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We consider the problem of preemptively scheduling jobs to minimize mean response time of an M/G/1 queue.
When we know each job’s size, the shortest remaining processing time (SRPT) policy is optimal. Unfortunately,
in many settings we do not have access to each job’s size. Instead, we know only the job size distribution. In this
setting the Gittins policy is known to minimize mean response time, but its complex priority structure can be
computationally intractable. A much simpler alternative to Gittins is the shortest expected remaining processing
time (SERPT) policy. While SERPT is a natural extension of SRPT to unknown job sizes, it is unknown whether
or not SERPT is close to optimal for mean response time.

We present a new variant of SERPT called monotonic SERPT (M-SERPT) which is as simple as SERPT but
has provably near-optimal mean response time at all loads for any job size distribution. Specifically, we prove
the mean response time ratio between M-SERPT and Gittins is at most 3 for load p < 8/9 and at most 5
for any load. This makes M-SERPT the only non-Gittins scheduling policy known to have a constant-factor
approximation ratio for mean response time.
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1 INTRODUCTION

Scheduling to minimize mean response time in a preemptive M/G/1 queue is a classic problem in
queueing theory. When job sizes are known, the shortest remaining processing time (SRPT) policy is
known to minimize mean response time [27]. Unfortunately, determining or estimating a job’s exact
size is difficult or impossible in many applications, in which case SRPT is impossible to implement.
In such cases we only learn jobs’ sizes after they have completed, which can give us a good estimate
of the distribution of job sizes.
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When individual job sizes are unknown but the job size distribution is known, the Gittins policy

minimizes mean response time [5, 13]. Gittins has a seemingly simple structure:
e Based on the job size distribution, Gittins defines a rank function that maps a job’s age, which
is the amount of service it has received so far, to a rank, which denotes its priority [28].
e At every moment in time, Gittins applies the rank function to each job’s age and serves the
job with the best rank.
Unfortunately, hidden in this simple outline is a major obstacle: computing the rank function from
the job size distribution requires solving a nonconvex optimization problem for every possible age.
Although the optimization can be simplified for specific classes of job size distributions [5], it is
intractable in general.

In light of the difficulty of computing the Gittins rank function, practitioners turn to a wide
variety of simpler scheduling policies, each of which has good performance in certain settings.
Three of the most famous are the following:

o First-come, first-serve (FCFS) serves jobs nonpreemptively in the order they arrive.
— FCFS generally performs well for low-variance job size distributions and is optimal for
those with the new better than used in expectation property [5, 26].
e Foreground-background (FB) always serves the job of minimal age, splitting the server evenly
in case of ties.
— FB generally performs well for high-variance job size distributions and is optimal for those
with the decreasing hazard rate property [5, 12, 25, 26].
e Processor sharing (PS) splits the server evenly between all jobs currently in the system.
— PS has appealing insensitivity [9, 11, 18] and fairness [24, 29] properties which ensure
passable mean response time for all job size distributions, but it is only optimal in the
trivial special case of exponential job size distributions.

These are a few of the many scheduling heuristics studied in the past several decades [1, 4, 14, 15,
19, 23, 30, 31]. Unfortunately, there are no guarantees of near-optimal mean response time for any
non-Gittins policy that hold across all job size distributions. In fact, we show in Appendix A that
FCEFS, FB, and PS can have infinite mean response time ratio compared to Gittins. We therefore ask:

Is there a simple scheduling policy with near-optimal mean response time for all job
size distributions?

One candidate for such a policy is shortest expected remaining processing time (SERPT). Like
Gittins, SERPT assigns each job a rank as a function of its age, but SERPT has a much simpler rank
function: a job’s rank is its expected remaining size. That is, if the job size distribution is X, then
under SERPT, a job’s rank at age a is

rserp(a@) = E[X —a | X > a,

where lower rank means better priority. Intuitively, it seems like SERPT should have low mean
response time because it prioritizes jobs that are short in expectation, analogous to what SRPT
does for known job sizes. SERPT is certainly much simpler than Gittins, as summarized in Table 1.1
and discussed in detail in Appendix B.

e For discrete job size distributions with n support points, the best known algorithms compute
Gittins’s rank function in O(n?) time [10]. In contrast, SERPT’s rank function takes just O(n)
time to compute.

e For continuous job size distributions, computing Gittins’s rank function is intractable with
known methods: it requires solving a nonconvex optimization problem at every age a, and
the objective of the optimization requires numerical integration to compute. In contrast,
SERPT’s rank function requires just numerical integration.
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Table 1.1. Comparison of Gittins, SERPT, and M-SERPT

Poiricy COMPUTATION OPTIMALITY

Discrete Continuous

Gittins O(n?) intractable optimal
SERPT O(n) tractable unknown
M-SERPT O(n) tractable 5-approximation or better

1.1 Challenges

SERPT is intuitively appealing and simple to compute, but does it have near-optimal mean response
time? This question is open: there is no known bound on the performance gap between SERPT and
Gittins. To be precise, letting!
E[Tserpr(X)]

Cserpr(X) E[TGittins(X)]
be the mean response time ratio between SERPT and Gittins for a given job size distribution X,
there is no known bound on

approximation ratio of SERPT = sup Csgrpr(X).
X

This approximation ratio is difficult to bound because we have to consider all possible job size
distributions X.

In fact, until recently it was unknown how to compute Csgrpr(X) even given a specific job size
distribution X. This changed with the introduction of the SOAP technique [28], which can analyze
the mean response time of any scheduling policy that can be specified by a rank function. We can
use SOAP to numerically compute Csgrpr(X) for any given job size distribution X. However, SOAP
does not give a bound on SERPT’s approximation ratio, which requires considering all possible X.

One might hope to derive a general expression for Csgrpr(X) using SOAP. While this is possible
in principle, the resulting expression is intractable (Section 3.2). In light of this, our strategy is
to create a new scheduling policy that captures the essence of SERPT but has a tractable mean
response time expression in terms of X.

1.2 A New Simple Scheduling Policy: M-SERPT

In this paper we introduce a new policy called monotonic SERPT (M-SERPT) that is simple to
compute and has provably near-optimal mean response time. Like Gittins and SERPT, we specify
M-SERPT using a rank function. M-SERPT’s rank function is like SERPT’s, except a job’s rank never
improves:
rm-serpT(@) = max rserpr(b).
0<b<a

We prove that M-SERPT is a 5-approximation for mean response time, meaning its mean response
time is at most 5 times that of Gittins. This makes M-SERPT the first non-Gittins scheduling policy
known to have a constant-factor approximation ratio. The approximation ratio is even smaller at
low and moderate loads. For example, M-SERPT is a 3-approximation for load p < 8/9. Remarkably,
M-SERPT achieves its constant-factor approximation ratio with a rank function that is as simple to
compute as SERPT’s (Table 1.1).

Our approximation ratio for M-SERPT is a worst-case upper bound. There are many distributions
where M-SERPT’s performance is equal or very close to Gittins’s. For example, Fig. 1.1 compares the

1The mean response time ratio Csgrpr(X) also depends on the load p, but we omit p from the notation to reduce clutter.
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Fig. 1.1. Mean Response Time Comparison

mean response times of several policies, including M-SERPT, to that of Gittins, where the job size
distribution is the mixture of four bell curves pictured. In this example, M-SERPT’s mean response
time is within 4% of Gittins’s across all loads.? In further preliminary numerical experiments,
omitted for lack of space, we only observed a mean response time difference of more than 15% in a
specific pathological scenario (Section 7).

1.3 Contributions

We introduce M-SERPT, the first non-Gittins policy proven to achieve mean response time within
a constant factor of Gittins’s. Our specific contributions are as follows:

e We define the monotonic SERPT (M-SERPT) policy, a new variant of SERPT (Section 2).

o We introduce a new simplification of the SOAP response time analysis that yields a tractable
mean response time expression for M-SERPT (Sections 3 and 4).

e We prove that M-SERPT is a 5-approximation for minimizing mean response time, with an
even smaller approximation ratio at low and moderate loads (Section 5).

o We use the fact that M-SERPT is a 5-approximation to resolve two open questions in M/G/1
scheduling theory (Section 6).

e We construct a pathological job size distribution for which the mean response time ratio
between M-SERPT and Gittins is 2, which is the largest ratio we have observed (Section 7).

M-SERPT’s approximation ratio is therefore between 2 and 5. We conclude by discussing in detail
why this gap is hard to close and pointing out several possible avenues of attack (Section 8).

1.4 Related Work

In this paper we consider minimizing mean response time in the setting of an M/G/1 queue with
unknown job sizes but known job size distribution. We are not aware of prior work on approximation
ratios in this exact setting, but there is prior work in related settings.

Wierman et al. [30] study the M/G/1 with known job sizes. They prove that all scheduling policies
in a class called SMART are 2-approximations for mean response time, where the baseline for this
setting is SRPT [27]. All SMART policies use job size information, so they cannot be applied to our
setting of unknown job sizes. Proving approximation ratios in our setting is significantly more

2For the specific distribution in Fig. 1.1, SERPT has mean response time between Gittins and M-SERPT. However, there
are examples where SERPT has greater mean response time than M-SERPT, and whether SERPT has a constant-factor
approximation ratio remains an open problem.
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challenging because the scheduling policies involved, namely M-SERPT and Gittins, have much
more complicated mean response time formulas than SRPT and the SMART class [28, 30].

We now turn to settings with unknown job sizes. Kalyanasundaram and Pruhs [16] propose a
policy called randomized multilevel feedback (RMLF) for the case where neither job sizes nor the job
size distribution are known. RMLF has been studied in two specific settings:

o In the worst-case setting, meaning job sizes and arrival times are chosen adversarially, RMLF
has mean response time O(log n) times that of SRPT, where n is the number of jobs in the
arrival sequence [8, 16]. Up to constant factors, this is the best possible performance in the
worst-case setting [22].

o In the stochastic GI/GI/1 setting, Bansal et al. [7] prove that as the load p approaches 1,

E[Trmcr] :O(log 1 )
E[Tsgpr] 1-p)

These results differ from ours in two important ways. First, the results do not prove constant-factor
approximation ratios: they give asymptotic ratios that become arbitrarily large in the n — oo and
p — 1 limits, respectively. In contrast, we show that M-SERPT is a 5-approximation at all loads p,
even in the p — 1 limit. Second, the results compare RMLF with SRPT, not with Gittins, even
though job sizes are unknown. This is because optimal policies for the worst-case and GI/GI/1
settings are not known, especially with unknown job size distribution, leaving SRPT as a sensible
baseline for comparison. In contrast, in the M/G/1 setting with known job size distribution, we
know the optimal policy is Gittins, so we compare M-SERPT to Gittins. Comparing RMLF to Gittins
is an interesting open problem.

A final setting is a hybrid between the worst-case and M/G/1 settings. Megow and Vredeveld [21]
consider scheduling jobs with stochastic sizes but adversarially chosen arrival times. However,
rather than considering the metric of mean response time, they consider mean completion time.
The difference between these metrics is that a job’s response time is measured relative to its arrival,
whereas a job’s completion time is measured relative to time 0. Completion and response times are
only the same when all the jobs arrive at once. Thus, while Megow and Vredeveld [21] show that
Gittins and a related policy are 2-approximations for mean completion time, this does not translate
into an approximation ratio for mean response time.

2 SYSTEM MODEL AND PRELIMINARIES

We consider scheduling policies for a single-class M/G/1 queue in which jobs have unknown size.
We write A for the arrival rate and X for the job size distribution, so the load is p = AE[X]. We
assume p < 1 for stability. Jobs may be preempted at any time without delay or loss of work.
Throughout this paper, all monotonicities are meant in the weak sense unless otherwise specified.
For example, “increasing” means “nondecreasing”. Many quantities defined in this paper depend
on one or both of X and p, but we usually leave this implicit in our notation to reduce clutter.
We write F and f for the tail and density functions of X, respectively. For ease of presentation,
we assume that
o f is well defined and continuous, implying the distribution does not have atoms; and
e both the SERPT rank function (Definition 2.2) and the hazard rate function

are piecewise monotonic, ruling out some pathological cases.

With some effort, one very likely can adapt our proofs to relax these assumptions. In particular, we
have confirmed our results for discrete job size distributions, omitting the details for lack of space.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 1, Article 11. Publication date: March 2020.



11:6 Ziv Scully, Mor Harchol-Balter, and Alan Scheller-Wolf

We write T, for the response time distribution under policy 7, and we write T, (x) for the
response time distribution of a job of size x under policy 7. We use similar notation for waiting
time Q, and residence time R, (Section 3.1) For the most part, 7 is one of

e G, denoting Gittins;
e S, denoting SERPT; or
e MS, denoting M-SERPT.

These policies are defined in Section 2.1. We use the same subscripts for other quantities that
depend on the scheduling policy. We omit the subscript when discussing a generic SOAP policy.

2.1 SOAP Policies and Rank Functions
A SOAP policy [28] is specified by a rank function
r: RZO - R

which maps a job’s age, the amount of time it has been served, to its rank, or priority.®> All SOAP
policies have the same core scheduling rule: always serve the job of minimum rank, breaking ties
in first-come, first served (FCFS) order.

Gittins, SERPT, and M-SERPT are all SOAP policies. Their rank functions are defined as follows.

Definition 2.1. The Gittins policy is the SOAP policy with rank function

/ " F)de
rc(a) = inf =4———.
b>a F(a) - F(b)
Definition 2.2. The shortest expected remaining processing time (SERPT) policy is the SOAP policy
with rank function .-
[T F(t)dt

rs(@)=EX-a|X >a] = 4——
F(a)

Definition 2.3. The increasing envelope of function r is

r'(a) = max r(b).
0<b<a

Definition 2.4. The monotonic SERPT (M-SERPT) policy is the SOAP policy whose rank function
is the increasing envelope of SERPT’s rank function:

rms(a) = ri(a) = max rs(b).
0<b<a

Figure 2.1 illustrates an example of the relationship between the SERPT and M-SERPT rank
functions. Under our assumptions on the job size distribution, each of Gittins, SERPT, and M-SERPT
has a continuous, piecewise monotonic rank function [6].

3 KEYIDEAS

We now give a high-level overview of how we prove our main result, namely an upper bound
on M-SERPT’s approximation ratio. The purpose of this section is to communicate, with minimal
notation, (1) the main ideas of our proof and (2) the novelty of our approach. As such, we discuss
simplified versions of our key definitions and lemmas, deferring the full versions to later in the
paper. For example, our main result in Theorem 5.1 bounds M-SERPT’s approximation ratio as a
function of load, but here we focus on a simpler corollary:

E[Tms] < 5E[TG]. (3.1)
3The full SOAP definition [28] allows a job’s rank to also depend on characteristics such as its size or class, but we do not

need this generality for the policies in this paper.
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rank r(a)

age a

= SERPT suss M-SERPT

Fig. 2.1. Example of SERPT and M-SERPT Rank Functions

3.1 Waiting Time and Residence Time
To prove (3.1), we first split response time into two pieces:

e residence time R, which is the response time of jobs that arrive to an empty system; and

e waiting time Q, which is the extra delay due to the fact that the system is not always empty.
For SOAP policies, response time is equal in distribution to the independent sum of the waiting
and residence times [28]:

T=Q+R.
The bound in (3.1) follows from two main lemmas, one bounding each of M-SERPT’s mean

waiting and residence times. Specifically, Lemma 5.6 implies

E[Owms] < 2E[Qc], (3.2)

and Lemma 5.7 implies

E[Rus] < E[Qwms] + E[Tc]. (3.3)
The proofs of (3.2) and (3.3) constitute the main technical contribution of our work, as their
combination immediately yields (3.1):

E[Tus] = E[Oms] + E[Rms]
< 2E[Qwms] + E[Tc]
< 4E[Qc] + E[Tc]
< 5E[Tg].

3.2 Why SOAP Is Not Enough

How might we prove (3.2) and (3.3)? One might think of using the SOAP response time analysis of
Scully et al. [28]. Their main result [28, Theorem 5.5] takes a rank function r and yields closed-form
expressions for E[Q] and E[R]. By “closed-form” expressions, we mean functions of the job size
distribution’s tail function F and the load p that can be written with just arithmetic and integrals.
However, the dependence on r is much more complicated. This is a major obstacle for M-SERPT and
Gittins because their rank functions depend on the job size distribution. This makes it intractable to
directly apply the SOAP analysis to comparing M-SERPT with Gittins over all job size distributions.

Much of the complexity of the SOAP analysis of Scully et al. [28] comes from being general enough
to handle multiclass systems, namely those in which different jobs follow different rank functions.
We only consider single-class systems in this paper. Our approach is therefore to simplify the SOAP
analysis to our single-class setting (Section 3.3). This results in much simpler expressions for E[Q]
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rank r(a)

0 i valley :hill: valley : hill: valley : hill
T T T T
0 yx) x  z(x)

age a

Fig. 3.1. Hills and Valleys

and E[R], partly because we are willing to settle for bounds. The resulting simple expressions make
it possible to compare M-SERPT to Gittins over all job size distributions (Sections 3.4 and 3.5).

3.3 Hills and Valleys

Suppose we are using a SOAP policy with rank function r. We use r", the increasing envelope of r
(Definition 2.3), to classify ages into two types:

e hill ages, those at which r" is strictly increasing; and
e valley ages, those at which r' is constant.

We call an interval of hill ages or valley ages a hill or valley, respectively. Figure 3.1, which shows
an example of hills and valleys, clarifies two points:

e Hill ages are those at which r', not just r, is strictly increasing. For a to be a hill age, not only
must r be increasing at age a, but r must not attain a greater rank at any earlier age.

e Valley ages are those at which r', not r, is constant. In general, r might increase, decrease, or
be constant at valley ages.

Given a size x, we define two ages:
o the previous hill age y(x) is the greatest hill age < x, and
o the next hill age z(x) is the least hill age > x.
If x is a hill age, then y(x) = x = z(x), and if x is a valley age, then y(x) < x < z(x), as illustrated
in Fig. 3.1.1
For any SOAP policy, we can bound E[Q] and E[R] in terms of y and z. Proposition 4.7 implies

© r(z(0)
_— dx, .
ElC] 2/0 A6 - pato) (34)

and Proposition 4.8 implies
x
E[R] < ./0 p_(y(x))f(x) dx, (3.5)
with both bounds becoming equalities for M-SERPT. Here p and 7 (Definitions 4.5 and 4.6) are
functions that do not depend on the scheduling policy.

Hills and valleys are important for two reasons. First, the expressions in (3.4) and (3.5) depend
on the scheduling policy only via y(x) and z(x), the previous and next hill ages of each size x. This
means relating the mean response times of M-SERPT and Gittins partly reduces to relating the
hills and valleys of M-SERPT and Gittins. Second, as we will soon see, hills and valleys turn out to
be important tools for organizing the computations in the proofs of our two main bounds, (3.2)
and (3.3).

4We address some corner cases in the definitions of hills, valleys, y, and z in Section 4.1.
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3.4 Outline of Waiting Time Bound
We now outline the proof of (3.2), namely E[Qms] < 2E[Qc]. By (3.4),

/m (zms(x)) Fx) dx
E[Qms] _ Jo plyms()) - plzms(x))
E[Qc] /m t(z6(x)) '
= = x)dx
v Pl oty
Our strategy for proving (3.2) is to split the integration regions in (3.6) into chunks and prove the
bound for each chunk [u, v]:

v (zms(x))
dx
/uﬁ(yMs(x))'ﬁ(ZMS(x))f(X) <2. (3.7)

v <
Jj .
u PYc(x)) - plzg(x))

The key to this approach is to choose the right chunks. It turns out that a good choice is for each
Gittins hill and valley to be a chunk.

As mentioned at the end of Section 3.3, a key to comparing M-SERPT to Gittins is comparing
their hills and valleys. We show in Lemma 5.3 that every Gittins hill age is also an M-SERPT hill
age, but not necessarily vice versa. This implies that for any size x,

yo(x) < yms(x) < x < zps(x) < zg(x). (3.8)

Proving (3.7) when chunk [u, v] is a Gittins hill case is simple. When x is a Gittins hill age, (3.8)
collapses to an equality, so the left-hand side of (3.7) is 1.

Proving (3.7) when chunk [u, v] is a Gittins valley is much more complicated. As illustrated in
Fig. 3.1, for all x € [u, v], we have yg(x) = u and zg(x) = v, simplifying the denominator in (3.7).
Since 7 is increasing (Table 5.1), it suffices to show g(u, v) < 2, where

b pu) - p(v) fx)
b) = . dx. .
4(a.b) /a p(yms(x)) - p(zms(x))  F(u) — F(v) )

We bound g(u, v) by splitting it into g(u, v) = q(u, x.) + q(x., v) for some x.. Because the p ratio in
the integrand is increasing in x (Table 5.1), the idea is to carefully choose x, such that

(3.6)

o g(u,x.) < 1because the p ratio is not too large for x € [u, x.], and

® g(x.,v) < 1 because, roughly speaking, f(x) is not too large for x € [x,, v].
It turns out there is a natural choice for x,, and the above strategy works when x,. is an M-SERPT
hill age. When x, is an M-SERPT valley age, we have to split g(u, v) into three pieces instead, with
the third piece handling the valley containing x., but the upper bounds on the three pieces still add
up to at most 2.

The proof of Lemma 5.6 in Section 5.2 closely follows the strategy outlined in this section. The

main difference between (3.2) and Lemma 5.6 is that the latter’s bound is smaller at lower load.

3.5 Outline of Residence Time Bound
We now outline the proof of (3.3), namely E[Rms] < E[Qms] + E[T]. The first and more important
step is Lemma 5.7, which says

1
I-p

E[Rms] < E[Oms] + (/l) log )E[X]- (3.10)

The second step uses a result of Wierman et al. [30, Theorem 5.8] to upper bound the last term in
(3.10) by E[Tg], which yields (3.3).
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Our strategy for proving (3.10) is, roughly speaking, to integrate (3.4) and (3.5) by parts:

[T cd T(zms(x)) 7
E[Qwms] = /O F(x) dx p(yms(x)) - plzms(x))
[ d x »

BlRws] = [ Fo oz a

These integral expressions are not rigorous and are presented for intuition only. Specifically, yms
and zms have discontinuities, so the derivatives are not well defined everywhere, thus the quotation
marks. Again we split the integrals into chunks, this time based on M-SERPT hills and valleys, and
prove the bound for each chunk.

Proving the bound for M-SERPT hills is simple because yms(x) = x = zms(x) when x is an
M-SERPT hill age. This means the derivatives are well defined, and they even have a term in
common, making them easy to compare. In fact, we do not need any special properties of M-SERPT
for this part of the argument.

Proving the bound for M-SERPT valleys is more complicated. Discontinuities of yms and zms
occur at the boundaries of valleys. Handling this requires some care, but we nevertheless obtain
simple expressions for the waiting time and residence time chunks. The main difficulty is that
the expressions are difficult to compare. It is this comparison that requires special properties of
M-SERPT.

The proof of Lemma 5.7 in Section 5.3 closely follows the strategy outlined in this section.
However, when we put everything together to prove our main result, Theorem 5.1, it turns out
jumping from (3.10) to (3.3) is only a good idea at very high loads, whereas using (3.10) directly
yields a better bound at most loads.

4 HILLS AND VALLEYS

Hills and valleys are new concepts that play several important roles in our bound of M-SERPT’s
approximation ratio (Sections 3.3-3.5). The purpose of this section is to formally state definitions
and results relating to hills and valleys. Throughout this section we work with a generic SOAP
policy with rank function r.

4.1 Defining Hills and Valleys

Definition 4.1.
o A wvalley ageis an age a > 0 at which the increasing envelope r" of the rank function r is locally
constant, meaning there exists some ¢ > 0 such that r'(b) = r'(a) for all b € (a —¢,a + ¢).
e A hill age is an age that is not a valley age.

Definition 4.2.
o The previous hill age of size x is the latest hill age before x:

y(x) = sup{a < x | a is a hill age}.
e The next hill age of size x is the earliest hill age after x:°
z(x) = inf{a > x | ais a hill age}.

The difference in inequality strictness between y and z comes from how y and z are used to
bound mean waiting and residence times (Appendix C). For the most part, y(x) = x = z(x) for any
hill age x, but there is an exception when x is preceded by an interval (x — ¢, x) of valley ages. This
distinction is occasionally important, so we extend our terminology to capture it.

SThere is a corner case for x = 0: we define y(0) = 0 and z(0) = z(0+), where postfix + denotes a right limit.
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Definition 4.3.
o A hill size is a size x such that y(x) = x = z(x).
o A wvalley size is a size that is not a hill size.

Definition 4.4.
e A hill is an interval of hill sizes.
o A valley is an interval (u, v] of valley sizes where u and v are hill ages.

Definitions 4.2 and 4.4 are illustrated in Fig. 3.1. The distinction between hill ages and hill sizes
is important only for the upper boundaries of valleys, which are hill ages but not hill sizes.®

4.2 Response Time Bounds
We now use hills and valleys to write down simple bounds on E[Q(x)] and E[R(x)], the expected
waiting and residence times (Section 3.1), respectively, of a job of size x.

Definition 4.5. The a-truncated load complement is one minus what the load of the system would
be if every job’s size were truncated at age a:

pla) =1—-AE[min{X,a}] =1 - / AE(t) dt.
0
Definition 4.6. The a-truncated second moment factor is
A x o
(@) = SElmin{X.abf] = [ () dr.
0
ProposITION 4.7. Under any SOAP policy, the expected waiting time of a job of size x is bounded by
(z(x))
E[Q(x)] 2 =—————"——,
p(y(x)) - p(z(x))
with equality if the policy has a monotonic rank function.
ProposITION 4.8. Under any SOAP policy, the expected residence time of a job of size x is bounded

by
E[R(x)] < ———
~ py(x)
with equality if the policy has a monotonic rank function.
PROOFS OF PROPOSITIONS 4.7 AND 4.8. See Appendix C.

M-SERPT has a monotonic rank function, so both Propositions 4.7 and 4.8 yield useful equalities
for M-SERPT. However, to prove an upper bound on M-SERPT’s approximation ratio, we want
lower bounds for Gittins, for which only Proposition 4.7 is useful. Instead of using Proposition 4.8
for Gittins, we use the following lower bounds.

ProposITION 4.9. Under any SOAP policy, the mean residence time is bounded by E[R] > E[X].
ProOF. A job’s residence time is, by definition (Section 3.1), at least its size. O

PRrRoPOSITION 4.10. Under any scheduling policy, the mean response time is bounded by

1
E[T] > (— log )E[X].
P I-p
Proor. Wierman et al. [30, Theorem 5.8] show that the desired lower bound holds for SRPT,
which has lower mean response time than any other policy [27]. O

®There is another corner case for 0: it is always a hill age, but it is not a hill size if z(0+) > 0.
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LEGEND
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Propositions 4.9 and 4.10
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Fig. 5.1. Bounding Mean Response Time of M-SERPT

5 UPPER BOUND ON M-SERPT’S APPROXIMATION RATIO

In this section we prove our main result, which is an upper bound on the mean response time ratio
between M-SERPT and Gittins.

THEOREM 5.1. The mean response time ratio between M-SERPT and Gittins is bounded by’

4
- 0 < p < 0.9587
1+yT-p g
1 1

ElTws] )1 log 0.9587 < p < 0.9898

E[Tg] = |p "1-p

0.9898 < p < 1.

4
1+ ———
1++1-p

Proor. See Fig. 5.1 and Appendix D.

As illustrated in Fig. 5.1, the main steps in the proof of Theorem 5.1 are Lemmas 5.6 and 5.7
(Sections 5.2 and 5.3). Figure 5.2 plots the resulting bound as a function of load p. The following
corollary gives intuition for this function in terms of concrete values.

COROLLARY 5.2. For the problem of preemptive scheduling to minimize mean response time in an
M/G/1 queue with unknown job sizes, the approximation ratio of M-SERPT is at most

2.5 for load p < 0.64,

3 for load p < 8/9 = 0.89,
3.3 for load p < 0.95,

4 for load p < 0.98, and
5 for all loads.

"The numbers 0.9587 and 0.9898 are approximations accurate to 4 decimal places.
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Fig. 5.2. Bound on Mean Response Time Ratio

5.1 Properties of M-SERPT Hill Ages

In this section we prove some properties of M-SERPT hills and valleys, and in particular M-SERPT
hill ages. We begin by relating the hills and valleys of M-SERPT and Gittins. The following lemma
builds on ideas introduced by Aalto et al. [6], but it is a novel result.?

LEmMMA 5.3. Every Gittins hill age is also an M-SERPT hill age, and similarly for hill sizes.
ProoF. See Appendix D.

We now show a key property of M-SERPT hill ages that lets us to bound p ratios, such as those
in (3.9), in terms of F ratios.
LEMMA 5.4. For any M-SERPT hill age b and any a < b,
p_E_Z; S ;Yb).
P - Fb)
=P+ PRa
Proor. Recall from Definition 2.4 that rus is the increasing envelope of rs. By Definition 4.3,
this means M-SERPT has the same hill and valley ages as SERPT. We therefore have

o rs(a) < rms(a) by Definition 2.4,
o rms(a) < rms(b) because rus is increasing, and
o rs(b) = rpms(b) because b is a SERPT hill age.

Putting these together gives us rs(a) < rs(b), which by Definition 2.2 is the same as
ﬁ”ﬂndt<ﬁfﬁuyu
F@) —  F(b)
Multiplying both sides by A and applying Definition 4.5 yields
p@) - (1-p) _ pb)=(1-p)

F(a) - F(b)
Letting { = F(b)/F(a), this rearranges to
pb) _pl=2
O

Because p(a) < 1, the right-hand side is at least 1 — p + {p, which implies the desired inequality. O

81n particular, Lemma 5.3 is not equivalent to Proposition 7 of Aalto et al. [6] because hills are not simply the ages at which
the rank function is increasing (Definition 4.4).
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Table 5.1. Monotonicity Facts

FuncTiION MONOTONICITY DEFINED IN

F decreasing Section 2

p decreasing Definition 4.5
T increasing Definition 4.6
Y,z increasing Definition 4.2

The bound in Lemma 5.4 is increasing in p, implying the following simpler bound.
COROLLARY 5.5. For any M-SERPT hill age b and any a < b,
p(b) ~ F(b)
5.2 Waiting Time Bound

The proofs in the remainder of this section frequently use the monotonicity facts listed in Table 5.1.
As a reminder, all monotonicities are meant in the weak sense unless otherwise specified. For
example, “decreasing” means nonincreasing. So as not to disrupt the flow of the proofs, we use
facts from Table 5.1 with only a reference to the table.

LEMMA 5.6. The mean waiting time of M-SERPT is bounded by
E[Qms] _ 2
E[Qc] ~ 1++1-p
Proor. By Lemma 5.3, because yg(x) = x = zg(x) for all Gittins hill sizes x, we have
E[Oms(X) | X is a Gittins hill size] <
E[Qc(X) | X is a Gittins hill size] ~
Therefore, it suffices to show that for any Gittins valley (u, v],
E[Qus(X) | X € (u,v]] _ 2
E[Qc(X) [ X € wv]] ~ 1++T—p

For any x € (u,v], Lemma 5.3 implies the following key fact:

u=yg(x) < yms(x) < x < zms(x) < zg(x) = v. (5.1)

Applying Proposition 4.7 and Table 5.1, we obtain

/” 7(zpms(x)) )
E[Qus(X) | X € w,v]]  Ju Pyms(x)) - plams(x))  F(u) - F(v)
E[Qc(X) | X € (w,v]] z(v)

pu) - p(v)
- / pu) - p(v) - fe)
= Ju Plyms(x)) - plzms(x))  F(u) — F(v)
- b p(u) - p(v) f(x)
p(u) - p(v X
wt)= [ ) o T —Fo)

It suffices to bound q(u, v). To do so, we split the integration region into three pieces at carefully
chosen ages y. and z., then we bound each of q(u, y.), q(y., z.), and g(z., v).
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Before specifying y. and z., we need two other definitions. First, for all x € (u, v], let

Gx)=1-p+ pﬁ
F(u)
With this notation, Lemma 5.4 says that if x is an M-SERPT hill age, then’
@ < @ (5.2)
p(x) ~ G(x)
Second, let x, € (u,v] be the age such that
é -
S) _ o) 53)
G(x,) PW)

Such an age must exist by continuity of G because by Table 5.1 and (5.2),
Gl > 2236w > G,

We can now define
Ys = Yms(x:)
Zs = Zms ().
We bound each of g(u, y.), q(yx, z+), and q(z., v) in Steps 1-3 below. The core of each step is bounding
the ratios p(u)/p(yms(x)) and p(v)/ p(zms(x)).
e By Table 5.1 and (5.1) we have
p(v)

Fans() G4
and, using (5.3),
_ pw) _ pv) f_(u) < ?(U)' (5.5)
plyms(x))  plyms(x)) G(x,) ~ G(x,)
e Since ypms(x) and zpms(x) are M-SERPT hill ages, by (5.2) we have
p(w) G(u)
s~ Glgms() G0
and, using (5.3),
;5(") _ ,E(u) ) é(x*) < é(x*) (5.7)

Plams(x)  plams(x))  G(u) ~ Glzms(x)

In each of Steps 1-3, we apply either (5.4) or (5.7), whichever gives a tighter bound, and similarly
for (5.5) and (5.6). B B
We need one last definition before carrying out Steps 1-3: to avoid mixing F and G, let

d -
g(x) = _EG(X) = pf(x),

which allows us to write
[ g
F(u)-F(v)  G(u)-G(v)

Even though G(u) = 1, we find that explicitly writing G(u) in ratios with other uses of G makes the proof easier to follow.
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Step 1: bounding q(u, y,). Since both u and y, are M-SERPT hill ages, we can partition (u, y.]
into M-SERPT hills and valleys,'” meaning there exist

U=20<Y1 <21 <...<Yn <2p < Ynt1 = Y
such that

o (y;,z;] is an M-SERPT valley for all i € {1,...,n},
® (z;,yi+1] is an M-SERPT hill for all i € {1,...,n}, and
e either zg = y; or (2¢,y;] is an M-SERPT hill.

For each M-SERPT valley, we have yms(x) = y; and zms(x) = z; for x € (y;, z;], so applying (5.6)
and (5.7) yields

0w G g
“%mgﬁé%»amé%%aw
= g(u)'Gix*)(_l N ) (5.8)
G(u) - G(v)\G(z:)  Glyi)
For each M-SERPT hill, we have yms(x) = x = zms(x) for x € (25, yi+1], so applying (5.6) and (5.7)
yields

L Gw G g
q(zi, Yis1) < [i é(x)z é(u) ~ é(v)
_ C_;(u) . C_}(x*)( 1 1 )

6w -G \Gim)  Glz)
Combining (5.8) and (5.9) for each M-SERPT hill and valley implies

n n
g y.) = Y qyiz) + ) q(zis Yinr)
i=1 i=0

- G(u) - é(x*)( 11 )
G(u) - G(v)\G(yn+1)  Glz0)

B G(u) G(x,) B G(x,)

_éw—@ﬁaw aw)

Step 2: bounding q(ys, z). If x, is an M-SERPT hill size, then q(ys, z.) = q(x«, x:) = 0. Otherwise,
since yms(x) = y. for all x € (y, z.], applying (5.4) and (5.6) yields

“ G g
sy Ao S — h— p—

o5 < | G(y.) G - Glv)

__ G G_am)
G(u) - G(v) G(y.)

Step 3: bounding q(z.,v). Applying (5.4) and (5.5) yields

4z, v) < /v _C_?(u) L g(x)_
z. G(x.) Gu)—-GHw)
_ G(u) G(z,) Gv)
" Gu) - G(v) (é(x*)  G(x) )
10The potential obstacle to partitioning is that u or y. might be in the interior of a valley (Definition 4.4), but u and y.

(5.9)

being hill ages ensures this is not the case.
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Combining the results of Steps 1-3 gives us

q(u,v) < = G(u)_ (C_;(x*) - G_(x*) +1- ?(z*) + g(z*) - E;(V) ) (5.10)
G(u) - Gv)\G(y.)  G(u) G(y.) G(x) Glx)
Table 5.1 and (5.1) imply
G(z,) B G(z,) 1o G(x.)
Glx) Gw) G
and minimizing over possible values of G(x,) gives
Gx) | 6, S0
Gu) G(x.) G(u)
Applying these to (5.10) and using the fact that G(v)/G(u) > 1 — p yields
6w [,_, |S®)
1= G -cm\’” \NGw
_ 2
1+ %
2
< — . o
1++1-p

5.3 Residence Time Bound
LEMMA 5.7. The mean residence time of M-SERPT is bounded by

)E[X].

E[Rums] < E[Qums] + (l log
p C1-p

Proor. We can partition R into M-SERPT hills and valleys, meaning there exist
0220<y1<2'1<...

such that

o (y;,z;] is an M-SERPT valley for all i > 1,
® (z;,Y;41] is an M-SERPT hill for all i > 1, and
e either zy = yo or (29, y;] is an M-SERPT hill.

Let
) Ag(a, b) = E[Qus(min{X, b})] — E[Qms(min{X, a})]

Ar(a, b) = E[Rus(min{X, b})] — E[Rus(min{X, a})]

LI

pb) A 8 ha)

We wish to show Ag(0, 00) < Ap(0, 00) + Alye(0, 00). It suffices to show that for each M-SERPT hill

(2, ym],“

1
Ajog(a, b) = 1 log

AR(zi+, Yis1—) < Ao(zi+, Yir1—) + Aiog(2i, Yir1), (5.11)
and that for each M-SERPT valley (y;, z;],
AR(yi—, Zi+) < AQ(yi—, Z,'+) + Alog(yi,zi). (512)

1We use postfix — and + to denote left and right limits, respectively. They are not needed for Ajog, which is continuous.
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We prove these bounds in Steps 1 and 2 below, respectively. In both steps we use the fact that
d = d
aE[QMS(min{X,x})] =F(x)- aE[QMS(X)]
d ) = d
7 ElRms(min{X, x})] = F(x) - —E[Rms(x)].

Step 1: bound for M-SERPT hills. We have yms(x) = x = zms(x) for all x € (z;,y;41). Recalling
Definitions 4.5 and 4.6, by Proposition 4.7,

= Aglert %) = < ElQus(min{X, x})
NG
= F(x) & 50y
AxF(x)?  2AF(x)? - 7(x)
= + .
Ay Ay

Similarly, by Proposition 4.8,

L Ax(zrt %) = -CE[Rus(min{X, x))]

dx
— d x
= F(X) . a%
3 @ AxF(x)?
T ) px)?
Finally, we have
d F
aAlog(zhx) = ’%

Examining the three derivatives, we see

dA(-+ )<dA(+ )+dA (zi,x)
dx R\Zj+, X S ozi+, X dx log\Zi, X),

which implies (5.11), as desired.

Step 2: bound for M-SERPT valleys. We have yms(x) = y; and zms(x) = z; for all x € (y;, z;),
which means

d

L Aowimx) =0

d _ F(x)

a7 By
d _ F(x)
EAlog(yi’x) = 50

However, we must still account for discontinuities at x = y; and x = z;.
We first prove a lower bound on Ap(y;—, z;+). We have

Ao(yi—, zi+) = Ao(yi—, yi+) + Ag(zi—, z;+)

= F(y:) 7(z;) (y:) ) . F(zi)( (z;) ()

/S(yi) . P_(Zi) - ﬁ(yl—)z ﬁ(zi)z - p_(yi) - p_(Zi) . (5.13)
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Both terms in (5.13) are nonnegative by Table 5.1. Applying Corollary 5.5 with a = y; and b = z; to
the first term and dropping the second term yields

= (z;) (y:)
Ao(yi—, zi+) 2 F(Zi)(ﬁ(zi)z - ) - ,5(21‘))' (5.14)
We now turn to Ag(y;—, z;+). We have
AR(yi—,Zﬁ-) = AR(yi—,yi+) + AR(yi+,Zi—) + AR(Z,'—, Z,'+)
( ) Zj
0+ /y g &7 T )(p< ) p(ya)
Zj 1
= Ao i»Zi — - — - —— | dx. .

= otz + P55 - 505 ) - [ oo - e 6

Applying Corollary 5.5 with a = x and b = z; to the last term of (5.15) yields

.z TN 0NN L./ RN, S WY (- U SN 1 C)
Ar(y; ,zl+)sAlog(y,,zl)+F(z,)(ﬁ(zi) ﬁ(yi)) /yi F(z,)(ﬁ(Zi) ﬁ(yi)-ﬁ(zi))dx’ (5.16)

Using integration by parts one can compute

/ P dx = () — yip(ys) + 7(z0) — 7(y)).

Yi

Substituting this into (5.16) causes many terms to cancel, leaving

t(zi) — (yi)
Ar(Yi—, zi+) < Miog(yi, zi) + Flz 1)ﬁ
which combined with Table 5.1 and (5.14) implies (5.12), as desired. O

6 ADDITIONAL IMPLICATIONS OF M-SERPT’S APPROXIMATION RATIO

In this section we discuss additional implications of the fact that M-SERPT is a constant-factor
approximation of Gittins, resolving two open questions in M/G/1 scheduling theory. Section 6.1
addresses the performance of FB for job size distributions with the increasing mean residual lifetime
(IMRL) property, and Section 6.2 addresses the performance achievable by policies in the multilevel
processor sharing (MLPS) class.

6.1 Performance of FB for IMRL Job Size Distributions

Definition 6.1. A job size distribution X has the (strictly) increasing mean residual lifetime (IMRL)
property if a job’s expected remaining size E[X — a | X > a] is (strictly) increasing in its age a.

Consider the setting of an M/G/1 with an IMRL job size distribution. In this IMRL setting, the
greater a job’s age, the greater its expected remaining size. We therefore might expect that the
FB policy, which prioritizes jobs of lower age, would yield low mean response time. In fact, it
was believed for some time that FB was optimal for the IMRL setting [26]. However, Aalto and
Ayesta [2] found a flaw in the proof, along with a counterexample IMRL job size distribution for
which FB is not optimal. While Aalto and Ayesta [2] show that FB has lower mean response time
than PS in the IMRL setting, whether FB is close to optimal for the IMRL setting is an open question.

The following corollary resolves this question for the case of strictly IMRL job size distributions.
It turns out that M-SERPT and FB are equivalent in this case, because the strictly IMRL property
implies M-SERPT’s rank function is strictly increasing, just like FB’s. This means FB has the same
approximation ratio as M-SERPT for strictly IMRL job size distributions.
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COROLLARY 6.2. For the problem of preemptive scheduling to minimize mean response time in an
M/G/1 queue with unknown job sizes, if the job size distribution is strictly IMRL, FB is a constant-factor
approximation.

6.2 Performance Achievable by MLPS Policies

Multilevel processor sharing (MLPS) policies are a class of preemptive scheduling policies introduced
by Kleinrock [19]. An MLPS policy is specified by a list of threshold ages 0 = ao, a1, az, . . ., where
interval [a;, a;11] is the ith level. Jobs with ages in lower levels have priority over those in higher
levels, and within each level, jobs are scheduled using one of FCFS, FB, or PS. While we know how
to analyze the mean response time of any MLPS policy [14, 19, 20], optimizing an MLPS policy,
meaning choosing the threshold ages and scheduling policies within each level to minimize mean
response time, is an open problem [3, 4].12

The following corollary takes a major step towards solving this problem. It turns out that
M-SERPT is an MLPS policy: its levels are the hills and valleys, with FB used within each hill and
FCFS used within each valley. While M-SERPT is not always the optimal MLPS policy, we know it
performs within a constant factor of Gittins.

COROLLARY 6.3. For any job size distribution, there exists an MLPS policy, namely M-SERPT, with
mean response time a constant factor times that of Gittins.

Combining this with results on the RMLF policy [7] implies the following additional corollary.'®

COROLLARY 6.4. For any job size distribution, there exists an MLPS policy, namely M-SERPT, whose
mean response time ratio compared to SRPT is at most O(log(1/(1 — p))) in the p — 1 limit.

7 LOWER BOUND ON M-SERPT’S APPROXIMATION RATIO

We have shown that M-SERPT is a 5-approximation for minimizing mean response time. The
natural followup question is: what case is worst for M-SERPT? We have yet to find a scenario in
which M-SERPT performs 5 times worse than Gittins. Instead, the largest ratio we have observed so
far is 2. This occurs with the following pathological job size distribution, where § € (0, 1) is small:

1-4 wp.1-9
X =11 w.p. S — &2
5 +1 wp. 6

That is, nearly all jobs are size 1 — §, and nearly all the rest are size 1.
How do the M-SERPT and Gittins rank functions differ for X? Computing ranks using Defini-
tions 2.1 and 2.4, we find
rms(0) < rms(1—8) < rms(1)
ra(1-6) < rg(0)  <re(1)

In terms of hills and valleys, both M-SERPT and Gittins have a hill age at 1, but M-SERPT has an
additional hill age at 1 — §. But M-SERPT’s extra hill age increases mean response time: a job of
age 1 — ¢ will almost always finish with just § more work, so it would be better to give those jobs
priority over jobs at age 0. Gittins does not make this mistake.

12We note that Gittins is the solution for the special case where all jobs are present at the start, because without arrivals,
any SOAP policy, including Gittins [6], acts like an MLPS policy based on its hills and valleys.
I5RMLF resembles an MLPS policy, but it is not one because it uses randomization.
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We now compute the mean response times of M-SERPT and Gittins for a system with job size
distribution X. Suppose the load is p = 1 — ¢, where ¢ € (0, 1) is small. We have

p0)=1 p(1-0)=d+e p(1)=d+e p(oo)=c¢
70)=0 7(1-9)~ % (1) ~ % 7(o0) ~ 1,
where the approximations assume 8, ¢ < 1. By Propositions 4.7 and 4.8, the mean response time of
M-SERPT is
E[Tiis] ~ E[Tws(1 — 8)] + SE[Tws(1)] + §°E[Tws (67" + 1)]
t(1-6 1-6 (1 1 7(co 51 +1
(s ) s * asa) o e *

3 3 1 1 5141
(5-21-5 +1_5)+5((5—i5)2 " 5+£)+52(8~(5+£) TS ve )
! (25_+ ; &)
26 +e)\ S +¢ e )
We now analyze the mean response time of Gittins. One can show using the full SOAP analysis [28]
that when §, ¢ < 1, Propositions 4.7 and 4.8 give approximate equalities for Gittins, so

E[Tg] ~ E[Tc(1 - &)] + SE[Tg(1)] + §°E[T (57" + 1)]

L (1) 2( ) )
(ﬁm)-ﬁ(l)“ 5)”(1?(0)-5(1)“)” A0 peo) POt
1

1
3 3 1
2 1- 2 1 2 -1,q
(5+€+ 5)+5(6+5+ )+5(€_(5+8)+5 + )

1 . 252
z(5+g)( * T)'

This makes the mean response time ratio approximately

E[Tms]  28°% + 28 + &2

E[Tc]  26°+ e+ 2
This ratio is at most 2, and it can approach 2 in any limit where the §¢ term dominates. This happens
if we set ¢ = 8%/2 in the § — 0 limit, so M-SERPT’s approximation ratio is at least 2.

Q

Q

Q

Q

8 WHY CLOSING THE GAP IS HARD

In preliminary numerical studies, omitted for lack of space, we have computed the mean response
time ratio between M-SERPT and Gittins for a variety of job size distributions. We have yet to
observe a ratio greater than 2, with Section 7 describing the worst case we have found, motivating
the following conjecture.

CoNJECTURE 8.1. For the problem of preemptive scheduling to minimize mean response time in an
M/G/1 queue with unknown job sizes, the approximation ratio of M-SERPT is 2.

The lower bound of 2 on M-SERPT’s approximation ratio is less than the upper bound of 5 from
Theorem 5.1. What would it take to close the gap? Recall from Fig. 5.1 that we prove Theorem 5.1
by combining the four following bounds. The main obstacle to closing the gap is that each of the
four bounds is tight in some setting.

(i) Lemma 5.6 gives an upper bound on E[Qms]/E[Qc].

— It is tight for the scenario described in Section 7.
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(if) Lemma 5.7 gives an upper bound on E[Rys].

— Itistightin the p — 1limit for Pareto job size distributions with shape parameter o = 1 [17].
(iii) Proposition 4.9 gives a lower bound on E[Rg].

— Itis tight when Gittins is equivalent to FCFS, which occurs for some job size distributions [5].
(iv) Proposition 4.10 gives a lower bound on E[Tg].

— Itistightin the p — 1limit for Pareto job size distributions with shape parameter & ~ 1 [17].

The fact that each bound is tight means that tightening Theorem 5.1 requires new insight.

Although bounds (i)-(iv) are all tight, they are tight in different settings, meaning for different
loads p and job size distributions X. This hints at a possible approach to tightening Theorem 5.1:
we could refine bounds (i)-(iv) in a way that makes them more sensitive to the setting, especially
the job size distribution. As an example of what this might mean, the settings in which bounds (i)
and (iii) are tight have Var(X?) < oo, while those in which bounds (ii) and (iv) are tight have
Var(X?) = oo. Thus, we might be able to improve on Theorem 5.1 if we refine each of bounds (i)-(iv)
by “conditioning”, meaning splitting into cases, on whether Var(X) is finite.

With that said, we suspect that refining bounds (i)—(iv) is more involved than simply conditioning
on whether Var(x) = co. In the rest of this section we review each bound, explain the settings in
which they are tight in more detail, and discuss opportunities for refining or replacing them.

8.1 Tightening the M-SERPT Upper Bounds

We begin with bound (i), Lemma 5.6, which implies E[Qms] < 2E[Qg]. This bound is tight for
the scenario described in Section 7. To find opportunities for tightening, recall that the proof of
Lemma 5.6 works by looking at one valley at a time, showing a ratio bound for each valley separately.
When proving the bound for valley (u, v], we use the fact that p(u) < 1, but this is tight for at
most one valley. In the job size distribution from Section 7, nearly every job’s size is in a valley
with p(u) = 1, which is why Lemma 5.6 is tight in that scenario. But many job size distributions do
not have nearly all job sizes in one valley. We could perhaps refine Lemma 5.6 by conditioning on a
parameter related to valleys, such as a bound ¢ € [0, 1] such that P{X € (u, v]} < { for all valleys
(u, v].
Bound (ii), Lemma 5.7, says E[Rms] < E[Oms] + £,,, where

1
tp (p log = p)E[X].
Lemma 5.7 can be tight in the p — 1 limit when X has a Pareto job size distribution. For shape
parameter a € (1,2), if F(x) = (1 + x)~%, a result of Kamphorst and Zwart [17, Section 4.2.1]
implies'
ala—1)
E[Qms] ~ > a “lp (8.1)
E[Rms] = a - ¢,
as p — 1. This means the tightness of Lemma 5.7 in the p — 1 limit depends on a: it is tight for
a = 1 but extremely loose for a ~ 2. Similar reasoning shows the bound is also loose for a > 2
[17, Section 4.1.1]. This suggests that we could try to refine Lemma 5.7 by conditioning on the
tail behavior of X. A concrete opportunity for tightening is in Step 1 of the proof: the difference
between the two sides of the final inequality is 2AF(x)?-7(x)/ p(x)?, whose contribution is negligible
for @ ~ 1 but dominates for larger « [17]. Step 2 of the proof has a similar opportunity, but the

14Specifically, we apply Lemma 5.4 with a = u, and Lemma 5.4’s proof uses p(a) < 1.

15Kamphorst and Zwart [17] consider the FB policy, but M-SERPT and FB are equivalent for this job size distribution because
it has the IMRL property (Definition 6.1).
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difference term is more complicated. Another obstacle to this approach is the lack of results in the
style of Kamphorst and Zwart [17] that hold outside the p — 1 limit.

8.2 Tightening the Gittins Lower Bounds

Bound (iii), Proposition 4.9, gives a trivial lower bound on Gittins’s mean residence time, namely
E[Rg] > E[X]. But even this trivial bound is tight for some job size distributions, namely those
with the new better than used in expectation property [5]. This is because the Gittins policy is
equivalent to FCFS for such distributions [5], and FCFS has mean residence time E[X]. However,
a result of Aalto et al. [6, Proposition 9] implies that if Gittins is equivalent to FCFS for some
distribution X, then M-SERPT is also equivalent to FCFS. That is, when Gittins has very low
residence time, so does M-SERPT. This hints that what we would really like is a direct bound on
E[Rms]/E[RG]. Unfortunately, the residence time formula in Proposition 4.8 gives an upper bound
on E[RG], whereas we need a lower bound. Even if we could bound the gap between E[R¢] and the
upper bound in Proposition 4.8, bounding E[Rus]/E[R¢] would likely still be at least as challenging
as proving Lemma 5.6.

We finally turn to bound (iv), Proposition 4.10, which is a corollary of a result of Wierman et al.
[30, Theorem 5.8]. It says E[T] > £, for any scheduling policy, including size-based policies like
SRPT. Despite this, by (8.1), Proposition 4.10 is tight in the p — 1 limit when X has a Pareto job
size distribution with shape parameter o = 1. We are not aware of any other simple lower bound
on SRPT’s mean response time that holds for all job size distributions. One possibility for refining
the bound would be to parametrize them along similar lines as further results of Wierman et al. [30,
Theorems 5.4, 5.7, and 5.9]. Of course, we would prefer a bound that holds only for policies that,
like Gittins, do not use job size information, but we suspect such a result requires new techniques.

9 CONCLUSION

We introduce M-SERPT, the first non-Gittins policy proven to achieve mean response time within
a constant factor of Gittins’s. Specifically, we show that M-SERPT is a 5-approximation of Gittins,
with an even smaller approximation ratio at lower loads (Theorem 5.1). In addition to being an
important result in its own right, the fact that M-SERPT has near-optimal mean response time
resolves two open questions in M/G/1 scheduling theory (Section 6).

An open question is whether M-SERPT’s approximation ratio is less than 5. We conjecture that
the true approximation ratio is 2 (Conjecture 8.1). Another open question is how SERPT’s mean
response time compares to M-SERPT’s. In preliminary numerical studies, we have observed very
similar performance from SERPT and M-SERPT, with each sometimes outperforming the other, so
we conjecture that SERPT is also a constant-factor approximation of Gittins.
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A NO APPROXIMATION RATIO FOR TRADITIONAL POLICIES

In this appendix we discuss the performance of three traditional policies: FCFS, FB, and PS. We will

show that none of these policies are constant-factor approximations for mean response time. That

is, the ratio of each policy’s mean response times to that of Gittins can be unboundedly large.
FCFS has mean response time [15]

_ JE[X?]
= —2(1 =) + E[X].

This is infinite if X has infinite variance, but other policies have finite mean response time for all
job size distributions, so FCFS has no constant-factor approximation ratio.
For the specific case where all jobs have size x, FB has mean response time [15]

E[Tkcrs]

Ax? x
E[Tfg]l = ——— + —.
[Trs] 20-p2 15
This is worse than FCFS’s mean response time in the same case by a factor of 1/(1 — p), which
becomes arbitrarily large in the p — 1 limit, so FB has no constant-factor approximation ratio.

PS has mean response time [15]
B[Tys] = 200
I-p
That is, the response time of PS is insensitive to the details of the job size distribution, depending
only on the mean. While PS is thus generally considered to have reasonable performance for all
job size distributions, there are certain distributions where other policies outperform PS by far.
For example, Kamphorst and Zwart [17] show that when X is a Pareto distribution with shape

parameter « € (1, 2), FB has mean response time that scales as
aE[X] 1

log ——
2—-«a Ogl—p

E[Trs] ~

in the p — 1 limit. Thus, the mean response time ratio between PS and FB becomes arbitrarily
large in the p — 1 limit, so PS has no constant-factor approximation ratio.

B DIFFICULTY OF COMPUTING THE GITTINS POLICY

In this appendix we discuss in more detail why it is difficult to compute the Gittins rank function.
We begin with the simpler case of discrete job size distributions (Appendix B.1) before turning to
continuous job size distributions (Appendix B.2).

B.1 Discrete Job Size Distributions

All the algorithms discussed in this section assume input in the form of a list of (x, p) pairs sorted
by x, where x is a support point and p is the probability of outcome x.

The problem of computing the Gittins rank'® of all states in a finite Markov chains is a well
studied problem for which the best known algorithms take O(n®) time, where n is the number
of states in the Markov chain [10]. The reader may recall that we claim in Table 1.1 that Gittins
takes O(n?) time to compute. This is due to two discrepancies between algorithms in the literature
and the problem we consider, namely computing the Gittins rank function for a discrete job size
distribution.

e Algorithms in the literature assume an arbitrary finite Markov chain. However, a discrete job
size distribution has a very simple structure when viewed as a Markov chain. Each support
point is a state, and each has only two transitions with nonzero probability: to the next

16Most literature refers to the Gittins index, which is simply the reciprocal of the Gittins rank.
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support point and to a terminal state.!” In this respect, our problem is easier than the one
solved in the literature.

e Algorithms in the literature compute the Gittins rank at each state, which in our case
corresponds to each support point. However, the full Gittins rank function assigns ranks
to all ages, and ages between adjacent support points are not covered by algorithms in the
literature. In this respect, our problem is harder than the one solved in the literature.

It turns out that the former difference has the greater impact. Specifically, if one uses sparse
matrix operations, algorithms in the literature can be implemented such that they take only O(n?)
time [10], because the Markov chain of a discrete job size distribution has only O(n) transitions
with nonzero probability. The output of this algorithm is the Gittins rank of each support point,
but it remains to compute the rank function at other ages. Between each pair of adjacent support
points, the Gittins rank function is piecewise linear with at most O(n) segments. This means a
post-processing step taking O(n) time per support point, and thus O(n?) time total, can fill in the
gaps between adjacent support points.

We have summarized how to use state-of-the-art algorithms from the literature to compute the
Gittins rank function in O(n?) time. Whether there exists an algorithm computing the Gittins rank
function in o(n?) time remains an open problem.

Finally, we briefly sketch an algorithm that computes the SERPT and M-SERPT rank functions in
O(n) time. Computing rs(x) at each support point x can be done with a table containing F(x) and
fx ® F(t) dt for each support point x, which can be generated with scans that take O(n) time each.
This yields the SERPT rank at each support point, and an additional O(n) scan yields the same for
M-SERPT. Between adjacent support points, SERPT’s rank function simply decreases at slope 1
while M-SERPT’s is constant.

B.2 Continuous Job Size Distributions

The Gittins policy for continuous job size distributions has received some attention, with results
characterizing the Gittins rank function available under various assumptions on the job size
distribution [5, 6]. However, none of the prior work explicitly addresses computing the Gittins policy
for a general continuous job size distribution. Here we review the most general characterization
result and show why it does not solve the problem of computing the Gittins rank function.
Aalto et al. [6, Propositions 1 and 11] show the following result. Suppose there exist ages
0 = vy, Uy, V1, Uz, Vo, . . . such that for all i > 1, the job size distribution’s hazard rate h is
e strictly decreasing for (u;,v;) and
e increasing for (v;_1, u;).
Then for all i > 1, there exists an age w; € [u;, v;] such that the Gittins rank function rg is
e strictly increasing for (u;, v;) and
e decreasing for (w;_,u;).!
Knowing something about the monotonicity of the Gittins rank function is potentially helpful for
computing it. However, the results of Aalto et al. [6] do not provide a way to compute the critical
ages w;. Moreover, even if we could compute the ages w;, as we explain below, computing the rank
function can be at least as hard as in the discrete case.
For each age a, there is an optimal stopping age b.(a) that solves the optimization problem in
rc(a) (Definition 2.1). We know by results of Aalto et al. [6] that if b.(a) > g, then b.(a) lies in

17The terminal state is the maximum support point. Additionally, there is an initial state at age 0. In the following discussion,
any mention of “adjacent support points” also applies to the interval between 0 and the first support point.
18We define wy = 0.
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interval [u;, w; ] for some i, but we do not know which i. This makes the search for b.(a) intractable
if there are infinitely many intervals [u;, w;] and at least as hard as the discrete case if there are
finitely many.

C SOAP MEAN RESPONSE TIME USING HILLS AND VALLEYS

Propositions 4.7 and 4.8 follow immediately from results of Scully et al. [28, Theorem 5.5, see also
Lemmas 5.2 and 5.3]. The main obstacle is a difference in notation. Below we translate from the
notation in our paper to the notation of Scully et al. [28]:

py(x)) = 1= PV [r¥ort(0)] = 1 - p"™ [ (a)]
plz(x)) = 1 - pd[r¥o=t(0)]

T(Z(x)) _ [Xold[ worst(o)

ml»

Z Xold Worst(o)]]
i=0

When the rank function is monotonic, showing that the bounds in Propositions 4.7 and 4.8 become
equalities boils down to proving that the two inequalities above become equalities. We first note
that any decreasing rank function is equivalent to FCFS. But FCFS can also be expressed by a
constant rank function, which is weakly increasing. We therefore restrict our attention to increasing
rank functions, for which the following properties are easily shown:

o rYVorst(g) = yWorst(0) for all ages a [28, Definition 4.1], and

° X;’ld[r] = 0 with probability 1 for all ranks r and integers i > 1. [28, Definition 4.3].

Thus, both inequalities above become equalities for monotonic rank functions.

D DEFERRED PROOFS
THEOREM 5.1. The mean response time ratio between M-SERPT and Gittins is bounded by

4
— 0 < p < 0.9587
1+vip P
1 1
ElTws] )1 log 0.9587 < p < 0.9898
E[T¢] p 1=

4
+—— 09898 < p<1.
1++41-p P
Proor. Bounding mean response time amounts to bounding mean waiting and residence times.
By Lemma 5.6,

2
E[Qms] < ﬁE[QG],

and by Lemma 5.7,
1

)E[X ] (D.1)
—p
We can give two different bounds on the last term of (D.1), each of which yields a bound on the
mean response time ratio. Applying Proposition 4.9 yields

E[Rms] < E[Qms] + (/l) log 1

E[Tus] _ = ElQc] + (%log ﬁ)E[RG]
E[Tc] E[Qc] + E[Rg]

1 1
< [
e {1+x/1— p 81 p}
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Applying Proposition 4.10 instead yields

e
E[Te] E[Qc] + E[Rc] T 1+VT=p
Taking the minimum of these two bounds gives us
E[Ts] < min{max{;, l log ! } 1+ 4 }
E[Tc] ~ 1+Vi=p' p “1-p| 14y1-p)
which expands to the desired piecewise bound. O

LeEMMA 5.3. Every Gittins hill age is also an M-SERPT hill age, and similarly for hill sizes.

Proor. We prove the result for hill ages. The corresponding result for hill sizes then follows
immediately from the observation that x is a hill size if and only if there exists ¢ > 0 such that all
ages in [x, x + ¢) are hill ages, so we can simply apply the hill age result to those intervals.

It is immediate from Definition 2.4 that SERPT and M-SERPT have the same hill ages, so in this
proof, we work with SERPT instead of M-SERPT.

At the core of our argument is the following definition. For ages a < b, let

/ " F)de
9b = _a—_
"D R
i _Fla _ 1
n(a,a) = ;1_1(51 n(a,b) = @ " W@

n(a, ) = blim n(a,b) =E[X —a| X > da].

The function 7 is a version of the efficiency function commonly used in the M/G/1 Gittins policy
literature [5, 6]. Its continuity is inherited from the fact that X has a density function (Section 2). It
is closely related to the rank functions of SERPT and Gittins:'’

rs(a) = n(a, o0)
rg(a) = rbn>in n(a,b) < rs(a) (D.2)

It is simple to verify that for any agesa < b < ¢,
n(a,b) < n(a,c) < n(b,c)
g
n(a,b) < n(a,c)
) (D.3)
n(a,c) < n(b,c)
g
n(a,b) < n(b, c).

and similarly for strict inequalities when a < b < c.

A useful intuition is that n(a, b) gives a “score” to the interval [a, b], where lower scores are
better. SERPT gives a job at age a rank equal to the score of [a, oo], while Gittins is pickier, choosing
the best score among all intervals that start at a. What (D.3) says is that if we divide an interval
into two pieces, the score of the interval is between scores of its pieces.

19The minimum in rg(a) always exists because we allow b = a and b = co.
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Let v be a Gittins hill age and consider any age u < v. We want to show that v is a SERPT hill
age, which amounts to showing rs(u) < rs(v). By (D.2) and (D.3), it suffices to show
n(u,v) < rg(v). (D.4)
For simplicity, we show (D.4) only for u = 0, explaining at the end of the proof why we can do so
without loss of generality.
To show (D.4) with u = 0, we need to understand 5(0, v). We can partition [0, v] into Gittins hills
and valleys, meaning there exist
0=20fy1 <21 <...<UYn<2zZp S Ypy1 =V
such that
o (yi,z;] is a Gittins valley for all i € {1,...,n},
® (z;,y;41] is a Gittins hill for all i € {1, ...,n}, and
e either zy = y; or (2¢,y1] is a Gittins hill.
By repeatedly applying (D.3), it suffices to show that for each hill (z;, y;+1],

n(zi, yiv1) < rg(v), (D.5)
and that for each valley (y;, z;],

n(yi» zi) < re(v). (D.6)
We prove these bounds in Steps 1 and 2 below, respectively.

Step 1: bound for Gittins hills. Let (z;,y;+1] be a Gittins hill. Continuity of rg (Section 2.1) and a
result of Aalto et al. [6, Proposition 3] together imply that for all a € [z;, yi+1),

1 1
@ < —h(yi+1) = r6(Yis1),

from which another result [6, Lemma 5] yields

ro(a) =

ra(zi) = n(zi, zi) < n(zi, yiv1)-
By (D.3), we also have
1(zi, Yi+1) < 0(Yis1, Yir1) = r6(Yie1)

Combining this with the fact that v > y;,1 is a Gittins hill age implies (D.5), as desired.

Step 2: bound for Gittins valleys. Let (y;, z;] be a Gittins valley. A fundamental property of Gittins
[13, Lemma 2.2] implies?

ra(yi) = nyi, zi).

Combining this with the fact that v > y; is a Gittins hill age implies (D.6), as desired.

With Steps 1 and 2 we have shown (D.4) for u = 0. To generalize the argument to u > 0, we
observe that the rank functions of SERPT and Gittins at ages u and later do not depend on ages

earlier than u. Consider a modified job size distribution X’ = (X —u | X > u). Writing r’ for rank
functions with distribution X’, we have

ri(a) = rs(a +u)
rg(a) = rg(a +u)

for all ages a. Switching job size distributions from X to X’ simply shifts the rank functions by u, so
v —u is a Gittins hill age for X’. This transforms the u > 0 case for X into the u = 0 case for X’. O

Received October 2019; revised December 2019; accepted January 2020

2Gittins et al. [13] focus on a discrete setting, but essentially the same proof holds in our continuous setting.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 4, No. 1, Article 11. Publication date: March 2020.



	Abstract
	1 Introduction
	1.1 Challenges
	1.2 A New Simple Scheduling Policy: M/SERPT
	1.3 Contributions
	1.4 Related Work

	2 System Model and Preliminaries
	2.1 SOAP Policies and Rank Functions

	3 Key Ideas
	3.1 Waiting Time and Residence Time
	3.2 Why SOAP Is Not Enough
	3.3 Hills and Valleys
	3.4 Outline of Waiting Time Bound
	3.5 Outline of Residence Time Bound

	4 Hills and Valleys
	4.1 Defining Hills and Valleys
	4.2 Response Time Bounds

	5 Upper Bound on M/SERPT's Approximation Ratio
	5.1 Properties of M/SERPT Hill Ages
	5.2 Waiting Time Bound
	5.3 Residence Time Bound

	6 Additional Implications of M/SERPT's Approximation Ratio
	6.1 Performance of FB for IMRL Job Size Distributions
	6.2 Performance Achievable by MLPS Policies

	7 Lower Bound on M/SERPT's Approximation Ratio
	8 Why Closing the Gap is Hard
	8.1 Tightening the M/SERPT Upper Bounds
	8.2 Tightening the Gittins Lower Bounds

	9 Conclusion
	Acknowledgments
	References
	A No Approximation Ratio for Traditional Policies
	B Difficulty of Computing the Gittins Policy
	B.1 Discrete Job Size Distributions
	B.2 Continuous Job Size Distributions

	C SOAP Mean Response Time Using Hills and Valleys
	D Deferred Proofs

