
Policy Gradient using Weak Derivatives for Reinforcement Learning

Sujay Bhatt, Alec Koppel, Vikram Krishnamurthy

Abstract— This paper considers policy search in continuous
state-action reinforcement learning problems. Typically, one
computes search directions using a classic expression for the
policy gradient called the Policy Gradient Theorem, which
decomposes the gradient of the value function into two factors:
the score function and the Q−function. This paper presents
four results: (i) an alternative policy gradient theorem using
weak (measure-valued) derivatives instead of score-function is
established; (ii) the stochastic gradient estimates thus derived
are shown to be unbiased and to yield algorithms that converge
almost surely to stationary points of the non-convex value
function of the reinforcement learning problem; (iii) the sample
complexity of the algorithm is derived and is shown to be

O(1/
√

k); (iv) finally, the expected variance of the gradient
estimates obtained using weak derivatives is shown to be lower
than those obtained using the popular score-function approach.
Experiments on OpenAI gym pendulum environment illustrate
the superior performance of the proposed algorithm.

I. INTRODUCTION

Reinforcement Learning (RL) is a form of implicit stochas-

tic adaptive control where the optimal control policy is

estimated without directly estimating the underlying model.

This paper considers reinforcement learning for an infinite

horizon discounted cost continuous state Markov decision

process. In a MDP, actions affect the Markovian state

dynamics and result in rewards for the agent. The objective

is to find a map from the states to actions, also known as

policy, that results in the accumulation of largest expected

return. There are many approaches to estimate a policy: policy

iteration, Q−learning [1], [2] (which operates in “value”

space [3]), policy-gradients [4], [5] (that operate in policy

space); see [6], [7].

Recently, policy-gradient algorithms have gained popu-

larity due to their ability to address complex real-world

RL problems with continuous state-action spaces. Given

a parametrized policy space, usually designed to incorporate

domain knowledge, policy-gradient algorithms update policy

parameters along an estimated ascent direction of the expected

return. Depending on whether the expected reward or the value

function is convex or non-convex, the parameters converge to

a minimum or a stationary point; for a comprehensive survey

see [8], [9].

Typically, to compute the ascent direction in policy

search [10], one employs the Policy Gradient Theorem [7]

to write the gradient as the product of two factors: the

Q−function1 and the score function (a likelihood ratio). This

score function approach has yielded numerous policy search

techniques [11], [12], [13], [7], although the resulting gradient

1Q−function is also known as the state-action value function [7]. It gives
the expected return for a choice of action in a given state.

estimates are afflicted with high variance: the score function

is a martingale and so for a Markov process its variance

is O(N) for N measurements. In pursuit of reducing the

variance, we propose replacing the score function with the

weak derivatives; see [14] for a textbook treatment.2 Weak

and measured-valued derivatives have been used for real-time

reinforcement learning of constrained average cost MDPs

(with finite action spaces) in [16], [17], [18], [19], [20]. These

papers derive constant step size policy gradient algorithms and

show analytically and via numerical examples that substantial

variance reduction can be achieved compared to the score

function method; moreover the optimal (randomized) policy

can be tracked over time when the unknown constrained MDP

parameters evolve.

In comparison to [16], [20], this paper considers off-line

(decreasing step size) reinforcement learning for continuous

state-continuous action infinite horizon discounted cost MDPs

when the underlying system can be simulated using statisti-

cally independent trials with different policies. To estimate the

Q−function in the policy gradient [7], we use Monte Carlo

roll-outs with random path lengths akin to [21], motivated by

the fact that obtaining unbiased estimates of continuous state-

action Q−function in the infinite horizon case is otherwise

challenging. The product of these terms yields a valid estimate

of the overall policy gradient, as in [7].

Our main results are:

1) A decreasing step size policy gradient algorithm using

Jordan decomposition for the policy gradient. We estab-

lish that the resulting policy gradient algorithm, named

Policy Gradient with Jordan Decomposition (PG-JD),

yields unbiased estimates of the gradient of the reward

function.

2) to establish that the PG-JD algorithm converges to

a stationary point of the parametrized value function

almost surely under decreasing step-sizes.

3) to derive the iteration (and sample3) complexity as

O(1/
√
k), where k is the time step. This shows that the

convergence rate is similar to stochastic gradient method

for non-convex settings.

4) to upper-bound the expected variance of the gradient

estimates obtained using the PG-JD algorithm, which

2The Hahn-Jordan decomposition [15] of signed measures is a specific
type of weak derivative form - this expresses the derivative of a measure as
the weighted difference of orthogonal measures. For example, the gradient
of a Gaussian policy [12] can be expressed as a (scaled) difference of two
Rayleigh policies.

3Iteration complexity is a measure of the number of changes of the
unknown parameter. Sample complexity includes the additional simulations
required to estimate the continuous state-action Q−function using Monte
Carlo roll-out with random path lengths.

2019 IEEE 58th Conference on Decision and Control (CDC)
Palais des Congrès et des Expositions Nice Acropolis
Nice, France, December 11-13, 2019

978-1-7281-1398-2/19/$31.00 ©2019 IEEE 5531

Authorized licensed use limited to: Cornell University Library. Downloaded on June 15,2020 at 00:37:33 UTC from IEEE Xplore. Restrictions apply.

isshown to be lower than those generated by score func-

tion methods using Monte Carlo roll-outs with random

path lengths, for common policy parametrizations.

The setup and problem formulation are discussed in Sec. II.

The new policy gradient theorem using weak derivatives

(Jordan decomposition) is derived in Sec. III. The algorithm

to compute the stochastic gradient and the policy parameter

update is given in Sec. IV. Convergence analysis of the

stochastic gradient ascent algorithm and its statistical proper-

ties are derived in Sec. V. Numerical studies on OpenAI gym

using the pendulum environment is discussed in Sec. VI.

II. PROBLEM FORMULATION AND POLICY SEARCH

The problem of reinforcement learning is considered in the

framework of Markov Decision Process, which is defined as

a tuple (X ,A, T , r, γ) consisting of the state space X ⊆ R
p,

a subset of Euclidean space with elements x ∈ X ; the action

space A ⊆ R
q, a subset of Euclidean space with elements

a ∈ A; the transition law T , a probability density function

T (·|a, x) ∈ P(X) that assigns a next-state upon taking action

a in state x, where P(X) denotes the set of all probability

measures on X ; the reward function r(x, a), a real valued

function on the product space X ×A; the discount γ ∈ (0, 1),
a parameter that scales the importance of future rewards.

A stochastic Markov policy µ = {µk} is defined as a

sequence of transition probabilities from X to A such that

µk(D(x)|x) = 1 for each x ∈ X and k = 0, 1, · · · . Here D
maps each x ∈ X to the set of all available actions D(x).
Let Σ denote the class of stochastic Markov policies.

For an initial state x0 and a stochastic Markov policy

µ ∈ Σ, define the expected reward function

J(x0,µ) = lim
N→∞

E
x0

µ

{

N
∑

k=0

γkr(xk, ak)
∣

∣

∣
ak ∼ µk(·|xk)

}

(1)

For an initial state x0 and a Markov policy µ ∈ Σ, using

Ionescu Tulcea theorem [22], [23], define P
x0
µ

as

P
x0

µ
(dx0da0 · · · dxkdak · · ·) = µ0(dx0)

∞
∏

k=1

µk(dak|xk)

(2)

× T (dxk|xk, ak).
Here µ0 ∈ P(X) is an atomic measure with µ0(x0) = 1. The

expectation E
x0
µ

in (1) is with respect to P
x0
µ

in (2). Our goal

is to find the policy µ that maximizes the long-term reward

accumulation, or value:

µ
∗= arg sup

µ∈Σ
lim

N→∞
E
x0

µ

{

N
∑

k=0

γkr(xk, ak)
∣

∣

∣
ak∼µk(·|xk)

}

.

(3)

For the infinite horizon problem (3), it is sufficient [24],

[25], [23], [26] to restrict the class Σ of policies to the class

Σs ⊂ Σ of stationary stochastic Markov policies. A stationary

stochastic Markov policy µ(= {µ}) ∈ Σs is defined as the

transition probability from X to A such that µ(D(x)|x) = 1
for each x ∈ X . In order to solve (3) we resort to direct

policy search over the space of continuous stationary policies.

It is convenient to parametrize the stationary policy µ(·|·)
as µθ(·|·) for θ ∈ Θ ⊆ R

d, for d ∈ N, and search over the

space of θ. For example, consider Gaussian policy µθ(·|x) =
N (θ′φ(x), σ2). Here the function φ(·) is commonly referred

to as the feature map and σ denotes the standard deviation.

With a slight abuse of notation, the problem (3) can be

reformulated in terms of the finding a parameter vector θ to

satisfy:

θ∗ = argmax
θ∈Rd

J(θ), (4)

J(θ) = lim
N→∞

E
x0

µθ

{

N
∑

k=0

γkr(xk, ak)
∣

∣

∣
ak ∼ µθ(·|xk)

}

.

Here E
x0
µθ

is the expectation with respect to the measure

induced by the probability measure as in (2) with the policy

µθ = {µθ} and initial state x0.

III. POLICY GRADIENT THEOREM VIA HAHN-JORDAN

The foundation of any valid policy search technique is a

valid ascent direction on the value function with respect to

the policy parameters. Classically, one may derive that the

policy gradient decomposes into two factors: the action-value

(Q) function and the score function [4]. Here we establish

that one may obviate the need for the log trick that gives rise

to the score function through measure-valued differentiation

by employing the Jordan decomposition of signed measures

[15]. To begin doing so, define the Q−function as

Qµθ
(x, a) = Eµθ

{

∞
∑

k=0

γkr(xk, ak)
∣

∣

∣
x0 = x, a0 = a

}

. (5)

The weak derivative of the signed measure ∇µθ(·|x) using

Jordan decomposition 4 is given as

∇µθ(·|x) = g(θ, x)
{

µ⊕
θ (·|x)− µ	

θ (·|x)
}

(6)

Here the decomposed positive and negative component

measures µ⊕
θ (·|x) and µ	

θ (·|x) are orthogonal in L2 (see

Example 1 below). The ergodic measure associated with

the transition kernel T (·|x0, a0) and policy µθ is πµθ
(x) =

(1− γ)∑∞
k=0 γ

k · T (xk = x|x0, µθ). The induced measures

on X × A by µ⊕
θ and µ	

θ are defined as µ⊕
θ (x, a)

∆
=

µ⊕
θ (a|x) · πµθ

(x) and µ	
θ (x, a)

∆
= µ	

θ (a|x) · πµθ
(x). Using

this measure (weak) derivative representation of the policy,

we can write the gradient of the value function with respect

to policy parameters θ in an unusual way which is given in

the following theorem.

4
Result 1. [15] [Hahn Decomposition] Let µ be a finite signed measure on
the measurable space (Ω,F). There exists a disjoint partition of the set Ω
into Ω+ and Ω− such that Ω = Ω+ ∪ Ω−, µ(A) ≥ 0, ∀A ⊂ Ω+, and
µ(B) ≤ 0, ∀B ⊂ Ω−.

Result 2. [15] [Jordan Decomposition] Every finite signed measure µ has
a unique decomposition into a difference µ = µ+ − µ− of two finite
non-negative measures µ+ and µ− such that for any Hahn decomposition
(Ω+,Ω−) of µ, we have for A ∈ F that µ+(A) = 0 if A ⊂ Ω− and
µ−(A) = 0 if A ⊂ Ω+.

5532

Authorized licensed use limited to: Cornell University Library. Downloaded on June 15,2020 at 00:37:33 UTC from IEEE Xplore. Restrictions apply.

Theorem 1. (Jordan Decomposition for Policy Gradients)

The policy gradient using Jordan decomposition takes the

form

∇J(θ) = 1

1− γ
[

E(x,a)∼µ⊕

θ
(·,·)

{

g(θ, x) ·Qµθ
(x, a)

}

(7)

− E(x,a)∼µ	

θ
(·,·)

{

g(θ, x) ·Qµθ
(x, a)

}]

.

where g(θ, x) is a normalizing constant to ensure µ⊕ and

µ	 are valid measures.

Discussion: The proof can be found in [27]. Theorem 1

is the policy gradient theorem using weak derivatives, specif-

ically Jordan decomposition. In Theorem 1, note that the Q
functions in the expectations are the same, indicating that

the model is unaffected by the measure decomposition; only

the induced measures are different. The expression for the

gradient in (7) contains a difference of two expectations.

Unlike, the method of score functions, the expectation

obviates the need for a score function term. Intuitively, this

allows us to avoid computing the logarithm of the policy

which may amplify useless parts of the state-action space and

cause variance to needlessly be increased, and instead yield

a sharp “perceptron-like” behavior. In subsequent sections,

we indeed establish that this representation may reduce

variance but this reduction intrinsically depends on the policy

parameterization. Note that g(θ, x) for a given parameter

θ and state x, is a constant, which makes the stochastic

gradient easier to compute in Algorithm 2. Before continuing,

we present a representative example; see [14] for several

examples.

Example 1. Consider a gaussian policy µθ(·|x) =
N (θ′φ(x), σ2), where the mean of the gaussian distribution

is modulated by the optimization parameter. The Jordan

decomposition of the gaussian policy can be derived as

follows:

µθ(·|x) = N (θ′φ(x), σ2) =
1√
2πσ2

exp
((a− θ′φ(x))2

2σ2

)

.

(8)

∇µθ(·|x) =
1√
2πσ2

exp
((a− θ′φ(x))2

2σ2

)

× 1

σ2
(a− θ′φ(x)) · φ(x).

:= g(θ, x)
{

µ⊕
θ (·|x)− µ	

θ (·|x)
}

, (9)

Here we may glean the normalizing constant g(θ, x) = φ(x)√
2πσ2

and the positive and negative component measures are

µ⊕
θ (·|x) =

1

σ2
(a− θ′φ(x)) · exp

((a− θ′φ(x))2
2σ2

)

, (10)

µ	
θ (·|x) =

1

σ2
(θ′φ(x)− a) · exp

((a− θ′φ(x))2
2σ2

)

. (11)

Observe that µ⊕
θ (·|x) and µ	

θ (·|x) define the Rayleigh5 policy.

They are orthogonal in the sense that µ⊕
θ (·|x) is defined on 6

5The probability density function corresponding to Rayleigh distribution

is: f(x) = x
σ2 · exp

(

x2

2σ2

)

, x ≥ 0.

6χ(·) denotes the indicator function.

χ(a > θ′φ(x)) and µ	
θ (·|x) is defined over χ(a < θ′φ(x)).

IV. POLICY SEARCH VIA JORDAN DECOMPOSITION

In order to develop a policy search method based on

Theorem 1, we need samples of both factors inside the

expectation in (7) which are unbiased. We first focus on

the later factor, the Q−function.

A. Estimating the Action-Value

The estimation of the Q−function is carried out using

Monte Carlo roll-outs of random path lengths, similar to [21].

Here the random length is a geometric random variable with

parameter γ, the discount factor in the reinforcement learning

problem. Specifically, we simulate T ∼ Geom (1− γ) and

then simulate state-action pairs according to the positive and

negative induced policies π⊕ and π	. For this time horizon,

we collect rewards for the two different trajectories.

More specifically, from a given starting state x0, a (real)

trajectory is simulated to update the policy parameters θ.

At each epoch k of the parameter update θk, the simulator

(modeled as (S(= X),A, T , r, γ)) is called two times to

simulate two different (phantom7) trajectories. These trajec-

tories correspond to the random Monte-Carlo roll-outs used

to estimate the Q−functions with two different policies, the

positive and negative policy measure, and hence the stochastic

gradient of the expected reward function. Let T denote a

geometrically distributed random variable: T ∼ Geom(1− γ)
where γ is the discount factor. Let the path-wise cost be

defined by RT
µθ

=
∑T

k=0 r(xk, ak)
∣

∣

∣
ak ∼ µθ(·|xk).

Discussion: Algorithm 2 with Algorithm 1 is the stochastic

gradient algorithm that is used to update the policy parameters.

The simulation consists of a single simulation (real trajectory)

to update the parameters and multiple phantom simulations to

estimate the gradient of the expected reward function. The two

phantom trajectories correspond to different polices and not

different models, starting from the system’s state represented

by the state corresponding to the real trajectory. The stochastic

gradient computation is summarized in three steps: For a fixed

initial state– (i) Simulate two phantom initial actions from the

measures obtained using Jordan decomposition, i.e, µ	
θk
(·|s	0)

and µ⊕
θk
(·|s⊕0). (ii) Simulate a geometric random variable Tk,

and (iii) Perform Monte Carlo roll-outs of length Tk − 1 (i.e,

simulate and feed actions to the simulator and collect the

rewards) using the system policy derived from old parameters,

i.e using {µθk(·|s⊕u)}u=Tk−1
u=1 } and {µθk(·|s	u)}a=Tk−1

u=1 }.
The merit of using these random horizons for estimation

of the Q function, as summarized in Algorithm 1, is that one

may establish that it is an unbiased estimate in the infinite-

horizon discounted case, as we summarize in the following

theorem.

Theorem 2. For a geometric r.v T , let the approximate

state-action value function (Q-function) be defined by

Q̂µθ
(x, a;T) = Eµθ

{

∑T
k=0 r(xk, ak)

∣

∣

∣
x0 = x, a0 = a

}

. Let

7Here the word “phantom” is used to refer to the actions on the simulator.

5533

Authorized licensed use limited to: Cornell University Library. Downloaded on June 15,2020 at 00:37:33 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 Unbiased estimation of Qµ

Input: Trajectory length Tk, states s0 = s⊕0 , s
	
0 , phantom

actions as0 = a⊕0 , a
	
0 , simulator policies µ = µ⊕

θk
, µ	

θk
.

Output: Unbiased Q-function estimates: RTk

µ̂⊕

θ

and RTk

µ̂	

θ

.

Initialize RTk

µ ← 0.
for all µ = µ⊕

θk
, µ	

θk
and t = 0, 1, 2, · · · , Tk − 1 do

RTk

µ ← RTk

µ + r(st, a
s
t).

st+1 ∼ T (·|st, ast), ast+1 ∼ µ(·|st+1).
end for

T denote a geometrically distributed random variable. Then,

Eµθ

{

RT
µθ

}

= Q̂µθ
(x, a;T). (12)

ET

{

Q̂µθ
(x, a;T)

}

= Qµθ
(x, a). (13)

The proof can be found in [27]. Now that we may obtain

unbiased samples of the action-value function, we shift focus

to how to compute the stochastic gradients needed for policy

search based on Jordan decomposition (Theorem 1).

B. Stochastic Gradient Algorithm

With the estimation of the action-value function addressed,

we now discuss how we can sample the former factor: the

signed measure gradients. Specifically, Theorem 1 can be

used to effectively compute the gradient given access to an

oracle/simulator that may generate state-action-reward triples.

It is well known that one only needs to compute estimates

of the gradient that are unbiased in expectation to ensure

convergence of the iterates to a stationary point [7]. This

results in a modification of the gradient expression as in

REINFORCE algorithm [11], [7], which is a stochastic gra-

dient, for computing the optimal policy of the reinforcement

learning problem. Let ET denote the expectation with respect

to the geometric distribution.

Using Theorem 2 and Fubini’s Theorem [28], the gradient

in (7) can be rewritten to make it implementable on a

simulator:

∇J(θ) = 1

1− γ
[

ET

{

E(x,a)∼µ⊕

θ
(·,·)

{

g(θ, x) · Q̂µθ
(x, a;T)

}

− E(x,a)∼µ	

θ
(·,·)

{

g(θ, x) · Q̂µθ
(x, a;T)

}}]

(14)

We have from Theorem 2 and (14),

∇̂JT (θ) =
g(θ, x0)

1− γ
[

RT
µ̂⊕

θ

−RT
µ̂	

θ

]

(15)

∇̂J(θ) = g(θ, x0)

1− γ
[

RTz

µ̂⊕

θ

−RTz

µ̂	

θ

]

(16)

Here the initial state simulated from the ergodic measure

is x0 ∼ πµθ
(x), and the policies that simulate the two

trajectories are: µ̂⊕
θ

∆
= {µ⊕

θ , {µθ}l}, l = 1, 2, · · · and µ̂	
θ

∆
=

{µ	
θ , {µθ}l}, l = 1, 2, · · · . Here the initial actions are simu-

lated from the decomposed measures and the parametrized

policy is used for the remainder of the trajectory simulation.

Here (15) is the (stochastic) gradient estimate for a random

path length T and (16) is the (stochastic) gradient estimate

Algorithm 2 Policy Gradient with Jordan Decomposition

(PG-JD)

Input: System state xk+1, parameter vector θk, and

continuous random policy µθk .

Output: Parameter θk+1 and next system input ak+1 ∼
µθk+1

.

Step 1. Simulate Tk ∼ Geom(1 − γ), i.e., P (Tk = t) =
(1− γ)γt.

Define the initial conditions: s⊕0 , s
	
0 = xk+1.

Define: µ̂⊕
θk

∆
= {µ⊕

θk
(·|s⊕0), {µθk(·|s⊕a)}a=Tk−1

a=1 } as the

policy for trajectory 1.

Define: µ̂	
θk

∆
= {µ	

θk
(·|s	0), {µθk(·|s	a)}a=Tk−1

a=1 } as the

policy for trajectory 2.

Step 2. Simulate a⊕0 ∼ µ⊕
θk
(·|s⊕0) and a	0 ∼ µ	

θk
(·|s	0).

Step 3. Compute Qµ̂⊕

θk

(s⊕0 , a
⊕
0) and Qµ̂	

θk

(s	0 , a
	
0) using

Algorithm 1.

Step 4. Compute ∇̂J(θk) = g(θk,xk+1)
1−γ ·

{

RTk

µ̂⊕

θk

−RTk

µ̂	

θk

}

Step 5. Compute θk+1 = θk + εk · ∇̂J(θk).

using a realization Tz . Using the estimates (16) that are

computable using Algorithm 1 to estimate the Q function

with respect to the signed measures, then, we may write out

an iterative stochastic gradient method to optimize θ with

respect to the value function as

θk+1 = θk + εk · ∇̂J(θk) . (17)

The overall policy search routine is summarized as Algo-

rithm 2. Its convergence and variance properties are discussed

in the following section.

V. CONVERGENCE, COMPLEXITY, & VARIANCE ANALYSIS

In this section, we discuss a few properties of the stochastic

gradient ascent algorithm derived using weak derivatives,

namely, convergence, the iteration complexity, sample com-

plexity, and the variance of the resulting gradient estimates.

A. Convergence Analysis

We now analyze the convergence of the PG-JD algorithm

(Algorithm 2), establishing that the stochastic gradient

estimates obtained from the algorithm are unbiased estimates

of the true gradient, and that the parameter sequence (17)

converges almost surely to a stationary point of the value

function (4). To do so, some assumptions are required which

we state next.

1) Assumptions:

(i) The reward function8 r(x, a) is bounded Lipschitz, i.e,

|r(x, a)| ≤M(<∞), ∀(x, a) ∈ X ×A.
∀(x1, x2, a1, a2) ∈ X 2 ×A2,

|r(x1, a1)− r(x2, a2)| ≤ Lr · dXA((x1, a1), (x2, a2)).

8Let the product space X ×A be equipped with the taxi-cab norm:

dXA((x1, a1), (x2, a2)) = dX (x1, x2) + dA(a1, a2)

∀(x1, x2, a1, a2) ∈ X 2 ×A2,

where d(·) denotes the corresponding metric on the Euclidean space.

5534

Authorized licensed use limited to: Cornell University Library. Downloaded on June 15,2020 at 00:37:33 UTC from IEEE Xplore. Restrictions apply.

(ii) The transition law9 T (·|x, a) is Lipschitz, i.e,

∀(x1, x2, a1, a2) ∈ X 2 ×A2,

K
(

T (·|x1, a1), T (·|x2, a2)
)

≤ LT ·dXA((x1, a1), (x2, a2)).

(iii) For θ ∈ R
d, the transition law T (·|x, µθ) is

ψ−irreducible, positive Harris recurrent, and geometri-

cally ergodic.

(iv) The continuous policy µθ(a|x) is Lipschitz, i.e,

∀(x1, x2) ∈ X 2, θ ∈ Θ,

K
(

µθ(·|x1), µθ(·|x2)
)

≤ Lθ · dX (x1, x2).

(v)
∑

k εk =∞ and
∑

k ε
2
k <∞.

(vi) The stochastic gradient

E

{

‖∇̂J(θ)‖2
}

≤ m+ n‖∇J(θ)‖2

for all θ ∈ Θ, and n,m > 0.

Assumptions (i) - (iii) are model assumptions, whereas

Assumptions (iv) - (vi) impose restricts about how the

algorithm behaves. Assumption (i) is standard, and tied to

learnability of the problem. Assumption (ii) is a continuity

assumption on the transition law that is easily satisfied by most

physical systems. Assumption (iii) makes sure that for every

policy µθ, there exists a unique invariant (stationary) measure

and the Markov chain reaches stationarity geometrically fast;

see [30]. All the results hold without the transition law being

geometrically ergodic. Assuming geometric ergodicity makes

simulating from the ergodic measure (in Algorithm 2, Sec.IV)

more meaningful. Regarding the algorithmic conditions:

Assumptions (iv)-(v) are standard in stochastic gradient

methods; see [31]. Assumption (vi) says that the stochastic

gradient is always bounded by the true gradient, which can

grow unbounded with θ. This assumption makes sure that

the martingale noise of the stochastic gradient is bounded by

the true gradient; see [31].

Proposition 1. Under Assumption (i), the expected cost J(θ)
in the reinforcement learning problem (4) is a bounded real-

valued function, i.e,

|J(θ)| ≤ M

1− γ ∀ θ ∈ Θ. (18)

The following result makes sure that the stochastic gradient

estimates so obtained are representative of the true gradient.

Theorem 3. The stochastic gradient obtained in (16) is an

unbiased estimate of the true gradient ∇J(θ), i.e,

E

{

∇̂J(θ)
}

= ∇J(θ). (19)

Discussion: The proof can be found in [27]. Theorem 3

says that the estimates of the stochastic gradient are unbiased

9As in [29], K(υ, ν) denotes the Kantorovich distance between probability
distributions υ and ν. It is given by:

K(υ, ν)
∆
= sup

f

{
∣

∣

∣

∫

fdυ −

∫

fdν
∣

∣

∣
: ‖f‖1 ≤ 1

}

.

in expectation. This is required to ensure the almost sure

convergence of the iterates to a stationary point [7].

Theorem 4. Consider the sequence of policy parameters

generated by Algorithm 2. Under Assumptions (i) - (vi), the

sequence of iterates {θk} satisfies

θk → θ∗, where ∇J(θ∗) = 0, almost surely. (20)

Discussion: The proof can be found in [27]. The expected

cost function J(θ), under model assumptions, is continuous

and L− Lipschitz; see [Chapter 7] [32] and [29]. Theorem 4

says that the sequence of iterates {θk} converges to θ∗ with

probability one, and since J(θ) is a continuous function, J(θk)
converges to J(θ∗) with probability one. The gradient (which

can be unbounded) at iterates {θk} is such that ∇J(θ∗) = 0
with probability one.

B. Sample Complexity

In this section, we consider the convergence rate analysis of

the PG-JD algorithm. We choose the stepsize to be εk = k−b

for some parameter b ∈ (0, 1). Since the optimization of

J(θ) is generally non-convex, we consider the convergence

rate in terms of a metric of non-stationarity, i.e., the norm

of the gradient ‖∇J(θ)‖2. The following theorem considers

a step-size that diminishes more slowly than Assumption

(v), which yields a O(1/
√
k) rate for the decrement of the

expected gradient norm square E‖∇J(θk)‖2.

Theorem 5. Let
{

θk

}

k≥0
be the sequence of parameters of

the policy µθk generated by Algorithm 2. Let the stepsize

be εk = k−b for b ∈ (0, 1) and ∆ = min
{

ε, η
}

for some

ε, η > 0. Let

K∆ = min
{

k : inf
0≤d≤k

E[‖∇J(θd)‖2] ≤ ∆
}

(21)

denote the number of iteration steps for the norm of the

expected cost to come within the error neighborhood. Then,

under Assumptions (i) - (iv), (vi)

K∆ = O(∆−1/p), where p = min
{

1− b, b
}

, (22)

where optimizing the complexity bound over b, we have b =
1/2. Therefore, K∆ = O(∆−2).

Discussion: See [27] for proof. Theorem 5 characterizes

the iteration complexity, which is a measure of the number

of iteration steps of the algorithm are required to settle down

on a stationary point of the value function. The iteration

complexity is O(1/
√
k) showing that the convergence rate

is similar to the stochastic gradient methods for non-convex

settings. We emphasize that despite the re-invention of such

proofs in machine learning, in fact much more general analysis

has been developed in the literature. For example Proposition

5, pg 294 in [33] gives general Lq error bounds for q/geq2
in the presence of Markovian noise (whereas our setting is

i.i.d. noise). Our intention is to identify these rates in the

context and language of modern RL.

5535

Authorized licensed use limited to: Cornell University Library. Downloaded on June 15,2020 at 00:37:33 UTC from IEEE Xplore. Restrictions apply.

Corollary 6. Let γ denote the discount factor and K∆ denote

the iteration complexity. The average sample complexity M∆
γ

using Algorithm 2 is given as:

M∆
γ =

(1 + γ

1− γ
)

K∆. (23)

Discussion: The proof can be found in [27]. Corollary 6

characterizes the sample complexity, which is a measure

of the number of the expected total number of actions and

states realized. Higher the discount factor γ, longer the two

(random) Monte-Carlo roll-outs (trajectories) that need to

simulated, and hence higher the sample complexity. Together

the complexity results, Theorem 5 and Corollary 6, provide an

estimate of the duration and expected number of simulations

to learn a stationary solution for the reinforcement learning

task considered.

C. Variance Analysis

In this section, we provide an analysis of the variance of

the stochastic gradient estimates obtained using weak deriva-

tives and score function approaches. Since the Q−function

estimation in the computation of the gradient is performed

using random Monte Carlo roll-outs as in [21], the stochastic

gradient obtained is a function of the geometric random

variable T that characterizes the roll-out (trajectory) length.

To obtain a comparison of the different methods – weak

derivatives and score function – we consider the expected

variance of the gradient estimates. The proof of Theorem 7

can be found in [27]. The proof of Theorem 8 is similar and

hence omitted.

Theorem 7. The expected variance of the gradient estimates

∇̂J obtained using weak derivatives is given as:

E

{

VarWD(∇̂JT (θ))
}

≤ 2 ·M2 ·GWD

(1− γ)5 , (24)

where GWD = Ex∼µθ

{

‖g(θ, x)‖2
}

.

Theorem 8. The expected variance of the gradient estimates

∇̂J , if score function is used instead of weak derivatives, is

given as:

E

{

VarSF (∇̂JT (θ))
}

≤ M2 ·GSF

(1− γ)5 , (25)

where GSF = E(x,a)∼µθ(a|x)
{

‖∇µθ(a|x)‖2
}

.

Corollary 9. For the Gaussian policy µθ(·|x) =
N (θ′φ(x), σ2), we have

GWD =
1

2 · πGSF . (26)

Hence, the maximum expected variance of the gradient

estimates using weak derivatives is smaller than those obtained

using the score function method.

Fig. 1. The convergence of the discounted return as a function of the number
of iterations of the policy gradient algorithms. Here at each iteration k, the
discounted return J(θ) = Eπθ

{
∑

∞

k=0 γ
kr(xk, ak)} is evaluated over 50

trajectories with γ = 0.97. Observe that the discounted return is higher on
average using Monte-Carlo PG-JD as opposed to PG-SF. It can be attributed
to algorithm iterates converging to a “better” stationary point due to smaller
variance in the gradient estimates.

VI. NUMERICAL STUDIES

In this section, we present a simple experiment using

PG-JD algorithm on the Pendulum environment in OpenAI

gym [34]. The performance is compared with Monte Carlo

Policy Gradient using Score Function (PG-SF) which is akin

to REINFORCE [35] with random roll-out horizons; see

Fig.1. In the simulation environment, the pendulum starts at a

random position, and the goal is to swing it up so that it stays

upright. The environment state is a vector of dimension three,

i.e., xk = (cos(ϕk), sin(ϕk), ϕ̇k)
>, where ϕk is the angle

between the pendulum and the upright direction, and ϕ̇k is

the derivative of ϕk. The action ak is a one-dimensional

scalar modified using a tanh-function, and represents the

joint effort.

The received reward r(xk, ak) is given as

r(xk, ak) := −(ϕ2
k + 0.1 ∗ ϕ̇k

2 + 0.001 ∗ ak2), (27)

which lies in [−16.2734, 0], ϕk is normalized between

[−π, π] and ak lies in [−2, 2]. The transition dynamics are

specified by Newton’s Second Law of Motion. We use

Gaussian policy πθ, which is parameterized as πθ(·|x) =
N (θTφ(x), σ2), where σ = 1.0 and φ(x)(= x) being

the feature vector. The policy is a stationary policy (time-

homogeneous) as it is well known [6] to be sufficient

for infinite or random horizon discounted MDP problems.

Observe that the discounted return is higher on average using

PG-JD as opposed to PG-SF, which may attributable to the

variance-reduced properties of the policy gradient estimates

using signed measures as compared with the score function.

Remark: It is noted that for common parametrizations of

the mean of the Gaussian policy [12], for example like

linear – θTφ(s), the score function is unbounded with

respect to θ with the expression being
(a−θTφ(s))

σ2 φ(s). This

results in convergence issues in policy gradient algorithms

5536

Authorized licensed use limited to: Cornell University Library. Downloaded on June 15,2020 at 00:37:33 UTC from IEEE Xplore. Restrictions apply.

for unbounded θ and unbounded state spaces. However,

using Jordan decomposition, even with linear parametrization

and unboundedness, the convergence of the policy gradient

algorithm is ensured due to the absence of explicit function

of θ.

REFERENCES

[1] C. Watkins and J. C. Hellaby, “Learning from delayed rewards,” Ph.D.
dissertation, King’s College, Cambridge, UK, May 1989.

[2] E. Tolstaya, A. Koppel, E. Stump, and A. Ribeiro, “Nonparametric
stochastic compositional gradient descent for Q-learning in continu-
ous markov decision problems,” in 2018 Annual American Control

Conference (ACC). IEEE, 2018, pp. 6608–6615.

[3] A. Koppel, G. Warnell, E. Stump, and A. Ribeiro, “Policy evaluation in
continuous MDPs with efficient kernelized gradient temporal difference,”
2017.

[4] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour,
“Policy gradient methods for reinforcement learning with function
approximation,” in Advances in neural information processing systems,
2000, pp. 1057–1063.

[5] K. Zhang, A. Koppel, H. Zhu, and T. Basar, “Global Convergence
of Policy Gradient Methods: A Nonconvex Optimization Perspective,”
SIAM Journal on control and Optimization (under review), 2019.

[6] D. P. Bertsekas, Dynamic Programming and Optimal Control, 2005,
vol. 1, no. 3.

[7] R. S. Sutton, A. G. Barto et al., Reinforcement Learning: An

Introduction, 2nd ed., 2017.

[8] I. Grondman, L. Busoniu, G. A. Lopes, and R. Babuska, “A survey
of actor-critic reinforcement learning: Standard and natural policy
gradients,” IEEE Transactions on Systems, Man, and Cybernetics, Part

C (Applications and Reviews), vol. 42, no. 6, pp. 1291–1307, 2012.

[9] M. P. Deisenroth, G. Neumann, J. Peters et al., “A survey on policy
search for robotics,” Foundations and Trends R© in Robotics, vol. 2, no.
1–2, pp. 1–142, 2013.

[10] D. Silver, “Reinforcement learning and simulation-based search,”
Doctor of philosophy, University of Alberta, 2009.

[11] R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” Machine learning, vol. 8, no.
3-4, pp. 229–256, 1992.

[12] K. Doya, “Reinforcement learning in continuous time and space,”
Neural Computation, vol. 12, no. 1, pp. 219–245, 2000.

[13] E. Greensmith, P. L. Bartlett, and J. Baxter, “Variance reduction
techniques for gradient estimates in reinforcement learning,” Journal

of Machine Learning Research, vol. 5, no. Nov, pp. 1471–1530, 2004.

[14] G. Pflug, Optimization of Stochastic Models: The Interface between

Simulation and Optimization. Kluwer Academic Publishers, 1996.

[15] P. Billingsley, Probability and measure. John Wiley & Sons, 2008.

[16] F. V. Abad and V. Krishnamurthy, “Constrained stochastic approxima-
tion algorithms for adaptive control of constrained Markov decision
processes,” in 42nd IEEE Confernce on Decision and Control, 2003,
pp. 2823–2828.

[17] V. Krishnamurthy, F. V. Abad, and K. Martin, “Implementation of
gradient estimation to a constrained Markov decision problem,” in
42nd IEEE Confernce on Decision and Control, 2003.

[18] V. Krishnamurthy and F. J. V. Abad, “Gradient based policy optimiza-
tion of constrained markov decision processes,” in Stochastic Processes,

Finance and Control: A Festschrift in Honor of Robert J Elliott. World
Scientific, 2012, pp. 503–547.

[19] V. Krishnamurthy, Partially Observed Markov Decision Processes.
Cambridge University Press, 2016.

[20] V. Krishnamurthy and F. Vazquez Abad, “Real-time reinforcement
learning of constrained markov decision processes with weak deriva-
tives,” arXiv preprint arXiv:1110.4946, 2018.

[21] S. Paternain, “Stochastic Control Foundations of Autonomous Behavior,”
Ph.D. dissertation, University of Pennsylvania, 2018.

[22] J. Neveu, Mathematical foundations of the calculus of probability.
Holden-day, 1965.

[23] O. Hernández-Lerma and J. B. Lasserre, Discrete-time Markov control

processes: basic optimality criteria. Springer Science & Business
Media, 2012, vol. 30.

[24] D. Blackwell, “Discounted dynamic programming,” The Annals of

Mathematical Statistics, vol. 36, no. 1, pp. 226–235, 1965.

[25] D. P. Bertsekas and S. E. Shreve, Stochastic optimal control: the

discrete-time case. Academic Press Inc.[Harcourt Brace Jovanovich
Publishers], New York, 1978.

[26] E. A. Feinberg, “On measurability and representation of strategic
measures in Markov decision processes,” Lecture Notes-Monograph

Series, pp. 29–43, 1996.
[27] S. Bhatt, A. Koppel, and V. Krishnamurthy, “Policy Gradient using

Weak Derivatives for Reinforcement Learning,” U.S. Army Research

Laboratory/ Cornell University-Technical Report, 2019., https://koppel.
netlify.com/assets/papers/2019 report sujay etal.pdf.

[28] V. I. Bogachev, Measure theory. Springer Science & Business Media,
2007, vol. 1.

[29] K. Hinderer, “Lipschitz continuity of value functions in Markovian
decision processes,” Mathematical Methods of Operations Research,
vol. 62, no. 1, pp. 3–22, 2005.

[30] O. Hernández-Lerma and J. B. Lasserre, Markov chains and invariant

probabilities. Birkhäuser, 2012, vol. 211.
[31] D. P. Bertsekas and J. N. Tsitsiklis, “Gradient convergence in gradient

methods with errors,” SIAM Journal on Optimization, vol. 10, no. 3,
pp. 627–642, 2000.

[32] N. Bäuerle and U. Rieder, Markov decision processes with applications

to finance. Springer Science & Business Media, 2011.
[33] A. Benveniste, M. Métivier, and P. Priouret, Adaptive algorithms and

stochastic approximations. Springer Science & Business Media, 2012,
vol. 22.

[34] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schul-
man, J. Tang, and W. Zaremba, “Openai gym,” arXiv preprint

arXiv:1606.01540, 2016.
[35] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour,

“Policy gradient methods for reinforcement learning with function
approximation,” in Advances in neural information processing systems,
2000, pp. 1057–1063.

5537

Authorized licensed use limited to: Cornell University Library. Downloaded on June 15,2020 at 00:37:33 UTC from IEEE Xplore. Restrictions apply.

