
IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 8, AUGUST 2020 7517

Accelerating Model-Free Reinforcement Learning
With Imperfect Model Knowledge in

Dynamic Spectrum Access
Lianjun Li , Lingjia Liu , Senior Member, IEEE, Jianan Bai ,

Hao-Hsuan Chang, Graduate Student Member, IEEE, Hao Chen, Jonathan D. Ashdown , Member, IEEE,
Jianzhong Zhang, Fellow, IEEE, and Yang Yi, Senior Member, IEEE

Abstract—Current studies that apply reinforcement learning
(RL) to dynamic spectrum access (DSA) problems in wireless
communications systems mainly focus on model-free RL (MFRL).
However, in practice, MFRL requires a large number of samples
to achieve good performance making it impractical in real-time
applications such as DSA. Combining model-free and model-
based RL can potentially reduce the sample complexity while
achieving a similar level of performance as MFRL as long as
the learned model is accurate enough. However, in a complex
environment, the learned model is never perfect. In this article,
we combine model-free and model-based RL, and introduce an
algorithm that can work with an imperfectly learned model to
accelerate the MFRL. Results show our algorithm achieves higher
sample efficiency than the standard MFRL algorithm and the
Dyna algorithm (a standard algorithm integrating model-based
RL and MFRL) with much lower computation complexity than
the Dyna algorithm. For the extreme case where the learned
model is highly inaccurate, the Dyna algorithm performs even
worse than the MFRL algorithm while our algorithm can still
outperform the MFRL algorithm.

Index Terms—Dynamic spectrum access (DSA), imperfect
model, reinforcement learning (RL), training acceleration, wire-
less communications systems.

I. INTRODUCTION

A. Reinforcement Learning and Its Variations

DEEP model-free reinforcement learning (RL) is a pow-
erful tool and has been successfully applied in many

areas from playing video games to robotic control. However,
model-free RL (MFRL) is also known for the high sampling
complexity [1], i.e., it requires a large amount of samples to
learn a good policy. In applications where it is easy to interact
with the environment to acquire samples, the high sampling

Manuscript received March 3, 2020; revised March 24, 2020; accepted
March 30, 2020. Date of publication April 16, 2020; date of current ver-
sion August 12, 2020. The work of Lianjun Li, Lingjia Liu, Jianan Bai,
Hao-Hsuan Chang, and Yang Yi was supported in part by the U.S. National
Science Foundation under Grant ECCS-1811497 and Grant CCF-1937487.
(Corresponding author: Lingjia Liu.)

Lianjun Li, Lingjia Liu, Jianan Bai, Hao-Hsuan Chang, and Yang Yi are
with the Electrical and Computer Engineering Department, Virginia Tech,
Blacksburg, VA 24061 USA (e-mail: ljliu@ieee.org).

Hao Chen and Jianzhong Zhang are with the Standards and Mobility
Innovation Lab, Samsung Research America, Plano, TX 75023 USA.

Jonathan D. Ashdown is with the Information Directorate, Air Force
Research Lab, Rome, NY 13441 USA.

Digital Object Identifier 10.1109/JIOT.2020.2988268

complexity may not be an issue. However, for many real-
time applications, high sample complexity is not desirable:
1) a larger amount of samples requires longer acquisition time
resulting in a slow convergence rate and 2) interacting with
the environment is expensive in real-time applications, espe-
cially in the initial stage, the trial and error behavior of the
RL agent may impact the behaviors of other agents. The high
sampling complexity prevents the wide adoption of MFRL in
real-time applications.

On the other hand, model-based RL, in general, achieves
low sampling complexity [2] through learning a model of
the underlying environment. Once an appropriate model is
learned, the RL agent can use it to plan actions through heuris-
tic search [3] or optimal control [4] without interacting with
the real environment. However, the performance of the model-
based approach is limited by the accuracy of the learned model
where the learned model is usually imperfect in complex envi-
ronments. Direct utilization of the model-based approach may
harm the system performance.

In [5], Dyna introduces a new class of RL algorithms
that use models to accelerate MFRL. Many works have been
done to extend the Dyna algorithm to reduce the sampling
complexity: Nagabandi et al. [6] used model-based RL to
obtain an initial policy, and used it as a starting point for the
MFRL. Gu et al. [7] fitted a linear model to generate imag-
inary samples for MFRL training. Racanière et al. [8] used
the information gained from imaginary rollouts as inputs to
improve the policy. Feinberg et al. [9] used a learned model
to perform H steps target value update instead of the stan-
dard one-step update. Buckman et al. [10] also performed H
steps target value update, but their method trains multiple mod-
els and uses the ensemble of models’ outputs to improve the
target value accuracy. However, all of them are designed for
robotic control applications thus may not be suitable for other
applications for the following reasons: 1) the deterministic
dynamic assumption does not hold in many applications with
the stochastic environment and 2) algorithms can work with
the imperfect model are inspired by ensemble learning that
train multiple models and value approximation networks, the
high computation complexity is not desirable as the RL agent
is usually implemented with limited power and computation
resources.

2327-4662 c© 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 09,2021 at 18:57:58 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-1813-7764
https://orcid.org/0000-0003-1915-1784
https://orcid.org/0000-0002-7064-5280
https://orcid.org/0000-0001-7202-1095

7518 IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 8, AUGUST 2020

B. Dynamic Spectrum Access in 5G Networks

To support the fast-growing wireless traffic volume and
the massive number of Internet-of-Things (IoT) devices, 5G
networks are required to provide 1000 times higher mobile
data volume per area, 10–100 times higher number of con-
nected devices, and 10–100 times higher user data rate as
compared to 4G networks [11]. The main difficulty in meet-
ing those requirements is the scarcity of the spectrum caused
by the spectrum segmentation and fixed allocation policy.
Motivated by the fact that most licensed spectrum is under
utilized in temporal and spatial domains, dynamic spectrum
access (DSA) is viewed by various vendors and operators
across the globe as a key enabling technology for 5G [12].
Various DSA models have been introduced to improve spec-
trum utilization under different system settings [13]. In this
article, we mainly focus on the spectrum overlay model, where
secondary users (SUs) are allowed to opportunistically access
the radio spectrum that is not used by the licensed primary
users (PUs).

In this article, we introduce a lightweight architecture that
only one model and one value approximation network need to
be trained. Based on the derivation of the relationship between
model inaccuracy and RL performance, an uncertainty-aware
(UA) algorithm is introduced to accelerate MFRL with an
imperfect model by automatically filtering out inaccurate sam-
ples generated by the learned model. We apply the algorithm
to the important application use case of DSA in 5G networks
and evaluate its performance in relevant scenarios. Since it
has been demonstrated that MFRL can achieve near-optimal
reward performance in DSA-related problems [14]–[17], this
article focuses on improving the sampling efficiency of the
MFRL algorithm.

The main contributions of this article are as follows.
1) It provides a lightweight algorithm that can acceler-

ate MFRL while keeping the computation cost low.
Therefore, it significantly extends the application sce-
narios of RL to low-cost devices.

2) By deriving the relationship between the model inaccu-
racy and the RL performance, we mathematically show
the performance guarantee of the algorithm.

3) The first study that combines model based and MFRL
for the DSA problem in the wireless communications
system. Various DSA settings, such as multiple SUs and
imperfect sensing, are considered.

The remainder of this article is organized as follows.
Section II introduces model-free and model-based RL.
Section III describes the DSA problem formulation and the
RL agent architecture. Section IV introduces the UA algo-
rithm. Section V extends the algorithm to the multiple-SU
case. The experimental results are discussed in Section VI.
Section VII concludes this article.

II. MODEL-FREE AND MODEL-BASED REINFORCEMENT

LEARNING

RL is one paradigm of machine learning, where an agent
learns what are the best actions to take in the environment.
Unlike supervised learning, the RL agent does not need labeled

training data; instead, it interacts with the environment to
acquire data and learns from it. Depending on whether a model
of the environment is needed, there are two types of RL:
1) model-based RL and 2) MFRL.

MFRL learns a value function or policy directly through
interacting with the environment. Fig. 1 column 1 illustrates
the iterative procedure of MFRL, the RL agent improves the
value function or policy based on the experience data acquired
from the environment and then, uses the updated policy to
interact with the environment to acquire more experience.
Based on whether explicitly learns a policy, there are three
types of MFRL: 1) value based, which learns a value func-
tion and derives a policy from it, e.g., deep Q-learning [18];
2) policy based, which learns a policy directly, e.g., policy gra-
dient [19]; and 3) actor–critic (AC), which is a combination of
value-based and policy-based MFRL, where a critic learns a
value function and uses it to guide actor’s policy learning [20].

Model-based RL (MBRL), as depicted in Fig. 1 column 2,
on the other hand, learns a model to estimate the transi-
tion probabilities p(s′, r|s, a) of the environment and then,
improves the value function or policy by interacting with the
model instead of the real environment; this process is called
planning. There are several ways of planning, such as dynamic
programming (DP) [21], heuristic search [3], and optimal
control [4].

MFRL is capable of learning a wide range of complex tasks
at the cost of a large number of samples, whereas MBRL
is sample efficient but suffers from model inaccuracy. In [5],
Dyna introduces a new class of RL algorithms that use models
to accelerate MFRL. The procedure of the Dyna algorithm is
depicted in Fig. 1 column 3. The real experience sampled from
the environment has two roles: one is to directly improve the
value function or policy, i.e., direct RL; another is to learn a
model. It uses the model to generate imaginary experience to
improve the value function or policy, i.e., indirect RL.

III. NETWORK SETUP

Our goal is to improve the sampling efficiency of the MFRL
with imperfect model knowledge while keeping the computa-
tion cost low. The particular use case we are interested in is
the DSA scenario of 5G networks. In this section, we will pro-
vide a detailed description of the network setup of the DSA
as well as the architecture of the RL agent we are developing.

A. Dynamic Spectrum Access

In a DSA network, there are totally N PUs, each PU occu-
pies a particular wireless channel. DSA SU co-exists with PUs
and tries to access one of N channels if the channel is not used
by PU at each time slot.

The PU’s activity follows its own incoming traffic distribu-
tion, e.g., Markovian, Poisson, etc. At any time, each PU can
be in one of the two states: Inactive meaning the underlying
wireless channel is idle (1); and Active meaning the underlying
wireless channel is busy (0). Accordingly, the status of N PUs
(channels) at time t can be represented as an N-dimensional
vector

Zt =
[
z1

t , z2
t , . . . , zN

t

]T
, zn

t ∈ {0, 1}, n = 1, 2, . . . , N.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 09,2021 at 18:57:58 UTC from IEEE Xplore. Restrictions apply.

LI et al.: ACCELERATING MODEL-FREE REINFORCEMENT LEARNING WITH IMPERFECT MODEL KNOWLEDGE IN DSA 7519

Fig. 1. RL procedure.

Fig. 2. Time slot composed of three periods.

The corresponding DSA network is assumed to adopt a
slot structure in the time domain, which is termed as frame-
based equipment (FBE) by the European Telecommunications
Standards Institute (ETSI) [22]. This setting is in line with most
modern mobile wireless standards and DSA networks [14], [15],
[23] in which PU’s activity changes according to the underlying
traffic pattern and the scheduling of the base station at the
beginning of each time slot. At SU, each time slot is further
divided into three periods: 1) sensing period; 2) transmitting
period; and 3) acknowledgment period, shown in Fig. 2.

Sensing: At the beginning of each time slot, SU chooses a
set of channels to sense. The sensing result of channel n at
time t is denoted as en

t ∈ {0(Active), 1(Inactive)}. If sensing
is perfect, then en

t = zn
t . However, in general, this equality

does not hold due to the sensing error. More detail about the
sensing error will be discussed in Section III-B.

Transmitting: If the sensing result is Inactive, SU accesses
the channel and transmits data during the transmitting period.
Otherwise, SU stays idle.

Acknowledgment: At the end of each time slot, the SU
receiver1 acknowledges channel access result to the SU trans-
mitter. The access result of channel n at time t is

kn
t =

{
1(Succeed), en

t = 1 and zn
t = 1

0(Fail), otherwise.
(1)

Throughout this article, we assume acknowledgment can be
received by the SU transmitter without error.

B. Sensing Error

Sensing error can be characterized by two probabilities:
1) false alarm probability pf and 2) detection probability pd,
defined as

pf = P(e = 0|z = 1) (2)

pd = P(e = 0|z = 0).2 (3)

1The SU receiver knows the channel access is succeed when it decodes
the received message and identifies its unique ID. We assume the SU receiver
can decode ID information correctly, unless stated otherwise.

The false alarm occurs when the channel is Inactive (z = 1)
but sensing result is Active (e = 0), in this case, an access
opportunity will be overlooked. Detection occurs when the
channel is Active (z = 0) and the sensing result is consistent
with the channel state (e = 0). If perfect sensing is assumed,
then pf = 0 and pd = 1.

With the false alarm probability pf and detection probability
pd, the channel access succeed/fail probability P(k) and the
channel active/inactive probability P(z) can be related as

P(k = 1) = P(z = 1)× (
1− pf

)
(4)

P(k = 0) = P(z = 1)× pf + P(z = 0)× pd

+ P(z = 0)× (1− pd)

= P(z = 1)× pf + P(z = 0) (5)

meaning channel access succeed only when the channel is
Inactive (z = 1) and sensing false alarm does not happen,
otherwise channel access fails. In case of perfect sensing, it
can be easily seen that

P(k = 1) = P(z = 1) (6)

P(k = 0) = P(z = 0). (7)

C. Architecture of the RL Agent

In our design, an RL agent is introduced at SU to assist the
spectrum access. To be specific, the RL agent suggests what
channels SU should sense at the beginning of each time slot;
such suggestion is based on SU’s history observations, and the
goal is to maximize the data transmission opportunity of SU.

The RL agent in SU consists of one MFRL algorithm using
deep Q network (DQN) [18], one model that learns the envi-
ronment through a neural network, and one UA algorithm that
can incorporate the imperfect model knowledge.

1) Model-Free RL Algorithm: The MFRL algorithm is
implemented using DQN with one evaluation network and one
target network. It is trained through supervised learning by
minimizing the loss function

L(w) = (
T

(
s, a, w−

)− Q(s, a, w)
)2

(8)

with target T (s, a, w−) = r+ γ maxa′ Q−(s′, a′, w−), where s
and a are the current state and action, s′ and a′ are the next
state and action, r is the current reward, γ ∈ (0, 1) is the
discount factor of the reward, w are weights of the evaluation

2For notation simplification, here we omit t and n, and represent zn
t and en

t
as z and e.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 09,2021 at 18:57:58 UTC from IEEE Xplore. Restrictions apply.

7520 IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 8, AUGUST 2020

network Q(s, a, w), and w− are weights of the target network
Q−(s′, a′, w−) periodically copied from w. The standard ε-
greedy policy is adopted by the MFRL algorithm to balance
exploration and exploitation.

The input state of the MFRL is historical observations of
channel access result

St = [Ot−1, Ot−2, . . . , Ot−M] (9)

where M is the number of history time slots the agent
considers. Ot is the observation at time slot t.

It is very important to note that in reality there are prac-
tical hardware and power constraints preventing from SU to
sense all available N channels continuously [15], [23]. This is
especially true for the application of DSA technologies to 5G
massive machine-type communications (mMTC) where SUs
are low-cost devices. Accordingly, to make our study more
meaningful, we assume SU can only sense a subset of the N
channels. This partial observation assumption makes our anal-
ysis much more relevant to scenarios that are important to 5G
networks.

Without loss of generality, we assume each SU can only
sense one channel at each time slot, so Ot contains which chan-
nel has been sensed and the channel access result: Ot = [n, kn

t].
The output of MFRL is the suggested action, denoted as

at ∈ {0, 1, 2, . . . , N} (10)

where at = n, 0 < n ≤ N means at time t, the RL agent
suggests SU to sense channel n, and at = 0 means the SU
does not sense or access any channel at time t.

The goal of the MFRL is to maximize the total reward∑∞
t=0 rt, rt is defined as

rt =
⎧⎨
⎩

1, at = n, kn
t = 1, 0 < n ≤ N

−1, at = n, kn
t = 0, 0 < n ≤ N

0, at = 0.

(11)

That is, if SU successfully accessed the channel suggested by
the RL agent, the corresponding reward is +1; if the access
failed, the corresponding reward is −1; otherwise, if SU did
not sense or access any channels, the corresponding reward
is 0.

2) Underlying Model for Environment: A model in the RL
agent learns the transition probability of the environment and
generates imaginary samples to accelerate the MFRL training.
It is implemented as a deep neural network parameterized by θ ,
the input of the model is the historical observations of channel
access result St concatenated with the action at suggested by
the RL agent, the output of the model is Ŝt+1,

3,4 the predicted
state at time t + 1, i.e.,

Ŝt+1 = model(St, at, θ). (12)

3In general, the model should predict both the next state and the corre-
sponding reward. However, in our problem setting, predicting the next state
is sufficient as the corresponding reward is solely determined by the next state
as shown in (11).

4More specifically, in our implementation, the model predicts P(kn
t = 1),

the probability of successfully accessing the channel n suggested by the action
at . Then, a sample of kn

t will be drawn from P(kn
t). Based on the sample of

kn
t , we can generate Ôt and Ŝt+1.

Algorithm 1 Dyna With DQN and the Neural Network Model
for Environmental Learning

1: Initialize evaluate network Q(S, a, w) and target network
Q−(S, a, w−)

2: Initialize model network model(S, a, θ)

3: while Not exhausted do
4: a ← action based on ε-greedy policy and current

state S
5: Receive reward r, next state S′ from environment
6: Update weights w of the evaluate network with loss

function defined by (8)
7: Update weights θ of model network with loss function

defined by (13)
8: repeat
9: a ← action based on ε-greedy policy and current

state S
10: Generate imaginary sample from model Ŝ′, r̂ ←

model(S, a, θ)

11: Update weights w of the evaluate network with loss
function defined by (8)

12: until n times
13: for every m steps do
14: replace target network weights w− with evaluate

network weights w

The model is trained by supervised learning, the training
data are samples from the real environment (St, at, St+1) and
the loss function is defined as

L(θ) =
∥∥∥Ŝt+1 − St+1

∥∥∥
2

2
. (13)

IV. UNCERTAINTY-AWARE ALGORITHM WITH IMPERFECT

MODEL KNOWLEDGE

If the learned model is accurate enough, a standard Dyna
algorithm using our RL architecture (Algorithm 1) is sufficient
to improve the sampling efficiency. However, if the learned
model is biased, the RL agent will be trained by biased imag-
inary samples and converges to suboptimal policy. In reality,
the learned model is usually imperfect, especially in the case
of partial observation like the DSA scenario discussed in this
article. Therefore, an algorithm that can work with imperfect
model knowledge is critical.

A. Key Idea and the Toy Example

If we can identify the model uncertainty, i.e., how confident
we are for each imaginary sample generated by the model, we
can discard bad (high uncertainty) samples and keep the good
ones for the underlying RL training. This is the key idea of
our UA algorithm, which can be illustrated by a toy example5

in Fig. 3. In this example, the average reward versus real RL
step is plotted for three algorithms: 1) baseline (BL) is the
standard MFRL algorithm (DQN); 2) Dyna with fixed imag-
inary step (FS) is the implementation of Algorithm 1 where
n = 5 imaginary steps are generated for each real step; and
3) UA is our uncertainty-aware algorithm. To illustrate the

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 09,2021 at 18:57:58 UTC from IEEE Xplore. Restrictions apply.

LI et al.: ACCELERATING MODEL-FREE REINFORCEMENT LEARNING WITH IMPERFECT MODEL KNOWLEDGE IN DSA 7521

Fig. 3. Toy example with overfitted model.

negative effect of an inaccurate model, we show the extreme
case where the model used for both FS and UA is intentionally
trained with a small amount of data and then fixed, i.e., the
model is overfitted. We can see that with an inaccurate model,
the performance of the Dyna algorithm is even worse than the
model-free algorithm, while our UA algorithm can achieve 5×
sample efficiency compare to the model-free algorithm.

In the rest of this section, we will study how the model
imperfectness affects the MFRL and introduces an algorithm
that can automatically select good imaginary samples to train
the underlying MFRL agent.

B. Imperfect Model Knowledge

Recall that when the RL agent is interacting with the real
environment, it is updated by the real target value T =
r+γ maxa′ Q−(s′, a′) as in (8). When we use the model gener-
ated imaginary samples to train the RL agent, it is updated by
the imaginary target value T̂ = r̂+ γ maxa′ Q−(ŝ′, a′), where
r̂ and ŝ′ are the reward and the next state predicted by the
model. Ideally, we want the average target value generated by
the model to be the same as that sampled in the real environ-
ment, i.e., E[T̂] = E[T], meaning the model perfectly learned
the real environment. Unfortunately, the model is imperfect in
most cases. Let us denote the actual transition probability that
governs the Markov decision process of the environment as
P and the transition probability learned by model as G. It is
important to characterize the relationship between the model
imperfectness (distance between P and G) and the target value
error |E[T]− E[T̂]|.

We adopt the following notations as follows.
1) The total variation distance between two distributions P

and G is defined as

δ(P, G) = 1

2
‖P− G‖1 (14)

where ‖ · ‖1 is the L1 norm.
2) Conditioned on current state s, the actual probabili-

ties of accessing channel n to be Succeed and Fail are
P(kn

t = 1|s) and P(kn
t = 0|s), respectively. To sim-

plify notation, we denote them as p1
n|s and p0

n|s, and
let Pn|s = [p1

n|s, p0
n|s]. Similarly, we define the model

5In this experiment, we set the number of channel N = 4; no sensing error,
i.e., kn

t = en
t = zn

t ; each algorithm was simulated five times with randomly
initialized neural network weights. The solid line is the mean value, and the
shaded area represents the standard deviation among the five simulation runs.

learned probability to be Gn|s = [g1
n|s, g0

n|s]. The total
variation distance between Pn|s and Gn|s, conditioned
on s, can be expressed as

δ(Pn, Gn|s) = 1

2

∥∥Pn|s − Gn|s
∥∥

1. (15)

3) For simplicity, we write maxa′ Q−(s′, a′) = V(s′), so

T = r + γ V(s′). (16)

1) Relation Between δ(Pn, Gn|s) and |E[T] − E[T̂]|: We
can show (see the Appendix)

∣∣E[r]− E
[
r̂
]∣∣ ≤ 2δ(Pn, Gn|s) (17)∣∣E[

V(s′)
]− E

[
V

(
ŝ′
)]∣∣ ≤ 2δ(Pn, Gn|s) max

s′
|V(s′)|. (18)

Accordingly, we have
∣∣E[T]− E

[
T̂

]∣∣ = ∣∣E[
r + γ V(s′)

]− E
[
r̂ + γ V

(
ŝ′
)]∣∣

≤ ∣∣E[r]− E
[
r̂
]∣∣+ γ

∣∣E[
V(s′)

]− E
[
V(ŝ′)

]∣∣

≤ 2δ(Pn, Gn|s)
(

1+ γ max
s′
|V(s′)|

)
. (19)

This suggests that the average target value error can be
bounded by the model imperfectness and consequently,
δ(Pn, Gn|s) is a good metric to identify the accuracy of the
learned model. To simplify notation, we will omit n and
s and denote δ(Pn, Gn|s) as δ(P, G) for the rest of this
article.

2) Relation Between δ(P, G) and δ(G(t−1), G(t)): In prac-
tice, P is unknown and δ(P, G) cannot be calculated directly.
Let G(t) denotes the distribution learned by the model at time
t. We show that the time difference of distributions learned by
the model δ(G(t − 1), G(t)) can be used to bound δ(P, G(t))
(see the Appendix)

δ(G(t), P) ≤ 1

1− λ
δ(G(t − 1), G(t))+ ε. (20)

Therefore, it can be used as a measure of model accuracy.

C. Uncertainty-Aware Algorithm

As shown in the previous section, δ(G(t − 1), G(t)) can
be used to measure model accuracy. Our algorithm uses
δ(G(t− 1), G(t)) as an indicator to select good samples from
all generated samples. More specifically, besides the up-to-
date model, we also save an older version of the model in
the system for calculating δ(G(t− 1), G(t)). For each sample
generated by the up-to-date model, δ(G(t − 1), G(t)) will be
calculated, if it is larger than a threshold η, the sample will
not be selected for the MFRL training. This is because when
the two consecutive models have a large disagreement with
a specific sample, we know the underlying model has large
uncertainties about the sample accuracy, therefore, it should
not be used to train the underlying RL. The UA algorithm is
described in Algorithm 2.

V. EXTENSION TO MULTIPLE SUS

When there are multiple SUs present in the network, the
underlying problem can be formulated as a multiagent RL
(MARL) problem. Depending on the level of cooperation

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 09,2021 at 18:57:58 UTC from IEEE Xplore. Restrictions apply.

7522 IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 8, AUGUST 2020

Algorithm 2 UA Algorithm
1: Initialize evaluate network Q(S, a, w) and target network

Q−(S, a, w−)

2: Initialize model network model(S, a, θ), old model
modelold(S, a, θ−)

3: while Not exhausted do
4: a ← action based on ε-greedy policy and current

state S
5: Receive reward r, next state S′ from environment
6: Update weights w of the evaluate network with loss

function defined by (8)
7: Replace the old model with current model, θ−← θ

8: Update weights θ of model network with loss function
defined by (13)

9: repeat
10: a ← action based on ε-greedy policy and current

state S
11: Generate imaginary sample from model Ŝ′, r̂ ←

model(S, a, θ)
12: if δ(G(t − 1), G(t)) ≤ η then
13: Update weights w of the evaluate network with

loss function defined by (8)

14: until n times
15: for every m steps do
16: replace target network weights w− with evaluate

network weights w

needed among these RL agents during the training and the
execution, MARL can be categorized into three major types:
1) fully centralized; 2) centralized training with distributed
execution; and 3) fully distributed.

1) Fully Centralized: MARL is implemented as a central-
ized mega agent RL, the input state of the mega agent is
the concatenated states of all agents and the outputs are
actions for all agents. We call it fully centralized because
this type of MARL requires gathering information from
all agents in both training and execution phases, i.e.,
centralized training and execution.

2) Centralized Training With Distributed Execution: Each
RL agent selects action based on its local observation,
meaning no information exchange during execution, i.e.,
distributed execution. While in the training phase, the
reward used for all agents is a single team reward
(e.g., the sum reward of all agents). This requires col-
lecting information from all agents, so the training is
centralized.

3) Fully Distributed: Each RL agent selects action based on
its local observation and trained based on its individual
reward. Meaning no information exchange is needed in
both the training and execution phase. Therefore, it is
fully distributed.

There are many studies focus on the reward performance
of different types of MARL in DSA [24]–[26]. However, it is
beyond the scope of this article as we are focusing on improv-
ing the sampling efficiency. The UA algorithm introduced in
Section IV can be applied to all MARL types. Without loss

Fig. 4. Fully distributed MARL.

of generality, we choose the fully distributed MARL to apply
and show the performance of our algorithm. The system archi-
tecture is depicted in Fig. 4. Each SU is equipped with an
independent RL agent, which includes a model-free DQN, a
model, and the UA algorithm. The reward for each SU in
MARL is the same as defined in (11). One exception is that
when multiple SUs interfere with each other by accessing the
same channel at the same time slot, the reward is −1 for each
of those interfering agents.

VI. EXPERIMENTS

Having the UA algorithm introduced, we are going to eval-
uate its performance under the DSA scenario. We first present
details of the DQN and the model network, then talk about
the DSA scenario setup, and finally, show the performance of
the algorithm.

A. DQN and Model Network

The DQN is implemented as a double-hidden-layer
multilayer perceptron (MLP) with the ReLU activation func-
tion. Its output layer does not have the activation function due
to the output Q values being continuous real numbers. The
input size is equal to the length of state S, which depends
on the length of observation vector O and the number of his-
tory time slots M under consideration. The observation O is
a sparse vector with N − 1 zero elements and one nonzero
element at the nth position. The nonzero element (1 or −1)
represents the access of channel n was Succeed or Fail, cor-
respondingly. One exception is when SU did not sense any
channel, O will be a vector of all zeros. Here, we set M = N,6

so the input size of DQN is N2. The output size is equal to the
number of actions N+1. The number of neurons of two hidden
layers is between the input layer size and output layer size, so
they can extract compact features from the sparse input. For
example, when N = 16, the input size is 256, the first hidden
layer has 100 neurons, the second hidden layer has 50 neu-
rons, and the output layer size is 17. The network is trained
by mean square error loss with the Adam optimizer.

6Generally speaking, the larger M will lead to better reward performance
since the RL agent can learn from more history information. However, this
article focuses on sampling efficiency; investigating how M affects reward
performance is beyond the scope of this article. Without loss of generality,
we make an arbitrary choice of M in our experiment to demonstrate the
improvement on sampling efficiency.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 09,2021 at 18:57:58 UTC from IEEE Xplore. Restrictions apply.

LI et al.: ACCELERATING MODEL-FREE REINFORCEMENT LEARNING WITH IMPERFECT MODEL KNOWLEDGE IN DSA 7523

Fig. 5. Performance of genie added (Genie), model-free DQN (BL), Dyna (FS), AC, myopic, and introduced UA algorithms.

The model network is a double-hidden-layer MLP with tanh
as the activation function. The input size is N2. The output
layer size is N, and we choose sigmoid as the activation func-
tion, because the output is the probability of the channel being
Inactive thus should be a real number between 0 and 1. When
N = 16, the input size is 256, the first and second hidden
layers have 100 and 50 neurons, and the output layer size is
16. The network training loss is mean-square error and it is
optimized by the Adam optimizer.

B. Experiment With Markov Traffic Pattern

In the following experiments, we set the number of channels
N = 16, and each channel is assigned to a PU, the traffic
pattern of each PU is independent and follows a two-state
Markov chain. The transition probability of the Markov chain
on the nth channel is

Pn =
[

pn
00 pn

01
pn

10 pn
11

]
(21)

where pij represents the probability of changing from current
state i to next state j, i, j ∈ {0(Active), 1(Inactive)}. The tran-
sition probability Pn is randomly and independently generated
from a uniform distribution over [0, 1].

1) Single SU (Perfect Sensing): In this experiment, one SU
tries to access one of the N channels and perfect sensing is
assumed.

Fig. 5 column 1 shows the average reward7 of the intro-
duced UA algorithm with η = 0.02 and the maximum number
of imaginary step n = 5, Dyna (Algorithm 1) with fixed
n = 5 imaginary steps (FS), the model-free DQN BL, the
actor–critic (AC) algorithm,8 as well as a belief state-based
algorithm introduced in [23], because this algorithm requires
state transition probabilities and sensing error probabilities as
prior knowledge. We call it genie-added algorithm (Genie) and
treat its performance as an upper bound. The performance of
the myopic algorithm introduced in [27] is also plotted. This
algorithm does not need the full information of transition prob-
abilities, instead, it only requires the order of pn

11 and pn
01.

Myopic is a simple robust round-robin-based algorithm, how-
ever, it is optimal only when all channels follow the same
two-state Markov transition probability and pn

11 ≥ pn
01,∀n.

Solid lines in the figure are the mean values over ten simu-
lation runs with randomly initialized neural network weights,
and shaded areas show the standard deviation. It can be seen
that at 80 000 step the BL reaches a reward value of 0.6.
To reach the same reward value, AC needs 60 000 steps, FS
needs around 45 000 steps, while UA only needs 15 000 steps.
The introduced algorithm achieves 5×, 4×, and 3× sampling
efficiency over BL, AC, and FS. Another observation is that
the performance gap between UA and FS is prominent at
the initial RL stage. The reason is the model is overfitted
at the beginning due to the limited amount of training sam-
ples. FS uses all imaginary samples generated by the model
to train the RL agent, while UA only selects good imaginary
samples. At later RL stages, when the model becomes more
accurate, the performance gap between UA and FS decreases.
Also, both UA and FS can achieve close-to-Genie reward
performance. Because the Markov transition probabilities are
randomly generated, which does not meet the optimal con-
dition of the myopic algorithm, it only achieves around 0.35
average reward.

The average number of imaginary steps selected by UA is
plotted in Fig. 5 column 2, the fixed number of five imag-
inary steps taken by FS is also plotted for comparison. We
can see the number of imaginary samples selected by UA is
much smaller than that of FS, especially at the initial RL
stage, when the model is not well trained. In addition to
high sampling efficiency, this result indicates another advan-
tage of the UA algorithm—the low computation complexity.
UA trains the RL agent with much fewer imaginary sam-
ples than FS. Although UA needs one more forward pass

7For better presenting the simulation result, each point on a curve is the
averaged value over 1000 real steps, this setting is consistent among all figures
in this article.

8The AC algorithm follows [20, Ch. 13.5]. It is implemented by two neural
networks. The critic network learns the state value function V(s), which is
used to facilitate the actor network to learn the policy π(a|s). For a fair
comparison, both networks have the same NN architecture and input as the
DQN BL described in Section VI-A, except for the output layer of critic
network, which only needs one neuron to predict state value V(s), and the
actor network uses the Softmax activation function on the output layer to
produce the probability of taking each action π(a|s).

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 09,2021 at 18:57:58 UTC from IEEE Xplore. Restrictions apply.

7524 IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 8, AUGUST 2020

Fig. 6. UA algorithm with different threshold η.

to inference G(t − 1), the amount of computation is negli-
gible compared with the unnecessary backward propagation
computations needed for FS.

The threshold η is an important parameter in the UA
algorithm, because it decides whether an imaginary sample
generated by the model network will be used for RL training.
Intuitively, if the threshold is too relaxed, an inaccurate sam-
ple will be adopted to train the RL agent, which confuses the
RL agent and degrades the performance. On the other hand, if
the threshold is too strict, many good samples will be filtered
out instead of being adopted for RL training, which slows
down the training process. When the model network train-
ing converges (the environment is well learned), the value of
δ(G(t − 1), G(t)) should be a good candidate for the thresh-
old η. In order to find this value, we conduct model network
training alone (actions are chosen randomly, so the RL agent
is not needed) under random environment realizations and plot
average δ(G(t − 1), G(t)) in Fig. 6 column 2 (dashed line on
the right y-axis). It can be seen that the convergence value
is 0.02. So we believe potential candidates for η should be
around this value, therefore we select the value from 0.01 to
0.05 with step size 0.01 for this experiment. The experiment
reward results are shown in Fig. 6 column 1. The average num-
ber of imaginary steps selected by UA with different threshold
η can be found in Fig. 6 column 2. The result of the FS algo-
rithm with fixed imaginary steps is also shown for comparison.
Each curve shows the average value of ten simulation runs.
Clearly, the UA algorithm with any of the five η values out-
performs the FS algorithm. The more interesting observation
comes from the comparison among UA algorithms with dif-
ferent η values. From Fig. 6 column 1, we can see that the
major differences are within the initial stage of RL (before
20 000 steps), and η = 0.02 has the highest convergence speed.
This result verifies our intuition that too strict threshold (e.g.,
η = 0.01) filters out too many good imaginary samples, while
too relaxed threshold (e.g., η = 0.05) adopts inaccurate imag-
inary samples to train the RL agent. Both situations degrade
the RL performance.

Imperfect Sensing: In this experiment, sensing error is con-
sidered. To be specific, the false alarm probability is set to be
pf = 0.1. Because the channel access result does not depend
on detection probability pd, as shown by (4) and (5), it can

be set to any value between 0 and 1 in the experiment. The
simulation result is shown in Fig. 7 row 1 column 1. We
can see with sensing error that UA can still achieve reward
performance close to the genie-aided algorithm, while having
better sampling efficiency than FS, AC, and BL. On the other
hand, the final reward achieved by all algorithms is lower than
the perfect sensing case in Fig. 5, which is reasonable due to
sensing error.

2) Multiple SUs: As discussed in Section V, we apply the
UA algorithm to the fully distributed MARL architecture9 and
show its performance under both perfect and imperfect sens-
ing scenarios. In this experiment, multiple SUs present in the
network, therefore the reward plotted is the total reward of
all SUs.

The perfect sensing case with three SUs is depicted in Fig. 7
row 1 column 2, while the case with the false alarm proba-
bility pf = 0.1 is depict in row 1 column 3. We can see
in multiple-SU scenarios that UA still outperforms FS, AC,
and BL in terms of sampling efficiency and achieves close to
Genie reward performance. Note the Genie here is a central-
ized algorithm, it combines observations of all SUs as its input
and outputs nonoverlapping actions to make sure SUs do not
interfere with each other, while the UA is a fully distributed
algorithm with no message exchange among SUs. The myopic
algorithm still cannot achieve good performance, due to the
same reason as the single SU case.

For investigating the effects of more SUs present in the
network, the results of 4, 5, and 6 SUs are shown in row 2 of
Fig. 7. It can be seen that as the number of SU increases, the
incremental reward achieved by the optimal algorithm (Genie)
is decreasing, meaning the reward is saturating. This is rea-
sonable because as the number of SU increases, the maximum
opportunistic capacity (spectrum white space) of the system
is about to be fully utilized. This maximum capacity is deter-
mined by the number of channels and the underlying traffic
pattern of PUs in the system. Once the maximum capacity is
reached, further increasing the SU number will not improve
the reward. Another observation is that the learning problem
becomes harder when the number of SUs increases because

9Note the training is distributed, so each SU trains its own DQN and model
network weights independently without parameter sharing. Furthermore, the
number of SUs should be consistent at the training and deployment stage.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 09,2021 at 18:57:58 UTC from IEEE Xplore. Restrictions apply.

LI et al.: ACCELERATING MODEL-FREE REINFORCEMENT LEARNING WITH IMPERFECT MODEL KNOWLEDGE IN DSA 7525

Fig. 7. Performance with sensing error and multiple SUs.

Fig. 8. Different NN structure and ACK error.

more SUs are interfering with each other, therefore, it takes
a longer time for SU agents to converge to a good policy.
Nevertheless, UA still has the highest sampling efficiency and
achieves close to optimal reward performance.

3) Different Neural Network Structure: In the previous
experiments, both the DQN and model networks are three-
layer MLP (two hidden layers plus one output layer). It is
beneficial to study how network structure change affects UA
performance. In this experiment, we set the layer number
of both neural networks to two, four, and five, and com-
pare the performance with the current setting (three layers).
More specifically, two-layer MLP has one hidden layer of 100
neurons. One more hidden layer of 50 neurons is added for
three-layer MLP. Similarly, two and three more hidden layers
of 50 neurons are added for four-layer and five-layer MLP,
respectively. The result is depicted in Fig. 8 column 1. It can
be seen except for the two-layer MLP which has slightly lower
final reward performance, and the rest structures have almost
the same final reward performance. This indicates that as long
as the DQN and model networks are deep enough to learn
the Q value and the environment, adding more layers will not
improve the performance. The drawback of a deeper network

is longer training time, which is also reflected in the figure:
the deeper network structure has a slower start on the reward
curve.

4) Acknowledgment Error: Previously, it was assumed the
channel access result can be identified by the SU receiver per-
fectly. However, it is possible that the SU receiver is unable
to decode ID information due to the transmission error and
then sends back the wrong result to the SU transmitter, there-
fore it is important to study the effect of acknowledgment
error. When error occurs, the SU receiver mistakes a succeed
access as a failed one,10 i.e., channel is idle zn

t = 1, but access
failed kn

t = 0. Recall when there is a false alarm sensing
error, the channel is available zn

t = 1, but the access result
is fail kn

t = 0. So the acknowledgment error has the same
effect as the false alarm sensing error. To verify this point,
the performance of one SU with 10% false alarm probabil-
ity and one SU with 10% acknowledgment error probability
is plotted in Fig. 8 column 2. It can be seen they have
almost the same performance curve. Comparing with the one
SU no error result, the acknowledgment error degrades the
performance.

VII. CONCLUSION

In this article, we demonstrated that the introduced
lightweight UA algorithm outperforms the standard deep Q
learning algorithm as well as the Dyna algorithm in terms
of sampling efficiency, while achieving reward performance
close to the genie-aided algorithm. This new algorithm
significantly extends the application scenarios of RL to
real-time applications and low-cost devices. For subse-
quent studies, we will incorporate a multistep target value
update [9], [10] in the UA algorithm to further improve
the sampling efficiency of MFRL. As AC also belongs to
MFRL, another future direction is applying our algorithm to
accelerate it.

10We believe it is highly unlikely the case zn
t = 0, kn

t = 1 can happen.
Because it requires the SU receiver to incorrectly decode its unique ID from
a message that is not sent to it.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 09,2021 at 18:57:58 UTC from IEEE Xplore. Restrictions apply.

7526 IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 8, AUGUST 2020

APPENDIX A
PROOF OF (17)

The current state is s. The current action is to access channel
n. If channel access succeed, we have reward +1, otherwise,
reward is −1, so the average reward error is

∣∣E[r]− E[r̂]
∣∣ = ∣∣p1

n|s · 1+ p0
n|s · (−1)

− g1
n|s · 1− g0

n|s · (−1)
∣∣

≤ ∣∣p1
n|s − g1

n|s
∣∣+ ∣∣g0

n|s − p0
n|s

∣∣
= ∥∥Pn|s − Gn|s

∥∥
1

= 2δ(Pn, Gn|s).

APPENDIX B
PROOF OF (18)

Given the current state s, the RL agent suggests SU to access
channel n, then, there will be only two possible observations:
access channel n is Succeed or Fail. Because the input state
of the RL agent is defined as the stack of history observa-
tions, there will be two possible states at the next time step
s′0 and s′1 corresponding to the two observations Fail and
Succeed.

E[V(s′)] is the actual average value function at next time
step. It should be averaged over two possible states s′ ∈
{s′0, s′1}. The probability to be in states s′0 and s′1, as defined
in Section IV-B, is p0

n|s and p1
n|s.

For the learned model, note our policy is deterministic
(given the current state, the agent suggests the same action
regardless it is in the real environment or the simulated envi-
ronment), so the two possible next states predicted by the
model {ŝ′0, ŝ′1} will be exactly the same as the two states pos-
sibly seen in the real environment {s′0, s′1}, i.e., {ŝ′0, ŝ′1} ={s′0, s′1}. The difference is the probability to be in those states;
the probability to be in states ŝ′0 and ŝ′1 predicted by the model
is g0

n|s and g1
n|s. Recall as defined earlier that the probability

to be in states s′0 and s′1 in real environment is p0
n|s and p1

n|s.
With the above notations, we have

E
[
V(s′)

] =
1∑

i=0

pi
n|sV

(
s′i
)

E
[
V

(
ŝ′
)] =

1∑
i=0

gi
n|sV

(
ŝ′i
) =

1∑
i=0

gi
n|sV

(
s′i
)

∣∣E[
V(s′)

]− E
[
V

(
ŝ′
)]∣∣ =

∣∣∣∣∣
1∑

i=0

(
pi

n|sV
(
s′i
)− gi

n|sV
(
s′i
))

∣∣∣∣∣

≤
1∑

i=0

∣∣∣pi
n|sV

(
s′i
)− gi

n|sV
(
s′i
)∣∣∣

≤
1∑

i=0

∣∣∣pi
n|s − gi

n|s
∣∣∣ max

s′
|V(s′)|

= 2δ(Pn, Gn|s) max
s′
|V(s′)|.

APPENDIX C
PROOF OF (20)

Assumptions and inequality needed for the proof are as
follows.

1) The learned model converges to the real distribution

‖G(∞)− P‖1 ≤ ε. (22)

2) Minkowski inequality

‖x+ y‖1 ≤ ‖x‖1 + ‖y‖1. (23)

3) Assume f (t) = δ(G(t−1), G(t)) is a decreasing function
of t, and

f (t + 1) = λf (t), 0 < λ < 1 (24)

this assumption is based on the convergence property of
the gradient descent method and two approximations. It
is also verified by our experiment result shown in Fig. 6
column 2. See Appendix D for details.

Proof:

2δ(G(t), P) = ‖G(t)− P‖1
= ‖G(t)− G(t + 1)+ G(t + 1)− G(t + 2)+ · · ·

+ G(∞)− P‖1
≤
∞∑
τ=t

‖G(τ)− G(τ + 1)‖1 + ε (25)

≤
∞∑

τ=t−1

‖G(τ)− G(τ + 1)‖1 + ε

=
∞∑

τ=t−1

λτ−t+1‖G(t − 1)− G(t)‖1 + ε

= 1

1− λ
‖G(t − 1)− G(t)‖1 + ε

= 2

1− λ
δ(G(t − 1), G(t))+ ε (26)

where (25) is derived by applying (22) and (23), and (26) is
derived by applying (24).

APPENDIX D
ASSUMPTION (24)

From [28, Ch. 9.3], we know that the convergence of the
gradient descent method follows:

h(x(t))− h∗ ≤ λt(h(x(0))− h∗
)

(27)

where h(x(t)) is the function value at iteration t, h∗ is the
optimal function value, and λ ∈ (0, 1) is a constant, mean-
ing that the function value reaches the optimal value at
an exponential rate. In our case, the model network learns
the real distribution P by the gradient descent method, so
h(x(t)) � δ(G(t), P), h∗ = 0, and (27) can be expressed as

δ(G(t), P) ≤ λtδ(G(0), P).

Here, we make an approximation that

δ(G(t), P) ≈ λtδ(G(0), P). (28)

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 09,2021 at 18:57:58 UTC from IEEE Xplore. Restrictions apply.

LI et al.: ACCELERATING MODEL-FREE REINFORCEMENT LEARNING WITH IMPERFECT MODEL KNOWLEDGE IN DSA 7527

For δ(G(t − 1), G(t)), we know that

δ(G(t − 1), G(t)) = 1

2
‖G(t − 1)− G(t)‖1

= 1

2
‖G(t − 1)− P+ P− G(t)‖1

≥ 1

2
‖G(t − 1)− P‖1 − 1

2
‖G(t)− P‖1

= δ(G(t − 1), P)− δ(G(t), P).

Here, we make another approximation

δ(G(t − 1), G(t)) ≈ δ(G(t − 1), P)− δ(G(t), P). (29)

Combining (28) and (29), we have

δ(G(t − 1), G(t)) ≈ λt−1(1− λ)δ(G(0), P). (30)

Accordingly

δ(G(t), G(t + 1))

δ(G(t − 1), G(t))
≈ λt(1− λ)δ(G(0), P)

λt−1(1− λ)δ(G(0), P)
= λ (31)

therefore, we have assumption (24), which is also verified
by the experimental result shown in Fig. 6 column 2; the
dashed line represents δ(G(t − 1), G(t)), which decreases
exponentially.

REFERENCES

[1] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in
robotics: A survey,” Int. J. Robot. Res., vol. 32, no. 11, pp. 1238–1274,
2013.

[2] M. P. Deisenroth, G. Neumann, J. Peters, “A survey on policy search
for robotics,” Found. Trends Robot., vol. 2, nos. 1–2, pp. 1–142, 2013.

[3] D. Silver et al., “Mastering the game of Go with deep neural networks
and tree search,” Nature, vol. 529, no. 7587, pp. 484–489, 2016.

[4] Y. Tassa, T. Erez, and E. Todorov, “Synthesis and stabilization of
complex behaviors through online trajectory optimization,” in Proc.
IEEE/RSJ Int. Conf. Intell. Robots Syst., Vilamoura, Portugal, 2012,
pp. 4906–4913.

[5] R. S. Sutton, “Dyna, an integrated architecture for learning, planning,
and reacting,” ACM SIGART Bull., vol. 2, no. 4, pp. 160–163, 1991.

[6] A. Nagabandi, G. Kahn, R. S. Fearing, and S. Levine, “Neural network
dynamics for model-based deep reinforcement learning with model-free
fine-tuning,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), Brisbane,
QLD, Australia, 2018, pp. 7559–7566.

[7] S. Gu, T. Lillicrap, I. Sutskever, and S. Levine, “Continuous deep
Q-learning with model-based acceleration,” in Proc. 33rd Int. Conf.
Mach. Learn., 2016, pp. 2829–2838.

[8] S. Racanière et al., “Imagination-augmented agents for deep reinforce-
ment learning,” in Proc. 31st Int. Conf. Adv. Neural Inf. Process. Syst.,
2017, pp. 5694–5705.

[9] V. Feinberg, A. Wan, I. Stoica, M. I. Jordan, J. E. Gonzalez, and
S. Levine, “Model-based value estimation for efficient model-free
reinforcement learning,” 2018. [Online]. Available: arXiv:1803.00101.

[10] J. Buckman, D. Hafner, G. Tucker, E. Brevdo, and H. Lee, “Sample-
efficient reinforcement learning with stochastic ensemble value expan-
sion,” in Proc. 32nd Int. Conf. Adv. Neural Inf. Process. Syst., 2018,
pp. 8234–8244.

[11] A. Osseiran et al., “Scenarios for 5G mobile and wireless communica-
tions: The vision of the METIS project,” IEEE Commun. Mag., vol. 52,
no. 5, pp. 26–35, May 2014.

[12] S. Marek, Marek’s Take: Dynamic Spectrum Sharing May Change
the 5G Deployment Game, Fierce Wireless, Framingham, MA, USA,
Apr. 2019.

[13] Q. Zhao and B. M. Sadler, “A survey of dynamic spectrum access,”
IEEE Signal Process. Mag., vol. 24, no. 3, pp. 79–89, May 2007.

[14] H. Chang, H. Song, Y. Yi, J. Zhang, H. He, and L. Liu, “Distributive
dynamic spectrum access through deep reinforcement learning: A reser-
voir computing-based approach,” IEEE Internet Things J., vol. 6, no. 2,
pp. 1938–1948, Apr. 2019.

[15] S. Wang, H. Liu, P. H. Gomes, and B. Krishnamachari, “Deep reinforce-
ment learning for dynamic multichannel access in wireless networks,”
IEEE Trans. Cogn. Commun. Netw., vol. 4, no. 2, pp. 257–265,
Jun. 2018.

[16] N. Morozs, D. Grace, and T. Clarke, “Distributed Q-learning based
dynamic spectrum access in high capacity density cognitive cellular
systems using secondary LTE spectrum sharing,” in Proc. Int. Symp.
Wireless Pers. Multimedia Commun. (WPMC), Sydney, NSW, Australia,
2014, pp. 462–467.

[17] O. Naparstek and K. Cohen, “Deep multi-user reinforcement learning for
dynamic spectrum access in multichannel wireless networks,” in Proc.
IEEE Global Commun. Conf. (GLOBECOM), Singapore, 2017, pp. 1–7.

[18] V. Mnih et al., “Human-level control through deep reinforcement
learning,” Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[19] R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” Mach. Learn., vol. 8, nos. 3–4,
pp. 229–256, 1992.

[20] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 2018.

[21] D. P. Bertsekas, Dynamic Programming: Deterministic and Stochastic
Models. Englewood Cliffs, NJ, USA: Prentice-Hall, 1987.

[22] “Broadband radio access networks (BRAN); 5 GHz high performance
RLAN; harmonized EN covering the essential requirements of article
3.2 of the R&TTE directive, v1.7.2” ETSI, Sophia Antipolis, France,
Rep. EN.301.893, 2014.

[23] Q. Zhao, L. Tong, A. Swami, and Y. Chen, “Decentralized cognitive
MAC for opportunistic spectrum access in ad hoc networks: A POMDP
framework,” Dept. Elect. Comput. Eng., Univ. California, Davis, CA,
USA, Rep. CA 95616, 2007.

[24] O. Naparstek and K. Cohen, “Deep multi-user reinforcement learning for
distributed dynamic spectrum access,” IEEE Trans. Wireless Commun.,
vol. 18, no. 1, pp. 310–323, Jan. 2019.

[25] L. Liang, H. Ye, and G. Y. Li, “Spectrum sharing in vehicular networks
based on multi-agent reinforcement learning,” 2019. [Online]. Available:
arXiv:1905.02910.

[26] P. Venkatraman and B. Hamdaoui, “Cooperative Q-learning for multiple
secondary users in dynamic spectrum access,” in Proc. 7th Int. Wireless
Commun. Mobile Comput. Conf., Istanbul, Turkey, 2011, pp. 238–242.

[27] Q. Zhao, B. Krishnamachari, and K. Liu, “On myopic sensing for multi-
channel opportunistic access: Structure, optimality, and performance,”
IEEE Trans. Wireless Commun., vol. 7, no. 12, pp. 5431–5440,
Dec. 2008.

[28] S. P. Boyd and L. Vandenberghe, Convex Optimization. Cambridge,
U.K.: Cambridge Univ. Press, 2004.

Lianjun Li received the B.S. degree in telecom-
munications engineering from Zhejiang University,
Hangzhou, China, and the M.S. degree in electri-
cal engineering from the University of Texas at
Dallas, Richardson, TX, USA. He is currently pursu-
ing the Ph.D. degree with the Bradley Department of
Electrical and Computer Engineering, Virginia Tech,
Blacksburg, VA, USA.

He joined Ericsson, Beijing, China, as a wireless
network optimization engineer seven years ago. His
research interest is applying reinforcement learning

and deep learning techniques to wireless communications.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 09,2021 at 18:57:58 UTC from IEEE Xplore. Restrictions apply.

7528 IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 8, AUGUST 2020

Lingjia Liu (Senior Member, IEEE) received the
B.S. degree in electronic engineering from Shanghai
Jiao Tong University, Shanghai, China, and the Ph.D.
degree in electrical and computer engineering from
Texas A&M University, College Station, TX, USA.

He was an Associate Professor with the EECS
Department, University of Kansas (KU), Lawrence,
KS, USA. He is currently an Associate Professor
with the ECE Department, Virginia Tech (VT),
Blacksburg, VA, USA, and is also the Associate
Director of Wireless@VT. He spent more than four

years working in the Mitsubishi Electric Research Laboratory and the
Standards and Mobility Innovation Lab, Samsung Research America, Plano,
TX, USA, where he received the Global Samsung Best Paper Award in 2008
and 2010. He was leading Samsung’s efforts on multiuser MIMO, CoMP,
and HetNets in LTE/LTE-Advanced standards. His general research interests
mainly lie in emerging technologies for Beyond 5G cellular networks, includ-
ing machine learning for wireless networks, massive MIMO, massive MTC
communications, and mmWave communications.

Dr. Liu received the Air Force Summer Faculty Fellow from 2013 to 2017,
the Miller Scholar at KU in 2014, the Miller Professional Development Award
for Distinguished Research at KU in 2015, the 2016 IEEE GLOBECOM Best
Paper Award, the 2018 IEEE ISQED Best Paper Award, the 2018 IEEE TAOS
Best Paper Award, and the 2018 IEEE TCGCC Best Conference Paper Award.

Jianan Bai received the B.S. degree in communi-
cations engineering from Yingcai Honors College,
University of Electronic Science and Technology of
China, Chengdu, China, in 2018. He is currently pur-
suing the Ph.D. degree with the Bradley Department
of Electrical and Computer Engineering, Virginia
Tech, Blacksburg, VA, USA.

His research interest is applying tools from
optimization, stochastic geometry, and machine
learning to solve emerging problems in device-
to-device, Internet of Things, and machine-type
communications networks.

Hao-Hsuan Chang (Graduate Student Member,
IEEE) received the B.S. degree in electrical engi-
neering and the M.S. degree in communication engi-
neering from National Taiwan University, Taipei,
Taiwan, in 2014 and 2015, respectively. He is
currently pursuing the Ph.D. degree in electri-
cal and computer engineering with Virginia Tech,
Blacksburg, VA, USA.

From 2016 to 2017, he worked as a Research
Assistant on super resolution with the Computer
Vision Laboratory, Academia Sinica, Taipei, Taiwan.

His research interests include dynamic spectrum access, deep learning, and
optimization for wireless communications.

Hao Chen received the B.S. and M.S. degrees
in information engineering from Xi’an Jiaotong
University, Xi’an, China, in 2010 and 2013, respec-
tively, and the Ph.D. degree in electrical engineering
from the University of Kansas, Lawrence, KS, USA,
in 2017.

Since 2016, he has been a Research Engineer with
the Standards and Mobility Innovation Laboratory,
Samsung Research America, Plano, TX, USA. His
research interests include dynamic spectrum access,
network optimization, machine learning, and 5G
cellular systems.

Jonathan D. Ashdown (Member, IEEE) received
the B.S., M.S., and Ph.D. degrees in electrical
engineering from Rensselaer Polytechnic Institute,
Troy, NY, USA, in 2006, 2008, and 2012,
respectively. His doctoral dissertation was on a
high-rate ultrasonic through-wall communication
system using MIMO-OFDM in conjunction with
interference mitigation techniques.

From 2012 to 2015, he worked as a Civilian
Research Scientist with the Department of
Defense (DoD), Naval Information Warfare Center,

Charleston, SC, USA, where he was involved in several basic and applied
research projects for the U.S. Navy. In 2015, he transferred within DoD to
the Air Force Research Laboratory, Rome, NY, USA, where he works on
several advanced emerging technologies for the U.S. Air Force.

Dr. Ashdown was a recipient of the Best Unclassified Paper Award at
the IEEE Military Communications Conference in 2012, the 2016 IEEE
GLOBECOM Best Paper Award, the 2018 IEEE TAOS Best Paper Award,
and the 2018 IEEE TCGCC Best Paper Award.

Jianzhong (Charlie) Zhang (Fellow, IEEE)
received the Ph.D. degree from the University of
Wisconsin, Madison, WI, USA.

From 2009 to 2013, he served as the Vice
Chairman for the 3GPP RAN1 Working Group and
led the development of LTE and LTE-Advanced
technologies, such as 3-D channel modeling, UL-
MIMO, CoMP, and carrier aggregation for TD-LTE.
He is an SVP and the Head of the Standards and
Mobility Innovation Laboratory, Samsung Research
America, Plano, TX, USA, where he leads research,

prototyping, and standards for 5G and future multimedia networks.

Yang Yi (Senior Member, IEEE) received the B.S.
and M.S. degrees in electronic engineering from
Shanghai Jiao Tong University, Shanghai, China, and
the Ph.D. degree in electrical and computer engineer-
ing from Texas A&M University, College Station,
TX, USA.

She is an Associate Professor with the Bradley
Department of ECE, Virginia Tech, Blacksburg, VA,
USA. Her research interests include very large-
scale integrated circuits and systems, computer-aided
design, and neuromorphic computing.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 09,2021 at 18:57:58 UTC from IEEE Xplore. Restrictions apply.

