
Solving PDEs in Space-Time: 4D Tree-Based Adaptivity,
Mesh-Free and Matrix-Free Approaches

Masado Ishii

University of Utah

Salt Lake City, Utah

Milinda Fernando

University of Utah

Salt Lake City, Utah

Kumar Saurabh

Iowa State University

Ames, Iowa

Biswajit Khara

Iowa State University

Ames, Iowa

Baskar

Ganapathysubramanian

Iowa State University

Ames, Iowa

Hari Sundar

University of Utah

Salt Lake City, Utah

ABSTRACT

Numerically solving partial differential equations (PDEs) remains a

compelling application of supercomputing resources. The next gen-

eration of computing resources – exhibiting increased parallelism

and deep memory hierarchies– provide an opportunity to rethink

how to solve PDEs, especially time dependent PDEs. Here, we con-

sider time as an additional dimension and simultaneously solve for

the unknown in large blocks of time (i.e. in 4D space-time), instead

of the standard approach of sequential time-stepping. We discretize

the 4D space-time domain using a mesh-free kD tree construction

that enables good parallel performance as well as on-the-fly con-

struction of adaptive 4D meshes. To best use the 4D space-time

mesh adaptivity, we invoke concepts from PDE analysis to establish

rigorous a posteriori error estimates for a general class of PDEs. We

solve canonical linear as well as non-linear PDEs (heat diffusion,

advection-diffusion, and Allen-Cahn) in space-time, and illustrate

the following advantages: (a) sustained scaling behavior across a

larger processor count compared to sequential time-stepping ap-

proaches, (b) the ability to capture “localized” behavior in space and

time using the adaptive space-time mesh, and (c) removal of any

time-stepping constraints like the Courant-Friedrichs-Lewy (CFL)

condition, as well as the ability to utilize spatially varying time-steps.
We believe that the algorithmic and mathematical developments

along with efficient deployment on modern architectures shown

in this work constitute an important step towards improving the

scalability of PDE solvers on the next generation of supercomputers.

CCS CONCEPTS

•Computingmethodologies→Massively parallel algorithms;

Distributed algorithms; • Applied computing → Engineering.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SC ’19, November 17–22, 2019, Denver, CO, USA
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6229-0/19/11. . . $15.00

https://doi.org/10.1145/3295500.3356198

KEYWORDS

4D, space-time adaptive, sedectree, mesh-free, matrix-free, finite

element method, distributed memory parallel

ACM Reference Format:

Masado Ishii, Milinda Fernando, Kumar Saurabh, Biswajit Khara, Baskar

Ganapathysubramanian, and Hari Sundar. 2019. Solving PDEs in Space-

Time: 4D Tree-Based Adaptivity, Mesh-Free and Matrix-Free Approaches. In

The International Conference for High Performance Computing, Networking,
Storage, and Analysis (SC ’19), November 17–22, 2019, Denver, CO, USA. ACM,

New York, NY, USA, 15 pages. https://doi.org/10.1145/3295500.3356198

1 INTRODUCTION

We present kD tree-based parallel algorithms for solving a general

class of partial differential equations (PDEs) using a space-time-
adaptive approach. This approach is primarily motivated by the ne-

cessity of designing computational methodologies that leverage the

availability of very large computing clusters (exascale and beyond).

For evolution problems, the standard approach of decomposing the

spatial domain is a powerful paradigm of parallelization. However,

for a fixed spatial discretization, the efficiency of purely spatial

domain decomposition degrades substantially beyond a threshold

– usually tens of thousands of processors – which makes this ap-

proach unsuitable on next generation machines. To overcome this

barrier, a natural approach is to consider the time domain as an

additional dimension and simultaneously solve for blocks of time,

instead of the standard approach of sequential time-stepping.

This approach of solving for large blocks of space-time is one

of several promising approaches to time-parallel integration ap-

proaches that have been developed over the past century, but which

are gaining increasing attention due to the availability of appro-

priate computing resources [17]. Broadly one can consider three

types of parallelization approaches to solving a space-time problem.

The first type of methods explicitly parallelizes only over time, and

leaves spatial parallelism (and spatial adaptivity) undefined [10, 25].

These methods may also be considered as shooting methods [17].

The second type of methods explicitly parallelizes over space, and

leaves temporal parallelism (and temporal adaptivity) undefined.

These methods include wave form relaxation methods that attempt

to reconcile the solution at spatial boundaries between space-time

blocks [17]. The third type of methods explicitly targets parallelism

(and adaptivity) in space and time. The current work seeks to ad-

vance type three methods. In the more narrow context of finite

1

https://doi.org/10.1145/3295500.3356198
https://doi.org/10.1145/3295500.3356198

SC ’19, November 17–22, 2019, Denver, CO, USA Ishii and Fernando, et al.

Figure 1: (A) Conventional approaches to computationally solv-

ing evolution equations rely onmarching sequentially in time. This

limits parallel scalability to the spatial domain. In contrast, we

present an approach for simultaneously solving for large blocks

of space-time. This approach not only exhibits good scalability, but

also provides improved temporal convergence (proved via a priori es-
timates) as well as localized refinement in space and time based on a
posteriori error estimates. (B) Illustrative results in 2D space+1D time

dimensions (i.e. 3D space-time) for a rotating heat source problem.

Notice that themesh is refined in space-time only in regions of inter-

est. This not only guarantees accurate solutions in space and time,

but is also substantially more efficient than the strategy of taking

very small time steps necessary to guarantee temporal accuracy in

the sequential approach.

element methods, early work on type three methods was consid-

ered by Hughes and coworkers [20, 22], Tezduyar et al. [35], and

Potanza and Reddy [28], while variations on this theme have re-

cently been explored by several groups [5, 6, 26, 27, 29, 37].

Our preliminary work [9] using the Finite ElementMethod (FEM)

indicates that the third approach is particularly promising (see

Fig. 1) as it provides a natural way to integrate mathematical anal-

ysis including construction of finite element error estimates (both

a priori as well as a posteriori), and numerical stabilization of FEM

solutions to advection-dominated equations, with developments

in scalable, parallel algorithms. The finite element method (FEM)

is a widely popular numerical approach to solving partial differen-

tial equations, with multiple billions/year spent in CAD and CAM

(computer aided design and manufacturing) based FEM software

alone [8]. Its popularity arises from a compelling set of properties

including (a) the ability to model arbitrary geometries, (b) the ability

to seamlessly change order of representation (linear, quadratic and

higher order), (c) the ability to utilize variational arguments that

guarantee monotonic convergence to the solution with improved

discretization, and (d) the ability to seamlessly utilize a posteriori
error estimates to adapt the mesh.

Solving for blocks of space-time provides a natural approach

for effective usage of exascale computing resources [19], as well as

leveraging novel architectures that exhibit extreme parallelism and

deep memory hierarchies. In addition to this obvious advantage,

solving in space-time provides the following advantages:

• Allows natural incorporation of a posteriori error estimates for

space-time mesh adaptivity. This has several additional tangible

benefits in the context of computational overhead. For evolu-

tion problems – including wave equations, and problems involv-

ing moving interfaces like bubbles and shocks – that exhibit

“localized” behavior in space and time, solving in blocks of space-

time that are locally refined to match the local behavior provides

substantial computational gain [7]. An illustration of this advan-

tage (in 2D space +1D time for illustration purposes) is shown in

Fig. 1(B), where the refined mesh is localized along the regions

of high gradient of the solution.

• Provides easy access to the full time history of the solution which

is essential for the solution of design/inverse problems involving

adjoints [15, 16]

• Removes any time-stepping constraints (like the CFL condition)

on the numerical approach as the solution across all time-steps

are simultaneously solved. This concept is illustrated in Fig. 1(B).

The temporal discretization far away from the oscillating source

is 2
5
times larger than the smallest temporal discretization. This

large variation in time step has no impact on numerical stability,

which is an advantage over conventional sequential time stepping

approaches.

• Finally, considering time as an additional dimension allows us to

harness the benefits of using higher order basis functions to get

high order accurate temporal schemes for no additional imple-

mentation cost (since these basis functions are already available

for the spatial discretization). We derive theoretical a priori esti-
mates of convergence with basis order and mesh size, and show

that temporal error scales as a power of the mesh size in space

time |u − ue |2 ≤ Chα , where α = order of basis function + 1.

Fig. 2 computationally illustrates this point. We solve a 3D tran-

sient problem in space-time on a 4D mesh. Using cubic basis

functions is equivalent to a multi-step fourth order Runge-Kutta

scheme for the sequential time stepping problem.

Additionally, instead of using a traditional mesh-based abstrac-

tion for performing finite element (FEM) computations, we design a

new mesh-free abstraction on adaptive space-time meshes with the

objective of achieving high performance and scalability on current

and future architectures with extreme levels of parallelism and deep

memory hierarchies. The mesh-free abstraction is combined with

matrix-free abstractions since these are important for large-scale

parallelism.

Our contributions in this paper are as follows: (a) we develop

efficient 4D adaptive mesh construction and 2:1 balancing algo-

rithms, (b) we develop mesh-free matrix-free algorithms for finite

element computations using a space-time formulation, (c) we derive

both a priori error estimates, as well as residual-based a posteriori
error estimates for a canonical problem – the linear time depen-

dent advection diffusion equation, and numerically illustrate the

theoretically determined (improved) convergence behavior of the

space-time solution approach, and (d) we compare the scaling be-

havior of sequential time stepping method with the space-time

approach.

2

Solving PDEs in Space-Time SC ’19, November 17–22, 2019, Denver, CO, USA

10
−2

10
−1

10
0

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

1

2

1

3

1

4

h

∥u
−
u
h
∥ L

2

Linear basis, p = 1

Quadratic basis, p = 2

Cubic basis, p = 3

Figure 2: Considering time to be another dimension allows easy

use of higher order basis functions to get high order temporal accu-

racy. The figure illustrates how switching from linear to quadratic

to cubic basis functions (for the problem solved in Fig. 1B) in space-

time is equivalent to multi-step Runge Kutta methods of order 2, 3

and 4, respectively.

The rest of the paper is organized as follows: the finite element

formulation of PDEs in space-time and the related error estimates

are presented in Sec. 2; the methodology for implementing the kD-
tree based comparison-free, matrix-free, mesh-free algorithms are

outlined in Sec. 3; numerical results are presented and discussed

in Sec. 4 and concluding remarks are made in Sec. 5. Some of the

important notations pertaining to the algorithms in Sec. 3 are sum-

marized in Table 1.

A input array (distributed)

comm MPI communicator

p number of MPI tasks in comm
N global number of keys in A
n = N /p local number of keys in A
P (e) parent of tree node e
N (e) neighbours of tree node e
s local splitter indices

pr the task id (its MPI Rank)

|B | number elements in array B

Table 1: Notations used in paper.

2 BACKGROUND: SPACE-TIME SETTING

AND ERROR ESTIMATES

We present here a brief mathematical formulation of a time de-

pendent PDE in the space-time setting. We define our spatial do-

main as U ⊂ Rn , where U is an open and bounded domain, with

n = 1, 2, or 3. We consider the time horizon IT = (0,T) ⊂ R
+
, which

is a bounded time interval. Then we define the space-time domain

as the Cartesian product of these two domains, Ω = U × IT =
U × (0,T). Denote the overall boundary of this space-time domain

as Γ = ∂Ω. In particular, the spatial domain boundary is defined as

ΓU = ∂U ×(0,T) and the time boundaries are defined as Γ
0
= Ū ×{0}

and ΓT = Ū × {T } which are the initial and final time boundaries

respectively. Note that Γ = ΓU ∪ Γ
0
∪ ΓT . Finally we also define the

closure of Ω as Ω̄ = Ω ∪ Γ.
The canonical equation we are interested is the following equa-

tion for the scalar space-time field u : Ω → R:

∂tu + a · ∇u − ∇ · (κ(u)∇u) = f (u) in Ω (1a)

u = 0 on ΓU (1b)

u(·, t0) = u0 on Γ0 (1c)

where, ∇ ≡ (∂x , ∂y , ∂z) denotes the usual spatial gradient operator

and a : Ω → Rn denotes the advection velocity. In this work, a is
assumed to be linear and divergence free. The forcing f : Ω → R
and the diffusivity κ : Ω → R, (κ > 0 in Ω) are smooth functions

and, in general, nonlinear. We assume that Dirichlet conditions are

imposed on the boundary ΓU .

Next we define suitable function spaces for the trial and test

functions used in the variational formulation. We define the space

of the trial functions asVu =
{
u ∈ H1(Ω) : u |ΓU = 0,u |Γ

0

= u0
}
and

the space of the test functions as Vv =
{
v ∈ H1(Ω) : v |ΓU ∪Γ0 = 0

}
.

Let us first assume that both κ and f in equation 1 are linear func-

tions. Then the continuous variational problem is posed as follows:

find u ∈ Vu such that,

a(u,v) = l(v) ∀v ∈ Vv (2)

where,

a(u,v) = (∂tu,v) + (a · ∇u,v) + (κ∇u,∇v) (3)

l(v) = (f ,v) (4)

Here (·, ·) denotes the usual inner product in L2(Ω). Note that the

inner product is over the space-time domain, (a,b) =
∫ T
0

∫
U abdxdt .

The finite dimensional approximation of these spaces are denoted

as V h
u and V h

v , and

V h
u := {uh | uh ∈ H1(Ω), uh ∈ P(ΩK) ∀K ,

uh |ΓU = 0 and uh |Γ0 = u0} (5)

V h
v := {vh | vh ∈ H1(Ω), vh ∈ P(ΩK) ∀K , vh |Γ

0
∪ΓU
= 0}

(6)

where P(ΩK) being the space of the standard polynomial finite

element shape functions on element ΩK
.

Numerical solutions to Equation 1 can exhibit numerical in-

stabilities because the bilinear form a(u,v) in Equation 2 is not

strongly coercive in Vu . Therefore, following [24], we choose the

basis function in the form of vh + δ∂tv
h
, where δ is a mesh depen-

dent parameter proportional to the mesh size h. This is one of the
many ways to “stabilize” the original discrete problem [14, 21]. The

discrete variational problem along with this stabilization is then

given by,

ah (uh ,vh) = lh (vh) ∀vh ∈ V h
v (7)

ah (uh ,vh) = (∂tu
h ,vh) + (a · ∇uh ,vh) + (κ∇uh ,∇vh)

+ δ (∂tu
h , ∂tv

h) + δ (a · ∇uh , ∂tvh) + δ (κ∇uh ,∇(∂tvh)) (8)

3

SC ’19, November 17–22, 2019, Denver, CO, USA Ishii and Fernando, et al.

lh (vh) = (f ,vh) + δ (f , ∂tv
h) (9)

This discrete bilinear form is bounded and also coercive on V h
v

with respect to the norm

∥uh ∥Vu =

[
κ∥∇uh ∥2L2(Ω) + δ ∥∂tu

h ∥2L2(Ω) +
1

2

∥uh ∥2L2(ΓT)

] 1

2

(10)

Since the linear form given by Equation 9 is also bounded, the

generalized Lax-Milgram Lemma guarantees a unique solution.

Denoting the solution to Equation 2 by u and the solution to

Equation 7 by uh , we derive the a priori error estimate as

∥u − uh ∥V h
u
≤ Chp ∥u∥Hp+1(Ω) (11)

where p is the highest degree of the polynomial space to which uh

belongs, h is the size of the space-time element, and some constant

C . Note that this estimate guarantees high order temporal accuracy

(essentially, equivalent to a p + 1-th order time stepper) when using

a pth order basis function. We numerically illustrate this powerful

result in Fig. 2, where we solve a problem with a rotating heat

source with an analytically known solution. We plot the L2 error
(over the space-time domain) between the analytical solution and

the computed solution using different order of basis functions. The

mesh convergence plots clearly illustrate the expected change in

slope from linear to quadratic to cubic basis functions. This is

equivalent to a sequential time stepper, specifically a multi-step

Runge Kutta methods of order 2, 3 and 4, respectively.

Finally, based on the calculated solution uh , we can formulate an

a posteriori error estimate. We use the residual based approach [2,

36] that associates an error estimate with each space-time element

in the 4D tree. This error estimate will inform adaptive space-time

refinement of the domain. The residual based a posteriori error
estimator for a space-time element K is given by:

ηK =

{
h2K

 ¯fK + ∇ · κ∇uh − ∂tuh2K
+
1

2

∑
E∈EK

hE ∥JE (nE · ∇uh)∥
2

E

} 1

2

(12)

where E denotes the set of all edges of element K , J denotes the

jump in the gradient of the solution uh across those edges and
¯fK

denotes the average force value in the element K . This a posteriori
error is calculated elementwise and a suitable refinement strategy

is adopted (see next section) for space-time mesh refinement.

We emphasize that while the conceptual formulation of a PDE

solution strategy in space-time blocks is not entirely new, the rigor-

ous formulation of both a priori and a posteriori error estimates is a

novel contribution. In particular, the a priori error estimates provide

theoretical guarantees of enhanced convergence which serve as

rigorous tests of our numerical implementation.

The foregoing presentation of the mathematical formulation is

based on a linear equation. We defer detailed derivations for the

non-linear case due to space limitations, but sketch out the basic

approach (which is analogous to the one detailed above). In case

of non-linearity (i.e., when either f or κ or both are nonlinear

functions depending on u), we first linearize the equations (a la
Newton-Raphson) to get a linear incremental equation. The rest

of the procedure then remains similar: the variational problem

is framed on the linear incremental equation, with the discrete

variational problem following in an analogous way. Note that in

a sequential time-marching method for a nonlinear problem, the

initial condition acts as a starting value of the Newton-Raphson

iteration scheme. But in the space-time setting, the initial condition

only pertains to the t = 0 boundary and thus an initial guess

over the entire space-time domain has to be provided. We use an

extrusion of the initial condition over the time domain as our initial

guess. This can admittedly be improved.

In this work, the finite element mesh is generated through a

kD-tree based locally regular octant (for 3D) or sedecant (for 4D)

objects (the "leaves" in the kD-tree as explained in Sec. 3). This

mesh is not explicitly saved (see Sec. 3), and the mesh information

is deduced on-the-fly. Such a mesh-free approach is particularly

attractive for adaptive mesh refinement, where the mesh changes

frequently and one does not want to incur the high cost of building

maps (meshing). This is also a very efficient way of implementing

the continuous Galerkin method through a locally structured mesh.

Each of the leaves in the kD-tree embodies a finite element which

can then be projected onto an isoparametric space through an

affine transformation. All calculations for the domain integration

are performed in this isoparametric space and then transformed

back to the physical space.

Numerically speaking, the discrete problem (7) results in a matrix

equation of the form of Au = b. Here u ∈ Rndof is the vector of
nodal unknowns whereas ndof denotes the total number of nodal

degrees of freedom in the FEM discretization. A is a square matrix

and b a vector of matching size. A typical 3D problem, when solved

through space-time method, will involve a 4D mesh which can be

very large. The resulting A matrix, although sparse, will also be

typically large. Therefore Krylov-type iterative solvers that rely on

repeated matrix-vector multiplication (matvec) of A and b become

extremely important for solving such matrix-vector systems. This

alsomeans that thematrixA need not be saved explicitly. Rather, the

elemental submatrices resulting from the left hand side of Eq. 7 can

be performed in each iteration of the Krylov method and multiplied

to the elemental vector resulting from the right hand side (embodied

through matvec). The next section provides a detailed description

of these ideas and their implementations.

3 METHODOLOGY

In this section, we present ourmatrix-free,mesh-free algorithms for

performing FEM computations on kD trees. Several state-of-the-art

approaches [1, 3, 12, 31, 32, 34] use a comparison operator induced

by a Space Filling Curve (SFC) to sort and partition the nodes of the

tree[13]. The matrix-free FEM computations are widely used in the

HPC community[1, 3, 30, 34], due to better scalability compared

to the matrix-based approaches. Here matrix-free FEM approaches

refer to FEM computations without the explicit assembly of matri-

ces, instead providing a matrix-vector product (matvec). These are

also particularly efficient for non-linear operators, which would

require repeated assembly. For performing matrix assembly or a

matvec we need neighborhood data structures such as element to
nodal mapping or nodal to nodal mapping. We refer to such data

structures as the mesh (connectivity information).

4

Solving PDEs in Space-Time SC ’19, November 17–22, 2019, Denver, CO, USA

There are several major drawbacks of mesh-based numerical

computations on adaptive trees. Firstly, since the elements are or-

dered based on the SFC, it is possible to use binary search to find

neighbors among the list of elements. However, for large num-

bers of elements (as in the case of 4D), this can result in memory

accesses forcing cache misses at least for the initial few accesses.

Secondly, despite the locality of the SFC, neighbors are not con-

tiguous in memory. During an assembly/matvec operation, the

separation between the indices of neighbours will cause inefficient

memory access. More importantly, the use of a mesh causes indirect

memory access of the variable (u[mesh[elem,node]] instead of

u[node++]), making it difficult for compilers to prefetch data. As

the dimensionality k increases, building neighborhood data struc-

tures becomes extremely complex, increases storage, and makes the

algorithm computationally expensive. The last factor is particularly

important for problems requiring frequent mesh-refinements.

In order to overcome the above challenges we propose a mesh-

free matvec that avoids these issues by computing the neighbor-

hood information on the fly, similar to how matrix-free methods

work without explicitly storing the matrix entries.

3.1 Comparison-free SFC based tree

partitioning

Given that we are interested in generating a space-traversal, more

so of application specific coordinates or regions, it is efficient to

consider this problem as a traversal of the points in the SFC order.

Specifically, we construct the tree in a top-down fashion, one level at
a time, arranging the nodes at a given level based on the recurrence

rules for the specific SFC (see Figure 3). We call this algorithm

TreeSort (Algorithm 1). There are two main advantages for this

approach: 1). The comparison-free property makes the structure of

TreeSort independent of the SFC being used[11]. 2). The top-down

traversal of the tree in breadth-first fashion, which is performed in

the distributed TreeSort, gives us explicit control over the load-

imbalance, which can be tuned as specified in [13]. All subsequent

operations, such as tree construction, enforcing 2:1 balancing, and

the matvec operation in FEM computations, are performed using

top-down and bottom-up traversals with slight variations of the

sequential TreeSort algorithm.

Algorithm 1 TreeSort

Require: A list of points or regionsW , the starting level l1 and the ending level l2
Ensure: W is reordered according to the SFC.

1: counts[] ← 0 ▷ |counts | = 2
d
, 16 for 4D

2: forw ∈W do

3: increment counts[child_num(w)]
4: counts[] ← Rh (counts) ▷ Permute counts using SFC ordering

5: offsets []← scan(counts)
6: forw ∈W do

7: i ← child_num(w)
8: appendw toWi at offsets[i]
9: increment offset[i]
10: if l1 > l2 then
11: for i := 1 : 2

d
do

12: TreeSort(Wi , l1 − 1, l2) ▷ local sort

13: returnW

Algorithm 2 DistTreeSort: Distributed TreeSort

Require: A distributed list of points or regionsWr , comm, p , pr of current task in

comm, tol load flexibility,

Ensure: globally sorted arrayW
1: counts_local ← [], counts_дlobal ← []
2: s[] ← TreeSort(Wr , l − log(p), l) ▷ initial splitter computation

3: while |sr −
Pr N
p | > tol do

4: counts[] ← 0 ▷ |counts | = 2
d
, 16 for 4D

5: forw ∈W do

6: increment counts[child_num(w)]
7: counts_local [] ← push(counts)
8: counts[] ← Rh (counts) ▷ Permute counts using SFC ordering

9: offsets [] ← scan(counts)
10: forw ∈W do

11: i ← child_num(w)
12: appendw toWi at offsets[i]
13: increment offset[i]
14: MPI_ReduceAll(counts_local, counts_дlobal, comm)
15: s[] ← select (s, counts_дlobal)
16: MPI_AlltoAllv(A,splitters,comm) ▷ Staged All2all

17: TreeSort(Wr , 0, l) ▷ local sort

18: returnWr

111
110

011
010

000 000
001

101
100

111

111
110

011
010

000 000
001

101
100

111

111
110

011
010

000 000
001

101
100

111

111
110

011
010

000 000
001

101
100

111

Figure 3: Bucketing each point and reordering the buckets

based on the SFC ordering at each level l with top-down tra-

versal. Each color-coded point is represented by its x and y
coordinates. From theMSD-Radix perspective, we start with

the most-significant bit for both the x and y coordinates and

progressively bucket (order) the points based on these. The

bits are colored based on the points and turn black as they

get used to (partially) order the points.

111
110

011
010

000 000
001

101
100

111

111
110

011
010

000 000
001

101
100

111

111
110

011
010

000 000
001

101
100

111

111
110

011
010

000 000
001

101
100

111

Figure 4: Equivalence of the MSD Radix sort with top-down

quadtree construction when ordered according to space fill-

ing curves. Each color-coded point is represented by itsx and
y coordinates. From the MSD-Radix perspective, we start

with themost-significant bit for both the x andy coordinates
and progressively bucket (order) the points based on these.

The bits are colored based on the points and turn black as

they get used to (partially) order the points.Note that (■) de-

notes octants added at level 1, (■) denotes octants added at

level 2, and (■) denotes octants added at level 3.

3.2 kD-Tree Construction
In this section, we describe how we can extend sequential and

distributed approach of TreeSort to perform comparison-free con-

struction. Contrasting with traditional SFC-based AMR algorithms,

5

SC ’19, November 17–22, 2019, Denver, CO, USA Ishii and Fernando, et al.

Algorithm 3 TreeConstruction : Octree construction

Require: A list of points or regionsW , the starting level l1 and the ending level l2 ,
Koct

Ensure: τc ordered complete octree based onW
1: counts[] ← 0

2: τc ← null ▷ |counts | = 2
d
, 8 for 3D

3: forw ∈W do

4: increment counts[child_num(w)]
5: counts[] ← Rh (counts) ▷ Permute counts using SFC ordering

6: offsets [] ← scan(counts)
7: forw ∈W do

8: i ← child_num(w)
9: appendw toWi at offsets[i]
10: increment offset[i]
11: if l1 > l2 then
12: for i := 1 : 2

d
do

13: if |Wi | > Koct then
14: TreeConstruction(Wi , l1 − 1, l2)
15: else

16: τc .push(octi)
17: return τc

TreeSort does not use any binary searches, which are inherently

comparison-based. Instead of searches, we can perform a fixed num-

ber of streaming passes over the input data in a highly localized

manner. The comparison-free approach of tree construction will

reduce the random memory accesses and cache misses, leading to

better memory performances. The key idea in TreeSort is to per-

form MSD radix sort, except that the ordering of digits is permuted

at every level according to the SFC recurrence rules. A top-down

traversal is equivalent to generating quadtrees (when k = 2) &

octrees (when k = 3) as shown in figure 4. To construct trees, we

perform top-down traversal with bucketing (see Figure 4), with

the added constraint that any octant may contain at most Koct of
the input points; otherwise, it must be subdivided (see Algorithm

3). The distributed tree construction can be done using partitioning

of the input points using TreeSort , then local construction of the

tree, followed by elimination of duplicates across processors.

3.3 2 : 1 Balancing

In many applications involving adaptivity it is desirable to impose

a restriction on the relative sizes of adjacent leaf nodes[32, 33].

There can be various reasons to enforce balancing constraints on

the underlying tree, such as for better conditioning in the stiffness

matrix and enforce a gradual change of refinement over the tree. The

2 : 1 balancing constraint enforces that two neighboring leaf nodes

may differ by at most one level. The existing balancing approaches

involve the use of a comparison operator in binary searches while

the balancing constraint is enforced in several stages [32, 33]. The

proposed approach computes a minimal necessary set of auxiliary

nodes Taux , which are are added to the distributed tree T . After

a second construction pass, the resulting tree is 2 : 1 balanced (i.e.

see Figure 5).

3.4 Computing the unique node coordinates

In the mesh-free abstraction, the only pertinent information are

the node-coordinates, i.e., the location of the nodal basis function.

Once the sedectree has been constructed, nodes can be assigned to

each sedecant (element) based on the order of the basis functions

[23]. In order to generate a continuous Galerkin basis, we need to

determine a unique set of node coordinates globally, i.e., on shared

Figure 5: Leftmost figure shows an octree which violates the

2:1 balanced constraint, where the octants that cause the vi-

olation is showed in (■). In the middle figure auxiliary bal-

anced octants are showed in (■), in other words these are

the octants needed to remove the balance constraint viola-

tion in (■). Right most figure shows the constructed octree

with auxiliary balanced octants which satisfies the 2:1 bal-

ance constraint.

Algorithm 4 AuxiliaryOctants : The set of auxiliary nodes to

balance τc
Require: τc tree on domain Ω
Ensure: taux unique set of auxiliary nodes needed to balance τc
1: taux ← τc
2: for do e in taux
3: taux .add_unique(N (P (e)))
4: return taux

Algorithm 5 TreeBalancing: 2 : 1 tree balancing

Require: An tree τc on domain Ω, starting level l1 and the ending level l2 .
Ensure: τb ordered 2 : 1 balanced tree

1: Koct ← 1

2: taux ← AuxiliaryOctants(tcons)
3: τb ← TreeConstruction(taux , l1, l2, Koct)
4: return τb

element faces, edges etc., we have duplicated node coordinates, and

these duplicates need to be removed to have the node coordinate

associated with a unique element. Additionally, when we have

hanging nodes, only the node coordinates corresponding to the

larger face/edgewill exist, so this removal of node coordinates needs

to be done as well. This is done in a single bottom-up traversal of

the elements as illustrated in Figure 6. As shown, at each level as

we go up the tree, we only need to resolve duplicates between the

shared faces/edges of siblings, and this is a local operation. All

interior nodes can be marked as unique, and so can the interior

face nodes once the duplicates including testing for hanging nodes

is resolved. Note that hanging nodes will be resolved at the level of

the coarser element, so the decision is straightforward to make. At

the end of the bottom-up traversal, we have a set of unique node

coordinates that is all the information we will store and use for

FEM computations.

6

Solving PDEs in Space-Time SC ’19, November 17–22, 2019, Denver, CO, USA

Figure 6: A simple example of how the cell nodes are placed

for quadratic elements in a quadtree. The leftmost figure

shows the locally shared nodes, which contain duplicates

that need to be resolved in order to get unique shared nodes
(the rightmost figure). We perform a single bottom-up pass

of the tree resolving node conflicts, at the corresponding in-

terior region indicated by the same color.

3.5 Efficient SFC-based kD-tree traversal
In this section, we present an extension of TreeSort algorithm

to perform efficient traversals on kD trees in order to perform

FEM computations. The state-of-the-art approaches[4, 30, 32, 34]

use lookup-tables such as element-to-node mappings, to perform

matrix/vector assembly andmatvec. In this section, we describe the

top-down and bottom-up traversal of the kD-tree that are needed
for performing these operations without the use of any lookup-

tables.

top-down: In the top-down traversal for a given non-leaf tree

node e , we bucket the corresponding dof (degree of freedom) coor-

dinates to the children of e , duplicating any coordinates that are

incident on multiple children (see Figure 7). This process is repeated

recursively until we reach a leaf tree node. A leaf node is detected

by counting the number of dof coordinates in the bucket. Some

buckets might have fewer than the prescribed number of dofs for

an element of the specified order, if there are hanging nodes. Since

the nodes of the parent are available at this level, we obtain the

missing hanging nodes by interpolation. We recurse in a depth-first

fashion so as to expose memory locality suited for deep memory

hierarchies.

bottom-up: Once we reach a leaf node, we can perform ele-

mental operations (e.g. elemental matvec), and if the computation

requires an accumulation, nodal values are merged in the reverse

direction of the duplication in top-down approach (see 7).

3.6 Matrix-free implementation on 4D meshes

As mentioned in the previous section, we will only store the 4D co-

ordinates and not any maps (such as element-to-node maps). There

are two major reasons for this. Firstly, these maps are very expen-

sive to construct and will have a large memory footprint for 4D
meshes. Secondly, using maps, the variables of interest during FEM

computations must be accessed and updated via indirect memory

accesses. For large 4D meshes in particular, such indirect memory

access is likely to be extremely inefficient on modern architectures

with high levels of parallelism and deep memory hierarchies. As

a remedy, we propose a mesh-free approach that makes use of the

quasi-structured nature of sedectrees and enables direct access to

data. We explain this approach in detail and provide evidence for

the efficacy of this approach.

We will illustrate a matvec with the transient diffusion operator

(
∂
∂t +∇

2
), given in a discrete form asK , i.e., we will computev = Ku.

top

down

bottom

up

top

down

bottom

up

root

nl

a b f
g

h i nl

j k l m

0

1

2

le
v
el

Figure 7: Illustration of top-down & bottom-up tree traver-

sals for a 2D tree with quadratic element order. The leftmost

figure depicts the unique shared nodes (nodes are color-

coded based on level), as we perform top-down traversal

nodes shared across children of the parent get duplicated for

each bucket recursively, once leaf node is reached it might

bemissing elemental local nodes, which can be interpolated

from immediate parent (see the rightmost figure). After el-

emental local node computations, bottom-up traversal per-

formed while merging the nodes duplicated in during the

top-down traversal.

Here u is the scalar unknown defined over our space-time domain,

i.e., there is one unknown per node (coordinate point). Therefore the

input to our matvec will be the real vector u and another vector

of points p = (x ,y, z, t) (4× unsigned int). The output will be the
vector v , the same size as u such that v = Ku. Unlike conventional
FEM codes, we will evaluate v without requiring indirect memory

accesses to u,v or p. Note that our approach becomes significantly

more effective for systems with multiple dofs per spatio-temporal

point, as these all will use the same coordinate information.

Since we do not have a mesh, we will have to extract the required

information on the fly. Similar to the sedectree construction, (Fig-

ure 4), we proceed in a top-down fashion using the radix sort. This

is particularly efficient since we have the x ,y, z and t coordinates
as unsigned ints. Also, since the coordinates and the unknowns

are arranged using space filling curves, there is high locality. In the

most significant digit (MSD) radix, we examine the bits, from most

to least significant, to bucket the data. In our case, at each level we

use one bit each from the x ,y, z and t coordinates to bucket the

points (p) and unknowns u. We then recurse within each bucket.

This happens in a depth-first fashion that in combination with

the locality of space filling curves, make the overall data-access

amenable to modern deep memory hierarchies. Bucketing within

radix sort involves only direct memory in a streaming fashion and

requires one cache-line for accessing the input and one for each

bucket.
Bucketing for the matvec is a bit more involved, so we first

illustrate in 2D in Figure 7. Here we need to bucket the interior

points and replicate the interior shared faces and the interior cor-

ner as well. In 4D, we need to bucket the volumes (faces in 3D)

and the interior faces, edges and volumes as these dofs need to

be replicated across octants. Once replicated, the sedecants are

7

SC ’19, November 17–22, 2019, Denver, CO, USA Ishii and Fernando, et al.

Algorithm 6 matvec : Mesh-free 4D FEM matvec

Require: x unique coordinates, u, v input and output vectors and level l.

Ensure: v = Ku , where K denotes FEM discrete operator.

1: v ← 0

2: (U , X , V) ← scatter_to_buckets(u, x, v, l)
3: for (ui , xi , vi) in (U , X , V) do
4: if lenдth(xi) == n then ▷ reached leaf tree node

5: vi ← keui ▷ Ke is elemental matrix

6: else

7: matevc(ui , xi , vi , l − 1) ▷ recurse, top-down

8: gather_from_buckets(vi , x, v, l) ▷ bottom-up

9: return

Algorithm 7 scatter_to_buckets : Mesh-free 4D FEM matvec

Require: x unique coordinates, u, v input and output vectors and level l.

Ensure: x, u, v get scattered to the children buckets (X , U , V) with duplication as

needed.

1: cnt [] ← zeros(nb + 1) ▷ nb number of buckets

2: for xi ∈ x do

3: cnt [xi & (1 << l) + 1] + + ▷ Figure cout the child bucket sizes

4: for (xi , ui) ∈ (x, u) do
5: idx ← cnt [xi & (1 << l)] + +
6: U [idx], X [idx], V [idx] ← ui , xi , vi ▷ perform scatter

7: return X , U , V

Algorithm 8 gather_from_buckets : Mesh-free 4D FEM matvec

Require: x unique coordinates, vi scattered input, v vector corresponding to x and

level l.

Ensure: scattered input vi is accumulated to the vector v
1: cnt [] ← zeros(nb + 1) ▷ nb number of buckets

2: for i ∈ [0, lenдth(x)) do
3: idx = cnt [x [i] & (1 << l)] + +
4: v[i]+ = vi [idx]
5: return

independent of each other and can recurse independently. This ex-

presses a very fine-grained parallelism not possible with traditional

FEM matvecs. As previously explained, we identify reaching the

leaf node based on when all dofs correspond to the nodes of a single

element, potentially with interpolation in case of hanging nodes.

Having reached the leaf node, we apply the elemental operator to

compute ve = Keue . On the return, the results in v are accumu-

lated from all children. This is the opposite of the duplication of u
prior to the recursion. The simplified pseudocode for the matvec

is presented in Algorithms 6,7 & 8.

The mesh-free matvec approaches the computation in a data-

first fashion and is structured based on the data dependencies and

the associated data movement. Note that in the distributed memory

setting, we follow a similar principle and exchange ghost or halo

regions, albeit using additional lookup tables. Since the mesh-free

approach exposes such parallelism in a hierarchical fashion (due

to the tree structure), the same basic algorithm holds for the dis-

tributed memory cases as well, except that the bucketing at the

inter-process level will require MPI communication. Again, unlike

traditional codes, this can be done without any additional lookup

tables (scatter maps). Also note that the resulting code does not

have any indirect memory accesses to the large data arrays u and

v . This makes implementations simple and easy enough for mod-

ern compilers to optimize (such as prefetching, vectorization, etc.)

without special architecture specific tuning of the code.

4 RESULTS

We present a thorough evaluation of our 4D adaptive framework

in this section. We start by giving a brief overview of the hardware

and software setup used for this evaluation. Additional information

can be found in the appendices. We can demonstrate the improved

parallel scalability that can be obtained by using a 4D formula-

tion instead of the traditional 3D + t formulation in §4.2. We then

demonstrate the ability to handle different classes of PDEs and the

use of a posteriori error estimates to facilitate the refinement in

spacetime in §4.3. Finally, in §4.4, we conduct weak and strong

scalability experiments for the tree construction, balancing and for

performing a matvec; the fundamental building blocks for all our

test applications presented in §4.3.

4.1 Experimental Setup:

The large scalability experiments reported in this paper were per-

formed on Titan and Stampede2. Titan is a Cray XK7 supercomputer

at Oak Ridge National Laboratory (ORNL) with a total of 18,688

nodes, each consisting of a single 16-core AMD Opteron 6200 series

processor, with a total of 299,008 cores. Each node has 32GB of

memory. It has a Gemini interconnect and 600TB of memory across

all nodes. Stampede2 at the Texas Advanced Computing Center

(TACC), University of Texas at Austin has 4, 200 Intel Xeon Phi

7250 (KNL) compute nodes, each with 96GB DDR4 RAM and 16GB

of MCDRAM and 1, 736 Intel Xeon Platinum 8160 (SKX) compute

nodes with 2 × 24 cores and 192GB of RAM per node. Stampede2

has a 100Gb/sec Intel Omni-Path (OPA) interconnect in a fat tree

topology. We used the SKX nodes for the experiments reported in

this work.

4.2 Space-time solution with heavy parallelism

As mentioned in section 2, equation 1 represents a wide class of

partial differential equations. More recognizable PDEs can be ob-

tained by enforcing certain assumptions on a, κ and f . For exam-

ple, the linear heat equation is obtained by setting a = (0, 0, 0),
κ = κ(x ,y, z) and f = f (x ,y, z). Then setting a = a(x ,y, z) renders
it an advection-diffusion equation. And gradually, many other such

combinations will lead to some other specific equation, for which

the formulation presented in section 2 will remain the same.

First, to demonstrate the central theme of parallelism in space-

time coupled analysis, we choose the simple linear heat equation.

As mentioned before, this is done by setting a = (0, 0, 0), κ = 1 in

equation 1. The force f on the right hand side is manufactured by

assuming the solution u to be

u(x ,y, z, t) = et sin(πx) sin(πy) sin(πz) (13)

Once we have the corresponding discrete bilinear form, the prob-

lem is then translated into a linear algebra problem using the 4D
formulation described in §2 and §3. The final linear algebra prob-

lem is solved using PETSc 3.7 via the MATSHELL interface to expose

the mesh-free matrix-free interface. The convergence results for

this problem on a series of uniformly refined meshes is plotted in

figure 2.

Figure 8 shows the solve time comparison between a time step-

ping and a space-time problem on Titan. The time stepping problem

8

https://www.olcf.ornl.gov/titan/
https://www.tacc.utexas.edu/systems/stampede2
https://www.olcf.ornl.gov/titan/
https://www.tacc.utexas.edu/systems/stampede2
https://www.mcs.anl.gov/petsc/
https://www.olcf.ornl.gov/titan/

Solving PDEs in Space-Time SC ’19, November 17–22, 2019, Denver, CO, USA

solves the PDE posed on a 3D spatial domain for a prescribed num-

ber of time steps through the well known Crank-Nicholson scheme.

The space-time counterpart of this problem is posed in a 4D space-

time domain and is solved using the formulation presented in §2.

The linear systems in these cases were solved with gmres with

a block Jacobi preconditioner. The space-time problem performs

badly when the number of cores used is low and in this region the

time-stepping method is much more efficient. But as the number of

cores increase we notice a linear decrease in the solve time for the

space-time problem whereas the performance of the time-stepping

method deteriorates slowly in the beginning and rapidly when the

number of cores go above 5000. This shows concretely the potential

of the space-time method with heavy parallelism. By adding the

time dimension into the formulation, we are making the problem

more complex from the point of view of computation, but this in-

creased complexity in turn allows us to leverage the benefits of high

parallelism. Indeed, when number of cores 8000 and above then

space-time formulation beats the sequential time stepping solution

time.

4.3 Space-time adaptive refinement applied to

different classes of PDE

The other important theme of the space-time analysis is the adaptive

refinement strategy applied to diverse PDEs of interest. These PDEs

produce solutions that exhibit a high degree of localization in both

space and time. This idea is clear by looking at Figure 10. This figure

presents the adaptive solutions to three different classes of PDEs.

The first one is the linear heat equation shown in Figures 10a, 10d

(i.e., the first column of Figure 10), where a Gaussian heat pulse

localized in space diffuses in time. Figure 10a shows the contour

plot of the non-zero solution. The solution is zero in most of the

space-time domain. This problem is a perfect candidate where space-

time analysis with adaptive refinement can be applied. Figure 10d

reveals an important feature about the space-time refinement. It

shows a 2D slice of the whole mesh; the y − t plane, in particular.

In this slice, we observe that different regions in space (points with

different y-values at a particular time level) experience different

"time-step" sizes. Such spatially varying time-stepping approaches

are extremely non-trivial to implement and execute in a sequential

setting.

The next two columns in Figure 10 illustrate the same concept,

but using two increasingly challenging PDEs. The second column

shows the solution to the linear advection-diffusion equation

(Figures 10b and 10e) where a discontinuous pulse moves in a

rotating field with a very small amount of diffusivity (i.e. very large

Peclet number). This translates to a spiral in the space-time domain.

Notice that the space-time region around the pulse is highly refined

in space-time (as shown in the second image in the bottom row).

The third column illustrates a slice of the nonlinear Allen-Cahn

equation (Figures 10c, 10f, the third column) which models the

movement of a solidification front (starting from a sphere, and

shrinking in size). The y − t slice cleanly exhibits the advantage of

the space-time approach in tracking the solidification front. The

adaptivity in the case of linear heat and linear advection diffusion

equation is facilitated by the a posteriori error estimate derived

in 12. In the case of the Allen-Cahn equation, we simply refine the

interface in space-time, and hence the the refinement in space and

time ensures that the interface is resolved accurately.

2
9

2
10

2
11

2
12

2
13

2
14

2
15

2
16

10
0

10
1

10
2

number of cores

t
i
m
e
(
s)

4D-Space-time: size 60
4

4D-Space-time: size 72
4

3D-Space + Sequential time: size 60
3 × 60 steps

3D-Space + Sequential time: size 72
3 × 72 steps

Figure 8: Comparison of scaling of Crank Nicholson time

stepping on Titan for linear diffusion problemwith coupled

space-time formulation. The coupled space-time formula-

tion scales up to 16384 processors whereas the time stepping

scales only up to 2048 processors.

2
8

2
9

2
10

2
11

2
12

2
13

2
14

2
15

2
16

2
8

2
10

2
12

2
14

2
16

number of cores

r
e
l
a
t
i
v
e
s
p
e
e
d
u
p

Ideal

size 48
4
, dof=5.3 × 106

size 60
4
, dof=13 × 106

size 72
4
, dof=26.9 × 106

size 84
4
, dof=49.8 × 106

size 102
4
, dof=108.2 × 106

Figure 9: Relative speedup of 4D space - time formulation on

Titan. The number of degree of freedomwas varied from 5.3

million to 108.2 million across 16384 processors.

4.4 Scalability

Adaptive 4D-trees:We present scalability results for building adap-

tive 4D-trees in order to perform space-time FEM computations.

The adaptive trees are produced by randomly generated points

9

SC ’19, November 17–22, 2019, Denver, CO, USA Ishii and Fernando, et al.

Linear diffusion equation

ut = κ∇2u + f (x, y)

(a)

Linear advection - diffusion equation

ut + ®a .∇u = κ∇2u + f (x, y)

(b)

Allen - Cahn equation

ut = D(Cn2∇2u − f (u))

(c)

(d) (e) (f)

Figure 10: Examples illustrating space-time adaptive refinement for three different PDEs. The top row shows the solution in

space-time, while the bottom row shows y − t slices across interesting regions in space-time. The first column (Figs a,d) shows

the diffusion of a heat source. With increasing time, the source diffuses out across the domain needing less resolved

elements. The second column (Figs b,e) shows the action of a rotating flow field on an initial concentration source, when

diffusivity is very low. The source is advected around in the domain, with minimal change in peak concentration due to the

low diffusivity. This is clearly seen in Fig (b). Fig(e) shows a y − t slice illustrating the highly resolved space-time elements

close to the source. The third column (Figs c,f) shows a shrinking solidification front modeled via the non-linear Allen-Cahn

equations. Fig (f) shows that the interface between the two phases is well refined in space-time.

based on the normal distribution. Randomly generated distributed

point set does not obey the SFC based partitioning. Therefore we

use,DistTreeSort to perform a re-partitioning, respecting the SFC,

which is followed by TreeConstruction and TreeBalancing to

ensure that the generated tree is complete and 2 : 1 balanced. To

perform FEM computations, we need to compute the shared unique

nodes (see §3.4) and the communication map, which is required to

perform halo/ghost node exchange during matvec computation.

The Figure 11 presents the weak scalability results across 6, 144

cores on Stampede2 for complete adaptive 4D-tree construction.
Note that even though we have used 500 and 250 random points

per core, after construction and balancing, the resulting trees have

roughly 5K elements per core and after unique node computation

3K & 50K unknowns per core for linear and quadratic cases respec-

tively.

FEM matvec : The core computational kernel for all problems

considered in this work is the matvec. This is the basic building

block that determines the overall parallel performance and scalabil-

ity. In this section we present scalability results for performing a 4D
matvec on an adaptive mesh. Note that for typical cases, the overall

performance and scalability will be dominated by the matvec and

not the cost of remeshing. In Fig.13 we present weak scaling results

for the matvec on Stampede2 using both linear and quadratic basis

functions. The breakdown of the total time is given in terms of the

10

https://www.tacc.utexas.edu/systems/stampede2
https://www.tacc.utexas.edu/systems/stampede2

Solving PDEs in Space-Time SC ’19, November 17–22, 2019, Denver, CO, USA

4
8

9
6

1
9
2

3
8
4

7
6
8

1
5
3
6

3
0
7
2

6
1
4
4

0

20

40

60

80

number of cores→

t
i
m
e
(
s
)
→

TreeSort TreeConstruction TreeBalancing

unique nodes communication map

linear

quadratic

Figure 11: Weak scaling results for distributed sorting and par-

titioning, 4D adaptive tree construction, 2 : 1 balancing, comput-

ing unique nodes and building the communication scatter map for

randomly generated coordinates (using normal distribution) with

500 &250, points per core for linear and quadratic element order

across 6, 144 cores in TACC’s Stampede2.

3
8
4

7
6
8

1
5
3
6

3
0
7
2

0

10

20

number of cores→

t
i
m
e
(
s
)
→

TreeSort TreeConstruction TreeBalancing

unique nodes communication map

1.7×

2.7×
3.6×

Figure 12: Strong scaling results for distributed sorting and par-

titioning, 4D adaptive tree construction, 2 : 1 balancing, comput-

ing unique nodes and building the communication scatter map for

a problem size of 3M randomly generated coordinates (using nor-

mal distribution) for linear order across 3, 072 cores in TACC’s Stam-

pede2.

major steps, including communication, the top-down and bottom-

up traversals, and the cost of the elemental matvec. One can see

that the elemental matvec and the communication dominate the

overall time, for both the linear and quadratic discretizations. These

costs would be encountered in any distributed memory FEM im-

plementation. The bottom-up and top-down traversals account for

the overhead of adaptivity and performing the matvec in a matrix-

free and mesh-free fashion. The top-down traversal involves data

duplication and is therefore more expensive than the bottom-up tra-

versal. There is room for improvement here by using more efficient

memory allocation and layout to reduce the cost of the top-down

traversal. Note that the overhead from the top-down traversal is

comparable to the overhead one would obtain from a mesh-based

approach (e.g. [12] reports 20 − 25% overhead for 3D octree-refined

case).

A major motivation for adopting a 4D formulation is to expose

parallelism in time and reduce time to solution by increasing num-

ber of processes. In other words, strong scaling is extremely im-

portant. In Fig. 14 we demonstrate excellent strong scalability for

the 4D matvec on an adaptive mesh. Again as in the weak-scaling

experiments, the communication and elemental matvec dominate

the overall time and scale well. Going from 384 to 6144 cores on

Stampede (16×), we get speedups of 10.5× for linear and 9.9× for

quadratic discretizations.

4
8

9
6

1
9
2

3
8
4

7
6
8

1
5
3
6

3
0
7
2

6
1
4
4

0

0.2

0.4

number of cores→

t
i
m
e
(
s
)
→

top-down bottom-up leaf matvec

malloc communication

linear

quadratic

Figure 13: Weak scaling results mesh-free, matrix-free FEM

matvec on an adaptive 4D tree on TACC’s Stampede2 across 6,144

cores with linear and quadratic basis functions. For the largest prob-

lem sizes for linear and quadratic cases with 16M and 340M de-

grees of freedoms respectively. Execution times reported are aver-

aged over 10 matvec operations, where the average number of un-

knowns per core were 3K and 50K for linear and quadratic cases,

respectively.

Figure 9 shows the relative speedup of the 4D space-time problem

on Titan by varying the number of cores from 256 to 32768. The

case with 102 elements in each direction (108.2 Million degree of

freedom) scales up to 32768 cores. This is a strong scaling result and

shows considerably good performance. It must be noted that this

shows a very high potential to exploit the parallelism on the current

scale of machines, which is not possible with the time stepping

method.

5 CONCLUSION & FUTUREWORK

In this work we have presented an innovative 4D formulation for

solving time-dependent PDE problems. We combined this within an

adaptive setting and with variable order discretizations to realize a

powerful framework. Our choice of algorithms specifically targets

modern architectures with deep-memory hierachies and high levels

of parallelism. We demonstrated improved strong and weak scal-

ing as a result of the 4D formulation that is able to utilize parallel

resources more efficiently compared to the traditional 3D+time ap-

proach, where time is treated sequentially. Additionally, we derived

both a priori, as well as residual-based a posteriori error estimates

11

https://www.olcf.ornl.gov/titan/

SC ’19, November 17–22, 2019, Denver, CO, USA Ishii and Fernando, et al.

3
8
4

7
6
8

1
5
3
6

3
0
7
2

6
1
4
4

0

2

4

number of cores→

t
i
m
e
(
s
)
→

top-down bottom-up leaf matvec

malloc communication

linear

quadratic

1.8× 3.6×
5.74×

10.5×

1.9×

3.6×
5.5×

9.9×

Figure 14: Strong scaling results for fixed problem sizes of 16M (lin-

ear) and 340M (quadratic) unknowns formesh-free,matrix-free FEM
matvec on an adaptive 4D tree on TACC’s Stampede2 across 6,144

cores with linear and quadratic basis functions. Execution times re-

ported are averaged over 10 matvec operations.

for the linear time dependent heat diffusion equation, and numeri-

cally illustrated improved convergence behavior of the space-time

solution approach. By developing sophisticated numerical methods

backed by theoretical guarantees of improved convergence, as well

as innovative mesh- and matrix-free algorithms to enable efficient

mapping to modern architectures, we have demonstrated impres-

sive scalability results on current supercomputers. We believe our

methods are a first step towards improving the scalability of PDE

solvers to the next generation of supercomputers.

6 ACKNOWLEDGMENTS

This work was funded by National Science Foundation grants OAC-

1808652 and PHY-1912930. This research used resources of the Oak

Ridge Leadership Computing Facility, which is a DOE Office of Sci-

ence User Facility supported under contract DE-AC05-00OR22725

and the Extreme Science and Engineering Discovery Environment

(XSEDE) allocation TG-PHY180002.

REFERENCES

[1] [n. d.]. MFEM: Modular Finite Element Methods Library. mfem.org. https:

//doi.org/10.11578/dc.20171025.1248

[2] Mark Ainsworth and J. Tinsley Oden. 2000. A Posteriori Error Estimation in Finite
Element Analysis. John Wiley & Sons, New York.

[3] G. Alzetta, D. Arndt, W. Bangerth, V. Boddu, B. Brands, D. Davydov, R.

Gassmoeller, T. Heister, L. Heltai, K. Kormann, M. Kronbichler, M. Maier, J.-

P. Pelteret, B. Turcksin, and D. Wells. 2018. The deal.II Library, Version 9.0.

Journal of Numerical Mathematics 26, 4 (2018), 173–183. https://doi.org/10.1515/

jnma-2018-0054

[4] David A. Bader and Guojing Cong. 2005. A fast, parallel spanning tree algorithm

for symmetric multiprocessors (SMPs). J. Parallel and Distrib. Comput. 65, 9
(2005), 994 – 1006. https://doi.org/10.1016/j.jpdc.2005.03.011

[5] Marek Behr. 2008. Simplex space–time meshes in finite element simulations.

International journal for numerical methods in fluids 57, 9 (2008), 1421–1434.
[6] V Carey, D Estep, August Johansson, M Larson, and S Tavener. 2010. Blockwise

adaptivity for time dependent problems based on coarse scale adjoint solutions.

SIAM Journal on Scientific Computing 32, 4 (2010), 2121–2145.

[7] V. Carey, D. Estep, A. Johansson, M. Larson, and S. Tavener. 2010. Blockwise

Adaptivity for TimeDependent Problems Based onCoarse Scale Adjoint Solutions.

SIAM J. Sci. Comput. 32, 4 (2010), 2121–2145. https://doi.org/10.1137/090753826

[8] J Austin Cottrell, Thomas JR Hughes, and Yuri Bazilevs. 2009. Isogeometric
analysis: toward integration of CAD and FEA. John Wiley & Sons.

[9] Robert Dyja, Baskar Ganapathysubramanian, and Kristoffer G van der Zee. 2018.

Parallel-In-Space-Time, Adaptive Finite Element Framework for Nonlinear Para-

bolic Equations. SIAM Journal on Scientific Computing 40, 3 (2018), C283–C304.

[10] Robert D Falgout, Stephanie Friedhoff, Tz V Kolev, Scott P MacLachlan, and

Jacob B Schroder. 2014. Parallel time integration with multigrid. SIAM Journal
on Scientific Computing 36, 6 (2014), C635–C661.

[11] Milinda Fernando, Dmitry Duplyakin, and Hari Sundar. 2017. Machine and

Application Aware Partitioning for Adaptive Mesh Refinement Applications. In

Proceedings of the 26th International Symposium on High-Performance Parallel
and Distributed Computing (HPDC ’17). ACM, New York, NY, USA, 231–242.

https://doi.org/10.1145/3078597.3078610

[12] M. Fernando, D. Neilsen, H. Lim, E. Hirschmann, and H. Sundar. 2019. Massively

Parallel Simulations of Binary Black Hole Intermediate-Mass-Ratio Inspirals.

SIAM Journal on Scientific Computing 41, 2 (2019), C97–C138. https://doi.org/10.

1137/18M1196972 arXiv:https://doi.org/10.1137/18M1196972

[13] Milinda Fernando and Hari Sundar. 2016. Fast Algorithms for Distributed Order-

ing and Partitioning using Hilbert Curves. (2016). in preparation.

[14] Leopoldo P Franca, G Hauke, and A Masud. 2004. Stabilized finite element

methods. International Center for Numerical Methods in Engineering (CIMNE),

Barcelona âĂę.

[15] Baskar Ganapathysubramanian and Nicholas Zabaras. 2005. Control of solidifica-

tion of non-conducting materials using tailored magnetic fields. J. Cryst. Growth
276, 1–2 (2005), 299–316. https://doi.org/10.1016/j.jcrysgro.2004.11.336

[16] Baskar Ganapathysubramanian and Nicholas Zabaras. 2005. On the control of

solidification using magnetic fields and magnetic field gradients. Int. J. Heat Mass
Transfer 48, 19–20 (2005), 4174–4189. https://doi.org/10.1016/j.ijheatmasstransfer.

2005.04.027

[17] Martin J. Gander. 2015. 50 Years of Time Parallel Time Integration. In Multiple
Shooting and Time Domain Decomposition Methods: MuS-TDD, Heidelberg, May
6-8, 2013, Thomas Carraro, Michael Geiger, Stefan Körkel, and Rolf Rannacher

(Eds.). Springer International Publishing, Cham, 69–113. https://doi.org/10.1007/

978-3-319-23321-5_3

[18] Herman J. Haverkort. 2012. Harmonious Hilbert curves and other extradi-

mensional space-filling curves. CoRR abs/1211.0175 (2012). arXiv:1211.0175

http://arxiv.org/abs/1211.0175

[19] Jeffrey Hittinger, Sven Leyffer, and Jack Dongarra. 2013. Models and Algorithms

for Exascale Computing Pose Challenges for Applied Mathematicians. SIAM

News.

[20] Thomas JR Hughes and Gregory M Hulbert. 1988. Space-time finite element

methods for elastodynamics: formulations and error estimates. Computer methods
in applied mechanics and engineering 66, 3 (1988), 339–363.

[21] Thomas JR Hughes, Guglielmo Scovazzi, and Leopoldo P Franca. 2018. Multiscale

and stabilized methods. Encyclopedia of Computational Mechanics Second Edition
(2018), 1–64.

[22] Thomas JR Hughes and James R Stewart. 1996. A space-time formulation for

multiscale phenomena. J. Comput. Appl. Math. 74, 1-2 (1996), 217–229.
[23] David A Kopriva. 2009. Implementing spectral methods for partial differential

equations: Algorithms for scientists and engineers. Springer Science & Business

Media.

[24] Ulrich Langer, Stephen E Moore, and Martin Neumüller. 2016. Space–time

isogeometric analysis of parabolic evolution problems. Computer methods in
applied mechanics and engineering 306 (2016), 342–363.

[25] J. Lions, YvonMaday, and Gabriel Turinici. 2001. A”parareal”in time discretization

of PDE’s. C. R. Acad. Sci. Series I Mathematics 332, 7 (2001), 661–668.
[26] Robert B Lowrie, Philip L Roe, and Bram Van Leer. 1998. Space-time methods for

hyperbolic conservation laws. In Barriers and Challenges in Computational Fluid
Dynamics. Springer, 79–98.

[27] Karthik Mani and Dimitri Mavriplis. 2011. Efficient solutions of the euler equa-

tions in a time-adaptive space-time framework. In 49th AIAA Aerospace Sciences
Meeting including the New Horizons Forum and Aerospace Exposition. 774.

[28] JP Pontaza and JN Reddy. 2003. Spectral/hp least-squares finite element formula-

tion for the Navier–Stokes equations. J. Comput. Phys. 190, 2 (2003), 523–549.
[29] Thomas CS Rendall, Christian B Allen, and Edward DC Power. 2012. Conservative

unsteady aerodynamic simulation of arbitrary boundary motion using structured

and unstructured meshes in time. International Journal for Numerical Methods in
Fluids 70, 12 (2012), 1518–1542.

[30] Johann Rudi, A. Cristiano I. Malossi, Tobin Isaac, Georg Stadler, Michael Gurnis,

Peter W. J. Staar, Yves Ineichen, Costas Bekas, Alessandro Curioni, and Omar

Ghattas. 2015. An Extreme-scale Implicit Solver for Complex PDEs: Highly Het-

erogeneous Flow in Earth’s Mantle. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis (SC ’15). ACM,

New York, NY, USA, Article 5, 12 pages. https://doi.org/10.1145/2807591.2807675

[31] Hari Sundar, Dhairya Malhotra, and George Biros. 2013. HykSort: A New

Variant of Hypercube Quicksort on Distributed Memory Architectures. In Pro-
ceedings of the 27th International ACM Conference on International Conference
on Supercomputing (ICS ’13). ACM, New York, NY, USA, 293–302. https:

//doi.org/10.1145/2464996.2465442

12

mfem.org
https://doi.org/10.11578/dc.20171025.1248
https://doi.org/10.11578/dc.20171025.1248
https://doi.org/10.1515/jnma-2018-0054
https://doi.org/10.1515/jnma-2018-0054
https://doi.org/10.1016/j.jpdc.2005.03.011
https://doi.org/10.1137/090753826
https://doi.org/10.1145/3078597.3078610
https://doi.org/10.1137/18M1196972
https://doi.org/10.1137/18M1196972
http://arxiv.org/abs/https://doi.org/10.1137/18M1196972
https://doi.org/10.1016/j.jcrysgro.2004.11.336
https://doi.org/10.1016/j.ijheatmasstransfer.2005.04.027
https://doi.org/10.1016/j.ijheatmasstransfer.2005.04.027
https://doi.org/10.1007/978-3-319-23321-5_3
https://doi.org/10.1007/978-3-319-23321-5_3
http://arxiv.org/abs/1211.0175
http://arxiv.org/abs/1211.0175
https://doi.org/10.1145/2807591.2807675
https://doi.org/10.1145/2464996.2465442
https://doi.org/10.1145/2464996.2465442

Solving PDEs in Space-Time SC ’19, November 17–22, 2019, Denver, CO, USA

[32] Hari Sundar, Rahul Sampath, and George Biros. 2008. Bottom-up construction

and 2:1 balance refinement of linear octrees in parallel. SIAM Journal on Scientific
Computing 30, 5 (2008), 2675–2708. https://doi.org/10.1137/070681727

[33] Hari Sundar, Rahul S. Sampath, Santi S. Adavani, Christos Davatzikos, and George

Biros. 2007. Low-constant Parallel Algorithms for Finite Element Simulations

using Linear Octrees. In SC’07: Proceedings of the International Conference for
High Performance Computing, Networking, Storage, and Analysis. ACM/IEEE.

[34] Hari Sundar, Rahul S Sampath, and George Biros. 2008. Bottom-up construction

and 2: 1 balance refinement of linear octrees in parallel. SIAM J. Sci. Comput. 30,
5 (2008), 2675–2708. https://doi.org/10.1137/070681727

[35] Tayfun E Tezduyar, Sunil Sathe, Ryan Keedy, and Keith Stein. 2006. Space–

time finite element techniques for computation of fluid–structure interactions.

Computer methods in applied mechanics and engineering 195, 17-18 (2006), 2002–

2027.

[36] Rüdiger Verfürth. 2008. A Posteriori Error Estimation Techniques for Finite Element
Methods. Oxford University Press, Oxford.

[37] Luming Wang and Per-Olof Persson. 2015. A high-order discontinuous Galerkin

method with unstructured space–time meshes for two-dimensional compressible

flows on domains with large deformations. Computers & Fluids 118 (2015), 53–68.

7 ARTIFACT DESCRIPTION

7.1 Getting and Compiling Dendro-KT

The Dendro-KT simulation code is freely available at GitHub (link

will be disclosed after review process) under the GNU General

Public License (GPL). The latest version of the code can be obtained

by cloning the repository

$ g i t c l one h t t p s : / / g i t hub . com / p a r a l a b / Dendro−KT . g i t

The following dependencies are required to compile Dendro-KT

• C/C++ compilers with C++11 standards and OpenMP sup-

port

• MPI implementation (e.g. openmpi, mvapich2)

• ZLib compression library (used to write .vtu files in binary

format with compression enabled)

• BLAS and LAPACK are optional and not needed for current

version of Dendro-KT

• CMake 2.8 or higher version

After configuring Dendro-KT, generate the Makefile (use c to
configure and g to generate). Then execute make all to build all

the targets. Please follow the instruction page on the repository for

more details on installation.

7.2 Experiments

All the experiments reported using Stampede2 are executed in the

following module environment.

Currently loaded modules :
1) intel/18.0.0 2) impi/18.0.0 3) cmake/3.10.2
4) git/2.9.0 5) gsl/2.3 6) autotools/1.1

Experiments performed in Titan are executed in the following

module environment.

Currently Loaded Modulefiles:
1) modules/3.2.6.6 4) petsc/3.8.4
2) PrgEnv-intel 5) cmake/3.10.2
3) cray-mpich2/6.1.1.

matvec and TreeSort experiments: Both strong and weak

scalaing results were executed using, matvecBenchAdaptive and
tsortBench which requires following parameters.

• pts_per_core : Number of random generated points per

core.

• maxdepth : Maximum refinment level.

• order: Order of the FEM basis functions.

• iter: Number of iterations to be averaged over when bench-

marking run times.

In order to run the benchmark, please use the following com-

mand.

ibrun -np <mpi tasks> ./<benchmark>
pts_per_core maxdepth order iter

Space-time adaptivity linear andnon-linear PDEs: The adap-

tive refinement experiments mentioned in §4.3 additionally requires

PETSC library for solving the result in linear system by space-time

FEM. The Dendrite simulation code can be obtained from cloning

the repository

$ g i t c l one h t t p s : / / b i t b u c k e t . org / baskargroup / a d _d end r i t e . g i t

13

https://doi.org/10.1137/070681727
https://doi.org/10.1137/070681727
https://www.tacc.utexas.edu/systems/stampede2
https://www.olcf.ornl.gov/titan/

SC ’19, November 17–22, 2019, Denver, CO, USA Ishii and Fernando, et al.

The codes for all the experiments are provided in the examples

folder and can be run by the following command:

$ cd examples /XXX/ i o ∗ ;

$ bash run_ca se . sh

7.3 Stampede2 compute node configuration

TACC_SYSTEM=stampede2
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
CPU(s): 96
Thread(s) per core: 2
Core(s) per socket: 24
Socket(s): 2
NUMA node(s): 2
Vendor ID: GenuineIntel
CPU family: 6
Model: 85
Model name:Intel(R)Xeon(R)
Platinum 8160 CPU @ 2.10GHz
CPU MHz: 2100.000
L1d cache: 32K
L1i cache: 32K
L2 cache: 1024K
L3 cache: 33792K

MemTotal: 196438176 kB
MemFree: 191589692 kB
MemAvailable: 190917852 kB

7.4 Titan compute node configuration

Architecture: Cray XK7
Processor: 16-Core AMD
Memory/node: 32GB

7.5 4D-Hilbert curve

The comparison-free structure of TreeSort allows us to use any

SFC. In our work we are interested in the Hilbert curve.

The Hilbert curve is an SFC with the property that adjacent

segments in the curve are mapped to adjacent regions in space. Pre-

vious works have exploited this property to better preserve spatial

locality in linearized octrees, thus curbing the communication cost

of partitioning a spatial domain [13].

Extending the Hilbert curve to any dimension beyond 2D is

nontrivial. Although a known three-dimensional extension was

used previously [13], certainly the situation is more complicated

in four dimensions. Not only does it become tedious to write (and

reason about) a permutation table of recurrence rules, but also the

Hilbert curve does not have a unique high-dimensional extension.

One must choose a definition among the many possible SFCs that

satisfy the above locality property.

Haverkort [18] provides

• an additional constraint (“interdimensional consistency”)

that uniquely characterizes the so-called harmonious Hilbert
curve in any dimension;

• a systematic constructive definition for the curve in any

dimension.

(The idea of interdimensional consistency is that the restric-

tion of the curve to a face should be the same curve, but a lower-

dimensional version. Potential benefits include hardware optimiza-

tion and/or better locality [18].)

Based on Haverkort’s abstract recurrence rules, we can program-

matically generate SFC rotation tables for the Hilbert curve in four

dimensions, and higher.

Implementation. A recursive definition of the Hilbert curve specifies

a traversal of the unit hypercube in terms of sub-traversals of each

child orthant.

The recurrence rule must do two things. It must specify the

order in which children are traversed; and it must also specify

the orientations of the children’s coordinate frames relative to the

parent. Depending on these two specifications, various SFCs may

be produced. Some of them can be considered valid extensions of

the Hilbert curve. Exactly one of them, according to Haverkort,

produces an interdimensionally consistent family of extensions to

the Hilbert curve.

To set the stage, assume a coordinate system for the unit K-cube,
with axes numbered i ∈ {0, . . . ,K − 1} and origin at the center of

the K-cube. Magnitudes are irrelevant; we are concerned with the

signs of coordinates only. We represent a coordinate tuple as a bit

string, x ∈ BK , where B ≡ {0, 1}, ‘1’ meaning ‘+’ and ‘0’ meaning

‘-’. Each child orthant has a unique coordinate string, relative to the

parent frame, that, as an integer, is precisely the child number in

lexicographic order: c =
∑
i xi2

i
.

As for the traversal order, the Hilbert curve follows the “reflected

Gray code” [18]. In our implementation, the r th visited child is

c ← (r >> 1) XOR r

where “>>” is the bit-wise right shift operator and “XOR” is the

bit-wise XOR operator.

The orientation of the r th visited child is described by a permuta-

tion of, followed by reflections of, the parent coordinate axes. The

axis permutation depends on the parity of r and the coloring of

axes as r is read as a bit string. Starting from a reverse ordering of

axes, if r is even, then even-colored axes are collected in the back,

but if r is odd then odd-colored axes are collected in the back. The

reflectionm of axes (a bit string, ‘1’ meaning reflect) can be defined

in terms of c and r :

m ← ((r − 1) >> 1) XOR (r − 1);

m ← (m AND − 2) OR ((NOT c) AND 1);

The above recurrence rule characterizes the SFC relative to a

local coordinate frame. The final lookup table must describe the

various orientations of the recurrence rule in terms of an absolute

coordinate frame.

To generate such a table we define a multiplication operator

that transforms the recurrence rule to another coordinate frame,

and then we fill out the group closure until all recurrence rules

are defined in terms of previously computed recurrence rules. The

base case is to take the absolute frame as the local frame, that is,

the unmodified definition. The multiplication operator is realized

14

https://www.tacc.utexas.edu/systems/stampede2
https://www.olcf.ornl.gov/titan/

Solving PDEs in Space-Time SC ’19, November 17–22, 2019, Denver, CO, USA

through the semi-direct product:

(MA)(ma) = MAm(A−1)(A)a = M(AmA−1)(Aa)

where a andA are axis permutations andm,M , andAmA−1 are axis
reflections.

8 ARTIFACT EVALUATION

8.1 Scalability study on 4D-trees & matvec

Prior to performing FEM computations, discretization and partition-

ing the space-time domain is performed using 4D-trees. We have

used TreeSort, TreeConstruction, TreeBalancing algorithms

to perform basic 2:1 balanced construction of 4D-trees. Once the
basic topological tree is established we perform the computation

of the unique shared nodes(see §3.4), and the scatter map compu-

tation to perform ghost/halo nodal value exchange. Note that the

topological tree is independent of the FEM element order, where it

is introduced at the unique node computation phase.

The main benchmark program used in the study is tsortBench
which can be executed as mentioned in §7. The main sketch of

the benchmark includes generating the random points in R4 space,
using the normal distribution for the user specified grain size. These

points are used to perform the adaptive tree construction and 2:1

balancing. Once the complete 2:1 balanced tree is constructed we

unique node and communication map computation. The presented

execution times are averaged of 10 different runs.

Once the randomly adaptive trees are generated and the corre-

sponding unique nodes are computed we perform, 10 matvec op-

erations, profiling each phase of the matvec. These phases include

top-down traversal, elemental matvec operation, bottom up traver-

sal and the communication cost.

8.2 Space-time adaptivity for linear &

non-linear PDEs

PETSc was used to solve all the linear algebra problems. In particu-

lar, GMRES solver was used in conjunction with a block Jacobi

preconditioner. Both the relative residual tolerance and the abso-

lute residual tolerance are set to 10
−12

in all numercal results. The

GMRES breakdown tolerance is kept at the default value of 10
−30

.

The NEWTONLS class by PETSc, that implements a Newton Line

Search method, was used for the nonlinear problems. Each of the

iterations within NEWTONLS is solved by GMRES with block

Jacobi preconditioner.

The correctness of each of the examples provided in the artifacts

described in §7 are ensured by first solving the examples with a

known analytical solution for increasingly refined meshes (con-

trolled by -refine_lvl in the execution script). In each case, after

the solution is computed, the error is then calculated using the

known analytical solution. The convergence the linear algebra solu-

tion in each case and the convergence of the norm of the analytical

error in the solution together guarantees the trustworthiness of the

FEM results.

15

https://www.mcs.anl.gov/petsc/
https://www.mcs.anl.gov/petsc/

Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED
We perform scalability experiments in Stampede2 and Titan su-
percomputers for the parallel algorithms presented in the paper.
We have included the instructions on how to run the code in the
above-mentioned machines with details in artifact description in
the paper.

ARTIFACT AVAILABILITY
Software Artifact Availability: All author-created software arti-

facts are maintained in a public repository under an OSI-approved
license.

Hardware Artifact Availability: There are no author-created hard-
ware artifacts.

Data Artifact Availability: All author-created data artifacts are
maintained in a public repository under an OSI-approved license.

Proprietary Artifacts: None of the associated artifacts, author-
created or otherwise, are proprietary.

List of URLs and/or DOIs where artifacts are available:

https://github.com/paralab/Dendro4
https://github.com/paralab/Dendro-KT
https://bitbucket.org/baskargroup/ad_dendrite/src/m ⌋

aster/↪→

BASELINE EXPERIMENTAL SETUP, AND
MODIFICATIONS MADE FOR THE PAPER

Relevant hardware details: SKX, Stampede2, Titan Cray super-
computers

Operating systems and versions: Linux-3.10.0-957.5.1.el7.x86_64

Compilers and versions: intel/18.0.0 , impi/18.0.0

Libraries and versions: 1) intel/18.0.0 2) impi/18.0.0 3)
cmake/3.10.2 4) git/2.9.0 5) gsl/2.3 6) autotools/1.1

Paper Modifications: The large scalability experiments reported
in this paper were performed on Titan and Stampede2. Titan is a
Cray XK7 supercomputer at Oak Ridge National Laboratory (ORNL)
with a total of 18,688 nodes, each consisting of a single 16-core
AMD Opteron 6200 series processor, with a total of 299,008 cores.
Each node has 32GB of memory. It has a Gemini interconnect and
600TB of memory across all nodes. Stampede2 is the flagship su-
percomputer at the Texas Advanced Computing Center (TACC),
the University of Texas at Austin. It has $1,736$ Intel Xeon Plat-
inum 8160 (SKX) compute nodes with 48 cores and 192GB of RAM
per node. Stampede2 has a 100Gb/sec Intel Omni-Path (OPA) in-
terconnect in a fat tree topology. We used the SKX nodes for the
experiments reported in this work.

Loaded Modules for Stampede2 experiements: 1) intel/18.0.0 2)
impi/18.0.0 3) cmake/3.10.2 4) git/2.9.0 5) gsl/2.3 6) autotools/1.1

Output from scripts that gathers execution environment informa-
tion.

SLURM_NODELIST=c476-014
LMOD_FAMILY_COMPILER_VERSION=18.0.0
SLURM_CHECKPOINT_IMAGE_DIR=/var/slurm/checkpoint
TACC_GIT_BIN=/opt/apps/git/2.9.0/bin
MKLROOT=/home1/apps/intel/18.0.0/compilers_and_libra ⌋

ries_2018.0.128/linux/mkl↪→

MANPATH=/opt/apps/git/2.9.0/share/man:/home1/apps/in ⌋

tel/18.0.0/compilers_and_libraries_2018.0.128/li ⌋

nux/mpi/man:/home1/apps/intel/18.0.0/documentati ⌋

on_2018/en/man/common:/home1/apps/intel/18.0.0/d ⌋

ocumentation_2018/en/debugger/gdb-igfx/man:/home ⌋

1/apps/intel/18.0.0/documentation_2018/en/debugg ⌋

er/gdb-ia/man

↪→

↪→

↪→

↪→

↪→

↪→

TACC_CMAKE_BIN=/opt/apps/cmake/3.10.2/bin
TACC_IMPI_DIR=/home1/apps/intel/18.0.0/compilers_and ⌋

_libraries_2018.0.128/linux/mpi↪→

SLURM_JOB_NAME=idv17562
XDG_SESSION_ID=17096
HOSTNAME=c476-014
SLURMD_NODENAME=c476-014
SLURM_TOPOLOGY_ADDR=c476-014
ModuleTable003=cHRoIl09MCxbInN0YXR1cyJdPSJhY3RpdmU ⌋

iLFsidXNlck5hbWUiXT0iZ3NsIix9LGltcGk9e1siZm4iXT0 ⌋

iL29wdC9hcHBzL2ludGVsMTgvbW9kdWxlZmlsZXMvaW1waS8 ⌋

xOC4wLjAubHVhIixbImZ1bGxOYW1lIl09ImltcGkvMTguMC4 ⌋

wIixbImxvYWRPcmRlciJdPTIscHJvcFQ9e30sWyJzdGFja0R ⌋

lcHRoIl09MCxbInN0YXR1cyJdPSJhY3RpdmUiLFsidXNlck5 ⌋

hbWUiXT0iaW1waS8xOC4wLjAiLH0saW50ZWw9e1siZm4iXT0 ⌋

iL29wdC9hcHBzL21vZHVsZWZpbGVzL2ludGVsLzE4LjAuMC5 ⌋

sdWEiLFsiZnVsbE5hbWUiXT0iaW50ZWwvMTguMC4wIixbImx ⌋

vYWRPcmRlciJdPTEscHJvcFQ9e30sWyJzdGFja0RlcHRoIl0 ⌋

9MCxbInN0YXR1cyJdPSJhY3RpdmUiLFsidXNlck5hbWUi

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

TACC_INTEL_INC=/home1/apps/intel/18.0.0/compilers_an ⌋

d_libraries_2018.0.128/linux/compiler/include/in ⌋

tel64
↪→

↪→

SLURM_PRIO_PROCESS=0
SLURM_NODE_ALIASES=(null)
I_MPI_F77=ifort
INTEL_LICENSE_FILE=/home1/03727/USER/intel/licenses: ⌋

/home1/apps/intel/18.0.0/licenses:/home1/apps/in ⌋

tel/18.0.0/compilers_and_libraries_2018.0.128/li ⌋

nux/licenses

↪→

↪→

↪→

IPPROOT=/home1/apps/intel/18.0.0/compilers_and_libra ⌋

ries_2018.0.128/linux/ipp↪→

MPICH_HOME=/home1/apps/intel/18.0.0/compilers_and_li ⌋

braries_2018.0.128/linux/mpi↪→

SHELL=/bin/bash
TERM=xterm-256color
TACC_INTEL_DIR=/home1/apps/intel/18.0.0/compilers_an ⌋

d_libraries_2018.0.128/linux↪→

Ishii, et al.

__LMOD_REF_COUNT_MODULEPATH=/opt/apps/bar1_1/modulef ⌋

iles:1;/opt/apps/intel18/impi18_0/modulefiles:1; ⌋

/opt/apps/intel18/modulefiles:1;/opt/apps/xsede/ ⌋

modulefiles:1;/opt/apps/modulefiles:1;/opt/modul ⌋

efiles:1

↪→

↪→

↪→

↪→

NO_HOSTSORT=1
HISTSIZE=1000
IDEV_SETUP_BYPASS=1.0
I_MPI_FABRICS=shm:tmi
SLURM_JOB_QOS=normal
TACC_IMPI_BIN=/home1/apps/intel/18.0.0/compilers_and ⌋

_libraries_2018.0.128/linux/mpi/intel64/bin↪→

SSH_CLIENT=206.76.192.54 34734 22
LMOD_SYSTEM_DEFAULT_MODULES=TACC
TMPDIR=/tmp
SLURM_TOPOLOGY_ADDR_PATTERN=node
LIBRARY_PATH=/home1/apps/intel/18.0.0/compilers_and_ ⌋

libraries_2018.0.128/linux/daal/../tbb/lib/intel ⌋

64_lin/gcc4.4:/home1/apps/intel/18.0.0/compilers ⌋

_and_libraries_2018.0.128/linux/daal/lib/intel64 ⌋

_lin:/home1/apps/intel/18.0.0/compilers_and_libr ⌋

aries_2018.0.128/linux/tbb/lib/intel64/gcc4.7:/h ⌋

ome1/apps/intel/18.0.0/compilers_and_libraries_2 ⌋

018.0.128/linux/mkl/lib/intel64_lin:/home1/apps/ ⌋

intel/18.0.0/compilers_and_libraries_2018.0.128/ ⌋

linux/compiler/lib/intel64_lin:/home1/apps/intel ⌋

/18.0.0/compilers_and_libraries_2018.0.128/linux ⌋

/ipp/lib/intel64

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

LMOD_PKG=/opt/apps/lmod/lmod
TACC_FAMILY_COMPILER_VERSION=18.0.0
QTDIR=/usr/lib64/qt-3.3
QTINC=/usr/lib64/qt-3.3/include
LMOD_VERSION=7.8.21
SSH_TTY=/dev/pts/0
SLURM_TACC_RUNLIMIT_MINS=60
I_MPI_JOB_FAST_STARTUP=1
__LMOD_REF_COUNT_LOADEDMODULES=intel/18.0.0:1;impi/1 ⌋

8.0.0:1;cmake/3.10.2:1;git/2.9.0:1;gsl/2.3:1;aut ⌋

otools/1.1:1
↪→

↪→

QT_GRAPHICSSYSTEM_CHECKED=1
TACC_IMPI_INC=/home1/apps/intel/18.0.0/compilers_and ⌋

_libraries_2018.0.128/linux/mpi/intel64/include↪→

TACC_INTEL_BIN=/home1/apps/intel/18.0.0/compilers_an ⌋

d_libraries_2018.0.128/linux/bin/intel64↪→

USER=USER
SLURM_NNODES=1
IDEV_QDEL=scancel

LS_COLORS=rs=0:di=38;5;27:ln=38;5;51:mh=44;38;5;15:p ⌋

i=40;38;5;11:so=38;5;13:do=38;5;5:bd=48;5;232;38 ⌋

;5;11:cd=48;5;232;38;5;3:or=48;5;232;38;5;9:mi=0 ⌋

5;48;5;232;38;5;15:su=48;5;196;38;5;15:sg=48;5;1 ⌋

1;38;5;16:ca=48;5;196;38;5;226:tw=48;5;10;38;5;1 ⌋

6:ow=48;5;10;38;5;21:st=48;5;21;38;5;15:ex=38;5; ⌋

34:*.tar=38;5;9:*.tgz=38;5;9:*.arc=38;5;9:*.arj= ⌋

38;5;9:*.taz=38;5;9:*.lha=38;5;9:*.lz4=38;5;9:*. ⌋

lzh=38;5;9:*.lzma=38;5;9:*.tlz=38;5;9:*.txz=38;5 ⌋

;9:*.tzo=38;5;9:*.t7z=38;5;9:*.zip=38;5;9:*.z=38 ⌋

;5;9:*.Z=38;5;9:*.dz=38;5;9:*.gz=38;5;9:*.lrz=38 ⌋

;5;9:*.lz=38;5;9:*.lzo=38;5;9:*.xz=38;5;9:*.bz2= ⌋

38;5;9:*.bz=38;5;9:*.tbz=38;5;9:*.tbz2=38;5;9:*. ⌋

tz=38;5;9:*.deb=38;5;9:*.rpm=38;5;9:*.jar=38;5;9 ⌋

:*.war=38;5;9:*.ear=38;5;9:*.sar=38;5;9:*.rar=38 ⌋

;5;9:*.alz=38;5;9:*.ace=38;5;9:*.zoo=38;5;9:*.cp ⌋

io=38;5;9:*.7z=38;5;9:*.rz=38;5;9:*.cab=38;5;9:* ⌋

.jpg=38;5;13:*.jpeg=38;5;13:*.gif=38;5;13:*.bmp= ⌋

38;5;13:*.pbm=38;5;13:*.pgm=38;5;13:*.ppm=38;5;1 ⌋

3:*.tga=38;5;13:*.xbm=38;5;13:*.xpm=38;5;13:*.ti ⌋

f=38;5;13:*.tiff=38;5;13:*.png=38;5;13:*.svg=38; ⌋

5;13:*.svgz=38;5;13:*.mng=38;5;13:*.pcx=38;5;13: ⌋

.mov=38;5;13:.mpg=38;5;13:*.mpeg=38;5;13:*.m2v ⌋

=38;5;13:*.mkv=38;5;13:*.webm=38;5;13:*.ogm=38;5 ⌋

;13:*.mp4=38;5;13:*.m4v=38;5;13:*.mp4v=38;5;13:* ⌋

.vob=38;5;13:*.qt=38;5;13:*.nuv=38;5;13:*.wmv=38 ⌋

;5;13:*.asf=38;5;13:*.rm=38;5;13:*.rmvb=38;5;13: ⌋

.flc=38;5;13:.avi=38;5;13:*.fli=38;5;13:*.flv= ⌋

38;5;13:*.gl=38;5;13:*.dl=38;5;13:*.xcf=38;5;13: ⌋

.xwd=38;5;13:.yuv=38;5;13:*.cgm=38;5;13:*.emf= ⌋

38;5;13:*.axv=38;5;13:*.anx=38;5;13:*.ogv=38;5;1 ⌋

3:*.ogx=38;5;13:*.aac=38;5;45:*.au=38;5;45:*.fla ⌋

c=38;5;45:*.mid=38;5;45:*.midi=38;5;45:*.mka=38; ⌋

5;45:*.mp3=38;5;45:*.mpc=38;5;45:*.ogg=38;5;45:* ⌋

.ra=38;5;45:*.wav=38;5;45:*.axa=38;5;45:*.oga=38 ⌋

;5;45:*.spx=38;5;45:*.xspf=38;5;45:

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

LD_LIBRARY_PATH=/opt/apps/intel18/gsl/2.3/lib:/home1 ⌋

/apps/intel/18.0.0/compilers_and_libraries_2018. ⌋

0.128/linux/mpi/intel64/lib:/home1/apps/intel/18 ⌋

.0.0/debugger_2018/libipt/intel64/lib:/home1/app ⌋

s/intel/18.0.0/debugger_2018/iga/lib:/home1/apps ⌋

/intel/18.0.0/compilers_and_libraries_2018.0.128 ⌋

/linux/daal/../tbb/lib/intel64_lin/gcc4.4:/home1 ⌋

/apps/intel/18.0.0/compilers_and_libraries_2018. ⌋

0.128/linux/daal/lib/intel64_lin:/home1/apps/int ⌋

el/18.0.0/compilers_and_libraries_2018.0.128/lin ⌋

ux/tbb/lib/intel64/gcc4.7:/home1/apps/intel/18.0 ⌋

.0/compilers_and_libraries_2018.0.128/linux/mkl/ ⌋

lib/intel64_lin:/home1/apps/intel/18.0.0/compile ⌋

rs_and_libraries_2018.0.128/linux/compiler/lib/i ⌋

ntel64_lin:/home1/apps/intel/18.0.0/compilers_an ⌋

d_libraries_2018.0.128/linux/ipp/lib/intel64:/ho ⌋

me1/apps/intel/18.0.0/compilers_and_libraries_20 ⌋

18.0.128/linux/compiler/lib/intel64:/opt/apps/gc ⌋

c/6.3.0/lib64:/opt/apps/gcc/6.3.0/lib

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

__TRACKER__=1

Solving PDEs in Space-Time: 4D Tree-Based Adaptivity, Mesh-Free and Matrix-Free Approaches

TACC_FAMILY_GSL_VERSION=2.3
TACC_NODE_TYPE=skx
SLURM_TACC_NODES=1
SLURM_JOBID=3272468
ModuleTable004=XT0iaW50ZWwvMTguMC4wIix9LH0sbXBhdGh ⌋

BPXsiL29wdC9hcHBzL2JhcjFfMS9tb2R1bGVmaWxlcyIsIi9 ⌋

vcHQvYXBwcy9pbnRlbDE4L2ltcGkxOF8wL21vZHVsZWZpbGV ⌋

zIiwiL29wdC9hcHBzL2ludGVsMTgvbW9kdWxlZmlsZXMiLCI ⌋

vb3B0L2FwcHMveHNlZGUvbW9kdWxlZmlsZXMiLCIvb3B0L2F ⌋

wcHMvbW9kdWxlZmlsZXMiLCIvb3B0L21vZHVsZWZpbGVzIix ⌋

9LFsic3lzdGVtQmFzZU1QQVRIIl09Ii9vcHQvYXBwcy94c2V ⌋

kZS9tb2R1bGVmaWxlczovb3B0L2FwcHMvbW9kdWxlZmlsZXM ⌋

6L29wdC9tb2R1bGVmaWxlcyIsfQ==

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

CPATH=/home1/apps/intel/18.0.0/compilers_and_librari ⌋

es_2018.0.128/linux/daal/include:/home1/apps/int ⌋

el/18.0.0/compilers_and_libraries_2018.0.128/lin ⌋

ux/tbb/include:/home1/apps/intel/18.0.0/compiler ⌋

s_and_libraries_2018.0.128/linux/mkl/include:/ho ⌋

me1/apps/intel/18.0.0/compilers_and_libraries_20 ⌋

18.0.128/linux/ipp/include

↪→

↪→

↪→

↪→

↪→

↪→

IFC_BIN=/home1/apps/intel/18.0.0/compilers_and_libra ⌋

ries_2018.0.128/linux/bin/intel64↪→

TACC_MKL_LIB=/home1/apps/intel/18.0.0/compilers_and_ ⌋

libraries_2018.0.128/linux/mkl/lib/intel64↪→

TACC_GIT_DIR=/opt/apps/git/2.9.0
__PERSONAL_PATH__=1
__LMOD_REF_COUNT__LMFILES_=/opt/apps/modulefiles/int ⌋

el/18.0.0.lua:1;/opt/apps/intel18/modulefiles/im ⌋

pi/18.0.0.lua:1;/opt/apps/modulefiles/cmake/3.10 ⌋

.2.lua:1;/opt/apps/modulefiles/git/2.9.0.lua:1;/ ⌋

opt/apps/intel18/modulefiles/gsl/2.3.lua:1;/opt/ ⌋

apps/modulefiles/autotools/1.1.lua:1

↪→

↪→

↪→

↪→

↪→

OLDSCRATCH=/oldscratch/03727/USER
SLURM_COMMAND=sbatch
TACC_GSL_LIB=/opt/apps/intel18/gsl/2.3/lib
SLURM_NTASKS=48
SLURM_TACC_JOBNAME=idv17562
LMOD_FAMILY_MPI_VERSION=18.0.0
ARCHIVER=ranch.tacc.utexas.edu
NLSPATH=/home1/apps/intel/18.0.0/debugger_2018/gdb/i ⌋

ntel64/share/locale/%l_%t/%N:/home1/apps/intel/1 ⌋

8.0.0/compilers_and_libraries_2018.0.128/linux/m ⌋

kl/lib/intel64/locale/%l_%t/%N:/home1/apps/intel ⌋

/18.0.0/compilers_and_libraries_2018.0.128/linux ⌋

/compiler/lib/intel64/locale/%l_%t/%N

↪→

↪→

↪→

↪→

↪→

__LMOD_REF_COUNT_I_MPI_ROOT=/home1/apps/intel/18.0.0 ⌋

/compilers_and_libraries_2018.0.128/linux/mpi:1↪→

PATH=/opt/apps/autotools/1.1/bin:/opt/apps/intel18/g ⌋

sl/2.3/bin:/opt/apps/git/2.9.0/bin:/opt/apps/cma ⌋

ke/3.10.2/bin:/opt/apps/intel18/impi/18.0.0/bin: ⌋

/home1/apps/intel/18.0.0/compilers_and_libraries ⌋

_2018.0.128/linux/mpi/intel64/bin:/home1/apps/in ⌋

tel/18.0.0/compilers_and_libraries_2018.0.128/li ⌋

nux/bin/intel64:/opt/apps/gcc/6.3.0/bin:/usr/lib ⌋

64/qt-3.3/bin:/usr/local/bin:/bin:/usr/bin:/opt/ ⌋

dell/srvadmin/bin

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

MAIL=/var/spool/mail/USER
TACC_SYSTEM=stampede2
ModuleTable001=X01vZHVsZVRhYmxlXz17WyJNVHZlcnNpb24 ⌋

iXT0zLFsiY19yZWJ1aWxkVGltZSJdPWZhbHNlLFsiY19zaG9 ⌋

ydFRpbWUiXT1mYWxzZSxkZXB0aFQ9e30sZmFtaWx5PXtbIkd ⌋

TTCJdPSJnc2wiLFsiTVBJIl09ImltcGkiLFsiY29tcGlsZXI ⌋

iXT0iaW50ZWwiLH0sbVQ9e2F1dG90b29scz17WyJmbiJdPSI ⌋

vb3B0L2FwcHMvbW9kdWxlZmlsZXMvYXV0b3Rvb2xzLzEuMS5 ⌋

sdWEiLFsiZnVsbE5hbWUiXT0iYXV0b3Rvb2xzLzEuMSIsWyJ ⌋

sb2FkT3JkZXIiXT02LHByb3BUPXt9LFsic3RhY2tEZXB0aCJ ⌋

dPTAsWyJzdGF0dXMiXT0iYWN0aXZlIixbInVzZXJOYW1lIl0 ⌋

9ImF1dG90b29scyIsfSxjbWFrZT17WyJmbiJdPSIvb3B0L2F ⌋

wcHMvbW9kdWxlZmlsZXMvY21ha2UvMy4xMC4yLmx1YSIs

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

__LMOD_REF_COUNT_NLSPATH=/home1/apps/intel/18.0.0/de ⌋

bugger_2018/gdb/intel64/share/locale/%l_%t/%N:1; ⌋

/home1/apps/intel/18.0.0/compilers_and_libraries ⌋

2018.0.128/linux/mkl/lib/intel64/locale/%l%t/% ⌋

N:1;/home1/apps/intel/18.0.0/compilers_and_libra ⌋

ries_2018.0.128/linux/compiler/lib/intel64/local ⌋

e/%l_%t/%N:1

↪→

↪→

↪→

↪→

↪→

↪→

SLURM_TASKS_PER_NODE=48
ICC_BIN=/home1/apps/intel/18.0.0/compilers_and_libra ⌋

ries_2018.0.128/linux/bin/intel64↪→

STOCKYARD=/work/03727/USER
RUNNING_IDEV=1
SLURM_WORKING_CLUSTER=stampede2:206.76.192.2:6820:84 ⌋

48↪→

TACC_GIT_LIB=/opt/apps/git/2.9.0/lib
TACC_GSL_BIN=/opt/apps/intel18/gsl/2.3/bin
_=/bin/env
WORK=/work/03727/USER/stampede2
TACCINFO=/usr/local/etc/taccinfo
SLURM_JOB_ID=3272468
OLDWORK=/work/03727/USER
TBBROOT=/home1/apps/intel/18.0.0/compilers_and_libra ⌋

ries_2018.0.128/linux/tbb↪→

PWD=/home1/03727/USER/Research/Author-Kit
INPUTRC=/etc/inputrc
SLURM_JOB_USER=USER
TACC_GSL_INC=/opt/apps/intel18/gsl/2.3/include
SLURM_QUEUE=skx-normal
SLURM_TACC_NCORES_SET=1
LMFILES=/opt/apps/modulefiles/intel/18.0.0.lua:/op ⌋

t/apps/intel18/modulefiles/impi/18.0.0.lua:/opt/ ⌋

apps/modulefiles/cmake/3.10.2.lua:/opt/apps/modu ⌋

lefiles/git/2.9.0.lua:/opt/apps/intel18/modulefi ⌋

les/gsl/2.3.lua:/opt/apps/modulefiles/autotools/ ⌋

1.1.lua

↪→

↪→

↪→

↪→

↪→

LANG=en_US.UTF-8
MODULEPATH=/opt/apps/bar1_1/modulefiles:/opt/apps/in ⌋

tel18/impi18_0/modulefiles:/opt/apps/intel18/mod ⌋

ulefiles:/opt/apps/xsede/modulefiles:/opt/apps/m ⌋

odulefiles:/opt/modulefiles

↪→

↪→

↪→

_ModuleTable_Sz_=4
LOADEDMODULES=intel/18.0.0:impi/18.0.0:cmake/3.10.2: ⌋

git/2.9.0:gsl/2.3:autotools/1.1↪→

Ishii, et al.

SLURM_JOB_UID=830270
SLURM_NODEID=0
idev_has_user_PERL5LIB=no
__BASHRC_SOURCED__=1
SLURM_TACC_ACCOUNT=TG-DPP130002
SLURM_SUBMIT_DIR=/home1/03727/USER/Research/Author-K ⌋

it↪→

LMOD_FAMILY_GSL=gsl
TACC_VEC_FLAGS=-xCORE-AVX2 -axCORE-AVX512,MIC-AVX512
I_MPI_F90=ifort
LMOD_CMD=/opt/apps/lmod/lmod/libexec/lmod
SLURM_TASK_PID=352478
SLURM_NPROCS=48
GIT_TEMPLATE_DIR=/opt/apps/git/2.9.0/share/git-core/ ⌋

templates↪→

I_MPI_CC=icc
DAALROOT=/home1/apps/intel/18.0.0/compilers_and_libr ⌋

aries_2018.0.128/linux/daal↪→

SLURM_CPUS_ON_NODE=96
SSH_ASKPASS=/usr/libexec/openssh/gnome-ssh-askpass
TACC_MKL_INC=/home1/apps/intel/18.0.0/compilers_and_ ⌋

libraries_2018.0.128/linux/mkl/include↪→

SLURM_PROCID=0
ENVIRONMENT=BATCH
TACC_AUTOTOOLS_DIR=/opt/apps/autotools/1.1
SLURM_JOB_NODELIST=c476-014
HOME=/home1/03727/USER
SHLVL=4
I_MPI_HYDRA_PMI_CONNECT=alltoall
LMOD_FAMILY_GSL_VERSION=2.3
TACC_DOMAIN=stampede2
SLURM_LOCALID=0
TACC_FAMILY_COMPILER=intel
I_MPI_CXX=icpc
__LMOD_REF_COUNT_PATH=/opt/apps/autotools/1.1/bin:1; ⌋

/opt/apps/intel18/gsl/2.3/bin:1;/opt/apps/git/2. ⌋

9.0/bin:1;/opt/apps/cmake/3.10.2/bin:1;/opt/apps ⌋

/intel18/impi/18.0.0/bin:1;/home1/apps/intel/18. ⌋

0.0/compilers_and_libraries_2018.0.128/linux/mpi ⌋

/intel64/bin:1;/home1/apps/intel/18.0.0/compiler ⌋

s_and_libraries_2018.0.128/linux/bin/intel64:1;/ ⌋

opt/apps/gcc/6.3.0/bin:1;/usr/lib64/qt-3.3/bin:1 ⌋

;/usr/local/bin:1;/bin:1;/usr/bin:1;/opt/dell/sr ⌋

vadmin/bin:1

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

TACC_INTEL_LIB=/home1/apps/intel/18.0.0/compilers_an ⌋

d_libraries_2018.0.128/linux/compiler/lib/intel64↪→

__LMOD_REF_COUNT_CPATH=/home1/apps/intel/18.0.0/comp ⌋

ilers_and_libraries_2018.0.128/linux/daal/includ ⌋

e:1;/home1/apps/intel/18.0.0/compilers_and_libra ⌋

ries_2018.0.128/linux/tbb/include:1;/home1/apps/ ⌋

intel/18.0.0/compilers_and_libraries_2018.0.128/ ⌋

linux/mkl/include:1;/home1/apps/intel/18.0.0/com ⌋

pilers_and_libraries_2018.0.128/linux/ipp/includ ⌋

e:1

↪→

↪→

↪→

↪→

↪→

↪→

↪→

IFC_LIB=/home1/apps/intel/18.0.0/compilers_and_libra ⌋

ries_2018.0.128/linux/compiler/lib/intel64↪→

ModuleTable002=WyJmdWxsTmFtZSJdPSJjbWFrZS8zLjEwLjI ⌋

iLFsibG9hZE9yZGVyIl09Myxwcm9wVD17fSxbInN0YWNrRGV ⌋

wdGgiXT0wLFsic3RhdHVzIl09ImFjdGl2ZSIsWyJ1c2VyTmF ⌋

tZSJdPSJjbWFrZSIsfSxnaXQ9e1siZm4iXT0iL29wdC9hcHB ⌋

zL21vZHVsZWZpbGVzL2dpdC8yLjkuMC5sdWEiLFsiZnVsbE5 ⌋

hbWUiXT0iZ2l0LzIuOS4wIixbImxvYWRPcmRlciJdPTQscHJ ⌋

vcFQ9e30sWyJzdGFja0RlcHRoIl09MCxbInN0YXR1cyJdPSJ ⌋

hY3RpdmUiLFsidXNlck5hbWUiXT0iZ2l0Iix9LGdzbD17WyJ ⌋

mbiJdPSIvb3B0L2FwcHMvaW50ZWwxOC9tb2R1bGVmaWxlcy9 ⌋

nc2wvMi4zLmx1YSIsWyJmdWxsTmFtZSJdPSJnc2wvMi4zIix ⌋

bImxvYWRPcmRlciJdPTUscHJvcFQ9e30sWyJzdGFja0Rl

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

SLURM_CLUSTER_NAME=stampede2
SLURM_JOB_CPUS_PER_NODE=96
SLURM_JOB_GID=816328
TACC_GSL_DIR=/opt/apps/intel18/gsl/2.3
SLURM_GTIDS=0
SLURM_SUBMIT_HOST=login4.stampede2.tacc.utexas.edu
BASH_ENV=/etc/tacc/tacc_functions
idev_ip=c476-014
I_MPI_FC=ifort
SLURM_JOB_PARTITION=skx-normal
LOGNAME=USER
ICC_LIB=/home1/apps/intel/18.0.0/compilers_and_libra ⌋

ries_2018.0.128/linux/compiler/lib/intel64↪→

TACC_FAMILY_MPI=impi
CVS_RSH=ssh
QTLIB=/usr/lib64/qt-3.3/lib
LMOD_SETTARG_TITLE_BAR=yes
SSH_CONNECTION=206.76.192.54 34734 206.76.210.144 22
XDG_DATA_DIRS=/home1/03727/USER/.local/share/flatpak ⌋

/exports/share:/var/lib/flatpak/exports/share:/u ⌋

sr/local/share:/usr/share
↪→

↪→

TACC_FAMILY_GSL=gsl
SLURM_JOB_ACCOUNT=TG-DPP130002
MODULESHOME=/opt/apps/lmod/lmod
SLURM_JOB_NUM_NODES=1
__LMOD_REF_COUNT_LIBRARY_PATH=/home1/apps/intel/18.0 ⌋

.0/compilers_and_libraries_2018.0.128/linux/daal ⌋

/../tbb/lib/intel64_lin/gcc4.4:1;/home1/apps/int ⌋

el/18.0.0/compilers_and_libraries_2018.0.128/lin ⌋

ux/daal/lib/intel64_lin:1;/home1/apps/intel/18.0 ⌋

.0/compilers_and_libraries_2018.0.128/linux/tbb/ ⌋

lib/intel64/gcc4.7:1;/home1/apps/intel/18.0.0/co ⌋

mpilers_and_libraries_2018.0.128/linux/mkl/lib/i ⌋

ntel64_lin:1;/home1/apps/intel/18.0.0/compilers_ ⌋

and_libraries_2018.0.128/linux/compiler/lib/inte ⌋

l64_lin:1;/home1/apps/intel/18.0.0/compilers_and ⌋

_libraries_2018.0.128/linux/ipp/lib/intel64:1

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

LESSOPEN=||/usr/bin/lesspipe.sh %s
LMOD_SETTARG_FULL_SUPPORT=full

Solving PDEs in Space-Time: 4D Tree-Based Adaptivity, Mesh-Free and Matrix-Free Approaches

__LMOD_REF_COUNT_LD_LIBRARY_PATH=/opt/apps/intel18/g ⌋

sl/2.3/lib:1;/home1/apps/intel/18.0.0/compilers_ ⌋

and_libraries_2018.0.128/linux/mpi/intel64/lib:1 ⌋

;/home1/apps/intel/18.0.0/debugger_2018/libipt/i ⌋

ntel64/lib:1;/home1/apps/intel/18.0.0/debugger_2 ⌋

018/iga/lib:1;/home1/apps/intel/18.0.0/compilers ⌋

_and_libraries_2018.0.128/linux/daal/../tbb/lib/ ⌋

intel64_lin/gcc4.4:1;/home1/apps/intel/18.0.0/co ⌋

mpilers_and_libraries_2018.0.128/linux/daal/lib/ ⌋

intel64_lin:1;/home1/apps/intel/18.0.0/compilers ⌋

_and_libraries_2018.0.128/linux/tbb/lib/intel64/ ⌋

gcc4.7:1;/home1/apps/intel/18.0.0/compilers_and_ ⌋

libraries_2018.0.128/linux/mkl/lib/intel64_lin:1 ⌋

;/home1/apps/intel/18.0.0/compilers_and_librarie ⌋

s_2018.0.128/linux/compiler/lib/intel64_lin:2;/h ⌋

ome1/apps/intel/18.0.0/compilers_and_libraries_2 ⌋

018.0.128/linux/ipp/lib/intel64:1;/home1/apps/in ⌋

tel/18.0.0/compilers_and_libraries_2018.0.128/li ⌋

nux/compiler/lib/intel64:1;/opt/apps/gcc/6.3.0/l ⌋

ib64:1;/opt/apps/gcc/6.3.0/lib:1

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

PKG_CONFIG_PATH=/opt/apps/intel18/gsl/2.3/lib/pkgcon ⌋

fig↪→

OMP_NUM_THREADS=1
PROMPT_COMMAND=${X_SET_TITLE_BAR:-:}

"$USER@${SHOST}:${PWD/#$HOME/~}"↪→

__Init_Default_Modules=1
LMOD_FAMILY_COMPILER=intel
TACC_IMPI_LIB=/home1/apps/intel/18.0.0/compilers_and ⌋

_libraries_2018.0.128/linux/mpi/intel64/lib↪→

XDG_RUNTIME_DIR=/run/user/830270
ARCHIVE=/home/03727/USER
TACC_FAMILY_MPI_VERSION=18.0.0
__LMOD_REF_COUNT_INTEL_LICENSE_FILE=/home1/03727/USE ⌋

R/intel/licenses:1;/home1/apps/intel/18.0.0/lice ⌋

nses:1;/home1/apps/intel/18.0.0/compilers_and_li ⌋

braries_2018.0.128/linux/licenses:1

↪→

↪→

↪→

TACC_AUTOTOOLS_BIN=/opt/apps/autotools/1.1/bin
OLDHOME=/oldhome1/03727/USER
IDEV_PWD=/home1/03727/USER/Research/Author-Kit
LMOD_DIR=/opt/apps/lmod/lmod/libexec
__LMOD_REF_COUNT_MANPATH=/opt/apps/git/2.9.0/share/m ⌋

an:1;/home1/apps/intel/18.0.0/compilers_and_libr ⌋

aries_2018.0.128/linux/mpi/man:1;/home1/apps/int ⌋

el/18.0.0/documentation_2018/en/man/common:1;/ho ⌋

me1/apps/intel/18.0.0/documentation_2018/en/debu ⌋

gger/gdb-igfx/man:1;/home1/apps/intel/18.0.0/doc ⌋

umentation_2018/en/debugger/gdb-ia/man:1

↪→

↪→

↪→

↪→

↪→

↪→

I_MPI_TMI_PROVIDER=psm2
SCRATCH=/scratch/03727/USER
GIT_EXEC_PATH=/opt/apps/git/2.9.0/libexec/git-core
TACC_MPI_GETMODE=impi_hydra
SLURM_TACC_NNODES_SET=1
TACC_MKL_DIR=/home1/apps/intel/18.0.0/compilers_and_ ⌋

libraries_2018.0.128/linux/mkl↪→

LMOD_FAMILY_MPI=impi
SLURM_TACC_CORES=48

TACC_CMAKE_DIR=/opt/apps/cmake/3.10.2
I_MPI_ROOT=/home1/apps/intel/18.0.0/compilers_and_li ⌋

braries_2018.0.128/linux/mpi↪→

BASH_FUNC_sbatch()=() { echo -e "\nNOTIFICATION:
sbatch not available on compute nodes. Use a login
node.\n"

↪→

↪→

}
BASH_FUNC_module()=() { if [-z

"${LMOD_SH_DBG_ON+x}"]; then↪→

case "$-" in
*v*x*)
__lmod_sh_dbg='vx'
;;
v)
__lmod_sh_dbg='v'
;;
x)
__lmod_sh_dbg='x'
;;
esac;
fi;
if [-n "${__lmod_sh_dbg:-}"]; then
set +$__lmod_sh_dbg;
echo "Shell debugging temporarily silenced: export

LMOD_SH_DBG_ON=1 for Lmod's output";↪→

fi;
eval $($LMOD_CMD bash "$@") && eval

$(${LMOD_SETTARG_CMD:-:} -s sh);↪→

local _lmod_my_status=$?;
if [-n "${__lmod_sh_dbg:-}"]; then
echo "Shell debugging restarted";
set -$__lmod_sh_dbg;
unset __lmod_sh_dbg;
fi;
return $_lmod_my_status

}
BASH_FUNC_ml()=() { eval $($LMOD_DIR/ml_cmd "$@")
}
+ lsb_release -a
LSB Version: :core-4.1-amd64:core-4.1-noarch: ⌋

cxx-4.1-amd64:cxx-4.1-noarch:desktop-4.1-amd64:d ⌋

esktop-4.1-noarch:languages-4.1-amd64:languages- ⌋

4.1-noarch:printing-4.1-amd64:printing-4.1-noarch

↪→

↪→

↪→

Distributor ID: CentOS
Description: CentOS Linux release 7.6.1810

(Core)↪→

Release: 7.6.1810
Codename: Core
+ uname -a
Linux c476-014.stampede2.tacc.utexas.edu

3.10.0-957.5.1.el7.x86_64 #1 SMP Fri Feb 1
14:54:57 UTC 2019 x86_64 x86_64 x86_64 GNU/Linux

↪→

↪→

+ lscpu
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian

Ishii, et al.

CPU(s): 96
On-line CPU(s) list: 0-95
Thread(s) per core: 2
Core(s) per socket: 24
Socket(s): 2
NUMA node(s): 2
Vendor ID: GenuineIntel
CPU family: 6
Model: 85
Model name: Intel(R) Xeon(R) Platinum 8160

CPU @ 2.10GHz↪→

Stepping: 4
CPU MHz: 2100.000
BogoMIPS: 4200.00
Virtualization: VT-x
L1d cache: 32K
L1i cache: 32K
L2 cache: 1024K
L3 cache: 33792K
NUMA node0 CPU(s):

0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34 ⌋

,36,38,40,42,44,46,48,50,52,54,56,58,60,62,64,66 ⌋

,68,70,72,74,76,78,80,82,84,86,88,90,92,94

↪→

↪→

↪→

NUMA node1 CPU(s):
1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35 ⌋

,37,39,41,43,45,47,49,51,53,55,57,59,61,63,65,67 ⌋

,69,71,73,75,77,79,81,83,85,87,89,91,93,95

↪→

↪→

↪→

Flags: fpu vme de pse tsc msr pae mce
cx8 apic sep mtrr pge mca cmov pat pse36 clflush
dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx
pdpe1gb rdtscp lm constant_tsc art arch_perfmon
pebs bts rep_good nopl xtopology nonstop_tsc
aperfmperf eagerfpu pni pclmulqdq dtes64 monitor
ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr
pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt
tsc_deadline_timer aes xsave avx f16c rdrand
lahf_lm abm 3dnowprefetch epb cat_l3 cdp_l3
intel_ppin intel_pt ssbd mba ibrs ibpb stibp
tpr_shadow vnmi flexpriority ept vpid fsgsbase
tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid
rtm cqm mpx rdt_a avx512f avx512dq rdseed adx smap
clflushopt clwb avx512cd avx512bw avx512vl
xsaveopt xsavec xgetbv1 cqm_llc cqm_occup_llc
cqm_mbm_total cqm_mbm_local dtherm ida arat pln
pts pku ospke spec_ctrl intel_stibp flush_l1d

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

+ cat /proc/meminfo
MemTotal: 196438176 kB
MemFree: 191589692 kB
MemAvailable: 190917852 kB
Buffers: 0 kB
Cached: 62136 kB
SwapCached: 0 kB
Active: 112696 kB
Inactive: 39060 kB
Active(anon): 89860 kB
Inactive(anon): 10816 kB

Active(file): 22836 kB
Inactive(file): 28244 kB
Unevictable: 0 kB
Mlocked: 0 kB
SwapTotal: 0 kB
SwapFree: 0 kB
Dirty: 24 kB
Writeback: 0 kB
AnonPages: 88792 kB
Mapped: 34516 kB
Shmem: 10892 kB
Slab: 1596960 kB
SReclaimable: 172696 kB
SUnreclaim: 1424264 kB
KernelStack: 23440 kB
PageTables: 6336 kB
NFS_Unstable: 0 kB
Bounce: 0 kB
WritebackTmp: 0 kB
CommitLimit: 182687500 kB
Committed_AS: 475580 kB
VmallocTotal: 34359738367 kB
VmallocUsed: 1826376 kB
VmallocChunk: 34256930848 kB
HardwareCorrupted: 0 kB
AnonHugePages: 16384 kB
CmaTotal: 0 kB
CmaFree: 0 kB
HugePages_Total: 0
HugePages_Free: 0
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 2048 kB
DirectMap4k: 646976 kB
DirectMap2M: 8402944 kB
DirectMap1G: 192937984 kB
+ inxi -F -c0
./collect_environment.sh: line 14: inxi: command not

found↪→

+ lsblk -a
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
sda 8:0 0 223.6G 0 disk

sda1 8:1 0 1M 0 part

sda2 8:2 0 1G 0 part /boot

sda3 8:3 0 222.6G 0 part

rootvg01-lv01 253:0 0 75G 0 lvm /

rootvg01-tmp 253:1 0 143.6G 0 lvm /tmp

rootvg01-var 253:2 0 4G 0 lvm /var
sdb 8:16 0 0 disk
+ lsscsi -s
[0:0:0:0] disk Generic MassStorageClass WS01

/dev/sdb -↪→

[3:0:0:0] disk ATA MZ7KM240HMHQ0D3 GD53

/dev/sda 240GB↪→

+ module list

Solving PDEs in Space-Time: 4D Tree-Based Adaptivity, Mesh-Free and Matrix-Free Approaches

+ '[' -z '' ']'
+ case "$-" in
+ __lmod_sh_dbg=x
+ '[' -n x ']'
+ set +x
Shell debugging temporarily silenced: export

LMOD_SH_DBG_ON=1 for Lmod's output↪→

Currently Loaded Modules:
1) intel/18.0.0 2) impi/18.0.0 3) cmake/3.10.2

4) git/2.9.0 5) gsl/2.3 6) autotools/1.1↪→

Shell debugging restarted
+ unset __lmod_sh_dbg
+ return 0
+ nvidia-smi
./collect_environment.sh: line 18: nvidia-smi:

command not found↪→

+ lshw -short -quiet -sanitize
+ cat
./collect_environment.sh: line 19: lshw: command not

found↪→

+ lspci
./collect_environment.sh: line 19: lspci: command not

found↪→

ARTIFACT EVALUATION
Verification and validation studies: Compared the space-time

numerical solutions with analytical solutions for simple linear
addiction-diffusion equation.

Accuracy and precision of timings: All the timings are reported,
scalability on 4d tree construction, adaptive matrix-vector multipli-
cations are based on average of 10 executions.

	Abstract
	1 Introduction
	2 Background: Space-time setting and error estimates
	3 Methodology
	3.1 Comparison-free SFC based tree partitioning
	3.2 kD-Tree Construction
	3.3 2:1 Balancing
	3.4 Computing the unique node coordinates
	3.5 Efficient SFC-based kD-tree traversal
	3.6 Matrix-free implementation on 4D meshes

	4 Results
	4.1 Experimental Setup:
	4.2 Space-time solution with heavy parallelism
	4.3 Space-time adaptive refinement applied to different classes of PDE
	4.4 Scalability

	5 Conclusion & Future Work
	6 Acknowledgments
	References
	7 Artifact Description
	7.1 Getting and Compiling Dendro-KT
	7.2 Experiments
	7.3 Stampede2 compute node configuration
	7.4 Titan compute node configuration
	7.5 4D-Hilbert curve

	8 Artifact Evaluation
	8.1 Scalability study on 4D-trees & matvec
	8.2 Space-time adaptivity for linear & non-linear PDEs

