Statistical interaction between NRF2 and p53 (Pi,y) was assessed by two-way ANOVA with replication.
Scale bars, 20 um (B) and 100 um (E).

CHEK2'1%04IC SUM102PT cells (56) and became even more pro-
nounced when these cells were reconstituted with inducible wild-
type CHEK2 (fig. S5, B and C), as expected, given the feedforward
stabilization of p53 by ATM and ATM-activated CHEK2 (57). Thus,
NRF2 impairment promotes p53 pathway activity in basal-like breast
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epithelia without the need for specific
oncogenic drivers.

Despite many transcriptomic alter-
ations in common with MCF10A-5E
cells (Fig. 3B), MCF10DCIS.com cells
yielded very different 3D phenotypes
when NRF2 or p53 was perturbed. NRF2
knockdown did not detectably alter 3D
growth (fig. S6A) but instead gave rise to
more rounded, organized MCF10DCIS.
com spheroids of high circularity com-
pared with control (Fig. 3C), which
reverted upon addback of an RNA in-
terference (RNAi)-resistant (RR) NRF2
mutant (fig. S6B). NRF2 deficiency also
increased rounding in 3D cultures of
SUM102PT cells with or without CHEK2
reconstitution (fig. S6C). By contrast,
p53 disruption in MCF10DCIS.com cells
with either DNp53 or a gain-of-function
p53°2*%€ mutant increased the preva-
lence of hyper-enlarged outgrowths (Fig.
3D). Combined NRF2-p53 perturbation
elicited a synergistic increase in non-
spherical hyper-enlargement (Fig. 3E),
starkly contrasting the proliferative sup-
pression observed with the same combina-
tion in nontransformed MCF10A-5E cells
(Fig. 2E). The data suggested that the
coordinate transcriptional adaptations
of NRF2 and p53 are conserved in pre-
malignant cells but insufficient to buffer
the cellular phenotypes caused by single-
gene perturbations in either pathway.

NRF2 and p53 are coordinately
stabilized by sporadic

oxidative stress

Coordination of the NRF2-p53 path-
ways could be achieved if they shared
the same inducer. We thus considered
various potential upstream and inter-
mediate triggers for NRF2 and p53 sta-
bilization in basal-like breast epithelia.
Inhibition of KEAP1 with the electro-
phile sulforaphane (58) stabilized NRF2
but not p53, and pharmacologic inhibi-
tion of MDM2 with nutlin-3 (59) stabi-
lized p53 but not NRF2 (fig. S4, B to E),
suggesting they act as parallel pathways
downstream of a common inducer. An
obvious candidate was DNA damage,
given CDKNIA and MUS8]1 in the gene
cluster (Fig. 1A, top) and the most rec-

ognized function of p53 (60). However, chemotherapy-induced
double-strand breaks did not appreciably stabilize NRF2 in cells
with wild-type p53 (Fig. 4A and fig. S7, A and B), and genetically
driving increased proliferation (61) did not detectably affect regula-
tion of the gene cluster in 3D spheroids (fig. S2, B and D). The lack
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Fig. 3. NRF2-p53 costabilization is enhanced,
and shNRF2-induced p53 adaptations are pre-
served in basal-like premalignancy but have
different morphometric consequences. (A) Quan-
titative immunofluorescence of NRF2 and p53
abundance in ECM-attached MCF10DCIS.com cells
grown as 3D spheroids. Median-scaled two-color
average fluorescence intensities are quantified
along with the log-scaled and background-
subtracted MI with 90% Cl for n = 1832 cells seg-
mented from 70 to 110 spheroids from two
separate 3D cultures. (B) Common changes in
transcript abundance identified by RNA-seq of
MCF10A-5E (5E) and MCF10DCIS.com (DCIS.com)
cells grown as 3D spheroids with or without NRF2
knockdown. The negative control for shANRF2 was
an inducible shGFP (5E) or shLacZ (DCIS.com).
Data are log,-transformed Z scores for genes de-
tected at >5 transcripts per million from n = 4
biological replicates. Enriched gene sets for the
BRCA1, ATM, and CHEK2 networks are indicated,
with black denoting multiple enrichments. The
complete list of enrichments is available in data
file S3. (€) Quantification of rounded spheroids
(circularity >0.9) in 3D-cultured MCF10DCIS.com
cells with or without NRF2 knockdown. The neg-
ative control for shNRF2 was an inducible shLacZ.
(D) Quantification of large spheroids (size > e®* ~
5000 um?) in 3D-cultured MCF10DCIS.com cells
with or without p53 disruption. The negative
control for p53 constructs was an inducible
FLAG-tagged LacZ. (E) Quantification of size and
circularity in 3D-cultured MCF10DCIS.com cells
with or without NRF2 knockdown, p53 disrup-
tion, or both. For (C) to (E), cells with or without
inducible perturbations were treated with doxy-
cycline (1 ug/ml) for 48 hours, grown as 3D
spheroids for 10 days, imaged by brightfield mi-
croscopy, and segmented. For (C) and (D), data
are mean + 90% bootstrap-estimated Cl fromn =
8 biological replicates, with P values by rank sum
test estimated by bootstrapping. For (E), data are
means + SEM of n = 8 biological replicates. Sta-
tistical interaction between NRF2 and p53 per-
turbations (Pint) was assessed by two-way ANOVA
with replication. Scale bars, 100 um.

of NRF2-p53 coinduction by conventional
agonists prompted a search for less ca-
nonical activators.

One shared inducer of the KEAPI1-
NRF2 and ATM-CHEK2-p53 pathways
is oxidative stress (62, 63). In human
breast tissue, increased levels of reactive
oxygen species (ROS) are generated and
tolerated by basoluminal progenitors (64),
which are the cells of origin for basal-
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like breast cancer (65). We documented local niches of Nrf2 stabili-
zation in the murine mammary gland during puberty (fig. S8, A to
F), potentially linking NRF2 and oxidative stress in expanding pro-
genitor(-like) cells, such as MCF10A. When MCF10A-5E cells were
exogenously stimulated with H,O,, NRF2 was rapidly stabilized, and
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p53 also accumulated after several hours (Fig. 4B and fig. S7, A and
B). Recognizing oxidative stress heterogeneities in 3D spheroids
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(21, 22, 66), we used the genetically encoded sensor HyPer-2 (67)

together with an engineered mRFP1-NRF2 reporter (NRF2rep) to
colocalize intracellular H,O, with stabilized NRF2 (see Materials
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Fig. 4. NRF2-p53 signaling coordination and 3D phenotypes arise from spon-
taneous and oncogene-induced oxidative stress. (A and B) NRF2 and p53 stabi-
lization by oxidative stress compared with DNA double-strand breaks. MCF10A-5E
cells were treated with 5 uM doxorubicin (double-strand breaks) or 200 uM H,0,
(oxidative stress) for the indicated time points, and NRF2 (magenta) or p53 (green)
protein abundance was estimated by quantitative immunoblotting. Data are
means + SEM of n = 3 (A) or 4 (B) independent perturbations. n.s., not significant.
(€) Endogenous oxidative stress association with NRF2 stabilization in 3D spheroids.
MCF10A-5E cells stably expressing HyPer-2 (67) and mRFP1-NRF2 reporter (NRF2rep)
were grown as 3D spheroids for 10 days and imaged by laser scanning confocal
microscopy. Representative pseudocolored images for HyPer-2 ratio (top left) and
mRFP1-NRF2 reporter (bottom left) are shown. HyPer-2 ratios and mRFP1-NRF2 re-
porter fluorescence are quantified (right) along with the log-scaled MI with 90% Cl
for n =605 cells segmented from 10 to 25 spheroids from four separate 3D cultures.
(D) Suppression of endogenous NRF2-p53 coordination during 3D culture with the
antioxidant Trolox. Representative pseudocolored images for NRF2 (top left) and
p53 (middle left) are shown merged with DAPI nuclear counterstain (bottom left).
White arrows indicate concurrent NRF2 and p53 stabilization. The log-scaled and
background-subtracted Ml (right) is shown with 90% CI estimated from n = 1000
bootstrap replicates. (E) Trolox interference with the synergistic proliferative sup-
pression caused by dual inactivation of NRF2 and p53 in MCF10A-5E cells. Data are
mean percentage of proliferation-suppressed spheroids + SEM of n = 8 indepen-
dent 3D-cultured samples after 10 days. The overall effect of Trolox on spheroid
size is shown in fig. S10. Statistical interaction between Trolox and NRF2-p53 (Pjnt)
was assessed by three-way ANOVA with replication. For (A) and (B), change in protein
abundance over time was assessed by one-way ANOVA. For (D) and (E), MCF10A-5E
cells cultured for 10 days in 3D with or without 50 uM Trolox supplemented every
2 days. Scale bars, 10 um (C) and 20 um (D).

and Methods and fig. S9, A to F). We observed a small but nonzero
MI between HyPer-2 fluorescence ratios and NRF2rep [MI = 0.05
(0.02 to 0.10); randomized MI = 0.0004 (0.0001 to 0.0007); Fig. 4C],
suggesting a complex connection between the two reporters (see next
section). Next, we evaluated whether oxidative stress resided upstream
of NRF2-p53 coordination by using the cell-permeable, vitamin E
analog Trolox to quench overall ROS in the 3D cultures. Trolox treat-
ment halved the MI between stabilized NRF2-p53 and significantly
reduced the synergistic proliferative suppression caused by dual per-
turbation of NRF2 and p53 (Fig. 4, D and E, and fig. S10). Together,
the data suggested that the NRF2 and p53 pathway coregulation in-
volves upstream heterogeneities in oxidative stress.

An integrated NRF2-p53 model of oxidative stress reconciles
pathway coordination with 3D phenotypes

To connect NRF2 and p53 costabilization with spontaneous hetero-
geneities in oxidative stress, we assembled an integrated computa-
tional systems model. The model expands or condenses isolated
modules of NRF2 and p53 signaling from the literature, fusing them
through known or reported mechanisms of cross-talk and conver-
gence (Fig. 5A). For the NRF2 pathway, we streamlined the detailed
model of Khalil et al. (68) at several points. Instead of relying on
ill-defined kinetic parameters for KEAP1-mediated ubiquitination,
KEAP1-NRF2 complexes were modeled as separate oxidized or re-
duced species with distinct half-lives estimated by experiment (see
Materials and Methods). We likewise abandoned the elaborate multi-
step encoding of thioredoxins, peroxiredoxins, and glutathione
transferases (68) by substituting a simpler, lumped pool of antioxidant
enzymes in the model. The resulting architecture is similar to the
general negative-feedback control scheme of stress response gene
regulatory networks described by Zhang and Andersen (69). Last,
we retained the nucleocytoplasmic trafficking of stabilized NRF2 to
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Fig. 5. NRF2-p53 pathway coordination and synergistic phenotypes are captured by an integrated systems model of oxidative stress. (A) Connecting NRF2 and
p53 signaling models (68, 69, 71) through oxidative stress activators and antioxidant target enzymes. Additional cross-talk linking oxidative stress to p53 inhibition (73),
p53 to NRF2 through p21 (76), and NRF2 to MDM2 (74, 75) was considered (gray). (B) Simulation strategy for quantifying association between signaling intermediates. The
model was challenged with various ROS production rates and randomly sampled at multiple intermediate time points (yellow to blue). Integrated intracellular H,O, (gray)
is used for phenotype predictions related to NRF2 and p53 perturbation. (C) Intracellular H,O, concentration is associated with a reporter of NRF2 stabilization (NRF2rep)
following simulated step increases in ROS production rate as illustrated in (B). (D and E) Coordination of NRF2 and p53 stabilization in the oxidative stress model and in
simulations of premalignancy through the computational approach illustrated in (B). (F and G) Modeling NRF2 knockdown by reduced synthesis captures the synergistic
oxidative stress profile of cells harboring dual perturbation of the NRF2 and p53 pathways. In (F), transcriptional changes secondary to NRF2 knockdown were added to
the model according to the results in Fig. 3B. For (C) to (E), simulated time points are log-scaled and background-subtracted Ml with 90% Cl for 10 time points from n =
100 random ROS generation rates. For (F) and (G), time-integrated intracellular H,O, profiles are scaled to the unperturbed simulations and reported as the mean oxida-
tive stress with 90% ClI from n = 100 random ROS generation rates. Statistical interaction between shNRF2 and DNp53 perturbations (Pi,;) was assessed by two-way
ANOVA with replication.

account for observations that H,O, stimulation retains NRF2 in  was adjusted in the final model to yield steady-state intracellular H,O,
the cytoplasm longer than treatment with the electrophilic stress, concentrations consistent with the literature (70).

sulforaphane (fig. S11, A to C). Oxidative stress feeds directly into the For the p53 pathway, we built upon the base model of Batchelor ef al.
NRF2 module according to a basal production rate of ROS, which  (71), which was originally used to describe oscillations in p53 abundance
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after ionizing radiation. In this model, the kinases ATM and CHEK2
act as aggregate sensor transducers of the DNA damage response
(Fig. 5A). They phosphorylate and stabilize p53 against degradation
triggered by the ubiquitin ligase MDM2, which is also directly phos-
phorylated and inactivated by ATM. Stabilized p53 promotes its
own degradation by inducing the expression of MDM2 transcripts
and deactivates ATM-CHEK2 by enhancing transcription of the
phosphatase-encoding gene PPM1D. For the integrated model, ox-
idative stress replaced DNA double-strand breaks as the pathway
trigger, recognizing that ATM autoactivates in the presence of oxidants
(63). Furthermore, in response to oxidative stress, proper induction of
many antioxidant enzymes requires p53 (72), which contributes to the
overall antioxidant pool along with antioxidant response element
(ARE) target genes (Fig. 5A). Oxidative stress has also been reported
to inhibit p53 DNA binding (73), but we found that p53 stabilized
by H,O, treatment was as capable at increasing MDM2 abundance
as was p53 stabilized by nutlin-3 (fig. S12). Likewise, NRF2 increases
MDM2 abundance in some settings (Fig. 5A, gray) (74, 75), but we
were unable to detect changes in MDM2 when NRF2 was knocked
down with shRNA or stabilized with sulforaphane (fig. S13, A to D).
As a final candidate for NRF2-p53 cross-talk that was conditionally
incorporated in the model, we considered reports that p21, encoded
by the p53 target gene CDKNIA, directly stabilizes NRF2 by inter-
fering with KEAP1-catalyzed turnover (Fig. 5A, gray) (76, 77). To-
gether, the modifications provided an integrated model of NRF2-p53
signaling downstream of oxidative stress with enough molecular
detail to enable kinetic and functional predictions.

We revisited the oxidative stress time course (Fig. 4B) to append
immunoblot quantification of ATM-CHEK2 phosphorylation and
p21 abundance after H,O, addition (fig. S14A). Exogenous H,0,
was encoded as an extracellular spike-in that decayed rapidly and
spontaneously (78) amidst a basal ROS generation rate, yielding a
realistic intracellular H,O, burden at steady state (70). The H,0,
partition coefficient in the model was calibrated to capture the mag-
nitude of NRF2 stabilization (see Materials and Methods). Likewise,
the parameters for H,O,-induced autoactivation of ATM-CHEK2
and signal inactivation were defined to align with the time-delayed
kinetics and duration of p53 stabilization (fig. S14B). In this model,
addition of p53-p21-NRF2 cross-talk (76) caused NRF2 stabilization
to peak earlier and deactivate faster than observations (fig. S14C). We
were also unable to detect even transient short-range interactions be-
tween inducible BirA*-fused versions of p21 or NRF2 and endoge-
nous NRF2 or p21 by proximity ligation (fig. S15, A to C). The results,
thus, argued against p53-p21-NRF2 cross-talk during oxidative stress
in these cells.

With the provisionally calibrated base model, we sought to test
whether the encoded mechanisms of regulation were sufficient to
capture prior observations relating NRF2, p53, and oxidative stress.
The data obtained by quantitative fluorescence microscopy (Figs. 2B,
3A, and 4C) presumably arose from spontaneous oxidative stress
that was occurring transiently and asynchronously during imaging.
We mimicked oxidative stress transients by triggering a step increase
in the rate of ROS production for 2 hours, followed by relaxation of
the system for an additional 10 hours (Fig. 5B). The magnitude of the
step was sampled lognormally to elicit intracellular H,O, concentra-
tions within the range of HyPer-2 ratios observed experimentally
(see Materials and Methods). We represented the asynchrony of im-
age acquisition by randomly selecting 10 snapshots of the network
for each model iteration. This collection of 1000 snapshots (100 random
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generation rates X 10 random time points) was used to quantify co-
ordination of species within the model.

For connecting oxidative stress to NRF2 stabilization (Fig. 4C),
we expanded the base model to include the mRFP1-NRF2 reporter,
which does not bind DNA or interact with MAF proteins and re-
quires ~1 hour to mature fully (see Materials and Methods) (79). By
contrast, HyPer-2 becomes fully oxidized within ~1 min of H,0O,
addition (67), enabling intracellular H,O, concentration in the model
to be used directly as a surrogate of HyPer-2 fluorescence ratio. We
calculated the MI from 1000 simulated snapshots and found that the
two reporters were statistically coupled in the model [MI = 0.14 (0.10
t0 0.19); randomized MI = 0.001 (2.8 x 107° to 0.0005); Fig. 5C]. As-
sociations were stronger than those observed by experiment (Fig. 4C)
due to the early time points sampled in the model (yellow-orange
times in Fig. 5C), suggesting that peak H,O, transients may be diffi-
cult to observe in practice. We next compared endogenous NRF2-p53
costabilization between MCF10A-5E and MCF10DCIS.com cells.
The base MCF10A-5E model was adjusted to reflect (i) proportional
differences in species abundance estimated from RNA-seq (see Mate-
rials and Methods) and (ii) an increased ROS generation rate estimated
from HyPer-2 imaging (fig. S9D). NRF2-p53 MI was much less de-
pendent on signaling transients, and coupling was substantially higher
in MCF10DCIS.com cells. The simulations were consistent with our
immunofluorescence data (Figs. 3A, 4C, and 5, D and E) and support
that NRF2-p53 pathway kinetics were accurately encoded in the
base model.

We then investigated whether the base model could also relate to
the synergistic phenotypes observed upon dual NRF2-p53 perturba-
tion in MCF10A-5E and MCF10DCIS.com cells (Figs. 2E and 3E).
We mimicked shNRF2-mediated knockdown by reducing the NRF2
production rate fivefold in the model (fig. S3B) and encoding sec-
ondary transcriptional adaptations in other components by using the
associated RNA-seq data (Fig. 3B). For DNp53, the p53 species was
rendered unable to induce transcription of MDM2, PPM1D, p21,
and its share of the antioxidant enzyme pool. After reestablishing
steady state, the perturbed models were challenged with the random
step increase in ROS production described above. We used the time-
integrated intracellular H,O, concentration as the overall measure
of oxidative stress experienced during simulation with either the
MCF10A-5E or the MCF10DCIS.com initial conditions. For both
cell lines, the base model predicted synergistic increases in oxidative
stress beyond the linear superposition of shNRF2 and DNp53 effects
(Fig. 5F). Encouragingly, the same conclusions were reached with
models that simply encoded the reduced NRF2 production rate with-
out secondary adaptations (Fig. 5G). Beyond oxidative stress inducers
and antioxidant target enzymes, we conclude that the NRF2-p53
network does not require any additional mechanisms to capture sig-
naling coordination or phenotypic interactions.

NRF2-p53 coregulation occurs in normal breast tissue

and hormone-negative DCIS but not in invasive TNBC

The regulatory heterogeneities observed in 3D culture often reflect
adaptations in hormone-negative premalignancy (24) that become
further disrupted in TNBCs (25). We thus sought to quantify NRF2-
p53 coordination in TNBC and premalignant DCIS lesions, using
adjacent normal tissue as a comparator. The TP53 gene is frequently
mutated in TNBC (35) and gives rise to loss of p53 protein or hyper-
stabilization of a dominant-negative mutant in tumors (80). By con-
trast, prior immunohistochemistry of NRF2 abundance in breast
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Fig. 6. NRF2 and p53 are costabilized
in breast epithelial tissue and prema-
lignant lesions but uncoupled in TNBC.
(A) Immunohistochemistry (top) and im-
munofluorescence (bottom) for NRF2 and
p53in tumor-adjacent normal breast lob-
ules. Hematoxylin and eosin (H+E, top
right) histology is from a serial paraffin
section for p53. Images from a tumor-
adjacent normal breast duct are shown
in fig. S17. (B and C) Multicolor immuno-
fluorescence for NRF2 and p53in (B)
hormone-negative DCIS and (C) TNBC.
(D) Quantification of the association be-
tween NRF2 and p53 immunoreactivities
represented in (A) to (C). (E and F) Median
NRF2 and p53 immunoreactivities for the
designated tissue type in each clinical
case. n.s., not significant (P > 0.05). For
(A) to (C), immunofluorescence is shown
as representative pseudocolored images
for NRF2 (left) and p53 (middle) are shown
merged with DAPI nuclear counterstain
(right). White arrows indicate concurrent
NRF2 and p53 stabilization, and magenta
or green arrows indicate stabilization of
NRF2 or p53 separately. Scale bars, 20 um.
For (D) to (F) data are means = SEM of
n = 14 cases with tumor-adjacent normal
epithelium (Normal), 8 cases with DCIS,
and 7 cases with TNBC. Multigroup com-
parison was made by Kruskal-Wallis rank
sum test with Sidak correction for multi-
ple hypothesis testing.
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Fig. 7. TNBC-specific signatures of the oxidative stress network predict NRF2-p53
coupling and the response to NRF2 perturbations. (A) Transcripts per million for the in-
dicated TNBC cell lines scaled to MCF10A cells from the NIH LINCS dataset (97). (B) NRF2-p53
MI and ROS tolerance for TNBC cell lines using the simulation strategy in Fig.5B. (C to G)
Quantification of mean spheroid area with or without NRF2 knockdown in 3D-cultured
TNBC cells with higher simulated ROS tolerance and NRF2-p53 MI (C and D) and with lower
simulated ROS tolerance and NRF2-p53 Ml (E to G). (H) Transcripts per million for the TNBC
lines in (A) scaled to clinical cases of TNBC in TCGA (35). (1) Simulated NRF2-p53 Ml and ROS
tolerance for TNBC tumors. Vertical lines indicate cases with high Ml in the lower quartile of
ROS tolerance. For (A) and (H), the clustered transcripts were used to adjust the initial con-
ditions of the model simulations for each cell line and tumor. For (B) and (I), ROS tolerance
was defined as the integrated intracellular HO, concentration in each cell line compared
with that of MCF10A-5E cells in response to an increased ROS production rate as in Fig. 5B.
For (C) to (G), TNBC cells with or without inducible NRF2 knockdown were treated with
doxycycline (1 ug/ml) for 72 hours, grown as 3D spheroids, imaged by brightfield microscopy,
and segmented. Data are means + SEM of n = 4 to 8 biological replicates. The difference
between means was assessed by Student’s t test with Sidak correction for multiple hypothesis
testing, and the specific p53 mutation of each line is shown (bottom left).

stabilized p53 (Fig. 6A, bottom; and fig. S17). Stabilized NRF2 was
frequently detected in the cytoplasm, consistent with the prolonged
cytoplasmic localization observed in H,O,-treated cells compared
with cells stressed with an electrophile (fig. S11). The results corrob-
orated findings that KEAP1 senses oxidative stress differently than
electrophilic stress (62). The patterns of NRF2-p53 coaccumulation
were largely preserved in hormone-negative DCIS (Fig. 6B and fig. S18,
A to C), even in cases with abundantly stabilized p53 that was likely
mutated (see later in this section). Nuclear localization of NRF2 was
also more prominent, perhaps reflecting the stronger ROS generation
rates of transformed cells (86). NRF2 and p53 were almost completely
uncoupled in invasive TNBCs (Fig. 6C and fig. S18D), reflecting a
profound shift in single-cell regulation. We quantified NRF2-p53
coordination by MI and found that it was largely eliminated in re-
gions of invasive TNBC, irrespective of whether p53 was chronically
stabilized (Fig. 6D). Such alterations were not apparent in regional
estimates of protein abundance by cell population-averaged fluores-
cence, where neither NRF2 nor p53 was reproducibly different among
groups (Fig. 6, E and F). We conclude that 3D culture in reconstituted
basement membrane costimulates the NRF2-p53 pathways akin to
that observed in normal breast tissue and hormone-negative prema-
lignancy. Full-blown TNBC, by contrast, evokes a different set of
dependencies.

TNBC adaptations to p53 disruption predict variable NRF2
miscoordination, NRF2-deficient oxidative stress profiles,
and 3D growth responses

TP53 is the most frequently mutated gene in TNBC (35), and tran-
scriptomic analyses support it as a prevalent founder mutation in the
disease (87). Disrupting p53 would undoubtedly affect transcrip-
tional feedback and the overall cellular response to oxidative stress
(Fig. 5A). Conversely, neither NFE2L2 nor KEAPI is mutated in
breast cancer (88), but it is unclear whether wild-type NRF2 might
serve as a transient “non-oncogene” (89) that promotes stress toler-
ance during early tumorigenesis. Compared with in situ lesions, the
stromal environment of invasive tumors is stiffer and more mesen-
chymal (90), which may render NRF2 signaling dispensable at later
stages. We wondered whether the fragmentation of the NRF2-p53
network in TNBC cells and its origins could be reconciled with the
systems model.
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Using RNA-seq data from the National Institutes of Health (NIH)
Library of Integrated Network-Based Cellular Signatures (LINCS)
consortium (91) on 15 TNBC lines with mutated p53 (six claudin-low
subtype and nine basal-like subtype), we adjusted initial conditions
from the original MCF10A model and removed all transcriptional
processes downstream of p53 (Fig. 7A; see Materials and Methods).
The individual TNBC models were run to steady state and then chal-
lenged with increased ROS generation rates as in Fig. 5B. The coordi-
nation between NRF2 and mutant p53 was calculated by MI, and the
integrated H,O, response was scaled to that of MCF10A-5E cells as
a relative measure of ROS tolerance. The goal was to associate the
model-derived predictions with NRF2-knockdown phenotype in
ROS-generating environments such as 3D culture. To the extent pos-
sible, we hoped that 3D growth in reconstituted basement membrane
might quantify any vestigial requirements for NRF2 signaling from
the in situ stage of the TNBC lines.

For all TNBC lines, the model predicted substantially reduced
covariation between mutant p53 and NRF2 compared with MCF10-
DCIS.com cells with wild-type p53 (MI < 0.25; Fig. 7B). We noted a
spectrum of residual NRF2-p53 costabilization from weak (HCC1937
and SUMI159PT) to virtually nonexistent (MDA-MB-468 and
MDA-MB-231). Despite complete p53 deficiency in the model, this
residual NRF2-p53 MI correlated strongly with the simulated relative
increase in oxidative stress when ROS generation rate was increased
(Fig. 7B). Neither of these predictions mapped directly to specific
transcripts in the TNBC-specific RNA-seq data (Fig. 7A), reinforcing
that the models were making nonobvious predictions about oxidative
stress handling.

To connect the model predictions with a continued role for NRF2
signaling in TNBC behavior, we selected five lines along the spectrum
of MI and ROS tolerance. HCC1937 and SUM159PT cells were both
predicted to have residual NRF2-p53 coordination and moderate
ROS tolerance (Fig. 7B). Accordingly, inducible knockdown of NRF2
in these lines did not lead to any consistent changes in 3D growth
(Fig. 7, C and D). By contrast, MDA-MB-231, HCC1806, and MDA-
MB-468 cells were predicted to have among the least NRF2-p53
costabilization and ROS tolerance (Fig. 7B). Knockdown of NRF2 in
these lines with two different shRNAs caused significant increases or
decreases in overall cell growth (Fig. 7, E to G). Thus, model and exper-
iment support that, despite p53 mutation, residual NRF2-p53 coupling
indicates the primordial susceptibility of triple-negative cell lines to
perturbations in the NRF2 pathway.

Last, we sought to extend model predictions to 122 cases of TNBC
sequenced by The Cancer Genome Atlas (TCGA) (35). Compared
with the TNBC lines, we noted reduced abundance of MDM2, the
NRF2 binding partner MAFK, ATM, and CHEK2 (Fig. 7H), which
suggested that TCGA tumors would be a considerable deviation from
prior simulations. There was also more variability in the abundance
of multiple antioxidant genes (SOD1, TXN, and PRDX1), anticipating
a greater breadth in model outcomes. Unexpectedly, when tumor-
derived profiles were encoded and simulated (see Materials and
Methods), the models predicted ROS tolerances that were largely
within the range of TNBC lines analyzed before (Fig. 7I). The
associated NRF2-p53 coordination, by contrast, was qualitatively
different, with various TCGA cases giving rise to strong coordina-
tion despite pervasive TP53 mutation (Fig. 71, purple). The high-
coordination, low-tolerance TNBC cases (Fig. 71, vertical lines)
form a subset that could be especially sensitive to changes in NRF2
activation.
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DISCUSSION

This work posits ROS as an endogenous, spatially heterogeneous
trigger of dual NRF2-p53 activation in breast-mammary epithelia sur-
rounded by basement membrane ECM. NRF2 and p53 regulate target
gene abundance—both cooperatively and independently—to promote
stress tolerance and adaptation. NRF2 deficits are buffered by com-
pensatory increases in p53 signaling, and notable ROS-dependent
phenotypes arise when both pathways are perturbed. In hormone-
negative premalignant lesions, stabilization of NRF2-p53 remains
coordinated, even in cases where p53 has likely mutated. At this pre-
invasive stage, NRF2 should be most important for tumorigenesis.
After invasion through basement membrane and progression to TNBC,
the stromal microenvironment reduces the overall NRF2 signaling
and often uncouples it from (now mutant) p53. Here, the effect of
activating or inhibiting NRF2 will depend more on the exact cellular
context and, thus, be unpredictable (for example, Fig. 7, E to G).
Despite the overall complexity of NRF2- and p53-mediated tran-
scriptional programs (92, 93), the coordinated response to oxidative
stress is captured by a relatively simple mathematical encoding. Known
core mechanisms of NRF2-p53 regulation are brought together by a
shared ROS inducer and a common pool of detoxifying target genes
without the need for any further cross-talk. Therefore, oxidative stress
handling in normal breast-mammary epithelia is usefully abstracted
as two stability-regulated TFs working independently toward a com-
mon homeostatic goal.

Although NRF?2 is not an oncogene for breast cancer, it has been
connected with multiple breast cancer tumor suppressors previously.
In mouse mammary epithelial cells, loss of Brcal (a predisposing
event for basal-subtype TNBC) destabilizes Nrf2 and causes an increase
in ROS, favoring the future acquisition of p53 mutations (36, 94).
In human breast cancer cells, gain-of-function p53 mutants inter-
act directly with NRF2 and may help retain NRF2 in the nucleus (37).
If certain p53 mutations were also to promote NRF2 stabilization, then
it would provide a two-for-one benefit to cancer progression by reliev-
ing tumor suppression and conferring ROS tolerance constitutively.
However, we did not note any association between gain-of-function
p53 mutants and NRF2 abundance in TNBC lines, suggesting that
KEAP1 regulation predominates, as indicated by the TNBC models.
Chronic activation of the NRF2 pathway (for example, by activating
NFE2L2 mutation or KEAPI loss) may be disfavored if increased intra-
cellular ROS is not permanent. The models suggest that supraphys-
iological activation of NRF2 would lead to runaway induction of
antioxidant enzymes, causing reductive stress as documented for NRF2
in other tissues (95). Wild-type NRF2 function must be sufficient to
buffer cells from the early stresses of premalignancy and p53 disrup-
tion, allowing invasive TNBCs to deactivate the pathway when it is no
longer needed. There are parallels to FOXO TFs (96), which are revers-
ibly inactivated by mitogenic signals yet provide critical oxidative stress
tolerance when the breast cancer tumor suppressor RUNX1 is disrupted
(22,97, 98).

Breast cancer cell lines organize very differently in 3D culture (99),
but their response to perturbations is often less disparate. For exam-
ple, gain-of-function p53 mutations cause luminal filling in MCF10A
3D cultures (48), similar to the delay in mammary gland involution
observed with mutant p53 in vivo (100). Reciprocally, knockdown
of mutant p53 in MDA-MB-468 cells promotes luminal hollowing
(101). Among p53-mutant TNBC lines, the impact of NRF2 knock-
down on 3D growth was nonuniform but explainable through the
stress profiles inferred from TNBC-specific systems models. The balance

110f 20

020Z ‘vL Judy uo /Bio Bewsousios axis//:diy woly papeojumoq


http://stke.sciencemag.org/

SCIENCE SIGNALING | RESEARCH ARTICLE

of complexity and tractability makes 3D spheroid-organoid cultures
a compelling platform for systems-level dissection of cell state het-
erogeneity and early tumorigenesis.

The 3D behavior of breast-mammary cancer cells is highly de-
pendent on the surrounding ECM (102). Invasive cancers no longer
encounter basement membrane ECM but must have bypassed it
upon progression to carcinoma. Although multiple TNBC lines will
grow as 3D colonies in reconstituted basement membrane, others
cannot, suggesting a type of cellular “amnesia” toward that past en-
counter. For cancers that do grow in 3D, the use of reconstituted
basement membrane (as a more normal-like microenvironment)
may give rise to cellular changes reminiscent of premalignancy. We
exploited these changes to evaluate the relative importance of NRF2
signaling in different TNBC backgrounds. There are likely other op-
portunities to examine hurdles of premalignancy by using basement
membrane 3D cultures. For 3D organoid biobanks (19), however, it
is a reminder that such cultures are not propagating the primary breast
tumor but rather tumor-derived cells in a more primitive state.

Cancer mutations engage and cooperate with cell signaling in ways
that are not captured by DNA sequencing (103). The coupling of the
NRF2 and p53 pathways described here provides a robust oxidative
stress—handling network for glandular morphogenesis and mainte-
nance. However, this same coupling creates a redundancy upon which
p53 mutations can occur and neoplasms can evolve. Our results give
pause to the nutraceutical use of sulforaphane as a potent NRF2 stabi-
lizer (104)—in lung cancer, where KEAPI-NRF2 mutations are com-
mon and TP53 mutation is secondary, antioxidants accelerate tumor
progression (105). The extraordinary complexity of ROS generation
and its cellular effects reinforce the value of modeling redox networks
at a granularity suited to a given physiology or pathology (106).

MATERIALS AND METHODS

Plasmids

shRNA targeting sequences from the RNAi consortium (107) were
cloned into tet-pLKO.1-puro as previously described (38) for shLuc
(TRCN0000072250, Addgene #136587), shNRF2 #1 (TRCN0000281950,
Addgene #136584), shNRF2 #2 (TRCN0000284998, Addgene #136585),
shJUND #1 (TRCN0000416347, Addgene #136581), and shJUND #2
(TRCN0000416920, Addgene #136583).

For the mRFP1-NRF2 reporter (Addgene #136580), the DNA bind-
ing domain of NRF2 was mutated (C506S) along with four leucines
(L4A) in the leucine zipper region of the bZIP (basic leucine zipper)
domain by site-directed mutagenesis of the pBabe mRFP1-NRF2 hygro
plasmid (Addgene #136579) originally prepared by subcloning into
pBabe mRFP1 hygro. The RR version of NRF2 (Addgene #136522) was
prepared by introducing four silent mutations into the sequence targeted
by shNRF2 #1 in pEN_TT 3xFLAG-NRF2 (Addgene #136527). Site-
directed mutagenesis was performed with the QuikChange IT XL kit
(Agilent).

pDONR223 CHEK2 was obtained from the human Orfeome
V5.1 (108). CHEK2 amplicon was prepared with Xba I and Mfe I
restriction sites and cloned into pEN_TTmiRc2 3xFLAG (Addgene
#83274) that had been digested with Spe I and Mfe I (Addgene
#136526). BirA* was cloned out of pcDNA3.1 mycBioID (Addgene)
(109) with Xba I and Spe I restriction sites and cloned into pEN_
TTmiRc2 digested with Spe I and Mfe I (Addgene #136521). CDKN1A
and NRF2 PCR amplicons were prepared with Spe I and Mfe I restric-
tion sites and cloned into pEN_TTmiRc2 BirA* (Addgene #136521).

Pereira et al., Sci. Signal. 13, eaba4200 (2020) 14 April 2020

Luciferase PCR amplicon was prepared with Spe I and Eco RI re-
striction sites and cloned into pEN_TTmiRc2 3xFLAG digested
with Spe I and Mfe I sites (Addgene #136519). p53DD (p53DN) and
P53(R280K)-V5 PCR amplicon was prepared with Spe I and Mfe I
restriction sites and cloned into pEN_TTmiRc2 (Addgene #25752),
digested with Spe I and Mfe I (Addgene #136520 and #136525).

PEN_TT donor vectors were recombined into pSLIK neo (Addgene
#25735), pSLIK zeo (Addgene #25736), or pSLIK hygro (Addgene
#25737) by LR recombination to obtain pSLIK 3xFLAG-Luciferase zeo
(Addgene #136533), pSLIK p53DD zeo (Addgene #136534), pSLIK
3xFLAG-Luciferase hygro (Addgene #136528), pSLIK 3xFLAG-
NRF2(RR) hygro (Addgene #136535), pSLIK BirA* hygro (Addgene
#136537), pSLIK BirA*-CDKNIA hygro (Addgene #136538), pSLIK
BirA*-NRF2 hygro (Addgene #136539), pSLIK p53(R280K)-V5 hygro
(Addgene #136540), and pSLIK 3xFLAG-CHEK2 neo (Addgene
#136536).

PLXSN HPV16E7 (110) and the ADLYC mutant (Addgene #136588)
were provided by S. Vande Pol (University of Virginia). pCDH-
HyPer-2-puro (66) was provided by J. Brugge (Harvard Medical
School).

Cell lines

The MCF10A-5E clone was previously reported and cultured as de-
scribed for MCF-10A cells (13, 20). MCF10DCIS.com cells were
obtained from Wayne State University and cultured in Dulbecco’s
modified Eagle’s medium/F-12 medium (Gibco) plus 5% horse serum
(Gibco). SUM102PT cells were obtained from Asterand Biosciences
and cultured in Ham’s F-12 (Gibco) plus 10 mM Hepes (Gibco), epi-
dermal growth factor (10 ng/ml; PeproTech), 5 mM ethanolamine
(Sigma-Aldrich), 50 nM sodium selenite (Sigma-Aldrich), apo-
Transferrin (5 ug/ml; Sigma-Aldrich), 10 nM triiodo-L-thyronine (VWR),
insulin (5 pg/ml; Sigma-Aldrich), hydrocortisone (1 ug/ml; Sigma-
Aldrich), and 5% fatty acid-free bovine serum albumin (VWR).
SUMI159PT cells were obtained from Asterand Biosciences and
cultured in Ham’s F-12 (Gibco) plus 10 mM Hepes (Gibco), insulin
(5 pg/ml; Sigma-Aldrich), hydrocortisone (1 pg/ml; Sigma-Aldrich),
and 5% fetal bovine serum (Hyclone). All other cell lines were ob-
tained directly from the American Type Culture Collection (ATCC).
MDA-MB-231 and MDA-MB-468 cells were cultured in L-15 medium
plus 10% fetal bovine serum without supplemental CO,. HCC1806
and HCC1937 cells were cultured in RPMI 1640 medium plus 10%
fetal bovine serum. All base media were further supplemented with 1x
penicillin and streptomycin (Gibco). All cell lines are female, were
grown at 37°C, authenticated by short tandem repeat profiling by
ATCC, and confirmed negative for mycoplasma contamination.

Viral transduction and selection

Lentiviruses were prepared in human embryonic kidney 293 T cells
(ATCC) by triple transfection of the viral vector with psPAX2 +
pMD.2G (Addgene) and transduced into MCF10A-5E, MCF10-
DCIS.com, HCC1937, SUM159PT, MDA-MB-231, HCC1806, and
MDA-MB-468 as previously described (25). Retroviruses were pre-
pared similarly by double transfection of the viral vector with pCL
ampho (Addgene) and transduced into MCF10A-5E cells as previ-
ously described (22). Transduced cells were selected in growth
medium containing puromycin (2 pg/ml), G418 (300 ug/ml),
hygromycin (100 pg/ml), or zeocin (25 pg/ml) until control plates had
cleared. For RR addback, viral titers were adjusted to match the en-
dogenous protein abundance as closely as possible. For mRFP1-NRF2
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fluorescent reporter, we used the minimum viral titer that gave
sufficient signal in sulforaphane-treated cells compared with di-
methyl sulfoxide (DMSO)-treated cells. Reporter abundance was
roughly equal to endogenous NRF2 expression (fig. S9F).

3D culture

3D overlay cultures were performed on top of Matrigel (BD Biosciences)
as described previously for MCF-10A cells (111) with culture media
previously optimized for each cell line (25). In addition, HCC1806 cells
were cultured in MCF10A assay media (111), and SUM159PT cells
were cultured in SUM159PT growth media (described above) plus 2%
fetal bovine serum. For each culture, 45 pl of Matrigel was spread with
a pipette tip on the bottom of an eight-well chamber slide. A suspen-
sion of 5000 single cells per well was laid on top of the Matrigel in cul-
ture media supplemented with 2% Matrigel. 3D culture medium was
replaced every 4 days as originally described (111). For antioxidant
supplementation, cells were treated with 50 uM Trolox (Calbiochem)
for 2 days before 3D culture, and Trolox was included in media refeeds
and supplemented every 2 days between refeeds. For long-term knock-
down experiments, cells were treated with doxycycline (1 ng/ml;
Sigma-Aldrich) for 3 days before 3D culture, and doxycycline was
maintained in the 3D culture medium throughout the experiment. For
experiments with long-term knockdown and inducible overexpres-
sion, cells were treated with doxycycline (1 pg/ml) for 2 days before 3D
culture, and doxycycline was maintained in the 3D culture medium
throughout the experiment.

RNA purification

RNA from cultured cells was isolated with the RNeasy Plus Mini Kit
(QIAGEN) according to the manufacturer’s protocol. RNA from 3D
cultures at day 10 was extracted by lysing individual wells in 500 pl
of RNA STAT-60 (Tel-Test) and purified as described previously (25).

RNA-seq and analysis

Total RNA was diluted to 50 ng/ul and prepared using the TruSeq
Stranded mRNA Library Preparation Kit (Illumina). Samples were
sequenced on a NextSeq 500 instrument with NextSeq 500/550
High Output v2.5 kits (Illumina) to obtain 75-base pair (bp) paired-
end reads at an average depth of 15 million reads per sample. Adapters
were trimmed using fastq-mcf in the EAutils package (version ea-
utils.1.1.2-537) with the following options: -q 10 -t 0.01 -k 0
(quality threshold 10, 0.01% occurrence frequency, and no nucleo-
tide skew causing cycle removal). Quality checks were performed
with FastQC (version 0.11.7) and multiqc (version 1.5). Datasets
were aligned to the human (GRCh38.86) genome using HISAT2
with the option: --rna-strandness RF (for paired-end reads gen-
erated by the TruSeq strand-specific library). Alignments were
assembled into transcripts using StringTie (version 1.3.4) with the
reference guided option. Transcripts that were expressed at greater
than five transcripts per million across all samples were retained for
downstream analysis. Differential gene expression analysis was car-
ried out using edgeR (version 3.8) (112) on raw read counts corre-
sponding to transcripts that passed the abundance-filtering step.
Trimmed mean of M values normalization using the calcNormFactors
function was performed before differential expression analysis
using exactTest in edgeR. The 1132 transcripts that were commonly
differentially expressed [5% false discovery rate (FDR)] between
MCF10A-5E shControl and shNRF2 #1, shControl and shNRF2 #2,
and MCF10DCIS.com shControl and shNRF2 #1 are shown in
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Fig. 3B. Gene set enrichment analysis was done on transcripts that
were differentially increased or decreased in shNRF2 compared
with shControl using the Molecular Signatures database collections
C1, C2, C3, C4, C6, and C7 (113, 114). The full list of enrichments
(5% FDR) is provided in data file S2.

Quantitative PCR

cDNA synthesis and qPCR were performed as previously described
(25, 115) with the primers listed in table S1. Human samples were
normalized to the geometric mean of ACTB, HINT1, PP1A, and TBP
(Fig. 2D and fig. S2C); B2M, GAPDH, GUSB, HINT1I, and PRDX6
(fig. S2A); or ACTB, B2M, GUSB, PPIA, and PRDXG6 (fig. S2B).

Brightfield imaging and quantification of spheroid
phenotypes

Brightfield 3D images were acquired on an Olympus CKX41 inverted
microscope with a 4x plan objective (four fields per chamber) and a
qColor3 camera (Q-Imaging). Images were segmented using OrganoSeg
(116) to produce morphometric measures for each segmented
spheroid. “Rounded” spheres were classified as having circularity
greater than 0.9 (Fig. 3, C and E; and fig. S6, B and C). “Hyper-
enlarged” spheres were classified as having an area greater than e*° ~
5000 um? (Fig. 3, D and E). “Proliferation suppressed” spheres were
classified as having an area less than 1600 um* for MCF10A-5E cells
after 10 days of 3D culture (Figs. 2E and 4E).

Clinical samples

Cases were identified from the pathology archives at the University
of Virginia and build upon a cohort of samples previously described
(24, 25). Hormone-negative DCIS lesions were deemed negative (less
than 10% expression frequency) for estrogen receptor and progesterone
receptor by clinical immunohistochemistry, and TNBC cases were
additionally scored negative for HER2 amplification by clinical DNA
chromogenic in situ hybridization. All clinical work was done according
to the Institutional Review Board for Health Sciences Research
approval #14176 and Protocol Review Committee approval #1363
(502-09).

Immunofluorescence

MCF10A-5E and MCF10DCIS.com 3D cultures were embedded at
day 10 of morphogenesis, and 5-pm sections were cut and mounted
on Superfrost Plus slides (Fisher Scientific). For clinical samples,
paraffin tissue sections were dewaxed and antigens were retrieved
on a PT Link (Dako) with low-pH EnVision FLEX Target Retrieval
Solution (Dako) for 20 min at 97°C. Immunofluorescence on cryo-
sections and antigen-retrieved slides was performed as previously
described (20) with the following primary antibodies: NRF2 (1:100;
Santa Cruz Biotechnology, #sc-13032), phospho-Rb (1:1600; Cell
Signaling, #8516), HIF-1a (1:800; Cell Signaling, #79233), and p53
(1:200; Santa Cruz Biotechnology, #sc-126). Slides were incubated
the next day for 1 hour in the following secondary antibodies: Alexa
Fluor 555-conjugated goat anti-rabbit (1:200; Invitrogen) and Alexa
Fluor 647-conjugated goat anti-mouse (1:200; Invitrogen).

Image acquisition analysis and Ml calculation

Fluorescence images were collected unblinded on an Olympus BX51
fluorescence microscope with a 40x 1.3 numerical aperture (NA)
UPlanFL oil immersion objective and an Orca R2 charge-coupled
device (CCD) camera (Hamamatsu) with no binning. Images were
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segmented in CellProfiler (117) using 4',6-diamidino-2-phenylindole
(DAPI) to identify nuclei. Nuclear objects were dilated to a median
diameter of 15 pm to capture about one whole cell. NRF2 staining
was quantified in the nucleus, the whole cell, and the cytoplasm (whole
cell area — nuclear area). p53 staining was quantified in the whole cell.
Immunoreactivity was quantified as the median fluorescence inten-
sity of the whole cell unless otherwise noted.

For pRB and NRF2 immunofluorescence (Fig. 1, D and E), log-
transformed distributions were analyzed with the MClust function
in R using the unequal variance model with either one or two mix-
ture components specified. Model fit was evaluated by F test.

MCF10A-5E cells stably expressing pPCDH-HyPer-2-puro were
imaged at 37°C in Hanks’ balanced salt solution (Gibco) with a 40x
1.3 NA EC plan Neofluar oil immersion objective on a Zeiss LSM
700 laser scanning confocal microscope. Lasers (405 and 488 nm)
were used to sequentially excite two excitation peaks of HyPer-2
and collect fluorescence emission from 500 to 550 nm. To calculate
HyPer-2 ratios on a pixel-by-pixel basis, 488-nm images were divided
by 405-nm images and thresholded in Image] to remove background
pixel values (~10%). For quantification of cells cultured in 2D (fig. S9,
B to D), the mean HyPer-2 ratio per image was used for analysis.
For quantification of cells cultured as spheroids (Fig. 4C), cells were
manually segmented to calculate the median HyPer-2 ratio per cell.

Clinical samples were imaged on an Olympus BX51 fluorescence
microscope with a 40x 1.3 NA UPlanFL oil immersion objective and
an Orca R2 CCD camera (Hamamatsu) with 2 x 2 binning and fixed
exposure times for NRF2 (150 ms) and p53 (50 ms). Images were
autoexposed in the DAPI channel for nuclear segmentation and in
the unlabeled fluorescein isothiocyanate (FITC) channel for auto-
fluorescence estimation. Image fields were classified as follows:
normal—bilayered epithelium, intact basement membrane (visualized
by FITC autofluorescence), and normal cytoarchitecture; DCIS—
multilayered and disorganized epithelium (with partial or complete
luminal filling), intact basement membrane, and cytologic atypia;
and TNBC—invasive carcinoma cells with cytologic atypia and no
discernable basement membrane. All images were segmented in
CellProfiler as described above. After nuclear identification, nuclei out-
side of the ductal epithelium (fibroblasts, endothelial cells, and im-
mune cells) were manually removed using the IdentifyObjectManually
module. Because paraffin fixation of tissue increases autofluores-
cence (118), the analysis excluded images that were dominated by
autofluorescent bleedthrough into the Alexa 555 channel localizing
NRF2. Spearman correlation was calculated between cellular FITC-
555 channels and FITC-DAPI channels on a pixel-by-pixel basis for
each image. Images with a FITC-555 correlation coefficient above
the 95th percentile for FITC-DAPI correlation (in which autofluo-
rescent artifacts were negligible due to the low exposure time) were
excluded from further analysis.

For NRF2 quantification in neighboring cells (fig. S8), spheroid
and mouse mammary gland images were loaded into CellProfiler, and
the IdentifyObjectManually module was used to manually identify
regions of ductal epithelium. The images were cropped manually,
and cell nuclei within the cropped area were identified by DAPI
staining. Nuclear area was dilated to a median diameter of ~15 pm
to define a cell. Position, area, and median NRF2 staining intensity
were measured for each cell. Measurements were loaded into MATLAB,
and single-cell NRF2 intensities were normalized to the median in-
tensity of all exposure-matched cells. Neighboring cells were defined
as cells located within a radius of 1.5 times the median cell diameter.
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For more distant neighbors, annular areas of 3 to 5 and 5 to 10 times
the median cell diameter were used. Cells that fell within the applied
search area were used to calculate the median neighbor NRF2 in-
tensity. The original cell at the center of the search area was not in-
cluded in the intensity calculations, and cells with NRF2 intensity
values equal to 0 or lacking neighboring cells within the defined
search area were excluded from calculations.

To quantify the association between fluorescence channels, we
used MI in lieu of standard correlation measures (Pearson and
Spearman). After appropriate transformation and binning into dis-
crete high-low states, MI provides greater flexibility to capture non-
linear relationships (119) and more stringency to detect compressions
in dynamic range (120). Median fluorescence intensity distributions
were transformed by their respective cumulative distribution func-
tions (probability integral transform) to produce uniformly distributed
random variables (121). The uniform distributions were split into low
and high states at the 67th percentile, and the joint marginal state
probabilities estimated for the two fluorescence channels (R and G)
were used to calculate the MI as follows

MI = ZZpRglog<pili§G>

MI confidence intervals were estimated by bootstrapping the seg-
mented cell population 1000 times. To create a randomized (null)
dataset, the values of one fluorescence channel were randomly shuffled
before analysis.

Clinical samples often had fewer areas of classified cells for im-
aging, which require an added analysis step in the MI calculation.
For a classification (normal, DCIS, and TNBC) composed of two
images from one case, we evaluated batch effects by hypergeometric
test to determine if the two images separated by high versus low stain-
ing intensity. If so, the case for that classification was excluded.

Quantitative immunoblotting

Quantitative immunoblotting was performed as previously described
(122). Primary antibodies recognizing the following proteins or epi-
topes were used: NRF2 (1:1000; Santa Cruz Biotechnology, #sc-13032),
p53 (1:1000; Santa Cruz Biotechnology, #sc-126), p21 (1:1000;
ProteinTech, #10355-1-AP), total Chk2 (1:1000; Cell Signaling,
#2662), phospho-Chk2 (Thr®; 1:1000; Cell Signaling, #2197), phospho-
ATM (Ser'*™; 1:1000; Abcam, #ab81292), KEAP1 (1:1000; Santa Cruz
Biotechnology, #sc-15246), CDK4 (1:1000; Cell Signaling, #12790),
CDK?2 (1:200; Santa Cruz Biotechnology, #sc-6248), vinculin (1:10,000;
Millipore, #05-386), glyceraldehyde-3-phosphate dehydrogenase
(GAPDH; 1:20,000; Ambion, #AM4300), tubulin (1:20,000; Abcam,
#ab89984), p38 (1:5000; Santa Cruz Biotechnology, #sc-535), and
Hsp90 (1:5000; Santa Cruz Biotechnology, #sc-7947).

Proximity ligation using BirA* fusions of p21 and NRF2

MCF10A-5E cells inducibly expressing the promiscuous biotin ligase
BirA* (123), BirA*-NRF2, or BirA*-CDKN1A were plated on 10-cm
plates and induced with doxycycline (1 pg/ml) at 50% confluency.
After 24 hours, medium was refed with doxycycline (1 ug/ml), 10 uM
sulforaphane (Sigma-Aldrich), 10 uM nutlin-3 (Calbiochem), and
1 mM biotin (Sigma-Aldrich). After 24 hours, cells were lysed in 200 pl
of radioimmunoprecipitation assay (RIPA) buffer [50 mM tris (pH
8.0), 150 mM NaCl, 5 mM EDTA, 1% Triton X-100, 0.1% SDS, and
0.5% sodium deoxycholate]. Anti-biotin antibody enrichment of
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biotinylated peptides was performed as previously described (124).
Briefly, biotin antibody bound agarose beads (ImmuneChem Phar-
maceuticals Inc., #ICP0615) were washed three times in immuno-
affinity purification (IAP) buffer [50 mM MOPS (pH 7.2), 10 mM
sodium phosphate, and 50 mM NaCl]. Antibody (500 pg; 50 pl) was
added to each RIPA lysate on ice. Ice-cold IAP buffer was added up
to 1 ml, and samples were incubated on a nutator overnight at
4°C. The next day, beads were washed four times with ice-cold IAP
bulffer, boiled in dithiothreitol-containing 2x Laemmli sample buffer,
and used for immunoblotting against the indicated targets.

Promoter bioinformatics

The 36 transcripts of the Fig. 1A gene cluster (20, 24) were assessed
with four promoter analysis algorithms to identify recurrent TF can-
didates (125). First, distant regulatory elements (DiRE) analysis was
conducted using the DiRE website (https://dire.dcode.org) (40) search-
ing evolutionarily conserved 5" untranslated regions (5" UTR ECRs)
and evolutionarily conserved promoter regions (promoter ECRs) for
genes on the human genome (hg18). A random set of 7500 genes was
selected as background control genes. Second, Expression2Kinases
(X2K) software was used to identify upstream TFs for the Fig. 1A
gene cluster (41). The potential TFs were selected from ChIP-X
Enrichment Analysis (ChEA) database using “mouse + human” as
the background organisms (126). The P value from the Fisher’s exact
test and Z score were used for sorting and ranking. Third, from the
National Center for Biotechnology Information (NCBI), we collected
the proximal promoter of each transcript—defined as 1416 bp upstream
and 250 bp downstream of the transcription start site to remain within
the 60-kb sequence limit—for use as an input set for MEME (127, 128).
Using MEME-defined motifs from classic discovery mode, the top
three enriched motifs were searched against the JASPAR CORE (2018)
database (containing 1404 defined TF binding sites for eukaryotes)
(129) or HOCOMOCO (Homo Sapiens Comprehensive Model Col-
lection) Human (v11) database (containing 769 TF binding motifs)
(130) using Tomtom (131) to identify TF recognition sequences. A
recognition sequence for E2F6 was considered within the E2F group,
and a recognition sequence for the NRF2 binding partner MAFK was
considered within the NRF2 group. Last, o0POSSUM (43) was used to
identify potential TFs targeting transcripts in the cluster. We selected
Single Site Analysis-Human mode and used all 24,752 genes in the
oPOSSUM database as a background. All vertebrate profiles with a
minimum specificity of eight bits in the JASPAR CORE Profiles were
selected as TF binding site sources. o0POSSUM was run with the
following parameters: conservation cutoff of 0.4, matrix score threshold
of 85%, amount of upstream/downstream sequence: 2000/0, and
sort results by Fisher score. Outputs of the promoter bioinformatics
are available in data file S1.

ChiP-seq bioinformatics

NRF2 ChIP-seq raw data files were downloaded from ENCODE
(ENCABB00OND) (50), consisting of fastq files from three cell lines
(K562, A549, and HepG2) with two biological replicates each. Qual-
ity of the sequenced reads was analyzed using FastQC. Reads were
aligned to the human genome (hg19) using BWA with the -M option.
Peaks were identified using MACS2 (version 2.1.0) with an FDR cut-
off of 0.01 to reduce the number of spurious peaks. Irreproducibility
discovery rate analysis was performed on biological replicates, and a
cutoff of 0.05 was used to generate a list of high-confidence peaks for
each cell line. Peaks were annotated using the Homer annotatePeaks
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program. p53 ChIP-seq binding sites were used from a ChIP-seq
dataset (GSE86164) (51). Briefly, ChIP-seq was performed on three
cell lines (HCT116, MCF7, and SJSA) treated with or without nutlin-3.
Reads were mapped to hg19 using Bowtie2, and peaks were identified
and annotated using the Homer suite. NRF2-p53 binding sites were
indicated (fig. S2C) if a peak was present for a gene in at least one cell
line analyzed for each ChIP-seq dataset.

Computational modeling

The NRF2 pathway was encoded as first- and second-order rate
equations for KEAP1 oxidation and NRF2 stabilization; NRF2-
mediated transcription of antioxidant enzymes was modeled as a Hill
function (68, 69). The p53 pathway was reconstructed from a delay
differential equation model of p53 signaling in response to DNA
damage (71). Abundances in the original p53 model were unitless,
but abundances were cast as concentrations in the earlier NRF2
models. Consequently, the integrated model adopted unitless abun-
dances in its initial conditions and second-order parameters (table S2).
To adapt the p53 DNA damage model to respond to oxidative stress,
we changed the “Signal” activation (representing activation of up-
stream kinases p-ATM and p-CHEK2) from a Heaviside step func-
tion to a first-order oxidation reaction of ATM/CHEK?2 by intracellular
H,0; (63). A basal ROS generation rate was added yielding a realistic
intracellular H,O, burden at steady state (70). Transcription of anti-
oxidant enzymes by p53 (72) was modeled using the same model
parameters describing the p53-mediated induction of MDM2 (71).
p53- and NRF2-mediated antioxidant gene transcription contributes
to a shared pool of antioxidant enzymes, which catalytically reverse
the oxidation states of KEAP1 and p-ATM/CHEK2. Transcription of
CDKNI1A by p53 (132) was included for model calibration (fig. S14)
and for testing the relevance of p53-p21-NRF2 cross-talk (see next
paragraph). The integrated base model of NRF2-p53 oxidative stress
signaling contains 42 reactions and 22 ordinary differential equations
(ODEs). The model was simulated with dde23 in MATLAB to reach
steady state before the addition of oxidative stress.

The integrated model was calibrated to capture the dynamics of
MCF10A-5E cells stimulated with 200 uM H,0, (fig. S14). Bolus
addition of H,O, was simulated as an impulse of intracellular H,O,.
We used an H,O, partition coefficient that gave rise to NRF2 stabi-
lization levels comparable to immunoblot quantification (extracel-
lular/intracellular partition = 3). We approximated p-ATM/CHEK2
in the integrated model as the maximum normalized increase in
p-ATM or p-CHEK?2 over baseline at each experimental time point.
Robustness of the system output to initial conditions was evaluated
by randomly varying the concentration of model species with a log
coefficient of variation of 10%, taking the base model as the geomet-
ric mean.

For simulations involving the mRFP1-NRF2 reporter (NRF2rep;
Fig. 5C), NRF2rep and mature fluorescent species (Nrf2repmat) were
added to the MCF10A-5E base model. Both reporter species were al-
lowed to react with KEAP1, but neither could bind MAF proteins or
antioxidant response elements in the model (fig. S9E). We used an
mRFP1 maturation time of 1 hour (79) to model the conversion of
NRF2rep to NRF2repmat. The modifications added 19 additional re-
actions and eight additional ODEs to the MCF10A-5E base model.

For simulations involving p53-p21-NRF2 cross-talk (fig. S14C), we
added reactions involving p21 binding to NRF2 to the MCF10A-5E
base model. p21 was assumed to interact with NRF2 like KEAP1 and
compete with KEAP1 for binding NRF2 through its DLG and ETGE
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domains (76). The p21-NRF2 complex was assumed to degrade at
the same reduced rate as when NRF2 is bound to oxidized KEAP1
(k_nrf2degox). These modifications added eight additional reactions
and two additional ODEs to the MCF10A-5E base model.

For simulations involving MCF10DCIS.com cells (Fig. 5, E to G),
RNA-seq data (Fig. 3B) were used to estimate proportional differ-
ences in model species abundance between MCF10DCIS.com and
MCF10A-5E cells. Average gene expression in transcripts per million
from the four biological replicates of MCF10DCIS.com and MCF10A-
5E control cell lines was calculated for each gene. Fold changes in
model species of MCF10DCIS.com relative to MCF10A-5E were
used to adjust each initial condition in the model. For the “MAF”
species, we used the median fold change in NRF2-binding small
MAFs MAFF, MAFG, and MAFK (133). For the antioxidant species,
we used the median fold change in TXN, SODI, PRDX1, and HMOX1
to include antioxidants that react with both free radicals and oxidized
proteins (134). In addition, the MCF10DCIS.com model included a
1.4-fold increase in the basal ROS generation rate, informed by the
increased median HyPer-2 ratio in MCF10DCIS.com cells compared
with MCF10A-5E cells (fig. S9D). The increased ROS generation rate
was paired with an increased basal turnover of the antioxidant pool
to arrive at steady-state antioxidant gene expression levels consistent
with MCF10DCIS.com RNA-seq data.

For simulations involving bursts of oxidative stress, an increased
ROS production rate was added for 2 hours to match the duration
of transient stabilizations of JUND (a gene in the NRF2-associated
gene cluster) in 3D (24). We selected the minimum increase in ROS
generation (20-fold; log coefficient of variation = 20%) that gave
rise to a detectable stabilization of both the NRF2 and p53 pathways
in the MCF10A-5E base model. Under these conditions, overall ox-
idative stress burden was within 4 to 16% of that observed with 200
uM H,0,. For MCF10DCIS.com and TNBC models, the mean ROS
generation rate was scaled 1.4-fold to reflect the increased basal ROS
generation rate described above. NRF2 knockdown was encoded by
decreasing the net synthesis rate of NRF2 fivefold to mimic the five-
fold decrease in NRF2 protein resulting from short-hairpin knock-
down (fig. S3B). To account for secondary transcriptional adaptations
(Fig. 5F), initial conditions were also adjusted by RNA-seq-based fold
changes in model species for stNRF2 cells relative to negative control
cells (Fig. 3B). DNp53 was encoded by removing all reactions down-
stream of p53 (transcriptional activation of MDM2, PPM1D, CDKNIA,
and the p53 share of the antioxidant enzyme pool).

For the control case and all genetic perturbations (shNRF2, DNp53,
and shNRF2 + DNp53), 100 simulations were run with random ROS
generation rates varied with a log coefficient of variation of 25% to
capture the variability of HyPer-2 ratios observed experimentally
(Fig. 4C). Each simulation was run for 2 hours with increased ROS
production rate and then an additional 10 hours to allow relaxation
back to steady state. For assessment of species coordination (Figs. 5,
CtoE,and 7, B and]I), species abundances were captured at 10 random
time points from each simulation, and MI was calculated as it was
for quantitative immunofluorescence datasets. For oxidative stress
analysis (Figs. 5, F and G, and 7, B and I), the time-integrated intra-
cellular H,O, concentration was used as an overall measure of oxi-
dative stress.

For simulations involving TNBC cells (Fig. 7, A and B), RNA-seq
data from the NIH LINCS consortium (91) (Harvard Medical School
dataset ID: 20348) was used to estimate proportional differences in
model species abundance between 15 TNBC cell lines and MCF10A
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cells. Reads per kilobase per million mapped reads values were nor-
malized as transcripts per million before fold change calculation. MAF
and antioxidant species were estimated as described above. TNBC
models used the same increased basal ROS generation rate as in the
MCF10DCIS.com model (135). To simulate p53 mutation in the 15
p53-mutant TNBC cell lines, all reactions downstream of p53 were
removed.

For simulations involving TNBC tumors from TCGA (Fig. 7,
H and I), breast cancer sequencing data and associated clinical in-
formation were downloaded from TCGA Data Portal (https://
portal.gdc.cancer.gov/). We identified 122 TNBC cases as tumors
that were scored negative for estrogen receptor expression, pro-
gesterone receptor expression, and HER2 amplification in the clinical
record. Fragments per kilobase per million mapped reads were nor-
malized as transcripts per million before fold change calculation to
model species abundance relative to MCF10A cells. Simulations were
carried out exactly as described for TNBC cell lines. All computa-
tional models and associated results are available in data file S4.

Statistical analysis

For analysis of the 10cRNA-seq dataset (Fig. 2A), Spearman correla-
tion between transcripts and the median expression of the NRF2-
associated gene cluster was calculated at an FDR of 10%. Transcripts
with a Spearman correlation coefficient above 0.5 were examined
by GO analysis. Statistical enrichment of GO terms was assessed by
Fisher’s exact test with FDR-corrected P values. Statistical enrich-
ments in ChIP-seq binding were determined by hypergeometric test
(fig. S2C). For qPCR data, differences in geometric means were as-
sessed by Welch’s ¢ test after log transformation (fig. S2, A and B).
Statistical interaction between shNRF2 and DNp53 and differences
between immunoblotting time courses were assessed by one-way
analysis of variance (ANOVA) (Figs. 2, D and E; 3E; 4, A and B; and
5, F and G; and fig. S2C). Statistical interaction between shNRF2,
DNp53, and Trolox was assessed by three-way ANOVA (Fig. 4E). For
fig. S15B, two-way ANOVA without replication was used. For un-
paired clinical data, multigroup comparison was made by Kruskal-
Wallis rank sum test (Fig. 6, D to F). For 3D spheroid growth,
mean differences in area were assessed by Kruskal-Wallis test with
Dunn’s post hoc test (Fig. 7, C to G). Distributions were compared
by Kolmogorov-Smirnov test (figs. S2D, S9, and S11). All other two-
sample comparisons were performed by Student’s ¢ test.

SUPPLEMENTARY MATERIALS
stke.sciencemag.org/cgi/content/full/13/627/eaba4200/DC1

Fig. S1. HIF-1a is not appreciably stabilized in 3D culture.

Fig. S2. Abundance of the heterogeneously regulated gene cluster is perturbed by NRF2
knockdown or p53 disruption, but not by JUND knockdown or human papillomavirus
E7-induced inhibition of RB.

Fig. S3. NRF2 knockdown and 3D phenotype quantification in MCF10A-5E cells.

Fig. S4. Proliferation differences and signaling similarities between MCF10A-5E and
MCF10DCIS.com cells.

Fig. S5. NRF2 knockdown causes p53 stabilization in premalignant breast epithelial cell lines.
Fig. S6. Premalignant breast epithelial cell lines have similar adaptations to NRF2 knockdown
in spheroid culture.

Fig. S7. Representative immunoblot images for the double-strand break and oxidative stress
time courses in MCF10A-5E cells.

Fig. 8. Local niches of NRF2 stabilization in MCF10A-5E 3D spheroids and pubertal murine
mammary glands.

Fig. S9. Description and validation of the HyPer-2 probe for H,0, and the mRFP1-NRF2
reporter.

Fig. S10. Antioxidant treatment causes an overall increase in MCF10A-5E spheroid size.

Fig. S11. Oxidative stress stabilizes NRF2 in the cytoplasm more so than electrophilic stress.
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Fig. S12. Oxidative stress does not measurably inhibit MDM2 induction by stabilized p53.

Fig. S13. NRF2 perturbations do not detectably alter MDM2 abundance.

Fig. S14. Calibration of an integrated NRF2-p53 systems model for oxidative stress.

Fig. S15. Endogenous NRF2 and p21 are not proximity labeled by BirA* fusions of each other.
Fig. S16. Anti-NRF2 antibody validation for immunohistochemistry.

Fig. S17.NRF2 and p53 are costabilized in breast epithelial ducts.

Fig. $18. Low-magnification hematoxylin-eosin images of the tissues and tumors in the work.
Table S1. gPCR primer sequences.

Table S2. Parameter summary for the integrated NRF2-p53 computational model.

Data file S1. Promoter analysis results underlying the summary Venn diagram in Fig. 1B.

Data file S2. GO enrichment analysis.

Data file S3. Gene set enrichment analysis of differentially abundant transcripts in MCF10A-5E
and MCF10DCIS.com cells upon NRF2 knockdown compared with control.

Data file S4. NRF2-p53 computational model and associated files.
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Coordination under stress, for better or worse

Cells adapt to oxidative stress in part by expressing antioxidant genes, many of which are transcribed by NRF2
and p53. Using three-dimensional cultures of normal and premalignant breast epithelial cells and mathematical modeling,
Pereira et al. found that NRF2 and p53 coordinated the oxidative stress response through cooperation and mutual
compensation. Although critical for normal duct development, their models suggested that NRF2-mediated tolerance to
oxidative stress in premalignant tissue may permit the emergence of p53 mutations that drive malignant progression and
render NRF2 dispensable. The findings reveal further complexity and cell state specificity in redox signaling networks and
the relevance of these networks to normal tissue development, tumor progression, and therapeutic strategies.
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