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Policy Gradient using Weak Derivatives for Reinforcement Learning

Sujay Bhatt, Alec Koppel, Vikram Krishnamurthy

Abstract— This paper considers policy search in continuous
state-action reinforcement learning problems. Typically, one
computes search directions using a classic expression for the
policy gradient called the Policy Gradient Theorem, which
decomposes the gradient of the value function into two factors:
the score function and the (Q—function. This paper presents
four results: (i) an alternative policy gradient theorem using
weak (measure-valued) derivatives instead of score-function is
established; (ii) the stochastic gradient estimates thus derived
are shown to be unbiased and to yield algorithms that converge
almost surely to stationary points of the non-convex value
function of the reinforcement learning problem; (iii) the sample
complexity of the algorithm is derived and is shown to be
O(1/Vk); (iv) finally, the expected variance of the gradient
estimates obtained using weak derivatives is shown to be lower
than those obtained using the popular score-function approach.
Experiments on OpenAl gym pendulum environment illustrate
the superior performance of the proposed algorithm.

I. INTRODUCTION

Reinforcement Learning (RL) is a form of implicit stochas-
tic adaptive control where the optimal control policy is
estimated without directly estimating the underlying model.
This paper considers reinforcement learning for an infinite
horizon discounted cost continuous state Markov decision
process. In a MDP, actions affect the Markovian state
dynamics and result in rewards for the agent. The objective
is to find a map from the states to actions, also known as
policy, that results in the accumulation of largest expected
return. There are many approaches to estimate a policy: policy
iteration, (Q—learning [1], [2] (which operates in “value”
space [3]), policy-gradients [4], [5] (that operate in policy
space); see [6], [7].

Recently, policy-gradient algorithms have gained popu-
larity due to their ability to address complex real-world
RL problems with continuous state-action spaces. Given
a parametrized policy space, usually designed to incorporate
domain knowledge, policy-gradient algorithms update policy
parameters along an estimated ascent direction of the expected
return. Depending on whether the expected reward or the value
function is convex or non-convex, the parameters converge to
a minimum or a stationary point; for a comprehensive survey
see [8], [9].

Typically, to compute the ascent direction in policy
search [10], one employs the Policy Gradient Theorem [7]
to write the gradient as the product of two factors: the
Q—function' and the score function (a likelihood ratio). This
score function approach has yielded numerous policy search
techniques [11], [12], [13], [7], although the resulting gradient

1Q—function is also known as the state-action value function [7]. It gives
the expected return for a choice of action in a given state.
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estimates are afflicted with high variance: the score function
is a martingale and so for a Markov process its variance
is O(N) for N measurements. In pursuit of reducing the
variance, we propose replacing the score function with the
weak derivatives; see [14] for a textbook treatment.> Weak
and measured-valued derivatives have been used for real-time
reinforcement learning of constrained average cost MDPs
(with finite action spaces) in [16], [17], [18], [19], [20]. These
papers derive constant step size policy gradient algorithms and
show analytically and via numerical examples that substantial
variance reduction can be achieved compared to the score
function method; moreover the optimal (randomized) policy
can be tracked over time when the unknown constrained MDP
parameters evolve.

In comparison to [16], [20], this paper considers off-line
(decreasing step size) reinforcement learning for continuous
state-continuous action infinite horizon discounted cost MDPs
when the underlying system can be simulated using statisti-
cally independent trials with different policies. To estimate the
@ —function in the policy gradient [7], we use Monte Carlo
roll-outs with random path lengths akin to [21], motivated by
the fact that obtaining unbiased estimates of continuous state-
action (Q—function in the infinite horizon case is otherwise
challenging. The product of these terms yields a valid estimate
of the overall policy gradient, as in [7].

Our main results are:

1) A decreasing step size policy gradient algorithm using
Jordan decomposition for the policy gradient. We estab-
lish that the resulting policy gradient algorithm, named
Policy Gradient with Jordan Decomposition (PG-JD),
yields unbiased estimates of the gradient of the reward
function.

2) to establish that the PG-JD algorithm converges to
a stationary point of the parametrized value function
almost surely under decreasing step-sizes.

3) to derive the iteration (and sample®) complexity as
O(1/Vk), where k is the time step. This shows that the
convergence rate is similar to stochastic gradient method
for non-convex settings.

4) to upper-bound the expected variance of the gradient
estimates obtained using the PG-JD algorithm, which

2The Hahn-Jordan decomposition [15] of signed measures is a specific
type of weak derivative form - this expresses the derivative of a measure as
the weighted difference of orthogonal measures. For example, the gradient
of a Gaussian policy [12] can be expressed as a (scaled) difference of two
Rayleigh policies.

3teration complexity is a measure of the number of changes of the
unknown parameter. Sample complexity includes the additional simulations
required to estimate the continuous state-action (Q—function using Monte
Carlo roll-out with random path lengths.
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isshown to be lower than those generated by score func-

tion methods using Monte Carlo roll-outs with random

path lengths, for common policy parametrizations.
The setup and problem formulation are discussed in Sec. II.
The new policy gradient theorem using weak derivatives
(Jordan decomposition) is derived in Sec. III. The algorithm
to compute the stochastic gradient and the policy parameter
update is given in Sec. IV. Convergence analysis of the
stochastic gradient ascent algorithm and its statistical proper-
ties are derived in Sec. V. Numerical studies on OpenAl gym
using the pendulum environment is discussed in Sec. VL.

II. PROBLEM FORMULATION AND POLICY SEARCH

The problem of reinforcement learning is considered in the
framework of Markov Decision Process, which is defined as
a tuple (X, A, T,r,v) consisting of the state space X C RP,
a subset of Euclidean space with elements x € X; the action
space A C R, a subset of Euclidean space with elements
a € A; the transition law T, a probability density function
T(:|a,z) € P(X) that assigns a next-state upon taking action
a in state z, where P(&X') denotes the set of all probability
measures on X; the reward function r(x,a), a real valued
function on the product space X' x A; the discount v € (0, 1),
a parameter that scales the importance of future rewards.

A stochastic Markov policy p = {ux} is defined as a
sequence of transition probabilities from X’ to A such that
pur(D(x)|z) =1 for each x € X and k =0,1,---. Here D
maps each x € X to the set of all available actions D(z).
Let ¥ denote the class of stochastic Markov policies.

For an initial state xy and a stochastic Markov policy
p € X, define the expected reward function

N
Two ) = Jim B { S ren, ar) | ~ i)
k=0
(D

For an initial state ¢ and a Markov policy p € ¥, using
Ionescu Tulcea theorem [22], [23], define ]P’fj’ as

Py0 (daodag - - - dagdag - - ) = po(dao) [ [ (da|a)

k=1
2
x T (dzg|xg, ar).

Here 1o € P(X) is an atomic measure with po(xo) = 1. The
expectation E7° in (1) is with respect to PP in (2). Our goal
is to find the policy p that maximizes the long-term reward
accumulation, or value:

N

*— 1 o k ~ -
w= arl;ges;p]\;gréo]EH {kgo'y T(l’k,ak)’ak e ( |xk)}
3)

For the infinite horizon problem (3), it is sufficient [24],
[25], [23], [26] to restrict the class X of policies to the class
3s C X of stationary stochastic Markov policies. A stationary
stochastic Markov policy p(= {p}) € 3, is defined as the
transition probability from X to A such that p(D(z)|z) =1
for each z € X. In order to solve (3) we resort to direct

policy search over the space of continuous stationary policies.
It is convenient to parametrize the stationary policy pu(:|-)
as ug(-]-) for # € © C R, for d € N, and search over the
space of 6. For example, consider Gaussian policy pg(-|z) =
N(0'¢(x),0?). Here the function ¢(-) is commonly referred
to as the feature map and o denotes the standard deviation.
With a slight abuse of notation, the problem (3) can be
reformulated in terms of the finding a parameter vector 6 to
satisfy:

0* = arg max J(6), 4)
R
N
J(0) = lim_ Effé{ > Ak, ax) |a ~ Me(‘|$k)}'
k=0
Here EJY is the expectation with respect to the measure

induced by the probability measure as in (2) with the policy
e = {pe} and initial state x.

III. PoLICY GRADIENT THEOREM VIA HAHN-JORDAN

The foundation of any valid policy search technique is a
valid ascent direction on the value function with respect to
the policy parameters. Classically, one may derive that the
policy gradient decomposes into two factors: the action-value
(Q) function and the score function [4]. Here we establish
that one may obviate the need for the log trick that gives rise
to the score function through measure-valued differentiation
by employing the Jordan decomposition of signed measures
[15]. To begin doing so, define the (Q—function as

Qu,(z,0) = EM{ Z’ykr(mk, ak)‘zo =x,a09 = a} . (9

k=0

The weak derivative of the signed measure Vi (-|z) using
Jordan decomposition * is given as

Vio(l2) = 90, ) {u§ (12) — w5 (1)} (©)

Here the decomposed positive and negative component
measures u5 (-|z) and pg(-|x) are orthogonal in L? (see
Example 1 below). The ergodic measure associated with
the transition kernel 7 (-|zo, ag) and policy pg is 7, (x) =
(1—7) > pe 0" T(zk = x|z0, f19). The induced measures
on X x A by pf and py are defined as uf(z,a) 2
1§ (al) - 7, (2) and 4 (2,a) 2 p§ (ale) - 7, (). Using
this measure (weak) derivative representation of the policy,
we can write the gradient of the value function with respect
to policy parameters ¢ in an unusual way which is given in
the following theorem.

Re4sult 1. [15] [Hahn Decomposition] Let p be a finite signed measure on
the measurable space (€2, F). There exists a disjoint partition of the set Q
into Q1 and Q~ such that Q = QT UQ~, u(A4) > 0,VvA C QF, and
w(B)<0,VyBC Q.

Result 2. [15] [Jordan Decomposition] Every finite signed measure p has
a unique decomposition into a difference i = pt — pu~ of two finite
non-negative measures u+ and 1~ such that for any Hahn decomposition
(QF,Q7) of u, we have for A € F that ut(A) = 0if A C Q~ and
pu~(A)=0if Ac Qt.
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Theorem 1. (Jordan Decomposition for Policy Gradients)
The policy gradient using Jordan decomposition takes the
form

vI0) = ——

1— v E(J;,a)~u§(~,~) {g(e’ x) ’ QMB (.’L‘, a)} (N

~ By {9(97 x) - Qu(x, a)H )

where g(0,x) is a normalizing constant to ensure p® and
u® are valid measures.

Discussion: The proof can be found in [27]. Theorem 1
is the policy gradient theorem using weak derivatives, specif-
ically Jordan decomposition. In Theorem 1, note that the @
functions in the expectations are the same, indicating that
the model is unaffected by the measure decomposition; only
the induced measures are different. The expression for the
gradient in (7) contains a difference of two expectations.
Unlike, the method of score functions, the expectation
obviates the need for a score function term. Intuitively, this
allows us to avoid computing the logarithm of the policy
which may amplify useless parts of the state-action space and
cause variance to needlessly be increased, and instead yield
a sharp “perceptron-like” behavior. In subsequent sections,
we indeed establish that this representation may reduce
variance but this reduction intrinsically depends on the policy
parameterization. Note that g(6,x) for a given parameter
0 and state x, is a constant, which makes the stochastic
gradient easier to compute in Algorithm 2. Before continuing,
we present a representative example; see [14] for several
examples.

Example 1. Consider a gaussian policy pug(-|x) =
N(0'¢(z),0?%), where the mean of the gaussian distribution
is modulated by the optimization parameter. The Jordan
decomposition of the gaussian policy can be derived as
follows:

po(-|z) = N(0'¢(x),0%) =

1
V2ro? P (

202
®)
_ 1 (a—0'¢(x))”
Vig(lr) = Z—exp (g 3 )
1
x 50— 89(@)) - 6(z).
= 9(0.2){ 4§ (12) = g (1) } ©)
Here we may glean the normalizing constant g(6, z) = ;%
and the positive and negative component measures are
1 (a—0'¢(x))”
D) = —(aq— 0 b)) -
g (f2) = —5(a—0'6(x)) - exp (55, (10)
1 (a—0'¢(x))”
Silx) = —(0 —a)- RS i e
i (f2) = = (0'6(x) = a) -exp (5 ).

Observe that ;1§ (+|x) and g (-|=) define the Rayleigh’ policy.
They are orthogonal in the sense that ;1 (+|z) is defined on ¢

5The probability densito function corresponding to Rayleigh distribution
is: f(z) = %5 -exp (ﬁ), z > 0.

x(+) denotes the indicator function.

(a =¥y

x(a > 0'¢(x)) and pg (-|z) is defined over x(a < 0'¢(z)).

IV. POLICY SEARCH VIA JORDAN DECOMPOSITION

In order to develop a policy search method based on
Theorem 1, we need samples of both factors inside the
expectation in (7) which are unbiased. We first focus on
the later factor, the (Q—function.

A. Estimating the Action-Value

The estimation of the (Q—function is carried out using
Monte Carlo roll-outs of random path lengths, similar to [21].
Here the random length is a geometric random variable with
parameter ~, the discount factor in the reinforcement learning
problem. Specifically, we simulate 7' ~ Geom (1 — ~) and
then simulate state-action pairs according to the positive and
negative induced policies 7¥ and 7°. For this time horizon,
we collect rewards for the two different trajectories.

More specifically, from a given starting state x(, a (real)
trajectory is simulated to update the policy parameters 6.
At each epoch k of the parameter update 6y, the simulator
(modeled as (S(= X), A, T,r,v)) is called two times to
simulate two different (phantom’) trajectories. These trajec-
tories correspond to the random Monte-Carlo roll-outs used
to estimate the ()—functions with two different policies, the
positive and negative policy measure, and hence the stochastic
gradient of the expected reward function. Let 7' denote a
geometrically distributed random variable: 7' ~ Geom(1 — )
where ~y is the discount factor. Let the path-wise cost be
defined by R}, = EZ:O r(xk,ak)’ak ~ po(-|zk)-

Discussion: Algorithm 2 with Algorithm 1 is the stochastic
gradient algorithm that is used to update the policy parameters.
The simulation consists of a single simulation (real trajectory)
to update the parameters and multiple phantom simulations to
estimate the gradient of the expected reward function. The two
phantom trajectories correspond to different polices and not
different models, starting from the system’s state represented
by the state corresponding to the real trajectory. The stochastic
gradient computation is summarized in three steps: For a fixed
initial state— (i) Simulate two phantom initial actions from the
measures obtained using Jordan decomposition, i.e, u?k (|s5)
and ugi (:|s&). (ii) Simulate a geometric random variable T,
and (iii) Perform Monte Carlo roll-outs of length 73 — 1 (i.e,
simulate and feed actions to the simulator and collect the
rewards) using the system policy derived from old parameters,
i.c using {jig, (-1s2)}=7* "1} and {yug, (s)} =1 1),

The merit of using these random horizons for estimation
of the Q function, as summarized in Algorithm 1, is that one
may establish that it is an unbiased estimate in the infinite-
horizon discounted case, as we summarize in the following
theorem.

Theorem 2. For a geometric rv T, let the approximate
state-action value function (Q-function) be defined by

Que (x,a;T) =E,, Zfzo r(xg, ar)|xo = x,a0 = a¢. Let

"Here the word “phantom” is used to refer to the actions on the simulator.
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Algorithm 1 Unbiased estimation of Q,,

Input: Trajectory length T, states sg = 389, s?, phantom
actions a§ = ag, ag , simulator policies = g , pg, -
Output: Unbiased Q-function estimates: Rg’é and RZ"@.
niialize R ¢ 0. ' '
for all ;= “9k7“0k and t =0,1,2,-
RI%  RIs +1(sy, af).
St ~ TClsea). aiyy ~ pllsinn).

,Tk—ldO

end for

T denote a geometrically distributed random variable. Then,
By {RE, } = Qo 0: 7).
ET{QMG (zv a; T)} - Q#e (:Ea a)‘

The proof can be found in [27]. Now that we may obtain
unbiased samples of the action-value function, we shift focus
to how to compute the stochastic gradients needed for policy
search based on Jordan decomposition (Theorem 1).

12)

13)

B. Stochastic Gradient Algorithm

With the estimation of the action-value function addressed,
we now discuss how we can sample the former factor: the
signed measure gradients. Specifically, Theorem 1 can be
used to effectively compute the gradient given access to an
oracle/simulator that may generate state-action-reward triples.
It is well known that one only needs to compute estimates
of the gradient that are unbiased in expectation to ensure
convergence of the iterates to a stationary point [7]. This
results in a modification of the gradient expression as in
REINFORCE algorithm [11], [7], which is a stochastic gra-
dient, for computing the optimal policy of the reinforcement
learning problem. Let E7 denote the expectation with respect
to the geometric distribution.

Using Theorem 2 and Fubini’s Theorem [28], the gradient
in (7) can be rewritten to make it implementable on a
simulator:

VI(0) = —

1_
—E

[ET{E(m Q)i (. _){g(e,x) . QAM (z,a; T)}

e o900 Qu a4
We have from Theorem 2 and (14),

. 0

VJr(0) = gi ’_x;)) [Rgée - Rgee] (15)
= - g(0, ) T, T,

vI(0) = T [RI: —RT:] (16)

Here the initial state simulated from the ergodic measure
is ¢y ~ mu,(x), and the policies that simulate the two

trajectories are: fiy £ {ng , {uehi}, 1 =1,2,--- and fy £
{ng,{me}i},1 =1,2, . Here the initial actions are 51mu-
lated from the decomposed measures and the parametrized
policy is used for the remainder of the trajectory simulation.
Here (15) is the (stochastic) gradient estimate for a random

path length 7" and (16) is the (stochastic) gradient estimate

Algorithm 2 Policy Gradient with Jordan Decomposition
(PG-JD)
Input: System state xj4;, parameter vector 6, and
continuous random policy ug, .
Output: Parameter 05,1 and next system input agqq ~
Hopys-
Step 1. Simulate T, ~ Geom(1 — v), i.e.,, P(T, =t) =
(L=
Define the initial conditions: sga, ? = Tky1.
Define: fiy = {1 (-Is). {pto, (1s£)}o=T* '} as the
policy for trajectory 1.
Define: i} = {5 (-|s), {po, (-1s3)}2=1* "'} as the
policy for trajectory 2.
Step 2. Simulate af ~ wug (- |s0 ) and ag ~ pg (-|sg).
Step 3. Compute Q & (30 ;ag) and Qe (SO ,aoe) using
Algorithm 1.
Step 4. Compute V.J(6;,) = RZ: }
k

90k, Tht1) | {RTk

1—v H%

Step 5. Compute 01 = 0 + ¢ - VJ(Gk).

using a realization 7,. Using the estimates (16) that are
computable using Algorithm 1 to estimate the Q function
with respect to the signed measures, then, we may write out
an iterative stochastic gradient method to optimize 6 with
respect to the value function as

Ok+1 = Ok + € - ?J(Gk) . (17

The overall policy search routine is summarized as Algo-
rithm 2. Its convergence and variance properties are discussed
in the following section.

V. CONVERGENCE, COMPLEXITY, & VARIANCE ANALYSIS

In this section, we discuss a few properties of the stochastic
gradient ascent algorithm derived using weak derivatives,
namely, convergence, the iteration complexity, sample com-
plexity, and the variance of the resulting gradient estimates.

A. Convergence Analysis

We now analyze the convergence of the PG-JD algorithm
(Algorithm 2 ), establishing that the stochastic gradient
estimates obtained from the algorithm are unbiased estimates
of the true gradient, and that the parameter sequence (17)
converges almost surely to a stationary point of the value
function (4). To do so, some assumptions are required which
we state next.

1) Assumptions:

(i) The reward function® 7(x, a) is bounded Lipschitz, i.e,
|r(z,a)] < M(< c0), Y(z,a) € X X A.
Y(z1,x0,a1,a2) € X? x A%
|r(z1,a1) — r(z2,a2)| < Ly - dxa((z1,a1), (22, a2)).

8Let the product space X' x A be equipped with the taxi-cab norm:

dxa((z1,a1), (x2,a2)) = dy(21,72) + d a(a1,az)
V(z1,®2,a1,a2) € X? x A2

where d.y denotes the corresponding metric on the Euclidean space.
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(ii) The transition law® 7 (-|z,a) is Lipschitz, i.e,

Y(x1,20,a1,a2) € X% x A?,

IC(T(-|a:1,a1),T(~|x2,a2)) < Ly-daa((z1,a1), (z2, as))

(iii) For # € RY, the transition law 7T (-|z,ug) is
1—irreducible, positive Harris recurrent, and geometri-
cally ergodic.

(iv) The continuous policy pg(alx) is Lipschitz, i.e,

V(l‘l,l‘g) S /'\,’2,9 €0,
K (ol mo(-[r2) < Lo - due(a, ).

(v) Y, ex =00 and >, € < oc.
(vi) The stochastic gradient

B{IVJO)I2} <m+n|[.1(0))?

for all # € ©, and n,m > 0.

Assumptions (i) - (iii) are model assumptions, whereas
Assumptions (iv) - (vi) impose restricts about how the
algorithm behaves. Assumption (i) is standard, and tied to
learnability of the problem. Assumption (ii) is a continuity
assumption on the transition law that is easily satisfied by most
physical systems. Assumption (iii) makes sure that for every
policy (g, there exists a unique invariant (stationary) measure
and the Markov chain reaches stationarity geometrically fast;
see [30]. All the results hold without the transition law being
geometrically ergodic. Assuming geometric ergodicity makes
simulating from the ergodic measure (in Algorithm 2, Sec.IV)
more meaningful. Regarding the algorithmic conditions:
Assumptions (iv)-(v) are standard in stochastic gradient
methods; see [31]. Assumption (vi) says that the stochastic
gradient is always bounded by the true gradient, which can
grow unbounded with . This assumption makes sure that
the martingale noise of the stochastic gradient is bounded by
the true gradient; see [31].

Proposition 1. Under Assumption (i), the expected cost J(0)
in the reinforcement learning problem (4) is a bounded real-
valued function, i.e,

17(0)] g%vae@. (18)

The following result makes sure that the stochastic gradient
estimates so obtained are representative of the true gradient.

Theorem 3. The stochastic gradient obtained in (16) is an
unbiased estimate of the true gradient VJ(0), i.e,

E{W(e)} —VJ(). (19)

Discussion: The proof can be found in [27]. Theorem 3
says that the estimates of the stochastic gradient are unbiased

9As in [29], K (v, v) denotes the Kantorovich distance between probability
distributions v and v. It is given by:

K(w,v) ésgcp{‘/fdv—/ftﬁ/’ Al <1}

in expectation. This is required to ensure the almost sure
convergence of the iterates to a stationary point [7].

Theorem 4. Consider the sequence of policy parameters
generated by Algorithm 2. Under Assumptions (i) - (vi), the
sequence of iterates {0} satisfies

O — 0%, where VJ(6%) =0, almost surely. (20)

Discussion: The proof can be found in [27]. The expected
cost function J (@), under model assumptions, is continuous
and L— Lipschitz; see [Chapter 7] [32] and [29]. Theorem 4
says that the sequence of iterates {0} converges to 6* with
probability one, and since .J(#) is a continuous function, .J (6},)
converges to J(6*) with probability one. The gradient (which
can be unbounded) at iterates {f} is such that V.J(6*) =0
with probability one.

B. Sample Complexity

In this section, we consider the convergence rate analysis of
the PG-JD algorithm. We choose the stepsize to be e = k~°
for some parameter b € (0,1). Since the optimization of
J(0) is generally non-convex, we consider the convergence
rate in terms of a metric of non-stationarity, i.e., the norm
of the gradient ||V.J()||?. The following theorem considers
a step-size that diminishes more slowly than Assumption
(v), which yields a O(1/vk) rate for the decrement of the
expected gradient norm square E||V.J(6})]|2.

Theorem 5. Let {Qk}k> be the sequence of parameters of
0

the policy g, generated by Algorithm 2. Let the stepsize
be e, = k=% for b € (0,1) and A = min {6,77} for some
e,n>0. Let

KA = min {k: :

V7622 <A} @

inf E
0<d<k
denote the number of iteration steps for the norm of the
expected cost to come within the error neighborhood. Then,
under Assumptions (i) - (iv), (vi)

Ka = O(A™Y?), where p = min {1 —b, b}, 22)
where optimizing the complexity bound over b, we have b =
1/2. Therefore, Kn = O(A™2).

Discussion: See [27] for proof. Theorem 5 characterizes
the iteration complexity, which is a measure of the number
of iteration steps of the algorithm are required to settle down
on a stationary point of the value function. The iteration
complexity is O(1/v/k) showing that the convergence rate
is similar to the stochastic gradient methods for non-convex
settings. We emphasize that despite the re-invention of such
proofs in machine learning, in fact much more general analysis
has been developed in the literature. For example Proposition
5, pg 294 in [33] gives general L? error bounds for ¢/geq2
in the presence of Markovian noise (whereas our setting is
ii.d. noise). Our intention is to identify these rates in the
context and language of modern RL.
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Corollary 6. Let v denote the discount factor and K a denote
the iteration complexity. The average sample complexity M$
using Algorithm 2 is given as:

1+~y
MA = (—)K .
Y 1—’Y A

(23)

Discussion: The proof can be found in [27]. Corollary 6
characterizes the sample complexity, which is a measure
of the number of the expected total number of actions and
states realized. Higher the discount factor v, longer the two
(random) Monte-Carlo roll-outs (trajectories) that need to
simulated, and hence higher the sample complexity. Together
the complexity results, Theorem 5 and Corollary 6, provide an
estimate of the duration and expected number of simulations
to learn a stationary solution for the reinforcement learning
task considered.

C. Variance Analysis

In this section, we provide an analysis of the variance of
the stochastic gradient estimates obtained using weak deriva-
tives and score function approaches. Since the (Q—function
estimation in the computation of the gradient is performed
using random Monte Carlo roll-outs as in [21], the stochastic
gradient obtained is a function of the geometric random
variable 7' that characterizes the roll-out (trajectory) length.
To obtain a comparison of the different methods — weak
derivatives and score function — we consider the expected
variance of the gradient estimates. The proof of Theorem 7
can be found in [27]. The proof of Theorem 8 is similar and
hence omitted.

Theorem 7. The expected variance of the gradient estimates
VJ obtained using weak derivatives is given as:

- M?.
E{VarWD(@JT(a))}<2 M?*-Gwp (24)

T (=

where Gwp = Ex~#6{||g(€,x)||2}.

Theorem 8. The expected variance of the gradient estimates
VJ, if score function is used instead of weak derivatives, is
given as:

. M?.G

SF < SF
E{vars" (V2 (0))} < g (25)

where Gsp = E(m,a)Npg(am{||VM0(G|CE)H2}-
Corollary 9. For the Gaussian policy pp(-|lx) =

N(0'¢(x),0?), we have
1

Gwp = 5—Gsr. (26)

Hence, the maximum expected variance of the gradient
estimates using weak derivatives is smaller than those obtained
using the score function method.
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Fig. 1. The convergence of the discounted return as a function of the number
of iterations of the policy gradient algorithms. Here at each iteration k, the
discounted return J(6) = Ex, {322 o v*r(2k, a)} is evaluated over 50
trajectories with v = 0.97. Observe that the discounted return is higher on
average using Monte-Carlo PG-JD as opposed to PG-SF. It can be attributed
to algorithm iterates converging to a “better” stationary point due to smaller
variance in the gradient estimates.

VI. NUMERICAL STUDIES

In this section, we present a simple experiment using
PG-JD algorithm on the Pendulum environment in OpenAl
gym [34]. The performance is compared with Monte Carlo
Policy Gradient using Score Function (PG-SF) which is akin
to REINFORCE [35] with random roll-out horizons; see
Fig.1. In the simulation environment, the pendulum starts at a
random position, and the goal is to swing it up so that it stays
upright. The environment state is a vector of dimension three,
ie., 1, = (cos(pr),sin(¢r), dr) ", where ¢y is the angle
between the pendulum and the upright direction, and ¢y, is
the derivative of . The action aj is a one-dimensional
scalar modified using a tanh-function, and represents the
joint effort.

The received reward r(z, ax) is given as

r(zg, ag) = — (0 + 0.1 % G2 +0.001 x a,?),  (27)

which lies in [-16.2734, 0], ¢ is normalized between
[—7, 7] and ay lies in [—2,2]. The transition dynamics are
specified by Newton’s Second Law of Motion. We use
Gaussian policy g, which is parameterized as my(-|x) =
N (T ¢p(z),0?), where 0 = 1.0 and ¢(z)(= =) being
the feature vector. The policy is a stationary policy (time-
homogeneous) as it is well known [6] to be sufficient
for infinite or random horizon discounted MDP problems.
Observe that the discounted return is higher on average using
PG-JD as opposed to PG-SF, which may attributable to the
variance-reduced properties of the policy gradient estimates
using signed measures as compared with the score function.

Remark: It is noted that for common parametrizations of
the mean of the Gaussian policy [12], for example like
linear — 67 ¢(s), the score function is unbounded with
respect to 6 with the expression being ("_fif(s)%(s). This
results in convergence issues in policy gradient algorithms
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for

unbounded # and unbounded state spaces. However,

using Jordan decomposition, even with linear parametrization
and unboundedness, the convergence of the policy gradient
algorithm is ensured due to the absence of explicit function
of 6.
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