A Scalable Framework for Solving Fractional Diffusion
Equations

Max Carlson
mecarlson@cs.utah.edu
University of Utah
Salt Lake City, Utah

ABSTRACT

The study of fractional order differential operators (involving non-
integer derivative terms) is receiving renewed attention in many
scientific fields from photonics to speech modeling. While numer-
ous scalable codes exist for solving integer-order partial differential
equations (PDEs), the same is not true for fractional order PDEs.
Therefore, there is a need for highly scalable numerical methods
and codes for solving fractional order PDEs on complex geome-
tries. The key challenge is that most approaches for fractional PDEs
have at least quadratic complexity in both storage and compute,
and are challenging to scale. We present a scalable framework for
solving fractional diffusion equations using the method of eigen-
function expansion. This includes a scalable parallel algorithm to
efficiently compute the full set of eigenvalues and eigenvectors for
a discretized Laplace eigenvalue problem and apply them to con-
struct approximate solutions to fractional order model problems.
We demonstrate the efficacy of our methods by performing strong
and weak scalability tests using complex geometries on TACC’s
Frontera compute cluster. We also show that our approach com-
pares favorably against existing dense and sparse solvers. In our
largest solve, we estimated half a million eigenpairs using 28,672
cores.

CCS CONCEPTS

« Computing methodologies — Distributed algorithms; Par-
allel algorithms; - Mathematics of computing — Mathemat-
ical software performance; Solvers.

ACM Reference Format:

Max Carlson, Robert M. Kirby, and Hari Sundar. 2020. A Scalable Framework
for Solving Fractional Diffusion Equations. In 2020 International Conference
on Supercomputing (ICS "20), June 29-July 2, 2020, Barcelona, Spain. ACM,
New York, NY, USA, 11 pages. https://doi.org/10.1145/3392717.3392769

1 INTRODUCTION

Fractional partial differential equations (PDEs) are differential equa-
tions involving real number powers—as opposed to the more tra-
ditional integer powers—of the differentiation operator. Fractional
PDEs have been used to model a wide range of problems such as

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICS 20, June 29-July 2, 2020, Barcelona, Spain

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7983-0/20/06...$15.00
https://doi.org/10.1145/3392717.3392769

Robert M. Kirby
kirby@cs.utah.edu
University of Utah
Salt Lake City, Utah

Hari Sundar
hari@cs.utah.edu
University of Utah
Salt Lake City, Utah

propagation of acoustical waves in biological tissue [Holm and
Nasholm 2011], photonics [Chen et al. 2019], and speech model-
ing[Assaleh and Ahmad 2007]. While several scalable methods and
codes are available for solving integer-order PDEs, scalable compu-
tational methods and codes are not available for fractional PDEs.
This work aims to fill this gap by presenting the first large-scale scal-
able framework for solving fractional PDEs on complex geometries.
Specifically, we explore the method of eigenfunction expansion
as a method for discretizing the fractional Laplacian operator for
use in solving space-fractional elliptic and parabolic PDEs. This
formulation of the fractional Laplacian requires computing full set
of eigenvalues and eigenvectors for the discretized Laplacian (V?,
non-fractional).

Due to the non-local nature of fractional differential operators,
it is necessary to compute the full spectrum instead of only a small
subset, as is common for several other applications requiring scal-
able eigensolvers. Computing the full spectrum for a discretized
operator is a task usually done by dense, direct solvers. However, the
scalability for direct eigensolvers is poor in the distributed memory
setting. Additionally, the performance of direct solvers on complex
geometry was dramatically slower than on simple domains.

Alternatively, sparse iterative solvers—such as SLEPc [Hernandez
et al. 2005]-are highly efficient at producing small subsets of eigen-
pairs but convergence slows down significantly while estimating
larger sets of eigenpairs. In addition, they suffer from issues related
to partitioning work that hurts overall scalability. Our work focuses
on solving these scalability issues to enable the use of iterative
eigensolver techniques for estimating the full spectrum of large
problems.

In order to compute the full set of eigenpairs using sparse solvers,
a method called spectrum slicing can be employed. This method in-
volves slicing up the spectrum into sub-intervals that can be solved
independently for all eigenpairs in the sub-interval. This addresses
the degrading convergence issues related to estimating large sets of
eigenpairs, as well as provides an added level of parallelism. How-
ever, since the distribution of eigenvalues is not known, and can be
strongly skewed, determining the appropriate intervals to partition
the spectrum is not trivial.

Without a proper partitioning algorithm, any scalability to be
gained from spectrum slicing can easily be outweighed by the time
it takes to set up the problem.

In this work, we present a method for partitioning the spectrum
into sub-intervals such that each sub-interval contains equal num-
ber of eigenpairs and thus takes roughly the same amount of time
to solve. This allows each independent sub-problem to be solved in

https://doi.org/10.1145/3392717.3392769
https://doi.org/10.1145/3392717.3392769

ICS 20, June 29-July 2, 2020, Barcelona, Spain

— — —Ideal Parallel Efficiency
—8— ScalLAPACK PDSYGVX

10— SLEPc, Default Partitioning
—=©&— SLEPc, Our Partitioning

Speedup - (T28/Tp)

I
28 56 84 112 140 168 196 224 252 280

Number of processors - p

Max Carlson, Robert M. Kirby, and Hari Sundar

1000 T T T T T T T T

Time elapsed (s)

O ScalLAPACK PDSYGVX

X SLEPc, Default Partitioning
O SLEPc, Our Partitioning

10 I I I
28 56 84 112 140 168 224 280

Number of processors - p

Figure 1: (left) Parallel efficiency comparison of ScaLAPACK’s dense eigenvalue solver (PDSYGVX) plotted against the parallel
efficiency of SLEPC’s sparse solver using default partitioning and our partitioning algorithm. (right) Strong scaling comparison
of ScaLAPACK’s dense eigenvalue solver (PDSYGVX) plotted against the strong scaling of SLEPC’s sparse solver using default
partitioning and our partitioning algorithm. This experiment was run on a 25 by 25 by 25 cube mesh. Note: The baseline for
computing speedup was using the full set of 28 processors available for a node. As a result, the scalability for ScaLAPACK
appears flat due to most of the speedup happening between 1 and 28 processors and falling off once reaching the distributed

setting.

parallel with minimal load imbalance and results in a highly scal-
able method for constructing the eigenbasis necessary for solving
fractional PDEs.

The key property of our partitioning scheme is that it has time
complexity that is constant with respect to the number of pro-
cessors. This property is crucial for achieving scalability using a
spectrum slicing approach. Using our scheme, we demonstrate that
we can achieve super-linear parallel efficiency at extreme scale and
can compute up to half a million eigenpairs in under 10 minutes
which would not be achievable using dense direct solvers or sparse
iterative solvers like SLEPc!. Our approach outperforms and scales
better than the ScaLAPACK [Blackford et al. 1997] dense, direct
eigenvalue solver (PDSYGVX) as well as SLEPc’s sparse iterative
solvers. In figure 1, we show the parallel efficiency and runtime of
ScaLAPACK (dense, direct), vanilla SLEPc (sparse, iterative), and
SLEPc equipped with our partitioning scheme. We also demonstrate
that this numerical scheme has exponentially convergent accuracy
when solving fractional diffusion or Poisson equations.

Contributions: To the best of our knowledge, this is the first
large-scale solver for fractional diffusion equation. Our solver sup-
ports complex 2D and 3D domains. A central contribution has
been the development of a scalable spectrum slicing algorithm
that improves the scalability and load-balance of iterative eigen-
solvers when estimating large number of eigenpairs. This contri-
bution should be have an impact to a wider range of problems be-
yond fractional PDEs. We also demonstrate the excellent speedup—
superlinear in many cases—as well as comparisons with state-of-the-
art direct and iterative eigensolver. Our code is built on top of the
SLEPc/PETSc libraries and is open source and available under the

Ithe default SLEPc solver. This work is built on top of SLEPc.

MIT license 2. While the core fractional component is discretization
agnostic, we have also integrated with the open source hp-finite
element library nektar++, to enable domain scientists to solve frac-
tional Laplacian problems on complex 2D and 3D domains.

The rest of the paper is organized as follows. In §2 we present
the mathematical details and background for non-local operators
and how the properties of such operators motivated the need for
our algorithm. We then present the method and implementation
details in §3. Then we demonstrate the scalability and performance
of our approach in §4 and the accuracy of the method in §5.

2 NON-LOCAL OPERATORS

While it isn’t necessary to understand the specific details of frac-
tional differential operators to understand the eigenvalue partition-
ing algorithm that we are presenting, it does provide context for the
numerical and computational challenges that are unique to these
operators. In this section, we will give some background on these
specific challenges and how they have shaped our approach.

Fractional differential operators are characterized by their non-
local property. For instance, time differential equations with integer
order operators describe processes that are based on the assumption
that the rate of change of some value is completely independent
on the state of the process in the past. This is a perfectly fine
assumption for a lot of naturally occurring processes but it does
not hold in general.

One example of how expanding models to include non-local
fractional operators furthered the understanding of a process comes
from diffusion. [Henry et al. 2010] [Oliveira et al. 2019] One of the
key features of diffusion that comes from the integer order model
is that the mean squared displacement scales proportionally with

2github https://github.com/paralab/Nektarpp_EigenMM

A Scalable Framework for Solving Fractional Diffusion Equations

-

ICS 20, June 29-July 2, 2020, Barcelona, Spain

i\

) "o
|

Figure 2: Hanford site mesh and three example solutions for the fractional Poisson problem (6). Solution plots are, from left to
right, for « = 0, 1, 2. Black lines in the solution plots indicate the contour where u(x) = 0. The fractional Laplacian with degree
a is equivalent to the standard Laplacian when « = 2, and is equivalent to the identity when « = 0, thatis (-A)%u = u = f.

time. There have been experiments that show there are processes
that look very much like diffusion but do not satisfy this condition.
This type of diffusion process is known as anomalous diffusion and
can be modeled using fractional time or space differential operators
depending on the specific regime. For example, superdiffusion (one
of the regimes of anomalous diffusion) can be modeled using the
fractional Laplacian operator and is the type of process we are
interested in.

For this paper, we are specifically interested in the fractional
Laplacian operator [Lischke et al. 2018]. It shows up in many mod-
els ranging from finance [Kumar et al. 2014] [Levendorskii 2004],
biology [Cusimano et al. 2015] [Magin 2010] [Cusimano et al. 2013],
structural mechanics [Tarasov and Aifantis 2018] [Evgrafov and
Bellido 2018], and quantum mechanics [Laskin 2002] [Guerrero
and Moreles 2015]. Most of these models are interested only in
the 1D version of the fractional Laplacian or are limited to simple
domains in higher dimensions. This may be partially due to the
lack of widely available solvers for fractional PDEs on very large
complex domains.

With this research happening in fractional PDEs, it is necessary
to have scalable solvers for complex geometry so that scientists can
verify and replicate results numerically in a reasonable amount of
time. We have developed one such solver and the following sections
of this paper will go into detail on how our method works and the
paralellization strategies employed to ensure we are taking full
advantage of available computing resources.

2.1 Spectral Fractional Laplacian

For this paper, we will use the spectral definition of the fractional
Laplacian [Lischke et al. 2018] specifically for the case of homoge-
neous boundary conditions (Dirichlet or Neumann). This spectral
definition is constructed by first considering the infinite, discrete
set of eigenvalues and eigenfunctions of the integer order Laplace
eigenvalue problem (1) with appropriate homogeneous boundary
conditions. It is possible to extend this method to nonhomogeneous
boundary conditions by using harmonic lifting but this is beyond

the scope of this paper as it does not change the underlying princi-
ples of the method. Harmonic lifting can be computed using integer
order solvers for the Laplace equation and this does not impact how
the fractional Laplacian operator is constructed.

A = M (1)
B(¥ilao 0.
With the eigenpairs of (1), the spectral fractional Laplacian of a
function u is defined as

(=0 = 3" 28w,)i @)
k=1

where (-, -) is the inner product for Ly(Q). Refer to [Lischke et al.
2018] for a more elaborate treatment of this and more definitions
for the fractional Laplacian operator.

The first model problem we will consider is the space-fractional
diffusion equation (3) with homogeneous boundary conditions and
some arbitrary initial conditions:

dru(x,t) = —p(-N)*/%y
u(x,loa = 0 ®3)
u(x, 0) = uo(x).

The spectral definition of the fractional Laplacian can be plugged
directly into the diffusion equation (3) and using linearity we obtain

. 24
(9 (t) + pAT Pag (0l = 0 (4)
k=1
This equation is satisfied when for all k € 1,2, 3, ..., each coef-
ficient . (t) satisfies the ODE ﬁl’c = —,ulz/zﬁk. These ODEs have

_upel? . .
exact solutions () = g (0)e A"t Therefore, this fractional
diffusion problem has the exact solution

u(x,t) = Z e_“:/zt<UOs Vi)Y ®)

k=1

ICS 20, June 29-July 2, 2020, Barcelona, Spain

Similarly, we consider the steady state of the diffusion equation
with a forcing term. This equation (6) is also known as the fractional
Poisson equation with homogeneous boundary conditions:

(_A)a/zu f (6)

u|aQ = 0.

If f can be adequately represented by a spectral series that satis-
fies our boundar conditions,

f= 4 vk Y]
k=1

then we can once again directly plug the spectral definition and
this f into (6). Using the linearity of summations and orthogonality
of the eigenfunctions, the coefficients for the unknown function u
can be solved for directly to obtain

u=) A ®)
k=1

For both of these model problems, we have not needed to dis-
cuss a numerical scheme for computing solutions. We have simply
shown that both problems have an extensive family of exact so-
lutions that contain the types of solutions we are looking for. For
domains like lines, squares, and cubes, this eigenfunction expan-
sion definition is simply a more general form of the Fourier series
solution.

This more general definition also allows us to extend this ap-
proach to complex geometries with known exact eigenfunctions
like discs, spheres and cylinders. For instance, the eigenfunctions
for a sphere are the spherical harmonics and can be evaluated using
the fast spherical harmonic transform [Mohlenkamp 1999].

This also means we can use this method to solve problems on
arbitrary complex geometry by solving the (integer order) Laplace
eigenvalue problem for approximations to the appropriate eigen-
functions. By discretizing the domain and using the weak form of
the Laplace eigenvalue problem we obtain

Koy = O My)
where K is the stiffness matrix and M is the mass matrix such that

Kij = (Vei,Vej) M;j = (ei,ej) (10)
given basis functions e; and e;.
Using the solution to this eigenvalue problem, the approximate
solution is simply

g = PINIRCAIO
v o= N6 b
where g is the approximation of the forcing function using the
computed eigenbasis and v is the approximate solution to the frac-
tional Poisson problem (6).

This system (9) is just the typical finite element discretization
[Boffi 2010] of the Laplace eigenvalue problem and therefore the
resulting K and M have the usual sparsity that can be leveraged.
The tradeoff then is instead of solving an N X N dense system
(fractional FEM, finite differencing, etc), we solve for N eigenpairs
of the sparse, symmetric system (9).

(11)

Max Carlson, Robert M. Kirby, and Hari Sundar

3 METHOD

To solve the fractional Poisson problem (6), the overall algorithm
then can be seen in Algorithm 1. For a given input geometry, the
eigenvalue problem is solved for all eigenpairs to construct the
fractional operator. Then to solve the fractional Poisson problem
for a given forcing function f, the approximate solution can be
computed using only a few matrix-vector multiplications.

Algorithm 1 Solver Pipeline: Fractional Poisson

1: Form standard (non-fractional) stiffness/mass matrices: K, M
2: Solve for approximate eigenpairs: ©, ¢

3: for each forcing function f do

4 Compute FEM expansion coefficients of f: f

5 Estimate spectral coefficients: f = fTM®

6 Compute solution coefficients: & = @@‘“/Zf

7 Evaluate FEM expansion to get approximate solution

8: end for

Solving a dense N x N system is an O(N?3) operation. Alterna-
tively, solving for the full set of eigenpairs for a given mesh can
be done in O(N?) time and space by exploiting the sparsity of the
integer order eigenvalue problem. For a given complex geometry,
the full set of eigenpairs need to be only computed once and can be
reused to solve multiple problems. Solving a single problem only
requires applying the dense fractional operator which can be done
in O(N?) time and space. Therefore this approach is a much more
cost-effective strategy for handling non-local fractional problems.

Damping of solution coefficients {fk=1 v k)

10t
10°
OG-
o
g
101 i)\ -DBBQ-BEB'D_D—B}D-B-D
N
L 6
2 oy
10 o Ao NN
e " B '49‘-4}-(.)_{,}_
=] e _&{}'**‘9*6—4}
.
103 He
N)
e
10
—— —a=00
—EB—a=05
10°° a=10
—&—a=15
——a=20
10°6 | , . .
0 5 10 15 20

Figure 3: Applying the fractional Laplacian can be viewed as
a damping of the spectral coefficients. This example is what
the damped coefficients look like for various « for the first
20 1D eigenvalues.

To solve the Laplace eigenvalue problem, we need a discrete
system. Any finite element discretization will suffice as long as we
can assemble the stiffness and mass matrices for the non-fractional
Laplace eigenvalue problem. The main operation that dominates
the runtime of this solver is then solving for all eigenpairs of this dis-
crete system 9. Since we are solving for all N eigenpairs of a sparse

A Scalable Framework for Solving Fractional Diffusion Equations

system, the time and space complexity is at least O(N?). Therefore
we need a parallelization strategy that reduces this amount of work
as much as possible and takes full advantage of available hardware.

3.1 Partitioning

We now present our approach to partitioning the total set of eigen-
pairs into equally sized, contiguous groups of eigenpairs that can be
solved for independently. The naive approach (and default SLEPc
behavior) is to form P sub-intervals of equal length p/P but spectral
density is not typically uniformly distributed. In figure 4, the cumu-
lative eigenvalue counts can be seen for two large meshes. For the
cube, the density is somewhat uniform and the point at which the
interval could be split into two equal halves is near 40%. Alterna-
tively, the Hanford site (see §4) mesh’s density is very non-uniform
and half of the eigenvalues reside in the first 3% of the spectrum
and there are gaps with no eigenvalues. This type of non-uniform
spectral density is much more typical of complex geometry and
illustrates the need for our efficient and accurate partitioning.

In order to achieve this load-balanced partitioning, we need some
way to count the number of eigenvalues in a sub-interval. For a
given system, the spectral radius p can be approximated with a few
applications of K and M. Since the system is symmetric, we know all
possible eigenvalues are real and lie in the interval [—p, p]. For the
standard Laplace problem, we also have positive semi-definiteness
so this can be taken even further to say all eigenvalues are in [0, p].
Then, in order to achieve maximum parallel efficiency, we need to
divide this interval into P independent sub-intervals with equal
eigenvalue counts.

3.2 Solving for all eigenpairs in an interval

One family of algorithms for solving sparse linear eigenvalue prob-
lems are the Krylov subspace methods. The idea is to produce a
tridiagonal matrix iteratively that has eigenvalues and eigenvectors
that are approximately equal to the true eigenpairs. At each itera-
tion, both the number of columns and rows of the tridiagonal matrix
increases by one, which also means the number of approximate
eigenvalues increases by one.

Krylov subspace methods compute a pre-determined number
of eigenpairs close to a supplied target value. This is achieved by
forming a shifted system (K —aM) centered around the point a. The
true eigenvalues of this shifted system close to 0 can be shifted back
to get the true eigenvalues of the original system that are closest to
a. With this, we can iteratively solve for the d closest eigenpairs to
any given value a.

Solving for the d closest eigenvalues to a and the d closest eigen-
values to another point b can done completely indepedently of each
other. If the total set of eigenvalues can be partitioned into groups
of d eigenpairs, then we can use SLEPc’s Krylov-Schur iterative
method to compute each batch of eigenpairs completely indepe-
dently. This forms the first level of parallelism for our approach
and is typically known as spectrum slicing [Li et al. 2018a]. The
challenge is then how to split the interval containing all solutions
into load-balanced sub-problems.

ICS 20, June 29-July 2, 2020, Barcelona, Spain

3.3 Two-level parallelism and communication
hierarchy

We utilize a two-level approach to parallelism by grouping MPI
tasks into processor teams called evaluators. Each evaluator handles
solving one sub-interval for N/P eigenpairs and the p MPI tasks
within each evaluator compute the parallel Cholesky factorization
for its sub-problem. By default, P is the number of nodes available
and p is the number of processors available on a single node. How-
ever, the communication hierarchy is flexible and a user can set
it so there are multiple evaluators per node or multiple nodes per
evaluator.

It is important to note here that as the number of degrees of
freedom N increases, the size of the system (N X N) is increasing
and the total number of eigenpairs that we need to compute is
increasing. The two layer parallelism is then designed to efficiently
tackle both directions of growth. The number of evaluators P grows
in order to decrease the number of eigenpairs (N) per sub-interval.
The number of processors per evaluator p then grows to match
the optimal number of threads to do the (N X N) sparse Cholesky
factorization.

3.3.1 Eigenvalue counting. One approach for counting the number
of eigenvalues in an interval is to utilize Sylvester’s Law of Inertia.
Specifically, we can construct the shifted system (centered at a) and
compute its Cholesky factorization A, = K — aM = LDLT. The
number of eigenvalues greater than a is equal to the number of
positive entries in the diagonal matrix D. If we repeat this process
on the shifted system A, = K — bM we get the total number of
eigenvalues in the interval [a, b].

Alternatively, a cheaper approximate technique for counting
eigenvalues is Kernel Polynomial Filtering [Napoli et al. 2013]. This
technique is used typically on extremely large matrices when the
exact number of eigenvalues is not important. This method is quite
a bit cheaper since it only requires matrix-vector multiplications
and not a full Cholesky factorization. Unfortunately, to get even
close to the accuracy needed for any partitioning algorithm would
require so many matrix-vector multiplications that the Cholesky
factorization would be far cheaper.

SLEPc has no methods for actually forming the independent
sub-intervals and if the partitioning is not supplied, it will use
evenly spaced sub-intervals which result in massive load imbalance
even on simple domains. Therefore we had to develop our own
partitioning scheme to get proper load balancing. Since we don’t
know exactly where all of the N eigenvalues are located, we use
the exact eigenvalue counting technique as a building block for
sampling the density of the spectrum.

3.3.2 Tree partitioning. With the ability to count the number of
eigenvalues greater than some point a, we could do a binary search
to split the total interval into two sub-intervals of arbitrary size.
Then for any given P, the interval could be split in a tree-like fashion
(an example can be seen in Figure 5) to get evenly loaded sub-
intervals. Unfortunately, this approach had a number of problems
that dramatically hurt scalability.

The total amount of work required to do the partitioning using
this scheme is

ICS 20, June 29-July 2, 2020, Barcelona, Spain

16000 Cumulative Eigenvalue Count of Hanford Site Mesh
TT T T T T T T

14000

12000

10000

8000

6000

4000

2000

Density
— — — Equal Partitions
I | |

15 2 25 3
x10°

Max Carlson, Robert M. Kirby, and Hari Sundar

Cumulative Eigenvalue Count of 32x32x32 Cube Mesh

40000 T ;
| | |
35000 } } } 1
| | |
30000 } } } .
| |
25000 | | |]
| | |
20000 } } } 1
| |
15000 - } } } 1
| | |
10000 | | |]
| | |
5000 - ! ! ! R
| | | Density
| | | — — —Equal Partitions
0 Y I [‘ ‘ ‘
0 0.5 1 1.5 2 25 3 3.5 4

%104

Figure 4: The cumulative eigenvalue counts for the (left) Hanford site mesh (~15k DoFs) and a (right) 32x32x32 cube mesh
(~32k DoFs). The dashed lines indicate the points at which the interval can be split into 4 sub-intervals with equal eigenvalue

counts.

7p = log,(P)n:T(k, N, p), (12)
where P is the number of evaluators, p is the number of processors
per evaluator, k is some measure of the sparsity of the system, n. is
the number of iterations the binary search takes to get a good split,
and T is the time it takes to do the parallel Cholesky factorization
of the shifted system K — aM. This time T(k, N, p) looks like kTNp
for small values of p but the parallel efficiency hits diminishing
returns as p grows.

Even with the fact that logz (P) grows slowly with P, the n.T(k, N, p)
portion is expensive enough that multiplying it by some scaling
factor is not going to have the scaling properties that we need.
Additionally, during tree partitioning, many of the evaluators don’t
have any work to do which means utilization for this approach is
very low.

3.3.3 lterative partitioning. Not only did we want to avoid scaling
the partitioning time with the number of evaluators, but if possi-
ble, avoid doing any binary searches as well. Each binary search
requires around 10 Cholesky factorizations in order to get a good
split which adds up really fast. Additionally, all of those 10 steps
have to be done by a single evaluator and cannot really be aided by
any idle machines. Therefore we came up with a greedy iterative
partitioning strategy that works as follows.

We can get an initial guess for the partitioning by splitting the
total interval into P sub-intervals of equal length. This is actually
the default behavior of SLEPc if no partitions are provided to a
spectrum slicing method. This initial guess is results in very poor
scalability even for simple geometries since eigenvalues are not
evenly distributed through the spectrum.

With this initial guess, all but one evaluators each compute the
number of eigenvalues greater than one of the splitting points in
a single Cholesky factorization in parallel. With these values, the
number of eigenvalues in each sub-interval can be computed and
can be seen plotted in Figure 6. This histogram can be thought of as
a piecewise constant approximation to the true density of states for

l 213 | 1/3

213 1/3

1/2 1/

13 1/3

Figure 5: Tree based partitioning. In order to split all eigen-
values into three equal-sized groups, first split the total in-
terval into 2/3 and 1/3 sized groups and then split the 2/3
sized group in half. Each split involves a binary search style
operation where each step requires a Cholesky factoriza-
tion.

the system. Then the root processor uses this approximation of the
density to choose new splits that would give equally loaded sub-
intervals if this was the true density and then this process repeats
ng times where n, is some user supplied parameter.

This greedy iterative approach does not converge to the true
optimal partitioning. Instead it gets very close to optimal and then
enters a cycle. However, the best partitioning can be stored at each
step and is reached usually within 3 or 4 iterations. This greedy
global refinement only takes a handful (n, has a default of 7) of

A Scalable Framework for Solving Fractional Diffusion Equations

Cholesky factorization and provides a partitioning that is much
closer to the optimal than the naive initial guess.

This iterative approach can be further modified to get exact con-
vergence by merging the eigenvalue counts at each step so that
the piecewise constant approximation is increasing in resolution
at each step nearby the optimal solution. A sketch of this modified
approach can be seen in Algorithm 2. The tradeoff here is that for
some extra work, the iterative partitioning will converge exactly.
The greedy approach typically gets close enough to the ideal par-
titioning that it usually is not worth the extra work to partition
exactly.

Algorithm 2 Adaptive Partitioning

1: Pick equally spaced initial guess x(*)
(0)

2: Evaluator i computes number of eigenvalues greater than x; |
and stores the result in R‘i‘1

3: for k = 1...n; do

4 Refine x(*=1 to get x(k) using R4

5 Count sub-intervals and put result in RB

6: if k < ny then

7 Merge (x(k_l), R4) and (x(k), RB)

8 Store result in (x(k) ,RAY)

9: end if

10: end for

In certain rare cases, due to precision issues, the exact eigenvalue
counting technique will give a count that is slightly incorrect. When
this happens, the count for a sub-interval can go negative and
two neighboring partitions will end up out of balance. For these
cases, a second optional local refinement stage can be employed. In
order to do this in such a way that does not scale with P, for each
iteration, half of the evaluators do a binary search on their pair
of sub-intervals (if they are unbalanced beyond a given threshold)
to balance the pair towards the optimal and then other half of
evaluators balance the remaining pairs. This can then be done over
np, passes but typically one pass is sufficient.

With this strategy, the total time complexity for partitioning is

7p = (ng + 2npne)T(k, N, p) (13)
where ng4 is the number of global refinement steps (default 7), np,
is the number of local refinement passes (default 3), and n is the
number of iterations required to get a good split by a binary search
(default 10). This is exactly the kind of time complexity we are look-
ing for. The number of evaluators P does not show up at all and the
total number of Cholesky factorizations is completely determined
by user-supplied constants. It should also be noted that this is a
worst case complexity. In practice, the local refinement is rarely
triggered and even then usually terminates in a single pass.

3.4 Post-processing

Finally, once the complete set of eigenpairs are computed, they need
to be orthogonalized and normalized to ensure the eigenvectors are
orthonormal. Fortunately, since the system is symmetric, the only
eigenvectors that need to be made orthogonal to each other are
those that share the same eigenvalue. Since any eigenvectors that

ICS 20, June 29-July 2, 2020, Barcelona, Spain

un
@
=3

\ —=—Initial guess
\ S— After 1 iteration
After 10 iterations

-
Ln
=3

un
=
=1

-
[
=1

-
]
=]

/

-
[
[=1

A
ry

I’I
».

]
-,
o

Number of eigenvalues in sub-interval i

.
<

90

2 4 6 8 10 12 14 16
Sub-interval i

Figure 6: Iterative partition refinement. The initial guess of
equally space sub-intervals (default behavior in SLEPc) re-
sults in unbalanced partitions.

share an eigenvalue will fall into the same sub-interval, the same
evaluator that computed these vectors can do the orthogonalization
completely independently from any other evaluator.

4 PERFORMANCE

The overall time complexity using our partitioning algorithm is
then

T= %T(k’N,p)-}—(}’[a+nan)T(k,N,p)+R (14)

where the first term is the eigenvalue problem solve phase, the
second term is the partitioning phase, and the last term, R, is the
remainder. Additionally, T is the time it takes to do a Cholesky
factorization. The remainder consists of the time taken by Nektar++
to assemble the discretized system and for some other small and
quick operations like computing the spectral radius. This time is
just left as a remainder since it is completely dominated by the
solve and partitioning phases. Another note is the time to solve for
a single eigenpair is dominated by the time it takes to do a single
parallel Cholesky factorization, therefore solving for % eigenpairs
takes about %T(k, N, p) time.

To test the performance and accuracy of the solver, we ran exper-
iments primarily on two computing clusters. The first is the Univer-
sity of Utah Center for High Performance Computing’s Kingspeak
cluster which accommodated jobs up to 12 nodes where each node
is dual socket with Intel Xeon processors and 64GB of memory. For
larger jobs, we used the Texas Advanced Computing Center’s new
Frontera computing system during its early access phase. Frontera
is a powerful new cluster with 8,008 nodes with Intel Platinum
8280 processors (also dual socket) and 192 GB of memory per node.
Utilizing this cluster allowed us to push the size of the jobs to a
more extreme scale utilizing hundreds to thousands of cores.

ICS 20, June 29-July 2, 2020, Barcelona, Spain

4.1 Test Meshes

To test how the solver works on complex geometry, we used two
test meshes, one in 2D and one in 3D. For the 2D mesh, we used
a mesh of the Hanford site which can be seen in Figure 2 which
has about 15k quadrilateral elements. For the 3D mesh, we used a
mesh of an aorta that can be seen in Figure 7 which has about 24k
tetrahedral elements. The number of degrees of freedom for both of
these meshes can be increased by increasing the order of the basis
elements in order to simulate larger and higher order examples.

Figure 7: Mesh of an aorta with about 24k tetrahedral ele-
ments.

4.2 Parallel Cholesky Factorization

Before we get into the solver performance, there is still the question
of how to determine the configuration parameters of the two layers
of parallelism, p and P. Specifically, how does the value of p affect
the time it takes to do a parallel Cholesky factorization? For this, we
selected a few simple sizes of cubes and factored the matrix K — aM
and measured the time taken for each value p. This experiment was
run on the (Cluster 1) computing cluster and the results (plotted
as parallel speedup) can be seen in figure 8. Additionally, we use
the MUMPS [Amestoy et al. 2001] parallel Cholesky factorization
library.

From this, it can be seen that the speedup from increasing p
reaches diminishing returns fairly rapidly and is dependent on the
size of the linear system. For very small problems, it makes sense
to have many evaluators per node since the speedup plateaus at
around 8 processors. However, our solver is geared towards very
large scale problems and for these it makes more sense to use the
full set of processors on a node. The default value then for p in our
solver is to use all of the processors in a socket. This minimizes the
communication between nodes and maximizes the number of tasks
used per Cholesky factorization for large problems.

Max Carlson, Robert M. Kirby, and Hari Sundar

Cholesky Factorization Parallel Efficiency

7
—— N =409
—— N = 8000
6l N = 64,000]
51]
a
3 e e,
24 : ~/ 1
o ¥ ¢
73]
3l]
ot]
o e e
1 L=
o 10 20 30 40 50 60

Number of Processors

Figure 8: Parallel speedup of Cholesky factorization for vari-
ous N and p. Run on the (Cluster 1) cluster with 28 processors
per node.

4.3 Strong Scalability

In order to verify that the solver phase actually scales as % T(k,N,p)
we performed a strong scaling experiment on a variety of 2D and
3D meshes with both simple and complex geometry with different
numbers of degrees of freedom. Figure 9 shows the recorded elapsed
time with respect to P and then Figure 10 shows the parallel speedup
vs the ideal speedup.

L X Hanford Site, 2D, N = 15.3k
10000 Hanford Site (p = 2), 2D, N = 59.3k
Cube, 3D, N = 15.6k
Cube, 3D, N = 32k

1000 3
»
°
c
Q
o
[0}
<L

- 100 3
[0}
7]
o
o
L

10 + q

I I

1 - - '
28 56 112

Number of Processors

224 280

Figure 9: Strong scaling for a collection of simple and com-
plex 2D and 3D meshes on the (Cluster 1) computing cluster.

For these small values of P, we observe super-linear speedup for
all test cases. This is because the Krylov-Schur algorithm requires
quite a lot more memory to compute N eigenpairs than N/2 and
this memory requirement must exceed what can be cached so there
is excessive memory movement for the P = 1 case that is mitigated
when the problem is partitioned with larger P.

A Scalable Framework for Solving Fractional Diffusion Equations

15 T T T T T T T T

— — —ldeal

——— Hanford Site, 2D, N = 15.3k
Hanford Site (p = 2), 2D, N = 59.3k

—+&— Cube, 3D, N = 15.6k

$&— Cube, 3D, N = 32k

Speedup

.
28 56 84 112 140 168 196 224 252 280
Number of Processors

Figure 10: Parallel speedup for a collection of simple and
complex 2D and 3D meshes on the (Cluster 1) computing
cluster.

We recreated this experiment on the Frontera cluster on a larger
complex 3D mesh (aorta) to see if this trend continued for larger
values of P. The results of this can be seen in Figure 11. Eventually,
as P keeps increasing, the parallel speedup does start to dip under
the ideal linear speedup. However, while the parallel speedup drops
below the ideal linear speedup for the Hanford site mesh at P = 64,
the absolute run time with this value of P is a few seconds. At this
point, there would be little benefit in increasing P.

Parallel Efficiency (Frontera)

70
— — —Ideal
———Hanford Site (N = &4k})
60 I | —o— Aorta (N = 165) ff/
50 -
[=%
=]
h=]
D40t
o
(1]
o
wa0r
&
o
20 F
10
0
0 560 1120 1680 2240 2800 3360 3920

Number of Processors

Figure 11: Parallel speedup for Hanford site mesh and the
aorta mesh on the Frontera computing cluster for P up to
64 nodes. A single node didn’t have enough memory for the
aorta so the baseline for the aorta mesh is P = 2. Parallel
efficiency can be seen to drop off in the Hanford site once
the noise in the greedy partitioning scheme dominates the
magnitude of the optimal partitioning.

ICS 20, June 29-July 2, 2020, Barcelona, Spain

4.4 Weak Scaling

Since the key idea motivating this work is that if we need to compute
the full spectrum for a very large mesh (N =~ 500, 000), we need to be
able to scale up the computing resources to produce the eigenbasis
in a realistic amount of time. In order to see how many eigenpairs
we could actually get with a feasible number of machines, we set
up a range of problem sizes from 24k eigenpairs to half a million
and increased P until we got a solve time under 10 minutes. This
experiment was done on the Frontera cluster and the raw data can
be seen in Table 1.

Table 1: Raw data for aorta weak scaling experiment.

Number of DoFs 24k 165k 528k
Number of Nodes 1 64 512
Number of Evaluators 2 128 512
Threads per Evaluator 28 28 56
Total Processes 56 3,584 28,672
Total Elapsed 4m59s | 4m23s | 9m33s
(Compute spectral radius) 3s 6s 20s
(Partition interval) 3s 25s 1m40s
(Solve) 4m44s | 3md4s | 7mlds
(Post-processing) 8s 8s 18s

4.5 A brief note about eigenvalue solvers

In the introduction, we motivate the need for a solution to estimat-
ing the full spectrum of a sparse system and present Figure 1 to
show how our method compares with the current implementation
of SLEPc and ScaLAPACK. We did not include a comparison with
other similar solvers such as the newest version of FEAST [Kestyn
et al. 2016] or Eigenvalue Slicing Library (EVSL) [Li et al. 2018b]
that both make use of spectrum slicing parallelism. All three of
these libraries have spectrum slicing parallelism but stop short of
providing a method for automatically partitioning the spectrum.
While we present a comparison with SLEPc since it was the library
that best fit our needs, our partitioning scheme is applicable to
any spectrum slicing eigenvalue solver and is independent of the
underlying solver implementation.

5 ACCURACY

To quantify the accuracy of this method, we use the two model
problems mentioned in §2. The first is the diffusion equation with
no forcing term. This represents the behavior of the homogenous
solution to a more general diffusion equation. The second model
problem represents the steady state solution as the homogeneous
solution goes to 0. By separating the general diffusion equation into
these two situations we can get a better idea of how the number of
elements and basis order affects each regime in isolation.

The easiest way to test the accuracy is to use a simple domain
like a square or a cube with known eigenfunctions that are easy to
compute. For a square and cube, these are just the typical fourier

ICS 20, June 29-July 2, 2020, Barcelona, Spain

modes. For these experiments, we also use homogeneous Dirichlet
boundary conditions.

For the fractional homogeneous diffusion problem, we used the
following initial conditions

up = 2 sin(zrx) sin(ry) (15)

which then have the exact solutions

u = 2e~H@T) sin(rx) sin(ry). (16)

For the fractional Poisson problem, we used the same functions
for the forcing,

f = 2sin(xx) sin(ry) (17)

which have exact solutions

u = 2(27%) "% sin(zx) sin(ry). (18)

Using these exact solutions, we computed approximate solutions
for a variety of inputs. The first input is the order of the basis
functions and we varied this value from 1 to 8. The second input is
the number of elements in the mesh. For each of these, the solution
error was computed for 11 equally spaced values of a from 0 to
2. The solution error for the diffusion equation was evaluated at
t=04andp=1.

The results of this equation for the Poisson equation can be seen
in Figure 12 and the results for homogeneous diffusion can be seen
in Figure 13. The main thing to note is that solution accuracy im-
proves exponentially with respect to the order of the basis function.
Increasing the number of elements improves the solution accuracy
but not quite as drastically. This is because increasing the order
improves accuracy at the low end of the spectrum where the input
function “lives” but an input that has components in the high end
of the spectrum might suffer with increased order.

Fractional Poisson, (Dirichlet)

Max Carlson, Robert M. Kirby, and Hari Sundar

Fractional Diffusion, (Dirichlet)

10° . : ‘
—#—n=8a=1
—#—n=13, a=1

1025 n=20,a=1 |]

Relative L2 Error

10 10

1012

Figure 12: Solution accuracy for fractional Poisson equation
with respect to order of basis functions and number of ele-

ments.

—#—n =32,
——n=751,

n=281,

a=1
a=1

a=1

—*—n=128a=1

"

QOrder of Basis Functions

10° . . .
—=—n=8a=1
—#—n=13, a=1
=20,a=1
10 2 S n N
; —*—n=32,a=1
—#—n=5l,a=1
NN, n=8l,a=1
5 10k , —*—n=128a=1
= \ b .
| X
5 NN
— 5 % N
g 10°F N 1
P R
% \ \\\\\\
o 108} /\ S \\\‘\ 1
N SN
10 10 [
10 12 ' L -
1 2 3 4 5 6 7 8

Order of Basis Functions

Figure 13: Solution accuracy for fractional diffusion equa-
tion with respect to order of basis functions and number of
elements.

While these plots show exponential convergence with respect
to the order of the basis functions, the input functions are overly
simple. Specifically, they are the first eigenfunctions of the Laplace
operator and the approximation will reside almost entirely in the
low end of the spectrum. Inputs that span more of the spectrum
will likely require higher orders and number of elements in order
to achieve the same level of accuracy.

6 CONCLUSION

Even though our eigenvalue solver can be used with any FEM li-
brary, for our experiments we have integrated our solver into the
Nektar++ spectral/hp element framework [Cantwell et al. 2015].
We carefully matched the interface with the existing diffusion and
Poisson solvers so that a researcher could use our fractional solvers
without needing to change their workflow. With our scalable eigen-
value solver combined with this Nektar++ integration, we now have
a scalable framework for solving fractional diffusion and Poisson
equations. We hope that when this solver is pushed into the release
branch of Nektar++ that it will be the first step in facilitating even
more research into non-local operators on complex geometry.

Now that the framework is up and running for homogeneous
boundary conditions, the next step is to include support for non-
homogeneous BCs. According to [Lischke et al. 2018], there are a
few approaches to handling these kinds of boundary conditions
and further work will be in evaluating and implementing these
methods.

Additionally, the largest performance bottleneck at the moment
is the time it takes to solve each shifted (K — aM) system using
parallel Cholesky factorization. Since these systems are very sparse,
we would like to utilize a preconditioned iterative method to ap-
proximate the solutions to these systems in a much smaller amount
of time. One approach would be to use a multigrid based solver
which would hopefully have the kind of convergence needed to
beat a direct method like Cholesky factorization. We are looking

A Scalable Framework for Solving Fractional Diffusion Equations

into one such library that was developed for use with Nektar++
and further details of which can be found in [Rasouli et al. 2018].
Finally, applying the fractional operator to solve a given prob-
lem is still an O(N?) dense matrix-vector multiplication. We are
currently experimenting with hierarchical matrix compression tech-
niques to bring the time and space complexity of this operation
to O(N log N). Our preliminary experiments in this direction have
been positive and we hope to present this work in the near future.

ACKNOWLEDGMENTS

The first and third authors acknowledge the support of NSF (under
DMS-1521748 and CCF-1704715) and ARO (MURI 00001271 sub-
contract with Brown University) respectively. The second authors
acknowledges support from the Army Research Laboratory (ARL)
under Cooperative Agreement Number W911NF-12-2-0023. The
views and conclusions contained in this document are those of the
authors and should not be interpreted as representing the official
policies, either expressed or implied, of ARL or the US Govern-
ment. The US Government is authorized to reproduce and distribute
reprints for Government purposes notwithstanding any copyright
notation herein. Additional thanks to Xiaoning Zheng and George
Karniadakis of Brown University for discussions relating to the
content of this paper.

REFERENCES

P.R. Amestoy, I. S. Duff, J. Koster, and J.-Y. L’Excellent. 2001. A Fully Asynchronous
Multifrontal Solver Using Distributed Dynamic Scheduling. SIAM J. Matrix Anal.
Appl. 23,1 (2001), 15-41.

K. Assaleh and W. M. Ahmad. 2007. Modeling of speech signals using fractional calculus.
In 2007 9th International Symposium on Signal Processing and Its Applications. 1-4.
https://doi.org/10.1109/ISSPA.2007.4555563

L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra,
S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley.
1997. ScaLAPACK Users’ Guide. Society for Industrial and Applied Mathematics,
Philadelphia, PA.

Daniele Boffi. 2010. Finite element approximation of eigenvalue problems. Acta
Numerica 19 (2010), 1-120. https://doi.org/10.1017/50962492910000012

C.D. Cantwell, D. Moxey, A. Comerford, A. Bolis, G. Rocco, G. Mengaldo, D. De Grazia,
S. Yakovlev, J.-E. Lombard, D. Ekelschot, B. Jordi, H. Xu, Y. Mohamied, C. Eskilsson,
B. Nelson, P. Vos, C. Biotto, R M. Kirby, and S.J. Sherwin. 2015. Nektar++: An
open-source spectral/hp element framework. Computer Physics Communications
192 (2015), 205 - 219. https://doi.org/10.1016/j.cpc.2015.02.008

Yuyao Chen, Alfredo Fiorentino, and Luca Dal Negro. 2019. A fractional diffusion
random laser. Scientific Reports 9, 1 (2019), 1-14. https://doi.org/10.1038/s41598-
019-44774-3

Nicole Cusimano, Alfonso Bueno-Orovio, Ian Turner, and Kevin Burrage. 2015. On the
Order of the Fractional Laplacian in Determining the Spatio-Temporal Evolution of
a Space-Fractional Model of Cardiac Electrophysiology. PLOS ONE 10, 12 (12 2015),
1-16. https://doi.org/10.1371/journal.pone.0143938

ICS 20, June 29-July 2, 2020, Barcelona, Spain

Nicole Cusimano, Kevin Burrage, and Pamela Burrage. 2013. Fractional models for the
migration of biological cells in complex spatial domains. ANZIAM Journal 54, 0
(2013), 250-270. https://doi.org/10.21914/anziam;j.v54i0.6283

Anton Evgrafov and José C. Bellido. 2018. From nonlocal Eringen’s model to fractional
elasticity. arXiv:1806.03906 [math.AP]

Alejandro Guerrero and Miguel Angel Moreles. 2015. On the numerical solution
of the eigenvalue problem in fractional quantum mechanics. Communications
in Nonlinear Science and Numerical Simulation 20, 2 (2015), 604 — 613. https:
//doi.org/10.1016/j.cnsns.2014.06.013

Bruce Ian Henry, T. A. M. Langlands, and Peter Straka. 2010. An Introduction to
Fractional Diffusion.

Vicente Hernandez, Jose E. Roman, and Vicente Vidal. 2005. SLEPc: A Scalable and
Flexible Toolkit for the Solution of Eigenvalue Problems. ACM Trans. Math. Softw.
31, 3 (Sept. 2005), 351-362. https://doi.org/10.1145/1089014.1089019

Sverre Holm and Sven Peter Niasholm. 2011. A causal and fractional all-
frequency wave equation for lossy media. The Journal of the Acoustical So-
ciety of America 130, 4 (2011), 2195-2202. https://doi.org/10.1121/1.3631626

arXiv:https://doi.org/10.1121/1.3631626
J. Kestyn, V. Kalantzis, E. Polizzi, and Y. Saad. 2016. PFEAST: A High Performance Sparse

Eigenvalue Solver Using Distributed-Memory Linear Solvers. In SC ’16: Proceedings
of the International Conference for High Performance Computing, Networking, Storage
and Analysis. 178-189.

Sunil Kumar, Devendra Kumar, and Jagdev Singh. 2014. Numerical computation of
fractional Black-Scholes equation arising in financial market. Egyptian Journal of
Basic and Applied Sciences 1, 3 (2014), 177 — 183. https://doi.org/10.1016/j.ejbas.
2014.10.003

Nick Laskin. 2002. Fractional Schrodinger equation. Physical review. E, Statistical,
nonlinear, and soft matter physics 66 5 Pt 2 (2002), 056108.

Sergei Levendorskii. 2004. PRICING OF THE AMERICAN PUT UNDER LEVY PRO-
CESSES.

Ruipeng Li, Yuanzhe Xi, Lucas Erlandson, and Yousef Saad. 2018a. The Eigen-
values Slicing Library (EVSL): Algorithms, Implementation, and Software.
arXiv:1802.05215 [math.NA]

Ruipeng Li, Yuanzhe Xi, Lucas Erlandson, and Yousef Saad. 2018b. The Eigen-
values Slicing Library (EVSL): Algorithms, Implementation, and Software.
arXiv:1802.05215 [math.NA]

Anna Lischke, Guofei Pang, Mamikon Gulian, Fangying Song, Christian Glusa, Xi-
aoning Zheng, Zhiping Mao, Wei Cai, Mark M. Meerschaert, Mark Ainsworth,
and George Em Karniadakis. 2018. ~ What Is the Fractional Laplacian?
arXiv:1801.09767 [math.NA]

Richard L. Magin. 2010. Fractional calculus models of complex dynamics in bio-
logical tissues. Computers & Mathematics with Applications 59, 5 (2010), 1586 —
1593. https://doi.org/10.1016/j.camwa.2009.08.039 Fractional Differentiation and
Its Applications.

Martin J. Mohlenkamp. 1999. A fast transform for spherical harmonics. Journal of
Fourier Analysis and Applications 5, 2 (01 Mar 1999), 159-184. https://doi.org/10.
1007/BF01261607

Edoardo Di Napoli, Eric Polizzi, and Yousef Saad. 2013. Efficient estimation of eigen-
value counts in an interval. arXiv:1308.4275 [cs.NA]

Fernando A. Oliveira, Rogelma M. S. Ferreira, Luciano C. Lapas, and Mendeli H. Vain-
stein. 2019. Anomalous Diffusion: A Basic Mechanism for the Evolution of Inho-
mogeneous Systems. Frontiers in Physics 7 (2019), 18. https://doi.org/10.3389/fphy.
2019.00018

M. Rasouli, V. Zala, R. M. Kirby, and H. Sundar. 2018. Improving Performance and
Scalability of Algebraic Multigrid through a Specialized MATVEC. In 2018 IEEE
High Performance extreme Computing Conference (HPEC). 1-7. https://doi.org/10.
1109/HPEC.2018.8547580

Vasily E. Tarasov and Elias C. Aifantis. 2018. On Fractional and Fractal Formulations
of Gradient Linear and Nonlinear Elasticity. arXiv:1808.04452 [physics.class-ph]

https://doi.org/10.1109/ISSPA.2007.4555563
https://doi.org/10.1017/S0962492910000012
https://doi.org/10.1016/j.cpc.2015.02.008
https://doi.org/10.1038/s41598-019-44774-3
https://doi.org/10.1038/s41598-019-44774-3
https://doi.org/10.1371/journal.pone.0143938
https://doi.org/10.21914/anziamj.v54i0.6283
https://arxiv.org/abs/1806.03906
https://doi.org/10.1016/j.cnsns.2014.06.013
https://doi.org/10.1016/j.cnsns.2014.06.013
https://doi.org/10.1145/1089014.1089019
https://doi.org/10.1121/1.3631626
https://arxiv.org/abs/https://doi.org/10.1121/1.3631626
https://doi.org/10.1016/j.ejbas.2014.10.003
https://doi.org/10.1016/j.ejbas.2014.10.003
https://arxiv.org/abs/1802.05215
https://arxiv.org/abs/1802.05215
https://arxiv.org/abs/1801.09767
https://doi.org/10.1016/j.camwa.2009.08.039
https://doi.org/10.1007/BF01261607
https://doi.org/10.1007/BF01261607
https://arxiv.org/abs/1308.4275
https://doi.org/10.3389/fphy.2019.00018
https://doi.org/10.3389/fphy.2019.00018
https://doi.org/10.1109/HPEC.2018.8547580
https://doi.org/10.1109/HPEC.2018.8547580
https://arxiv.org/abs/1808.04452

	Abstract
	1 Introduction
	2 Non-local Operators
	2.1 Spectral Fractional Laplacian

	3 Method
	3.1 Partitioning
	3.2 Solving for all eigenpairs in an interval
	3.3 Two-level parallelism and communication hierarchy
	3.4 Post-processing

	4 Performance
	4.1 Test Meshes
	4.2 Parallel Cholesky Factorization
	4.3 Strong Scalability
	4.4 Weak Scaling
	4.5 A brief note about eigenvalue solvers

	5 Accuracy
	6 Conclusion
	Acknowledgments
	References

